Training a multi-criteria decision system and
application to the detection of PHP webshells

Alexandre Croix
Royal Military Academy
Belgium
alexandre.croix @rma.ac.be

Abstract—In this paper we present an algorithm designed to
train a multi-criteria decision system. This kind of system is
very important and used a lot in different military fields and,
particularly in cyber-defense. We developed this algorithm to be
used with different multi-agent detection systems. The MASFAD
system is a typical example [1]. It is a multi-agent system for
Advanced Persistent Threat (APT) detection. In this paper we
compare different optimization methods for learning Weighted
Ordered Weighted Averaging (WOWA) coefficients in order to
perform a binary classification. The WOWA function is an
aggregation function that is a generalization of Ordered Weighted
Averaging (OWA) and the Weighted mean. The WOWA operator
combines both of their advantages The learning part is based on
a Genetic Algorithm and uses a training dataset. We perform a
complete parameter study and we determine the efficiency of our
model by evaluating the performance during the classification of
different PHP files as webshells or normal files. These PHP files
were previously analyzed by a program developed at the Royal
Military Academy. We obtain very accurate results and a good
stability during the decision process. This system could be used
in a lot of different fields.

Index Terms—Webshell, machine learning, multi-criteria deci-
sion, aggregation functions

I. INTRODUCTION

The growth of the amount of information and the usage of
multi-criteria decision systems makes, data fusion techniques,
and aggregation functions especially, more and more impor-
tant. These techniques are used in a large field of applications
and are related at two main problems: (i) the characterization
of a model and (ii) the determination of parameters for a
known function.

Several approaches have been developed to determine pa-
rameters for a known function. Some of them used a large
dataset of examples, and parameters are deducted from these
examples. An advantage of this kind of determination method
is that is possible to resolve coefficients without the presence
of domain experts to provide crucial information. Furthermore,
data may come from different locations and, currently, for the
majority of research fields, it is easy to obtain data.

In this paper we focus on a method to determine parameters
for the WOWA function. WOWA, for Weighted Ordered
Weighted Averaging, is an aggregation operator introduced by
Vicen Torra in 1996 [2]]. This operator is a generalization of
Ordered Weighted Averaging (OWA) and the Weighted mean.
Concretely, WOWA merges a set of numerical data in a single

Thibault Debatty
Royal Military Academy
Belgium
thibault.debatty @rma.ac.be

Wim Mees
Royal Military Academy
Belgium
wim.mees @rma.ac.be

number thanks to two weighing vectors: one for the weighted
mean (w) and the other for the OWA operator (p). The
WOWA operator combines the advantages of both of them.
The weighted mean, weights the information sources, and the
OWA gives importance to the data according to their scores.
In this work, we improve the quality of decision/classification.
Another advantage is that the weights obtained for the WOWA
function can be interpreted, which is not the case for deep-
learning.

The WOWA function takes three vectors (w, p, data) in
arguments to produce a single number. The expression could
be represented by:

output = WOW A(w, p, data) (D

Rest of the paper is arranged as follow: Section [[I] de-
scribes the structure of our algorithm with an explanation
of the variants we developed: (i) two different population
initialization methods, (ii) two evaluation criteria and (iii) two
selection methods. In Section we realize a performance
evaluation of our algorithm by studying the impact of different
parameters on the classification of PHP files as webshells or
as normal files. Numerical data for PHP files classification
are provided by a webshell-detector program, developed at
the Royal Military Academy. In Section |V| we discuss results
and give some leads to improve the work in the future. And,
finally, we present our conclusion in Section

II. LEARNING

Learning aggregation operator weights from training dataset
is an optimization problem. In the particular case of weighted
mean or OWA function, the problem is simply a quadratic
minimization function. There are several different algorithms
that solve the problem with accuracy. For the WOWA op-
erator, the optimization problem is more complex. It exists
some optimization techniques to approximate non-quadratic
problems, but their implementation is difficult and non-trivial.
In this case, [3]], advises to use a Genetic Algorithm to learn
the weights of the WOWA operator.

