Parislech

INSTITUT DES SCIEMCES ET TECHNOLOGIES TELECO M

PARIS INSTITUTE OF TECHNOLOGY

ParisTech

m a0

2018-ENST-047

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech
Spécialité « INFORMATIQUE et RESEAUX »

présentée et soutenue publiquement par

Thibault DEBATTY
le 5 octobre 2018

Design and analysis of

distributed k-nearest neighbors graph algorithms

Directeur de thése : Pietro MICHIARDI
Co-directeur de these : Wim MEES

Jury

M. Giovanni NEGLIA, Chargé de Recherche HDR, INRIA Rapporteur
M. Jean-Michel DRICOT, Professeur associé, Université Libre de Bruxelles Rapporteur
M. Marc DACIER, Professeur, Eurecom Examinateur
Mme Elena BARALIS, Professeur, Politecnico di Torino Examinatrice

TELECOM ParisTech
école de I'Institut Télécom - membre de ParisTech






Acknowledgements

This thesis was possible thanks to the help and support of many.

First of all, I would like to thank my two advisors, Pietro Michiardi and Wim Mees, for
their valuable advice, coaching, support and patience.

I naturally thank the members of the thesis committee for taking the time to read this

thesis: Giovanni Neglia, Jean-Michel Dricot, Marc Dacier and Elena Baralis.

I would like to specially thank Olivier Thonnard, without whom this thesis would definitively
not have been possible.

A lot of thanks go to my friends and colleagues from the Royal Military Academy, from

Eurecom, and from the Symantec office at Eurecom.

And last but not least, I would like to thank my wife Axelle for supporting me, particularly

the days and nights preceding each paper submission deadline.






Abstract

A k-nn graph is a special kind of graph where each node has an edge (a link) to the k most
similar other nodes in the graph according to some appropriate measure of similarity. A
k-nn graph can actually be used as an index, with multiple advantages: 1) it requires little
memory, 2) it can be used with any measure of similarity, even non-metric and 3) although
building a k-nn graph is usually a CPU intensive and time consuming operation, processing
a k-nn graph is very fast.

In this thesis we study the usage of k-nn graphs to analyze large datasets. We make the
assumption that the dataset is so large that it cannot be processed using a single computer.
Hence we propose algorithms designs relying on the bulk synchronous parallel (BSP) model,
then we implement them and evaluate their performance using either the Apache Hadoop
MapReduce framework or the Apache Spark framework.

We study two different aspects of k-nn graphs: 1) how to build and store them and 2) how
to use them efficiently to analyze data. In the first part of this thesis we propose an efficient
way to build a k-nn graph from large text datasets, we show how to update a k-nn graph
when data has to be inserted in or removed from the graph, and how to partition the nodes
of a large k-nn graph between multiple compute nodes in a way that optimizes the analysis
of the graph. In the second part we show that k-nn graphs can successfully be used to

perform clustering of large text datasets and to detect compromised computers in a network.






Résumé

Un graphe des k plus proches voisin (graphe k-nn, de ’anglais k-nearest neighbors) est un
type de graphe spécifique ot chaque point (nceud) posséde un lien vers les k autres points
les plus semblables du graphe selon une mesure appropriée de similarité. Pour ’analyse
de grands volumes de données, un graphe k-nn peut étre utilisé comme index, et offre de
multiples avantages : 1) il nécessite peu de mémoire, 2) il peut étre utilisé avec n’importe
quelle mesure de similarité, méme non métrique et 3) bien que la construction d’un graphe
k-nn soit généralement une opération qui nécessite beaucoup de calcul et de temps, le

traitement d’un graphe k-nn est tres rapide.

Dans cette these, nous étudions I'utilisation de graphe k-nn pour analyser de grands volumes
de données. Nous supposons d’ailleurs que le jeu de données est si important qu’il ne peut
étre traité a l'aide d’un seul ordinateur. Nous proposons donc des algorithmes s’appuyant
sur le modele BSP (bulk synchronous parallel), puis nous les implémentons et évaluons leur
performance en utilisant soit le framework Apache Hadoop MapReduce, soit le framework

Apache Spark.

Nous étudions deux aspects différents des graphes k-nn : 1) comment les construire et les
stocker et 2) comment les utiliser efficacement pour analyser les données. Dans la premiere
partie de cette theése, nous proposons une méthode efficiente pour construire un graphe
k-nn a partir de grands ensembles de données textuelles, nous montrons comment mettre a
jour un graphe k-nn lorsque des données doivent étre insérées ou supprimées du graphe, et
comment partitionner les points d’un grand graphe k-nn entre plusieurs nceuds de calcul
de fagon a optimiser ’analyse du graphe. Dans la deuxieéme partie, nous montrons que les
graphes k-nn peuvent étre utilisés avec succes pour effectuer le regroupement de grands
ensembles de données textuelles (text clustering) et pour détecter les ordinateurs compromis

dans un réseau.
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Chapter 1

Introduction

One of the hypes in the IT field is currently the Big Data trend. To understand the
phenomenon, one must return to its birth. During the 1990s, the price of data storage has
dropped dramatically, from around 40,000€ per GB in 1987 to about 2€ per GB in 2002 and
0.05€ per GB in 2015 [42]. Due to the prohibitive storage cost, until then companies only
stored the data that was strictly required to manage the relationship with their customers
(name, address, services or products ordered, invoices, etc.). Besides, outdated data was
quickly discarded to save space and money. With the democratization of mass storage,
these companies started to also store all the information concerning interactions with their
potential customers, without ever deleting anything, and without even worrying about their
possible usefulness. Google and Yahoo! for example, the precursors of Big Data, have since

stored all activity conducted by their users.

Tesco, the largest supermarket chain in the United Kingdom, was one of the first large
companies to discover and successfully exploit the business benefits of this data. Starting in
the mid-1990s, Tesco launched its own loyalty program, called “Clubcard”. Many competitors
had already used similar cards to encourage customer loyalty. However, Tesco was the first
to store the data generated by the use of these cards: which customer purchased which
product and when. The firm then used this data to better target the promotional mailings
and coupons sent to customers, which resulted in a strong increase of their use (from 3% to

70%), as well as an increase of sales [28].

Seeing these results, Tesco has also applied this analytical approach to other areas. One
of the most profitable uses for the company is the analysis of sales as a function of the
weather to optimize their inventory management system. By being able to forecast sales by
product for each store, Tesco was able to optimize logistic and save £100 million (about 127
million €).

At the moment, the phenomenon is only increasing. The amount of data produced every
second in the world is exploding. IoT devices, e-commerce applications, security or financial
services continue to generate huge amounts of data that is captured and stored. The use of
this data is currently considered a key to the competitiveness and growth: just like Tesco

did, analyzing these data allows companies to discover hidden trends and opportunities.

Processing these large amounts of data in an efficient way requires appropriate indexing

11



12 Chapter 1. Introduction

Figure 1.1: Example of a Binary Search Tree used to search the element with value 4 [102].

structures: without an index, every operation on the data (search, cluster,...) requires to

scan the complete dataset, possibly multiple times.

Different indexing structures exist. The most simple kind of index is a sorted binary tree
(also called binary search tree, BST) [27]. It assumes that the data to index can be ordered.
A BST maintains a tree-like structure of the data where elements are sorted. This allows to
search an item in time O(logn), where n is the number of elements in the tree. Figure 1.1

shows how a BST can be used to search the element with value 4.

B-trees [25], B+ trees and B* trees are generalizations of binary search trees that store
multiple values at each level of the tree and have multiple branches. They are commonly
used by database systems and file systems for example. For points in R"”, like geographic

data, k-dimensional trees (k-d trees) and R trees can be used.

Next to these classical options, a k-nn graph is an unusual but interesting candidate. A
k-nn graph is a graph where each node has an edge (a link) to the k£ most similar other
nodes in the dataset. Although it is very simple compared to some other indexes, it allows
to perform some common analysis tasks like clustering or similarity search in an efficient

way. It has three additional interesting characteristics:

1. it can be used with any measure of similarity, even non metric. A k-nn graph is thus
a multipurpose index that can be used for multiple applications, like text datasets
equipped with a non-metric measure of string similarity for example. These kinds
of datasets are actually very common and will be used throughout this thesis for

experimental evaluation;

2. it requires little memory: the memory requirement of a k-nn graph is proportional to
the size of the dataset (i.e. o< kn where n is the size of the dataset). This makes them
suitable for very large datasets;

3. although building a k-nn graph is usually a computationally intensive and time
consuming operation, as we will show in Chapter 3, processing a k-nn graph is usually
very fast. This makes k-nn graphs a premium choice for implementing interactive

analysis tools, like the one we present in Chapter 7.

This thesis focuses precisely on the usage of k-nn graphs for processing large datasets.
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Moreover, we make the assumption that the dataset is so large that it cannot be processed
using a single compute node, either because it does not offer sufficient memory, or because it
cannot process the data within a acceptable amount of time. Hence we focus on distributed

algorithms, that can take advantage of multiple compute nodes to process the data.
In the first part of this thesis, Fundamental algorithms, we study:
— how to efficiently build k-nn graphs from large text datasets;
— how to update a k-nn graph when new data has to be inserted or removed;
— how to partition a large k-nn graph between multiple compute nodes.