A Genetic Algorithm is an evolutive procedure that main-
tains a population of individuals P(t) = (z¢,...,zt), for
iteration ¢. Each element of the population, called a ’chromo-
some”, is a potential solution to the problem. A chromosome
is composed of different characteristics, named “genes”. Each



chromosome is evaluated to measure its performance. The
following generation, ¢ + 1, is generated by keeping the best
chromosomes from the generation ¢ and by reproducing them
(crossover). Then, some chromosomes in the generation ¢ + 1
are randomly “mutated”. The process is repeated until the
algorithm reaches an end condition.

For our application, a gene is a single weight (value between
0 and 1) and a chromosome is an element composed of two
weight vectors: w and p. Each vector contains several genes
whose sum is mandatorily 1.

We now describe the different steps of our algorithm: (i)
the population initialization, followed by a loop composed of
(ii) an evaluation, (iii) a selection step, (iv) a reproduction step
and (v) the mutation step.

A. Population initialization

There are several ways to initialize population. We imple-
mented two, to measure their impact on the learning efficiency.

The initial population P(0) is composed of N chromo-
somes, of two vectors, each, containing M genes, where M
is the number of numerical data to aggregate (the number of
data sources to merge).

1) Random initialization: The easiest method to perform
an initialization population is simply to generate completely
random chromosomes. Practically, we generate a random
number (between 0 and 1) for each gene. Then, we normalize
the two weight vectors independently to obtain chromosomes
that respect the constraint. The following expressions are the
equations used for the normalization:

wi= o @
bi 3)

/
b >.pi
2) Quasi-random initialization: We implement a “quasi-
random” initialization method. The majority of chromosomes
are randomly generated, but some of them are specific: all
weights are equal to O except one that equals 1. For exam-
ple, a specific chromosome with 2 weights in each vector
X = ((wy,wa), (p1,p2)) could be X = ((0,1),(1,0)).
The goal of this initialization is to begin the algorithm with
particular cases that could produce a better convergence to the
solution.

B. Chromosome performance evaluation

For each generation, all chromosomes are individually eval-
vated in order to determine which ones give the best results.
We implemented two different evaluation methods which have
quite different functioning.

1) Distance performance evaluation: For each chromo-
some in the population, we compute the WOWA function on
all the examples in the training dataset. Then, we compute the
difference between the WOWA result just computed and the
result given in the training dataset. All these differences are
added to obtain the total distance of a chromosome that is the
performance of this individual. The lower the distance is, better

is the chromosome. To Obtain a distance of zero means the
algorithm found a combination of weights that match perfectly
with all examples in the training dataset.

2) Area Under the Curve performance evaluation: The
Area Under the Curve (AUC) evaluation method is designed
for binary classification problems and is directly related to
the quality of detection. To obtain the AUC, we first build
the receiver operating characteristic (ROC). The ROC is a
graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. It
is created by plotting the frue positive rate (true detection)
against the false positive rate (false alarm) as shown in the
Figure |1} The AUC, is the Area Under the ROC Curve. Better
is the detection, greater is the Area Under the Curve (AUC).

In the case of the AUC evaluation performance criterion, for
each chromosome in the population, we compute the WOWA
function on all examples in the training dataset and, then, on
these computed results, we perform the Area Under the Curve
evaluation. This method gives directly an estimation of the
classification efficiency for each chromosome. Unlike the pre-
vious method, higher is the result, better is the chromosome.

ROC curve

true
detection

RANKED LIST

true detection
true detection 1—

false positive
true detection

false positive
false positive
true detection
false positive
true detection
false positive
true detection
true detection

false
positives

Fig. 1. Simple example of a ROC curve

The following pseudo-code describes how the AUC evalu-
ation method works:

Algorithm 1 AUC chromosome performance evaluation

for all chromosomes in population do
read w and p vectors from chromosome ¢
auc <0
wowa_output|]
real_result|]
for all examples in dataset do
real_result[j] < read example(j) from dataset
wowa_output[j] + wowa(w, p, example(y))
end for
auc < compute AU C(wowa_output(], real_result[])
chromosome.performance < auc
end for




C. Selection step

In order to create a new generation (¢ + 1) of chromosomes,
it is necessary to select some element from the generation
t. The probability to select a chromosomes depends on its
performance score evaluation. We implemented two methods
to select “parents” for the next generation.