In the second part, Applications, we show how to use k-nn graphs to perform clustering of

large text datasets, and how to use them to detect compromised computers in a network.



14
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Chapter 2

Background and related work

Both k-nn graphs and distributed processing are vast subjects. Concerning k-nn graphs, a
vast literature exists that covers a lot of different algorithms and applications. Distributed
processing is an even broader subject. Next to theoretical papers describing algorithms and
approaches to process data in parallel, a lot of different technologies and frameworks exist
that can be used to build distributed systems.

This thesis is of course based on a large quantity of this pre-existing work. In this Chapter

we review them and present more in details the algorithms and technologies that we used.

2.1 k-nn graphs

In the general case, a graph is a mathematical structure made up of nodes (also called
vertices) connected with edges. The edges of a graph may be directed or undirected. The
edges may also indicate a weight, which results in a weighted graph. Graph theory is a very
ancient topic, dating back to 1736 [15]. It has received a strong highlight these last years
with the explosion of the Internet, search engines and social networks like Facebook and
Twitter. Indeed, the data generated by these networks can easily be formatted as a graph,

as does the web itself, making graph algorithms a premium analysis tool.

As a consequence, a lot of research has been devoted to efficiently analyze this kind of data,
either sequentially or in parallel, like in [85], [60], [17] or [90].

Instead of physical relationships like “is a friend of”, “likes” or “has an hyperlink to”, edges
may also represent the similarity between nodes. This results in a special kind of directed
graph, called a nearest neighbors graph, of which two flavors exist. The most commonly
used is the k-nearest neighbors graph (k-nn graph), where each node is connected to (has

an edge to) its k nearest neighbors, according to a given measure of similarity.

Another possibility is to create an e-nn graph, a graph where an edge exists between two
nodes if their distance is less than a pre-defined threshold e. However, it has been shown
in [12] that e-nn graphs easily result in disconnected components. Moreover, it is usually
difficult to find a good value of € which yields graphs with an appropriate number of edges
[20]. From a practical point of view, it is more efficient to build a k-nn graph and afterward

15



16 Chapter 2. Background and related work

filter the graph with different values of €. Hence most of the research on graph building
currently focuses on k-nn graphs.

Uunlike “natural” graphs (like Facebook graph, twitter graph or web graphs [59]), k-nn graphs
do not automatically emerge from data. They have to be built from a regular dataset, using
an appropriate measure of similarity between elements. This is usually a CPU intensive and

time consuming operation, although optimizations exist, as we will show in Chapter 3.

Ounce built, k-nn graphs are powerful tools to analyze data. For example, the authors in [46]
build a nearest neighbor graph of landscape images to allow interactive exploration of large
image databases. In [81] the authors also use a nearest neighbor graph of images, this time
to automatically discover objects in images. In [91], a k-nn graph is used to search similar
images in a large database. In [94] the authors use a nearest neighbor graph to perform
dimensionality reduction. In [68], the authors use nearest neighbor graphs to perform
clustering. In Chapter 6 we also show how to use k-nn graphs to cluster text datasets and

in Chapter 7 we use them to detect compromised computers on a network.

2.2 Distributed computing

When a dataset is so large that it cannot be processed using a single computer, as we assume
for this thesis, one has to rely on multiple computers to do the job. In a distributed system,
a group of networked computers work together to achieve this common goal. Unlike parallel
systems, they do not share a common memory. Distributed algorithms have to take this

limitation into account.

Different models and technologies exist to achieve distributed processing, like the Message
Passing Interface (MPI) for example. As the name states, MPI relies on the exchange of
messages between the computers. This approach thus makes the implicit assumption that

the network allows extremely fast communication (both low latency and high bandwidth).

However, when using commodity hardware, sending a message over the network is usually
orders of magnitude slower than accessing the local memory. Hence for this thesis we focus
on another model, that does take communication cost into account: the bulk synchronous
parallel (BSP) model. In this model a computation proceeds in a series of supersteps, which
consist of three stages:

1. concurrent computation;
2. communication between the computers;
3. barrier synchronization.

As communication actions are executed in bulk, an upper bound on the communication cost
of a BSP algorithm can be computed. This cost will often account for a large part of the

total processing time, and has to be minimized.

More specifically, for our experimental evaluation we implement our algorithms using the
MapReduce model [29], and we use two different targets: Apache Hadoop MapReduce and
Apache Spark [105].
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2.3 MapReduce

map and reduce are originally array operators found in most (if not all) programming

languages:

— array.map(function) applies the provided function to all elements of the array.

Hence it returns an array of the same size.

— array.reduce(function, initial_value) iteratively reduces the array by applying
the provided function to all elements of the array. In this case the function takes
two arguments: the current value of the array, and the aggregated value obtained by
applying the function to previous elements of the array. The result of array.reduce

is hence a single aggregated value.

In their seminal paper [29], Jeffrey Dean and Sanjay Ghemawat from Google describe how to
use map and reduce operations to simplify distributed computing on commodity hardware.
This model naturally relies on some assumption: the input data is a large set of records that
can be processed independently. In the MapReduce model, the map function takes a single
record as parameter, and emits a key, value pair. The reduce function receives as parameter
the list of values that share the same key and computes a single result corresponding to this

key.

Although this model can seem quite simple and thus limiting, the range of possible applica-
tions was surprisingly broad: the MapReduce model was successfully applied to tasks such

as distributed grep, count of URL access frequency, sort, inverted index building etc.

This model has the enormous advantage that it makes parallelization quite straightforward
and transparent to the user: the input data is split between the different compute nodes,
where the map function is applied independently, without requiring any additional commu-
nication between compute nodes. In the second stage, the reduce operation is also applied
independently by the different compute nodes.

Overall, the only required communication consists in 1) distributing the input data between
the compute nodes and 2) transporting the different key, value pairs emitted by the map
function to the correct compute node, where the reduce function will be applied. This,
however, is the responsibility of the MapReduce framework and is completely transparent to
the user.

Moreover, the MapReduce model allows to easily achieve data locality: the map operation is
preferably executed by the compute node that already holds the input data. This requires
to 1) split the data in slices (called splits) and distribute them between the compute nodes
and 2) orchestrate the execution such that each compute node applies the map function to
the splits that it holds. These two tasks are transparent to the user as well, and are taken

care of by the distributed filesystem and by the MapReduce framework respectively.

2.4 Hadoop

To support their seminal paper with experimental evaluation, Dean and Ghemawat imple-
mented their own MapReduce framework, which was largely used by Google for different
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Figure 2.1: Example of data flow in a distributed MapReduce application [24].

applications. Others implementations also appeared quickly after the publication of the
paper, based on the ideas described in the paper, in different programming languages.

Amongst all of these, the most used is probably Apache Hadoop MapReduce. As the name
states, this implementation if part of the Apache Hadoop project. ' The original Hadoop
project has two components: 1) the Hadoop Distributed File System (HDFS) which is
responsible for splitting the data and storing it on the different compute nodes and 2) the
Hadoop MapReduce framework itself which is responsible for executing the MapReduce jobs

submitted by the user 2

The flow of data between the different components is illustrated in Figure 2.1.

In 2013, version 2 of Hadoop was released. The biggest difference between Hadoop 1 and
Hadoop 2 is YARN technology, which is an acronym for Yet Another Resource Negotiator.
YARN is a resource management technology which is deployed on a Hadoop cluster. It
allows to effectively allocate the resources (compute nodes) to different user applications.
It runs two daemons, which take care of two different tasks: job tracking and progress

monitoring.

Hadoop is originally a project from Yahoo, and it is still massively supported by Yahoo.
Among other things, Hadoop clusters from Yahoo won the TeraByte Sort challenge at
multiple occasions 3. Yahoo reports to have more then 40.000 computers running Hadoop .
The framework is also massively used by Facebook, with at least 1400 machines running
Hadoop®.

1. https://hadoop.apache.org/

2. For the sake of completeness, there is also a third component, called Hadoop Common, containing
common utilities.

3. http://sortbenchmark.org/

4. https://wiki.apache.org/hadoop/PoweredBy#Y

5. https://wiki.apache.org/hadoop/PoweredBy#F
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2.5 Spark

Despite the power of Hadoop MapReduce, it has two main drawbacks, which are actually

related:

1. each job is limited to a single Map then Reduce sequence;
2. after the sequence, data can only be written to disk.

In a lot of applications, processing the data requires to perform additional steps (after the
MapReduce sequence). With Hadoop MapReduce, the data has to be written to disk (and
read) before these additional operations can be executed. This introduces a large IO penalty.

Similarly, iterative algorithms require to write the data to disk at each iteration.

The Spark project ® was developed to mitigate these limitations [105]. It allows to execute
multiple successive operations on the dataset. To achieve this goal, however, Spark relies on
a strong assumption: that the combined RAM memory of all compute nodes is large enough
to hold the entire dataset.

In Spark, the dataset is represented by a Resilient Distributed Dataset (RDD). It is a
programmatic construct that represents the data distributed between the different compute
nodes. The user has the possibility to apply different operations to the RDD like map, filter,

sample etc. This allows to nicely hide the complexity of distributed processing.

However, the distributed processing of the RDD introduces a synchronization cost: the
framework has to wait for every compute node to finish an operation before moving to the

next operation.

RDD 1

RDD 2

RDD 4 @
RDD 5 ‘

D Stage

@9 Transformation RDD 6

@ Action ‘

Figure 2.2: Example of a Directed Acyclic Graph in Spark [58].

To reduce this cost, Spark uses a lazy execution approach: it makes a distinction between
transform operations (like map, filter and sample) and actions (like count, save or collect).
When the user applies a transform operation to a RDD, it is actually not executed by
the framework: it is simply added to an execution plan. When the user applies an action

on a RDD, the execution plan is evaluated by the framework and optimized to reduce

6. https://spark.apache.org/
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synchronization and execution time in general, and then the different operations are actually

applied to the data.

The execution plan is thus a Directed Acyclic Graph (DAG): for each RDD, it indicates
which transformation should be applied to obtain the next RDD, and finally to obtain the
result. An example of Spark DAG is presented in Figure 2.2.
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Chapter 3

Building k-nn graphs from large

text datasets

3.1 Introduction

As stated previously, k-nn graphs are powerful tool for data analysis. However, as we show
below, until recently no algorithm was able to quickly build a k-nn graph from a large text
dataset. Hence we present here a new algorithm called NNCTPH. The algorithm first bins
the input text data into buckets, then computes the subgraph inside each bucket and finally
merges all subgraphs together.

The binning step relies on a variant of Context Triggered Piecewise Hashing (CTPH), a
hashing function that tends to produce the same hash for similar input strings. However, we
develop a custom CTPH function that allows to control the number of buckets. Moreover,
our hashing function is designed to produce subgraphs that can be reconnected into one

single graph.

The algorithm is based on the MapReduce programming model and can be executed on
scalable computing frameworks such as Hadoop. Furthermore, it uses a single job (as
opposed to iterative algorithms that usually require multiple jobs) which facilitates the
task of the resource scheduler of systems like Hadoop or Spark. We experimentally test
the algorithm on different datasets consisting of the subject of spam emails. We test the
influence of the different parameters of the algorithm on the number of computed similarities,
on processing time, and on the quality of the final graph. We also compare the algorithm
with a sequential and a MapReduce implementation of NN-Descent, an efficient k-nn graph
building algorithm, and show that NNCTPH largely outperforms state of the art approaches

in terms of run-time.

The rest of this Chapter is organized as follows. In Section 3.2 we present existing algorithms
to build a k-nn graph, and algorithms that perform nearest neighbor search in general.
In Section 3.3 we present the implementation details of our algorithm. In Section 3.4 we
show experimental results, and compare our algorithm with a sequential and a MapReduce

implementation of NN-Descent. Finally, in Section 3.5 we present our conclusions.

23



24 Chapter 3. Building k-nn graphs from large text datasets

3.2 Related work : building k-nn graphs

Different approaches exist to build a k-nn graph. The naive method, also called linear search,
uses brute force to compute all pairwise similarities. Then, for each node, the algorithm
keeps only the k edges with the highest similarity. This method has a computational cost of

O(n?) and is thus very slow, even implemented in parallel.

Therefore multiple algorithms have been proposed in the literature to speedup the process.
Some of them tolerate incorrect edges to further speedup the building process and produce
an approximate graph, while others produce an exact graph. In both cases, these building

algorithms are closely related to nearest neighbor search algorithms.

But when it comes to building a k-nn graph from a big unstructured text dataset, where

each node consists of a string, none of these offers an efficient solution.

3.2.1 Exact algorithms

One efficient way to build a k-nn graph consists in iteratively using a nearest neighbor search

algorithm to find the neighbors of all nodes in the dataset.

The nearest-neighbor search problem is formally defined as follows: given a set .S of points
in a space M and a so-called query point ¢ € M, find the closest point in S to q. The k-nn

search is a direct generalization of this problem, where we need to find the k closest points.

k-nn search is also a method used for classification and regression. In k-nn classification,
the algorithm assigns to an object the class which is most common amongst its k nearest
neighbors in the training set. In the case of regression, the value computed by the algorithm

is the average value of the k nearest neighbors of the object in the training set.

Nearest neighbor search algorithms usually use some kind of index to speedup the search.
These techniques usually rely on the branch and bound algorithm, and the index is used
to partition the data space. For example, a k-d tree [13], that recursively partitions the
space into equally sized sub-spaces, can be used to speedup neighbor search, like proposed
n [74]. R-trees [43] can also be used for euclidean spaces. In the case of generic metric
spaces, vantage-point trees [41], also known as metric trees [99], and BK-trees [18] can be
used. In [26], the authors present a distributed k-nn graph building algorithm that uses a
shared memory architecture to store a kd-tree based index. But these approaches are hard
to implement in parallel on a BSP architecture like MapReduce.

In [79], the authors propose two algorithms that first build an index of the dataset to reduce

the number of distances that have to be computed:

— A recursive partition based algorithm: In the first stage, the algorithm builds the
index by performing a recursive partition of the space. In the second stage, it builds
the k-nn graph by searching the k-nn of each node, using the order induced by the

partitioning.

— A pivot based algorithm: The algorithm first builds a pivot index. Then, the k-nn
graph is built by performing range-optimal queries improved with metric and graph

considerations.
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Both algorithms are not limited to euclidean space and support metric spaces, which makes
them suitable to build a k-nn graph from text data. For example, the authors tested the

algorithms using a text dataset and edit distance as measure of similarity.

Finally, some algorithms use Locality-Sensitive Hashing (LSH), like [86]. LSH is originally a
method used to perform probabilistic dimension reduction of high-dimensional data. The
basic idea is to hash the input items such that similar items are mapped to the same bucket
with a high probability. At the opposite of conventional hash functions, such as those used
in cryptography, the goal is to maximize the probability of collision between similar items.
But LSH functions are defined only for some similarity measures (I,, Mahalanobis distance,
kernel similarity, and x? distance). The algorithms relying on LSH can thus not be used to
build a k-nn graph from text data using an edit distance (Levenshtein distance) or another
similar function (weighted Levenshtein distance, Jaro-Winkler distance, Hamming distance)

as a similarity metric.

3.2.2 Approximate algorithms

In a lot of cases, to achieve a higher speedup, the designed algorithms focus on building an

approximate k-nn graph.

A versatile algorithm to efficiently compute such a graph is described in [37]. The algorithm,
called NN-Descent, starts by creating edges between random nodes. Then, for each node,
it computes the similarity between all neighbors of the current neighbors, to find better
edges. The algorithm iterates until it cannot find better edges. The main advantage of this
algorithm is that it works with any similarity measure. Dong et al. experimentally found
the computational cost of the algorithm is around O(n!-1%).

The paper also proposes a MapReduce version of the algorithm. Internally, the algorithm
works with a kind of adjacency list called neighbors list. This structure holds the candidate
neighbors of a node. The algorithm first creates a random neighbors list for each node.
Then each iteration is realized with two MapReduce jobs. First, the mapper emits the initial
neighbors list, and reverses the neighbors list to produce and emit new candidate neighbors.
For each node, the reducer merges all candidate neighbors to produce a new extended
neighbors list. In the second job, the mappers compute and emit the pairwise similarity
between all elements of each neighbors list. Finally, the reducer merges the neighbors of
each key node, keeping only the k neighbors with the highest similarity. A sequential C++

implementation of the algorithm is also available under the name KGraph [36].
Various authors propose approximate algorithms relying on locality-sensitive hashing.

In [48], the authors propose a MapReduce algorithm that first bins the scale-invariant
feature transform (SIFT) description of images into overlapping pools. The algorithm then
computes the pairwise similarity between images in the same bucket to build the k-nn graph
of images. For binning, the algorithm uses MinHash, a variant of LSH that uses Jaccard

coefficient as similarity measure.

Similarly, in [106], the authors use LSH to divide the dataset into small groups. Then, inside
these small groups, the algorithm uses NN-Descent to build the k-nn graph. As groups are

not overlapping, the constructed graph is a union of multiple isolated small graphs. To bind
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the final graph, and improve the approximation quality, the division is repeated several
times to generate multiple approximate graphs, which are finally combined to produce the
final graph.

Furthermore, the authors propose a method to produce equally sized groups, thus alleviating
the computational cost of skewed data. They first project the item’s hash code on a random
direction. Then they sort items by their projection values. Finally, they divide this sequence
of items into equally sized buckets. Doing so, the items with same hash code still fall in the
same bucket with a high probability. Finally, the authors show experimentally that their
algorithm is much faster than existing algorithms, including NN-Descent, for similar quality
of the built graph.

When it comes to building a k-nn graph from a big unstructured text dataset, none of
these algorithms offer an efficient solution. Algorithms that rely on indexes are hard to
implement in parallel on a shared nothing architecture like MapReduce. LSH functions are
defined only for some similarity measures (I, Mahalanobis distance, kernel similarity, and
x? distance). The algorithms relying on LSH can thus not be used to build a k-nn graph
from text data using edit distance (Levenshtein distance) or any similar distance metric
(weighted Levenshtein distance, Jaro-Winkler distance, Hamming distance) as a similarity

metric.