The number of chromosomes selected as parents depends
on the crossover parameter. The crossover is the percentage
of the population kept from the generation ¢ to the generation
t+ 1.

We also implemented an “elitism” principle: the two best
chromosomes (compare to their performance evaluation score)
from the generation t are systematically kept unchanged in
the generation ¢+ 1. This “elitism” system prevents regressing
from a generation to the next one. Indeed, in the worst case,
the best result of a generation is equal to the best result of the
previous generation.

We now describe different selection methods for Genetic
Algorithm. In our work we used two of them : the Tournament
Selection (TOS) and the Roulette Wheel Selection (RWS).
During our tests, we did not note significant differences
between the results with TOS or RWS.

1) Roulette Wheel Selection: This selection method gives
to each individual ¢ of the population a probability p(i) of
being selected proportional to its performance score f (). The
expression of p(i) is given by:

N
Pli) = s 5 )

where n represents the number of elements in the population.
The process is repeated, without replacement, until the
required number of parents is obtained.
According to [4], the Roulette Wheel Selection method
could produce a premature convergence of the algorithm on
a local minimum.

“4)

2) Tournament Selection: This method picks randomly two
chromosomes and keeps, for the next generation, the chro-
mosome with the best performance score. Chromosomes with
good high performance score have more chance to be selected
for the next generation. As the previous selection method,
the process is repeated until obtain the necessary number of
parents.

D. Reproduction step

During the reproduction step, chromosomes which have
been selected during selection, are combined two-by-two to
create new individuals. The reproduction procedure is detailed
below and is inspired from [5].

First, a random number « is selected to determine the
crossover point. This number is defined as:

a=[(rnd+ M)] &)

where M is the number of numerical data to aggregate and
rnd is a random number between 0 and 1.

Two chromosomes are randomly selected:
(6)
(7

The genes at the crossover point are combined together to
create new genes:

Piaqg = (Pd1sPd2; - Pdas - DM )

Pmom = (pmhmea <oy Pmas ~'~7p’rrLM)

®)
€))

Prnewl = Pma — B[ mao *pda]
Prnew2 = Pda + ﬁ[pma - pda]

where (3 is a random number between 0 and 1.
The final step is the combination of the two parents and the
two new genes to obtain two new chromosomes:

Cthdl = (pml;pm% covs Pnewls “'7de\1) (10)

(1)

The reproduction procedure is repeated to fill the population.

childy = (Pa1,Dd2, s Prew2s -+ PmM)

E. Mutation step

Mutation step is important to avoid converging too quickly
on a local minimum [6]]. Indeed, without mutation, generation
after generation, the population will converge to a minimum.
It is possible, even probable, that this minimum is a local
minimum. Mutation produces “jump” on another position in
the space of solutions and can discover new areas for the
domain with better potential solutions.

Concretely, a random gene is selected and is replaced by
a random value between 0 and 1. Then, the chromosome is
normalized to respect the constraint (sum of weights equals

1).

III. PARAMETERS STUDY AND EXPERIMENTAL
EVALUATION

A. Test setup

To evaluate the efficiency of our algorithm, we performed
a parameters studyﬂ on data provided by a webshell detector.
The detector analyses PHP files according to five different
modules and gives a score, between 0 and 1 for each of them.
The different modules are:

o Signature Checks if the file is known in a signature
database. This kind of detection works well for known
malicious file;

o Fuzzy hashing

o Dangerous routines Checks if the PHP file tries to
execute some specific and potentially dangerous routines.
For example: exec, passthru, system,...;

o Obfuscation Checks if the file executes some functions
like base64decode, roti3,... A malicious file tries to hide
the its content. The module measure also the longest
string in the file;

« Entropy

IThe complete source code and documentation are available at
|https://gitlab.cylab.be/cylab/wowa-training|




The training dataset used for this work is composed of
12,468 PHP files that contains 206 PHP webshells. All these
files were analyzed by the webshell-detector and the results
were stored in serialized files.

The efficiency evaluation of a classification model needs
two steps: (i) the learning part and (ii) the evaluation part.
According to [7], it is very important to have different dataset
for the learning and the evaluation. Generally, two-third of the
data are used for the learning and a third for the evaluation.