In the case of NN-Descent, the MapReduce (MR) version of the algorithm requires two MR
jobs per iteration, and multiple iterations to converge. Moreover, the algorithm requires to
read and write a lot of data on disk between jobs. Although the sequential version of the
algorithm proved to be very efficient, these constraints make it inefficient when implemented

in parallel. This will be confirmed by the experimental tests presented below.

3.3 NNCTPH

As no current algorithm is suited for building a k-nn graph from a big text dataset, we
propose here a new algorithm. The algorithm requires a single iteration and a single
MapReduce job, and it does not rely on a shared index. Internally, it uses a specific hashing
scheme, called Context Triggered Piecewise Hashing (CTPH) to bin the input data into
buckets. Hence we call the algorithm NNCTPH.

3.3.1 Context Triggered Piecewise Hashing

Context Triggered Piecewise Hashing (CTPH), also called Fuzzy Hashing or ssdeep [57],
is a hashing function that tends to produce the same hash for similar input strings. It
was originally developed by Tridgell as a spam email detector called SpamSum [98]. The
algorithm is used to build a database of hashes of known spams. When a new email is
received, its hash is computed, and compared with the spam database. If a similar hash is

found, the incoming email is considered as spam, and discarded.

The algorithm works by splitting a character string in chunks of variable length. The
end point of a chunk is determined by a rolling hash. This rolling hash is based on the

Adler-32 checksum used in the zlib compression library [5]. It uses a window of 7 characters
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that slides over the input string. By using a rolling hash, the algorithm can perform auto
resynchronisation if characters are inserted or deleted between two strings. If the value of

the rolling hash matches a given value, the end of the current chunk is found.

As the final hash of the input string is a sequence of characters that corresponds to Base64
encoding, each chunk is hashed into a single character out of 64 possible letters using the
Fowler /Noll/Vo (FNV) hash function [40].

In [56], ssdeep is used to identify almost identical files to support computer forensics.

3.3.2 NNCTPH

We present here the design of NNCTPH. As shown in Algorithm 1, the algorithm requires a
single MR job. In the map phase, the algorithm uses a modified CTPH function to produce a
hash of each input string. This hash value is then used to bin the string into a bucket. Each
reduce task builds a k-nn graph of the strings in the bucket. We experimentally found that,
for small datasets, the naive brute force method requires less computations and processing
time than sequential NN-Descent. Therefore, if the number of strings in the bucket is smaller

than a given threshold @, the reduce task uses brute force, otherwise it uses NN-Descent.

To control the number of buckets, and hence the number of strings per bucket, we modify
the original CTPH function to: ¢) produce a hash of variable size; and i) use only a subset

of letters in the hash, instead of the 64 original letters.

Moreover, if we only emit each string once, we end up with a series of unconnected subgraphs,
as each string is binned into a single bucket, and no edges are created between the strings of
different buckets. To reconnect the graph, in the map phase the algorithm creates a longer
hash (using a coefficient we call stages) and emits the input string once for each subpart of
the hash.

The example on Figure 3.1 shows that the hash of Lorem is ABC. The original string is
emitted twice by the mapper: once for bucket AB, and once for bucket BC. In this way, we
can expect that the reduce task for bucket BC will produce edges to strings located outside

bucket AB, hence reconnecting the subgraphs.

The algorithm thus requires three parameters: the number of stages (s), the number of
characters of emitted hash (c), and the number of letters used to produce the hash (I). For
each stage, the input strings are binned into [¢ buckets, and the modified CTPH function
must produce hashes with a length of ¢ + s — 1 using an alphabet of [ letters.

These parameters have an impact on the quality of the graph, on the quantity of data that
has to be shuffled, on the parallelism of the algorithm, on the quantity of RAM required by
the reducers, and on the number of similarities to compute.

The number of buckets produced by the hashing function is [°. If we assume the input

strings are uniformly distributed over the buckets (if data is not skewed), the number of

strings per bucket is jz. Dong et al. [37] experimentally found that the computational

cost of NN-Descent is around O(n'14). As we use NN-Descent inside the buckets to build

1.14)

the subgraphs, the number of similarities to compute is: O(s - [ - (7¢) . If we choose

I and ¢ such that the number of strings per bucket (n/I¢) is constant (with a number of



28 Chapter 3. Building k-nn graphs from large text datasets

Algorithm 1 NNCTPH
Input:

s the number of stages
¢ the number of characters of emitted hash

[ the number of letters used to produce the hash

procedure MAP(string)

h = CTPH(string, s, ¢, 1)

// string is emitted s times

for ¢ in 0..s do
// As key, we concatenate the stage ¢ and
// a substring of ¢ characters of the hash
// starting at i*" character
key =i _ SUBSTRING(h, i, ¢)
EMIT(< key, string >)

end for

end procedure

procedure REDUCE(key, < strings >)

if S1zE(strings) < 6 then BRUTEFORCE

else NNDESCENT

end if

for string in strings do
// Emits the & strings from this bucket
// that have the highest similarity with string
EMIT(< string, EDGES(string, k) >)

end for

end procedure
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hash ABC ABD ABD BBD

NS

stage 1

stage 2

Figure 3.1: Example of how strings are binned when using two stages and hashes of two

characters.

buckets proportional to the size of the dataset), this means that the computational cost of
our algorithm is proportional to the number of buckets, and thus proportional to the size of
the dataset. This is a lower bound. If the input data is skewed, which is the case of our test

dataset, the total number of similarities to compute is higher.

The number of stages s will also have an impact on the quality of the final graph: if more
stages are used, the same string will be emitted multiple times. The probability to discover
correct edges will thus also rise. The number of stages is also directly proportional to the
quantity of data to shuffle and transmit over the network: data to shuffle = s - n where n is

the size of the dataset. Using a higher number of stages will thus slow down the algorithm.

In the next section, we perform a sensitivity analysis of the effects and interactions of these

parameters.

3.4 Experimental evaluation

To analyze the performance of our algorithm, we implement it using Hadoop MapReduce
and test it on datasets containing the subject of 200.000 spam emails. This dataset is a
sample of spams collected by Symantec Research Labs in 2010. It is mainly used to improve
spams signature definitions, and to analyze trends in spam campaigns. We also compare
it against our Hadoop MapReduce implementations of NN-Descent and of the brute-force
method. All algorithms are executed on a cluster of 20 worker nodes, each equipped with a
four-core processor, 8GB of RAM, and four 1Gb ethernet cards.

To compute the similarity between spam subjects, we use the Jaro-Winkler distance [103].
This measure of string similarity is normalized such that zero equates to no similarity and

one is an exact match.

To measure the accuracy of the output of each algorithm, like in [37], we use recall, which is
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the ratio between the number of correct edges found by the approximate algorithm (where
the ground truth are the edges found by the naive algorithm) and the total number of edges
created by approximate algorithm.

The accuracy of information retrieval algorithms can also be measured using precision, the

fraction of relevant documents among the retrieved documents.

In the case of a graph building algorithm, the number of created edges is defined by k.
Hence, the number of edges created by an approximate algorithm (corresponding to the
number of retrieved documents in the context of information retrieval) equals the number
of edges created by a brute-force algorithm (which, in the context of information retrieval,

corresponds to the number of relevant documents), and thus precision equals recall.

3.4.1 Number of stages

We first test the influence of the number of stages used to run the algorithm. The number
of stages is the number of times each input string will be emitted by the mapper. We use
this coeflicient to reconnect the different subgraphs produced by the reducers.

We use NNCTPH to build a 10-nn graph from our dataset. We use hashes of two characters,
with 32 possible letters. We thus create 1024 buckets, and we let the number of stages vary
between one and ten. The quantity of data that has to be shuffled and transmitted over
the network is directly proportional to the number of stages, which is confirmed by our
experiments. Using a higher number of stages will thus slightly slow the algorithm down. At
the same time, this will distribute the same input string into more buckets, thus increasing

the probability to find correct edges.

The resulting running time and recall are shown on Figure 3.2. As we can see, as little as
two stages suffice to correctly discover 50% of edges in the dataset. Increasing the number
of stages increases the running time, as expected, but has only a limited effect on recall.

There is here a clear effect of diminishing return due to the mismatch between the CTPH
function and the measure of similarity we use to build the graph: CTPH is a general purpose
LSH function and there is no guarantee that items that are binned together by NNCTPH
are actually the most similar according to Jaro-Winkler. This prevents NNCTPH from

achieving a high recall.

3.4.2 Number of buckets

We now study the influence of the number of buckets on processing time and on the quality
of produced graph. We have two ways to modify the number of buckets: varying the length
of the hash, and varying the number of letters used to produce the hash. Therefore we run
three series of tests. For each series, we use NNCTPH to build a 10-nn graph from our spam
dataset. Given the results of our previous section, we use two stages as this offers the best
trade-off between running speed and recall. In the first and second series, we use respectively
one and two characters, and we let the number of possible letters used to compute the hash
vary. In the third series, we use a fixed number of possible letters (two), and we let the

number of characters of the hash vary. These values are summarized below.
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Figure 3.2: Influence of the number of stages on the running time and recall of NNCTPH.