In our case, it is not easy to find a sufficient amount of
real different webshells. To overcome this problem we used
a well-known data-mining method [8]|: the k-folds crossover
validation. This method consists of separing the dataset in &
folds, performing the learning part on k£ — 1 folds and then,
evaluating the model on the last fold. The process is repeated
k times by changing the fold used for the evaluation. All
these k intermediate results are meant to obtain a general
result. Taking k equals 5 or 10 usually produces, the best
results.

Our training dataset has only 1.6% of malicious files. It is
not possible to generate randomly the k folds. The probability
to obtain very different repartitions would be too high. A fold
could be composed of only one or two webshells.

Practically, we selected randomly, | % | webshells, and | £ |
“normal” files. Where W is the total number of webshells in
the dataset, I’ is the total number of non-malicious files in the
training dataset and & is the number of folds. We obtained &
folds with similar proportion of webshells.

To raise the penalty to not detect a webshell file, we
artificially increase the number of webshells in the learning
dataset: concretely, in each learning dataset, we put 10 times
each webshell scores.

To determine the efficiency of our algorithm, we performed
a complete parameters study. We tested:

o Population size number of individuals in each popula-

tion;

o Crossover rate percentage of the population kept to

generate the next generation;

« Mutation rate percentage of genes which are mutated in

each generation;

¢ Generation number number of generation before stop-

ping the algorithm.
In combination to these four parameters, we have tested
the two population initialization methods (random and quasi-
random) and two performance evaluation criteria (distance
evaluation and AUC evaluation).

To evaluate the performance of a parameters combination,
we observed two measurements: (i) the average AUC obtained
after the 10-folds cross validation and (ii) the range of thresh-
old values in which the frue positive rate and the true negative
rate are better than 95%. In other words, it is the size range of
threshold values that allows a correct classification for more
than 95% of the files.

We measured this range in one specific fold: the fold, from
the 10 folds of the cross-validation, with the best AUC value.
Then, we compared this range with the range obtained by a
classification generated by a mean as aggregation function.

B. Population number

For the first test, we varied the population
number between 40 and 110 by step of 10. The
other parameters were fixed and their values are:

Crossover rate 60
Mutation rate 15
Generation number 110

The Figure [2] presents the average AUC for all the values
and for the four combinations of initialization and performance
evaluation method.

Average AUC - Population number

0.995

0.99 Pw&

2 0985 == Dist-Rand
g =—4— AUC-Rand
g 0.08 Dist-Quasi
z == AUC-Quasi
0.975
0.97
30 40 S0 60 70 B0 90 100 110 120
Population number
Fig. 2. Figure shows the variation of average AUC according to the

variation of population number for the four combinations of initialization and
performance evaluation method

The Figures [9] and [12] show the size range in which
more than 95% of the files are correctly classified compared to
the range size obtained with a classification performed thanks
to a mean as aggregation. It is important to note that, because
of the random generation of the folds, the results depend of
the model but also of the composition of the folds. That can be
observed on the Figure We observe two curves with very
similar behaviour but with different values. It means that some
folds are “easier” to classify than others (similar behaviour)
but the WOWA aggregation generally gives better results than
a average aggregation.

C. Crossover rate

The second parameter studied is the crossover rate. The
values varied from 10 to 90 by step of 10. The fixed values
are:

Population size 100
Mutation rate 15
Generation number 110

As previously, Figure [3| shows the variation of the average
AUC according to the crossover rate variation.

The Figures [I3] [T4] [T5] and [I6] compare the range size
detection between the WOWA classification and a mean clas-
sification.



Average AUC - Crossover rate

0.992

0.99

0.988
2 0.986 == Dist-Rand
< posa —4— AUC-Rand
& 0.082 Dist-Quasi
El —i— AUC-Quasi

0.98

0.978

0.976

0 10 20 30 40 50 60 70 =) 90 100

Crossover rate

Fig. 3. Figure shows the variation of average AUC according to the variation
of crossover rate for the four combinations of initialization and performance
evaluation method

D. Mutation rate

The third parameter is the mutation rate. We tested the val-
ues between 5 and 50 by step of 5. The other fixed values are:
Population size 100
Crossover rate 60
Generation number 100
On Figure {] we can see the impact of the mutation rate
variation.