S1 S2 S3
Characters 1 2 7 to 12
Letters 20 to44 4 to 40 2
Buckets 20 to 44 16 to 1600 128 to 4096

The resulting running time and recall of each series of experiments are displayed on Figure 3.3.
As we can observe, the running time and recall both tend to decrease when the number of

buckets increases, but the impact on recall is quite limited.

3.4.3 Comparison with NN-Descent

For this work, we also implement a complete MapReduce version of NN-Descent, such
that we can compare it to our NNCTPH algorithm ! The main idea of the algorithm is
to iteratively improve an initial, random k-nn graph, by “swapping” the neighborhood of
each node, searching for similar candidates among its two-hop neighborhood. Increasing the
number of iterations allows the algorithm to converge to better and better approximations

of the k-nn graph, at the cost of an increased convergence time.

We initialize the algorithm by building a random k-nn graph: 2 each node of the graph (i.e.
a data item) is assigned k randomly chosen neighbors. The algorithm then iterates with

“map” and “reduce” phases, which are illustrated in Algorithm 2.

In the “map phase”, the algorithm processes independently each pair consisting of a node
and its k neighbors. It uses all the k + 1 nodes and computes all pairwise similarities. It

emits triplets consisting of two nodes and their similarity.

Thanks to the MapReduce framework, the reducer receives a single node, and the list of

other nodes for which a similarity was computed by the different mappers. Then each node

1. Although an Hadoop MapReduce version of NNDescent is discussed in [37], we are not aware of any
experimental validation of it.
2. We omit the pseudo-code of this phase, as it is trivial.
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Figure 3.3: Influence of the number of buckets on the running time and recall of NNCTPH



Chapter 3. Building k-nn graphs from large text datasets 33

selects its top-k similar nodes, and produces a new approximated k-nn graph that is used as
an input for the next iteration of the algorithm. Note that NeighborList is a compound

data structure, made of (Node, Similarity) pairs.

Algorithm 2 k-nn graph construction
procedure Map(Node n, NeighborList(n))
for all u in NeighborList(n) Un do
for all v in NeighborList(n) Un\u do

EMIT(u, (v, similarity(u, v)))

end for
end for

end procedure

procedure REDUCE(Node n, List[Node u, Similarity s] 1)
EMIT(n, ORDERDESCENDING(1).LiMIT(k))

end procedure

To compare MR NN-Descent to our NNCTPH algorithm, we run NN-Descent on our dataset,
and for each iteration we measure the total running time and recall. The results are shown
on Figure 3.4. On the same Figure, we also present the results of previous experiments.
As we can see, in some cases NNCTPH runs 6 times faster than NN-Descent for the same

quality of produced graph, but the attainable recall is limited.

This is mainly due to the principle of binning itself. At some point, the hashing function has
to produce different hashes for different input strings. This means that two similar strings,
that differ by only one letter, may receive different hashes. Therefore they will be binned
into different buckets, which makes the creation of an edge between them impossible. We
mitigate this effect using multiple stages, but the resulting attainable recall is still limited to
roughly 50%, as shown on Figure 3.2. We can also reduce this effect by using less buckets,
and more strings per bucket, but this increases the computational cost of the algorithm, as
shown on Figure 3.3, and reduces the parallelism of the algorithm. A possible solution to
increase recall would be to use different hashing functions in parallel. Furthermore, even if
we have an idea of how many edges were correctly discovered by our algorithm, we would
like to know which edges are correctly detected, and which ones are not. These are left as

future work.

3.4.4 Scalability

We now test how the algorithm behaves when the size of the dataset increases. Therefore
we use other datasets with up to 800.000 spam emails. Based on previous experiments, we
use two stages, hashes of two characters, and we tune the number of letters used so that
each buckets receives an average of 200 spams, as summarized below.

T2 T4 T6 T8
Spams (x1000) 200 400 600 800
Characters 2 2 2 2
Letters 32 45 55 64
Buckets 1024 2025 3025 4096
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Figure 3.4: Comparison of NN-Descent and NNCTPH algorithms

We also compare NNCTPH with our MR implementation of NN-Descent and with our
sequential implementation of NN-Descent. For both algorithms, we chose parameters that
deliver approximately the same recall. The resulting running times and recalls are displayed
on Figure 3.5. As we can see, the recall achieved by NNCTPH with these parameters is very
stable, and the running time rises very slowly. As a result, the bigger the dataset is, the
higher the speedup with respect to MR NN-Descent. With our dataset of 800,000 spams,
we reach a speedup of nearly an order of magnitude for the same quality of the final graph.
Clearly here MR NN-Descent suffers from its iterative structure, which is not well suited for
the MR framework, and requires a lot of slow disk I/O operations.

3.5 Conclusions

In this Chapter we presented NNCTPH, a MapReduce algorithm that builds an approximate
k-nn graph from large text datasets. We used datasets containing the subject of spam emails
to experimentally test the influence of the different parameters of the algorithm on the quality
on processing time and on the quality of the final graph. We also compared the algorithm
with a sequential and a MapReduce implementation of NN-Descent. For our datasets, the
algorithm proved to be up to ten times faster than the MapReduce implementation of
NN-Descent, for the same quality of produced graph. Moreover, the speedup increased with
the size of the dataset, making NNCTPH a perfect choice for very large text datasets.

3.6 Contributions

Our contributions are the following:

— Thibault Debatty, Pietro Michiardi, Olivier Thonnard, and Mees Wim. Scalable graph
building from text data. In Proceedings of the 3rd International Workshop on Big

Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming
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Models and Applications, BigMine ’14, 2014

— T. Debatty, P. Michiardi, O. Thonnard, and W. Mees. Building k-nn graphs from large
text data. In 2014 IEEFE International Conference on Big Data (Big Data), pages
573-578, Oct 2014

— Our Hadoop implementation of NN-Descent and NNCTPH is available on GitHub:
https://github.com/tdebatty/hadoop-knn-graph

— As a preparatory work for this subject, we implemented and compared a dozen
string similarity algorithms (including Levenshtein edit distance and siblings, Jaro-
Winkler, Longest Common Subsequence, cosine similarity etc.). The resulting code
is available as a library on GitHub and Maven Central: https://github.com/
tdebatty/java-string-similarity and https://mvnrepository.com/artifact/

info.debatty/java-string-similarity

— As a preparatory work, we also investigated the usage of other LSH algorithms to
build k-nn graphs. The implemented LSH algorithms are also available as a library on
GitHub and Maven Central: https://github.com/tdebatty/java-1sh

Our java string library is used by other people for multiple projects, amongst which:

— GraphHopper, an API for route planning and optimization: https://www.graphhopper.

com/

— OrientDB, a multi-model database that can store and query documents (like NoSQL
databases) and relations (like graph databases), to provide different string similarity
and distance measures as SQL functions:

https://orientdb.com/ and https://github.com/orientechnologies/extra-functions

— Teiid, a data broker that allows applications to use data from multiple, heterogeneous

data stores by exposing “virtual databases”: http://teiid. jboss.org/

— Alchemist, a distributed network simulator: http://alchemistsimulator.github.

io/
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Online building of k-nn graphs

4.1 Introduction

In the general case, building a k-nn graph requires the computation of O(n?) similarities,
where n is the size of the dataset. Indexes can be used to reduce the number of computations,

but in any way building an exact k-nn graph remains a computationally heavy operation.

In the same way, modifying an existing graph by adding or removing nodes is a computa-
tionally heavy process. For example, adding a single node requires: 1) to compute the edges
of the new node and 2) to update the edges of existing nodes. Each new data point thus
requires to compute the similarity between the new point and every node in the existing
graph. This is thus very slow, and better alternatives that can achieve higher speedups w.r.t.

a naive approach are truly desirable.

Therefore, in this chapter we propose a fast approximate k-nn graph modification algorithm,
which is able to update a k-nn graph by quickly adding or removing nodes. To the best of
our knowledge, this is the first algorithm of this kind. Moreover, the algorithm can be run
in a distributed, shared-nothing environment to process very large, distributed k-nn graphs.
Finally, our algorithm is independent of the similarity measure used to build or query the

graph.

The distributed algorithm starts by partitioning the k-nn graph using a balanced k-medoids
algorithm. This partitioning is used to improve the nearest neighbour search based on the
existing graph. Indeed, the algorithm has two main steps to add a new point to the graph:
1) use the distributed graph to search the k nearest neighbours of the new point and 2)
update the graph: these neighbours are used as starting points to search existing nodes for
which the new point is now a nearest neighbour. To search the nearest neighbours, inside
each partition the algorithm uses a fast sequential graph based nearest neighbour search

procedure.