Average AUC - Mutation rate

0.994

0.992

0.99
g O%® —=— Dist-Rand

ist-Ran

% 0985 W —e— AUC-Rand
7 0984 Dist-Quasi
% 0.982 == AUC-Quasi

0.98

0.978

0.976

0 10 20 30 40 50 60

Mutation rate

Fig. 4. Figure shows the variation of average AUC according to the variation
of mutation rate for the four combinations of initialization and performance
evaluation method

On the Figures[17] [18] [[9] and [20] we can observe the impact
of the mutation rate on the size of the detection range, compare
to the range size for a classification that uses a simple average
as aggregation.

E. Generation number

The way the algorithm is built, the best element of a
generation is equal or better (according to the performance
evaluation criterion) than the best element of the previous
generation. Increasing the generation number can only im-
prove the performance evaluation score. We use the learning
curve to measure the evolution of the improvement. This curve
represents the AUC value in function of the generation number.
Note that for the AUC performance criterion, the learning
curve is always increasing. That is not the case for the distance

performance evaluation criterion. Indeed, that is not because
the distance decreases that the AUC increases.
We generated the learning curves with fixed parameters:
Population size 100
Crossover rate 60
Mutation rate 15

The Figures [3] and [f] present the learning curve generated
for the combination random initialization/AUC performance
criterion and the quasi-random initialization/AUC performance
criterion.

The two other combinations (random initialization/distance
performance criterion and quasi-random initialization/distance
performance criterion) are shown on the Figures[7|and[8] These
figures also show the evolution of the distance criterion (that
is always decreasing).

Learning curve - AUC - QuasiRandom

0.9944

0.9942

0.994

0.9938 AUC

AUC

0.9936
0.9934

0.9932
0 20 40 60 80 100 120 140 160 180

Generation number

Fig. 5. Figure shows the learning curve for a model that uses a quasi-random
initialization method and the AUC evaluation performance criterion.

Learning curve - AUC - Random

0.9955
0.995
0.9945

0.994 —AUC

AUC

0.9935
0.993

0.9925
0 20 40 60 80 100 120 140 160 180

Generation number

Fig. 6. Figure shows the learning curve for a model that uses a random
initialization method and the AUC evaluation performance criterion.

We note that for all combinations (performance evaluation
criterion/initialization method), running the algorithm longer
than 100 generations does not really improve the results. The
values are quite stable.

F. Synthesis results

This parameters study highlights the best values for the
different parameters (whereas they are independent). We can
note some important things:



Learning curve - Distance - Random

8.2 0.9885
8.1 0.988
8 0.9875
7.9 0.987
o T8 0.9865
E 7 0985 Q —AlUC
Z 186 pogss * = Distance
75 0.985
74 0.9845
7.3 0.984
7.2 0.9835

0 20 40 60 80 100 120 140 160 180

Generation number

Fig. 7. Figure shows the learning curve for a model that uses a random
initialization method and the distance evaluation performance criterion (blue)
and the curve that represents the evolution of the distance value according to
the generation number (orange).

Learning curve - Distance - QuasiRandom

8.4 0.992
8.2 0.99
0.988
8
0.986
. 7.8 0.984
E 76 D92 ——AUC
7] = Distance
o 74 0.98
0.978
7.2
0.976
7 0.974
6.8 0.972

0 20 40 60 80 100 120 140 160 180

Generation number

Fig. 8. Figure shows the learning curve for a model that uses a quasi-random
initialization method and the distance evaluation performance criterion (blue)
and the curve that represents the evolution of the distance value according to
the generation number (orange).

o The best value of AUC is, obviously, obtained with the
AUC performance evaluation criterion;

o The bigger sizes of detection range are obtained with the
distance performance evaluation criterion. It means that
the distance criterion is less sensitive than AUC criterion;

e The AUC criterion gives less good results, in term of
range size, than the average classification;

o The repartition of weights depends a lot on the per-
formance criterion used: with the distance criterion, the
most important source (greatest weight) is the Signature
module (between 45% and 90%). With the AUC criterion,
the Signature has the smallest weight (around 3%);

e Quasi-random initialization method does not produce
better results than random initialization;

o The population number parameter has no real influence
on the results;

o The crossover rate parameter analysis shows the best
value is 60%;

o The mutation rate parameter analysis shows the best value
is 30%;

o The generation number parameter analysis shows that

running more than 100 generations does not produce
important improvement;