The rest of this chapter is organized as follows. In Section 4.2 we present existing graph
based search algorithms and graph partitioning algorithms. In Sections 4.3 and 4.4 we show
how we add and remove nodes from the distributed k-nn graph. In Section 4.5 we explain
the distributed graph based search algorithm together with the sequential graph based

37
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search procedure we use inside each partition. The distributed search relies on a k-medoids
based partitioning method that we present in Section 4.6. In Section 4.7 we perform an
experimental evaluation, where we perform a parameter study of the algorithm. Finally, in

Section 4.8, we present our conclusions.

4.2 Related work

One important step in our algorithm consists in searching the nearest neighbours of the new
data point using the existing graph. Therefore we present here existing graph based nearest

neighbour search algorithms.

Searching the graph in a distributed fashion requires a specific partitioning of the graph.

Hence, we alse present existing graph partitioning algorithms.

4.2.1 Graph based nn-search

The nearest-neighbour search problem (NN search) is formally defined as follows: given a
set S of points in a space M and a so-called query point ¢ € M, find the closest point in S
to ¢, according to some similarity metric. The k-nn search is a direct generalization of this
problem, where we need to find the k closest points. A lot of algorithms exist to find the
k nearest neighbours of a point. They are generally very similar to those used to build a
k-nn graph. However, only a few of them rely on an existing k-nn graph to find the nearest

neighbours of a query point.

In [44], Hajebi et al. proposed a sequential approximate NN search algorithm that relies
on k-nn graphs. The algorithm, called Graph Nearest neighbour Search (GNNS), works by
selecting initial nodes at random. For each node, the algorithm computes the similarity
between query point and every neighbour. The most similar neighbours are selected, and the
algorithm iterates until a depth of search d is reached. It is thus a “hill climbing” algorithm.
The most promising nodes are searched first, using the similarity between the query point
and the node as a heuristic. It was tested against different datasets. Without taking graph
building phase in account, the search algorithm achieved a speedup of up to 80 over linear

search, and a speedup of two over randomized KD-tree.

Dong, the co-author of the paper on nn-descent [37], also created a software called
KGraph [36] which is able to search the nearest neighbours of a query point using a
precomputed k-nn graph. However, the search algorithm used by the program was never
published.

4.2.2 Graph partitioning

As will be shown below, performing a distributed graph-based nn search requires a specific
partitioning of the data, based on k-medoids clustering. Hence, we present here related

existing graph partitioning algorithms.

The classical definition of graph partitioning consists in splitting the graph data between

partitions, minimizing the number cross-partition edges, while keeping the number of nodes
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in every partition approximately even. Multiple algorithms exist to perform this type of
partitioning. In [83], the authors proposed a distributed iterative algorithm that iteratively
swaps the partition of two nodes to minimize the number of cuts. The algorithm is heavily
based on MPI and requires a lot of communication between all nodes of the graph. In [19],
the authors proposed and tested a Bulk Synchronous Parallel (BSP) version of the algorithm
which makes it suitable for shared nothing architectures like Apache Spark. In [55], the
authors proposed a streaming algorithm, that requires a single iteration to partition the
graph. They experimentally compared various heuristics to assign nodes to a partition.
They found the best performing heuristic was linear weighted deterministic greedy. This
one assigns each node to the partition where it has the most edges, weighted by a linear

penalty function based on the capacity of the partition.

As we show in Section 4.5, to improve distributed graph based search, the partitioning
scheme should minimize the number of steps between any two nodes in the partition. In
this case the partitioning becomes a k-medoids clustering problem. It is a variation of
k-means clustering, where the centers are points from the dataset. It also minimizes the
sum of pairwise distances, while k-means minimizes the sum of squared Euclidean distances.
Just like k-means clustering, various algorithms were proposed in the literature to perform
k-medoids clustering, like Partitioning Around Medoids (PAM) [95]. To the best of our
knowledge, the most efficient algorithm for performing k-medoids clustering is currently
the Voronoi iteration method proposed in [80], which is very similar to the classical Lloyd’s
algorithm used to compute k-means. However, these algorithms cannot be executed in a

distributed environment.

Moreover, until now no balanced version of k-medoids was published, although a few balanced
versions of k-means exist. In [69], the authors proposed a method that has a complexity
O(n?), which makes it too complex for large graphs. In [9], the authors proposed the
Frequency Sensitive Competitive Learning (FSCL) method, where the distance between a
point and a centroid is multiplied by the number of points already assigned to this centroid.
Bigger clusters are therefore less likely to win additional points. In [7], the authors used
FSCL with additive bias instead of multiplicative bias. However, both methods offer no
guarantee on the final number of points in each partition, and experimental results have
shown the resulting partitioning is often largely unbalanced. Hence, we present below our

own algorithm, that offers a guarantee on the maximum number of items per cluster.

4.3 Adding nodes

The algorithm we propose has two main steps to add a new point to the graph: 1) use the
current graph to search the k nearest neighbours of the new point, using the distributed
algorithm presented in Section 4.5 and 2) update the graph using the procedure presented in
Algorithm 4. The update procedure is actually a propagation algorithm. It starts with the
discovered neighbours of the new node, and recursively explores the neighbours of neighbours,
up to a fixed depth, to check if existing edges should be modified. In addition, the new node
is assigned to the compute node corresponding to the most similar medoid.

Finally, the medoids may be recomputed once a given number of new nodes have been
added to the graph. This is actually not mandatory, and depends on the dataset: if the
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characteristics of the dataset are fixed over time, adding new nodes will not induce a
displacement of the medoids. Otherwise, the medoids update rate should be consistent with
the expected rate of change of the dataset. The automatic estimation of the update rate
is left as as future work. The complete procedure used to add a new node to the graph is
shown in Algorithm 3.

Algorithm 3 Add a node to the graph
Inputs:

graph: current graph
node: a new node

In parallel: > Distributed search
neighbourlist = Search(graph, node, k)

In parallel: > Update with Algorithm 4
Update(graph, node, neighbours, 0)

medoid = NearestMedoid(node) > Shufle
assign (node, neighbourlist) to the compute node

corresponding to medoid

Algorithm 4 Update
Inputs:

graph: the current graph

new: the new node to add in the graph

neighbours: the list of nodes to analyse

depth: the current depth

MAX DEPTH: the maximum depth of exploration

for node in neighbours do
if depth < MAX_DEPTH then > Recursion
Update(graph, new, node.neighbours, depth++)
end if
compute similarity (node, new)
if needed, add new to the neighbourlist of node
end for

The most computation intensive steps of the algorithm are the search and update steps.

This latter requires a maximum of FPFEPTH+1

similarity computations. To reduce the space
requirement of the graph, k is generally kept small. A value of 10 is very often seen. With
this value, experimental evaluation shows that a depth of three is sufficient to update the
graph. The resulting number of similarity computations (1000) is thus small compared
to the size of the graphs targeted by this update algorithm. The computation cost of the
algorithm will thus be dominated by the search step, hence the need for a very efficient

algorithm.
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4.4 Removing a node

When a node ng is deleted from the graph, some other nodes which have ny as neighbour
have to be updated to assign them a new neighbour. These nodes to update are easily
identified by scanning the complete graph. As these nodes to update all had ng as neighbour,
they are very likely to be highly similar to each other. Hence, we do not process them

individually, but as a group.

Indeed, a common set of candidates is first identified using a distributed propagation
algorithm similar to the one used to update the graph after adding a node: the graph is

explored up to a fixed depth, starting from each node to update and from the node to delete.

Finally, for each node to update, the most similar node from the set of candidates is used to

replace ng.

When removing a node, we can expect an average of k nodes will have to be updated. As
we also use the node to delete ny as a starting point for the propagation algorithm, we
can expect to find (k + 1)PEPTH+L candidates. The algorithm will thus require to compute
K- (k-+1)PEPTHHL ~ pDEPTHH2 imilarities between nodes. Experimental evaluation showed a
small DEPTH value is enough to get good results. This represents a huge speed improvement
compared to the naive approach that requires comparing the k nodes to update to the n

nodes in the graph and would thus require k - n similarity computations.

4.5 Distributed nearest neighbours search

As stated above, the computation cost for adding a new node to the graph is mainly
influenced by the search step. To the best of our knowledge, no algorithm exists in the
literature that allows to quickly search the nearest neighbours of a point using a distributed
graph. So we present here our own algorithm, which can support any similarity measure,

even non metric.

The procedure we propose to perform a k-nn search is actually very simple: the p partitions
are searched independently using an efficient graph based sequential algorithm, then the
k - p nearest neighbour candidates are filtered to keep the k& most similar to the query point.
The data exchanged is very limited: the compute nodes send the k - p candidate neighbours

to the master, that produces the final output.

The procedure we use inside each partition to search the nearest neighbours of a query point
q is inspired by the hill climbing approach presented in [44]: the algorithm selects a random
node n from the graph, computes the similarity between ¢ and every neighbour of n, and
iterates with the most similar neighbour. While iterating, it keeps a set of the most similar
points to g. When a local maximum is reached, the algorithm restarts with another random
node. This search algorithm is thus an approximate algorithm, as it does not necessarily
find the most similar node in the graph. It does however find the nearest neighbour with a

high probability, while analysing only a fraction of the nodes in the graph.

In our sequential search procedure we introduce two additional approximations, which allow

to further reduce the number of computed similarities compared to the naive hill climbing
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approach.