IV. CONCLUSION

Our work shows that it is possible to implement a multi-
criteria based decision able to learn from a training dataset.
We applied this algorithm on a realistic situation: classification
of PHP files as a webshell or as a normal file. We obtained
very interesting results: between 98% and 99% of the files are
correctly classified. We obtained also a good improvement of
the sensitivity of the classifier.

The algorithm also gives important information about the
modules that are aggregated. It highlights the modules with
a high importance and, mostly, the less important. This could
point out that a module is inefficient and improve it in priority.

V. FUTURE WORKS

There are a lot of different ways to continue this work or
to improve it. Currently, if we want to add some elements in
the dataset examples, it is necessary to perform again all the
learning part. It could be very interesting for the system to be
able to adapt itself by modifying the weight values without a
complete recomputation.

Our method to determine the best combination of
parameters considers that all parameters are completely
independent. It seems more realistic to suppose a correlation
between the different parameters. This point could be
improved in a future work.

The algorithm is built to be very generic. It will be easy
to implement other aggregation functions or performance
evaluation criteria.

As our algorithm can be used with numerical criteria, it
could be interesting to adapt the system to work with non-
numerical data.

REFERENCES

[1] W. Mees and T. Debatty, “Multi-agent system for apt detection,” in

2014 IEEE International Symposium on Software Reliability Engineering

Workshops, Nov 2014, pp. 401-406.

V. Torra, “Weighted owa operators for synthesis of information,” vol. 2,

10 1996, pp. 966 — 971 vol.2.

D. Nettleton and V. Torra, “A comparison of active set method and genetic

algorithm approaches for learning weighting vectors in some aggregation

operators,” International Journal of Intelligent Systems, vol. 16, pp. 1069—

1083, 09 2001.

[4] K. Jebari, “Selection methods for genetic algorithms,” International
Journal of Emerging Sciences, vol. 3, pp. 333-344, 12 2013.

[5] R.L.Hauptand S. E. Haupt, Practical Genetic Algorithms with CD-ROM.
New York, NY, USA: Wiley-Interscience, 2004, pp. 56—60.

[6] ——, Practical Genetic Algorithms with CD-ROM. New York, NY,

USA: Wiley-Interscience, 2004, p. 60.

1. Witten and E. Frank, Data Mining Practical Machine Learning Tools

And Techniques, 01 2005, vol. 11.

[8] T. Gunasegaran and Y. Cheah, “Evolutionary cross validation,” in 2017
8th International Conference on Information Technology (ICIT), May
2017, pp. 89-95.

[2

—

3

—

[7

—



95% detection size range - population number

0.25 —— Range WOWA
0.2 —e— Range Average

Range size

30 40 50 60 70 80 90 100 110 120

Population number

Fig. 9. Figure shows and compares the variation of the range size, according
to the variation of the population number, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and
an average aggregation (orange) with a random initialization and a distance
evaluation criterion.

95% Detection range size - Population number - Distance - Quasi Random

0.6
0.5
0.4

0.3 —— Range WOWA
=== Range Average

Range size

0.2
0.1
0

30 40 50 60 70 80 80 100 110 120

Population number

Fig. 10. Figure shows and compares the variation of the range size, according
to the variation of the population number, in which more than 95% of the
files are correctly detected by using an WOWA aggregation function (blue)
and an average aggregation (orange) with a quasi-random initialization and a
distance evaluation criterion.

95% detection range size - Population number - AUC - Random

0.3
0.25
0.2
2
E 0.15 —B— Range WOWA
g —#— Range Average
3 0.1
0.05
1]
30 40 50 60 70 80 90 100 110 120

Population number

Fig. 11. Figure shows and compares the variation of the range size, according
to the variation of the population number, in which more than 95% of the
files are correctly detected by using an WOWA aggregation function (blue)
and an average aggregation (orange) with a random initialization and a AUC
evaluation criterion.

95% Detection range size - Population number - AUC - Quasi Random
0.35
0.3
0.25
0.2

—— Range WOWA
0.15 —e— Range Average

Range size

0.1
0.05

o

30 40 50 60 70 80 90 100 110 120

Population number

Fig. 12. Figure shows and compares the variation of the range size, according
to the variation of the population number, in which more than 95% of the
files are correctly detected by using an WOWA aggregation function (blue)
and an average aggregation (orange) with a quasi-random initialization and a
AUC evaluation criterion.

95% detection range size - Crossover rate - Distance - Random

0.25 —— Range WOWA
0.2 === Range Average

Range size

0 0 20 30 4 50 60 7O 8O 80 100

Crossover rate

Fig. 13. Figure shows and compares the variation of the range size, according
to the variation of the crossover rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and
an average aggregation (orange) with a random initialization and a distance
evaluation criterion.

95% Detection range size - Crossover rate - Distance - Quasi Random

0.6
0.5
0.4

0.3 —— Range WOWA
—#— Range Average

Range size

0.2
0.1

0

0 10 20 30 40 50 60 70 80 90 100

Crossover rate

Fig. 14. Figure shows and compares the variation of the range size, according
to the variation of the crossover rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and an
average aggregation (orange) with a quasi-random initialization and a distance
evaluation criterion.



95% Detection range size - Crossover rate - AUC - Random

0.3
0.25
0.2
&
'i 0.15 —#— Range WOWA
g —&— Range Average
L4 0.1
0.05
o

0 0 20 30 40 50 60 70O B8O 90 100

Crossover rate

Fig. 15. Figure shows and compares the variation of the range size, according
to the variation of the crossover rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and
an average aggregation (orange) with a random initialization and a AUC
evaluation criterion.

95% Detection range size - Crossover rate - AUC - Quasi Random

0.45
0.4
0.35
0.3
i 0;}22 —&— Range WOWA
g - === Range Average
@ 015
0.1
0.05
o

0 0 20 30 40 50 60 7O 8O 80 100

Crossover rate

Fig. 16. Figure shows and compares the variation of the range size, according
to the variation of the crossover rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and an
average aggregation (orange) with a quasi-random initialization and a AUC
evaluation criterion.

95% detection range size - Mutation rate - Distance - Random
0.8
07

0.6
05
04
- W/\

—f— Range WOWA
—&— Range Average

Range size

0.2
0.1

0 10 20 30 40 50 60

Mutation rate

Fig. 17. Figure shows and compares the variation of the range size, according
to the variation of the mutation rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and
an average aggregation (orange) with a random initialization and a distance
evaluation criterion.

95% Detection range size - Mutation rate - Distance - Quasi Random

0.6
0.5
0.4

03 —— Range WOWA
—e— Range Average

Range size

0.2

0.1

0 10 20 30 40 50 60

Mutation rate

Fig. 18. Figure shows and compares the variation of the range size, according
to the variation of the mutation rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and an
average aggregation (orange) with a quasi-random initialization and a distance
evaluation criterion.

95% detection range size - Mutation rate - AUC - Random
0.35
03
0.25

0.2
—— Range WOWA

0.15 === Range Average

Average AUC

01

0.05

0 10 20 30 40 50 60

Mutation rate

Fig. 19. Figure shows and compares the variation of the range size, according
to the variation of the mutation rate, in which more than 95% of the files
are correctly detected by using an WOWA aggregation function (blue) and
an average aggregation (orange) with a random initialization and a AUC
evaluation criterion.

95% Detection range size - Mutation rate - AUC - Quasi Random
0.3

0.25
0.2

0.15 —f— Range WOWA

—#— Range Average

Range size

0.1
0.05

0
0 10 20 30 40 50 60

Mutation rate

Fig. 20. Figure shows and compares the variation of the range size, according
to the variation of the mutation rate, in which more than 95% of the files are
correctly detected by using an WOWA aggregation function (blue) and an
average aggregation (orange) with a quasi-random initialization and a AUC
evaluation criterion.