The first improvement relies on the observation that by the definition of a k-nn graph, each
node only has edges to other very similar nodes. Hence, the increase of similarity at each
iteration of the search can be very small. As a consequence, the number of iterations i (the
number of nodes to analyse) before finding the nearest neighbours of a query point can be
very large. In the worst configuration of the graph, ¢ = n/k. This requires computing a lot
of similarities, 7 - k. To avoid this situation, the randomly chosen starting node r is skipped

if it is situated too far from the query point.

Formally, we keep track of the similarity of the most similar neighbour found so far spax,
and we introduce an expansion coefficient e > 1. As stated above, when a local maximum is
reached, the algorithm restarts with another random node r. We immediately discard r and
select a new random node if similarity (query, ) < smax/e. In this way, we avoid analysing
a potentially very long chain of ¢ nodes before reaching the neighbourhood of the query
point, which would be computationally very expensive (i - k). Instead, we focus on exploring
the vicinity of the query point (the nodes for which similarity with query point is at least

Smax/€)-

Secondly, to further reduce the number of computed similarities, for each analysed node, we
eagerly iterate using the first neighbour that provides an increase in similarity compared to
the currently analysed node. We thus try to analyse only a few of the k& neighbours of the
analysed node. The improvement provided can be calculated for an Euclidean space of d
dimensions and uniformly randomly distributed data points. For any node, let H be the
number of neighbors that have a higher similarity with the query point, and L the neighbors
that have a lower similarity. In such a space, observe that for any node, out of 2¢ directions,
only one leads in the direction of the query point. For example, for d = 1, they are two
possible directions (left and right), and only one goes in the direction of the query point. As
each node has k neighbors, on average only E(H) = k/2? edges lead to a node with higher
similarity, and E(L) = k — k/2% edges lead to a node with lower similarity.

We now compute E(5), the expected number of similarities that have to be computed for
each node. As the improved algorithm iterates as soon as a node with higher similarity is
found, this is actually equivalent to the bag of balls problem: imagine a bag with w white
balls and r red balls. We search the expected number of white balls to pick before we pick
a red ball. Each of the w white balls can be picked instead of a red ball with probability
1/(r 4+ 1), so we pick an expected number of w/(r 4+ 1) white balls. For E(S) this yields:

E(L)  k—k/2¢

B(S) = 1+B(H) 1+k/2¢

(4.1)

At the opposite, the original hill climbing approach requires computing k similarities for
each analysed node. Hence, this results in an expected speedup of k/E(S) compared to
the original hill climbing approach. The resulting speedup for some values of k and d is
shown in Table 4.1, which shows a substantial speedup can be achieved in some cases. The
drawback is that in some cases the algorithm might pick a neighbour that improves the
similarity, but without maximizing it (there was another neighbour which is more similar to
the query point). However, a node has edges only to other highly similar nodes, hence those

neighbours are also similar to each other. The difference of similarity improvement when
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Table 4.1: Speedup compared to classical hill-climbing search achieved by iterating as soon

as a node with higher similarity is found, for various values of k£ and d (dimensionality).

k 4 10 10 10
d 2 2 3 4
E(H) 1 25 125 0.625

=

(
(L) 3 75 875 9.375
(S 1.5 214 388 5.77
E(speedup) 2.66 4.66 2.57 1.73

=

choosing a sub optimal neighbour remains thus limited, and globally the efficiency of the

algorithm increases.

These additional approximations allow us to reduce the number of computed similarities,
while they do not prevent the convergence of the hill climbing approach. The demonstration

of this latter can be found in [44] and is not repeated here.

To increase the efficiency of the distributed search, the graph is also partitioned in a way that
maximizes the probability of finding the most similar nearest neighbours. This partitioning
scheme aims to fulfil two conditions: 1) the distance (measured as the number of edges)
between two nodes in the same sub-graph should be as low as possible, to maximize the
probability of quickly finding “good” candidates and 2) the number nodes in each sub-graph
should be similar to balance the work load between compute nodes during the search.

The first condition corresponds to the definition of k-medoids clustering, a variation of
k-means clustering where the centres are data points. It also minimizes the sum of pairwise

distances, while k-means minimizes the sum of squared Euclidean distances.

The impact of the partitioning on the search algorithm is actually very dependent on the
geometry of the graph. Let p, be the number of clusters that the graph naturally contains
(the number of connected components). If the algorithm splits the graph into p = p,
partitions, the partitioning used by the distributed search algorithm will reflect the natural
partitioning of the graph. In this case, it will ensure that the starting points used by the
sequential search will be nicely distributed over the different clusters. We can thus expect

the distributed algorithm to produce better results then the sequential algorithm.

In other cases (when p # pg), the clusters of the graph will be distributed over the p
partitions. The partitioning will thus potentially cause a lot of cross-over edges. Statistically,
these will shorten the chain of nodes that the sequential search procedure can run through
and cause the algorithm to restart from a random node in the partition. It will eventually
reduce the probability to find the nearest neighbours of the query point.

4.6 Balanced k-medoids partitioning of a distributed k-
nn graph
We present here the procedure we use to partition the distributed k-nn graph. It is inspired

by the Voronoi iteration method used by the classical k-means algorithm and in [80]. It has

the additional advantage that it offers a guarantee on the maximum size of each cluster,
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which guarantees a fair distribution of the work load between the compute nodes.

In our case, we wish to cluster the graph in order to optimize the distributed k-nn search.
Hence, the distance measure used to assign each node to a medoids and to compute the new
medoids should be the length of the shortest path in the graph between two nodes. However,
computing the shortest path from a node to all medoids requires access to all adjacency
lists, which is impossible in a distributed, shared-nothing infrastructure. Therefore, instead
of computing the shortest path to every medoid, we use the similarity between the node
and every medoid as a heuristic. An intuitive example is to consider the simple case of
a uniform distribution over an Euclidean space. In such a space, all edges have the same
length. Hence, the most similar medoid, measured as the shortest path from the node to
the medoid, is also the most similar medoid, measured using the euclidean distance.

To achieve a balanced distribution of n points between the k clusters (not to confuse with
the k& edges per node of a k-nn graph), we use a linear weighted deterministic greedy
heuristic to assign each point to a cluster. Let pg...p;...p, be the set of points to cluster
and mg ... m; ... my the set of medoids at any iteration of the algorithm. Each point p;
is assigned to the cluster C(p;) corresponding to the most similar medoid weighted by a
penalty function w(m;,t):

C(p;) = arg max(similarity(p;, m;) - w(m;,t)) (4.2)

my

This penalty function is based on the capacity and current size of the cluster in order to

penalize large clusters:

| lcm;, 1)

w(m;,t) = .
(my» 1) capacity

(4.3)
where C(m;,t) is the cluster corresponding to medoid m; at time ¢ and capacity is the

maximum size of each cluster.

Depending on the application, a small size difference can be tolerated between clusters, hence

the capacity of clusters is usually computed using an imbalance factor (imbalance > 1):

n - imbalance

k

capacity = (4.4)

A perfectly balanced clustering can be achieved using imbalance = 1.

In a distributed shared nothing environment the different compute nodes do not have access
to total size of each cluster at time ¢. Each compute node can only rely on the local number

of points already assigned to a cluster Cr,(m;,t).

Hence, to execute the algorithm in parallel we first randomly distribute the input dataset
between the ¢ compute nodes. At each iteration, this randomized dataset is used to assign

each point using a modified weight function that relies solely on the local size of clusters:

L 1CL(my, 1)

'7t = .
wL(m] ) capacityy,

(4.5)
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where capacity;, is the contribution of each compute node to total size of the final cluster:

n - imbalance

- (4.6)

capacityy, =
If the dataset is large enough (with respect to ¢, the number of compute nodes) and randomly
distributed, we can assume that the resulting error (relative number of points that are not
assigned to the correct cluster) can be kept arbitrarily low.

If the clustering of the data points is perfectly balanced, during the update step the size of
each cluster is n/k. For each cluster, computing the new medoid requires to compute every

pairwise similarity:

o (4.7)

The lower bound on the total computational cost for computing the £ new medoids is thus

o(=-) (4.8)

This is completely unacceptable for large datasets. Therefore, we sample the dataset and
run the balanced k-medoids algorithm against the downsized data to compute the medoids.
We only use the complete dataset once, to assign each node to a medoid using the constraint

in equation 5.3, and thereby to a compute node.

It is a well known technique for the family of k-means clustering algorithms to use a sampled
dataset to compute the initial centres. The impact of this technique depends naturally
on the final goal of the clustering. For our use case, experimental evaluation shows it is
perfectly valid and offers the same results as performing multiple iterations of distributed
k-medoids clustering with the complete dataset, while it requires the computation of far less

similarities.

4.7 Experimental evaluation

To perform the experimental evaluation, we implemented all algorithms using the Spark
parallel processing framework. All experiments are run on a cluster consisting of 16 compute
nodes plus one master node, each equipped with a quad-core processor and 8GB of RAM

memory. Each experiment is repeated 10 times, and we present below the averaged values.
The experiments are run using two datasets, with different similarity measures.

The synthetic dataset consists of points in R which are randomly generated according to
a mixture of gaussian distributions. The similarity measure used to build and query the

graphs is the classical Euclidean distance.

The SPAM dataset contains the subject of approximatively 1 million spams collected by
Symantec Research Labs in 2010. Domain knowledge suggests that the most relevant
similarity measure for building and querying the graph built from this dataset is Jaro-

Winkler. This dissimilarity measure is similar to classical Levenshtein edit distance, but it
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allows character substitution. Moreover, the substitution of two close characters is considered
less important then the substitution of two characters that are located far from each other.
Jaro-Winkler is not a metric distance as it does not abide by triangle inequality. It confirms

our algorithm can also be used with non-metric similarity measures.

4.7.1 Graph quality

We first evaluate the quality of the graph produced by the fast distributed algorithm.
Therefore, we build an initial k-nn graph consisting of 50000 nodes using a naive brute
force algorithm. Then we progressively add new points to the graph and regularly compare
the updated graph to a graph built from the same points using the brute force algorithm.
At each step we count the number of edges that are correct in the updated graph e, and

compute the quality of the graph, as defined below.

If the initial graph has n nodes and we add n, nodes to the graph, the algorithm has to
create ng - k new edges. We can also expect that a number of edges from the initial graph

have to be modified. Hence, the total expected number of modified edges is:

Mg

Ng +n

E(em) =nq-k+n-k- (4.9)
The expected number of unmodified edges in the final graph is simply E(e,) = (n +ng) -
k — E(e,,). Hence, the quality of the produced graph can be measured as the number of
correctly modified edges divided by the expected number of edges that the algorithm should
modify:

e. — E(ey)
=< 4.10
@ E(en) ( )
where e, is the real number of correct edges in the graph. Hence, @ is also the ratio of

correct edges in the graph when n, — co:

Q= lim Ce

—_ 4.11
na—oo k- (n 4+ ngy) ( )

The result of this experimental evaluation is shown in Figure 4.1. It confirms that the quality
value we defined above is an accurate measure of the correctness of the updated graph. It
also shows that the algorithm produces graphs that are highly similar to the exact graphs
(produced by a brute force algorithm), although it introduces multiple approximations
to reduce the number of computed similarities. The algorithm is however more efficient
with the synthetic dataset, that relies on an euclidean similarity measure, than with the
SPAM dataset, that uses a non-euclidean similarity measure. This will also be confirmed by

following experiments.

4.7.2 Parallelism

The first source of approximation is due to the partitioning of the graph, which is required to
execute the nearest neighbour search in parallel. Indeed, increasing the number of partitions
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Figure 4.1: Graph quality

reduces the size of each sub-graph, and thus increases the probability for the sequential
search procedure to reach the boundary of the sub-graph, which reduces the probability to
find the most similar nodes in the graph.

To evaluate the effect of parallelism on the algorithm, we build an initial graph and add a
fixed number of nodes while we vary the number of partitions. Hereby we thus also vary the
parallelism. We start with one single partition, which means the processing is sequential,
and not distributed. For each value, we measure the quality of the produced graph, the
time required to add the nodes, and we count the number of times the sequential search
procedure has to restart because it reaches the boundary of the partition. The measured

values are shown in Figure 4.2.

As we can see, increasing the number of partitions (and thus the parallelism) effectively
reduces the amount of time required to add points to the graph. However, once a certain
amount of parallelism is reached, the cost of distributing the operations overtakes the speed
increase offered by a higher parallelism. This threshold depends mainly on the cost of
computing the similarity between points. For the synthetic dataset, for which the similarity

is very easy to compute (Euclidean distance in R?), the best parallelism appears to be 8.

The Figure also confirms that the graph quality decreases with the number restarts due to
the partitioning, which increases with the number of partitions. Once again, the effect is

more pronounced with the spam dataset.

4.7.3 Update depth

The second approximation lies in the update depth used to modify the edges of existing
nodes when a new node is added to the graph. Increasing the update depth will of course
increase the quality of the produced graph, but it also requires to compute more similarities.
To evaluate its impact we vary the update depth and measure for each one the quality
of the produced graph and total number of computed similarities. This last includes the
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number of similarities computed to search the neighbours of the new node, and the number

of similarities computed to update the edges of existing nodes in the graph.

As we can see on Figure 4.3, there is a clear effect of diminishing return, and an update

depth of three seems to be a good compromise.

4.7.4 Search speedup

Finally, the main source of approximation relies in the sequential search procedure used
inside each partition. This one is responsible for finding the nearest neighbours of the new
node added to the graph. It is itself influenced by multiple parameters. The first and most
important one is the search speedup. As we could expect and is confirmed in Figure 4.4,
increasing the search speedup allows to reduce the number of similarities to compute, while
the produced graphs remain highly similar to the graphs produced by a brute force algorithm,
especially with the euclidean dataset. There is however a minimal number of similarities

that have to be computed to update the edges of existing nodes.
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4.7.5 Search expansion parameter

Another important parameter of the sequential search procedure is the expansion parameter.
As we can see in Figure 4.5, a well chosen value (1.1 for the SPAM dataset and 4.5 for the
synthetic dataset) effectively increases the quality of the search procedure by reducing the
number of nodes to analyse, and eventually increases the quality of the produced graph.

This parameter is however very dependent on the dataset and can be quite difficult to tune.

4.7.6 Dimensionality and k&

Finally, the dimensionality of the dataset and the number of edges per node k also have a
strong influence on the search procedure. Remember that the search relies on a hill climbing
approach. Hence, if k is inferior to the dimensionality of the dataset, the probability is high
that a node has no neighbour that increases the similarity with the query point. This will
cause the search procedure to restart, and will eventually reduce the probability to find the

nearest neighbours of the query point.

This effect is illustrated in Figure 4.6. We build a synthetic dataset in R?°, then build a
k-nn graph with different values of k, add a fixed number of nodes to the graph, and finally
evaluate the quality of the produced graph. As we can see, increasing k also increases the

quality of the produced graph.

Regarding the SPAM dataset, although it is not euclidean and the real dimensionality is not
defined, its behaviour is roughly similar to a high dimensionality dataset.

4.7.7 Partitioning

We compare here the quality of the graph produced after adding a fixed number of nodes
if: 1) we do not partition the graph and leave the nodes randomly distributed between the
compute nodes, 2) we use the complete dataset and run one to ten iterations of k-medoids
to compute the medoids and 3) we sample the dataset to compute the medoids and partition

the original graph.
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As we can see on Figure 4.7, the partitioning allows to improve the quality of the graph,
and the medoids computed by sampling the dataset eventually produce the same quality of
the final graph.

4.7.8 Scalability

We evaluate here the scalability of the algorithm. Therefore, we increase the number of
partitions, and keep the size of the graph proportional to the number of partitions (10000
nodes per partition). We add a fixed number of nodes to the graph, and compute the quality
of the produced graph. The results in Figure 4.8 show the size of the dataset has a very
limited impact on the quality of the produced graph, which makes the algorithm suitable

for very large datasets.

4.7.9 Removing nodes

Finally, we evaluate the quality of the produced graph when we remove nodes. In this case, the
quality factor is computed as follows. We can expect each node in the graph has an average
of k incoming edges. Hence, deleting a single node will require to compute k new edges.
When we remove n, nodes from the graph, the expected total number of modified edges is
thus E(e,,,) = k- n,, the expected number of unmodified edges is E(e,,) = (n—n,.)-k—E(e;,)
and the quality of the graph can be computed using Formula 4.10.

As we can see, the algorithm allows to remove nodes from the graph computing only a few
similarities (less than 2% of the number of computations required by the naive approach).
The produced graph is highly similar to the graph produced by a brute-force algorithm,
although the quality of the built from the SPAM dataset is once again slightly inferior to
the the quality of the graph built from the synthetic dataset.
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4.8 Conclusions

In this chapter we proposed an algorithm that is able to update a distributed k-nn graph by
quickly adding or removing nodes. We performed an experimental evaluation that shows the
algorithm can be used with very large datasets and produces graphs that are highly similar
to the graphs produced by a brute-force algorithm, while it requires the computation of far

less similarities.

4.9 Contributions

— Thibault Debatty, Fabio Pulvirenti, Pietro Michiardi, and Wim Mees. Fast distributed
k-nn graph update. In James Joshi, George Karypis, Ling Liu, Xiaohua Hu, Ronay Ak,
Yinglong Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan Rachuri, Lyle H. Ungar, Philip S.
Yu, Rama Govindaraju, and Toyotaro Suzumura, editors, 2016 IEEFE International
Conference on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016,
pages 3308-3317. IEEE, 2016

— Our Spark implementation of k-nn building and processing algorithms (including
NN-Descent, NNCTPH, LSH, Online, NN-search etc.) is available on GitHub, Maven
Central and Spark Packages: https://github.com/tdebatty/spark-knn-graphs
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Chapter 5
Partitioning £-nn graphs

5.1 Introduction

In this chapter, we study more deeply the partitioning of k-nn graphs: if the graph is so
large it cannot be processed on a single machine within a reasonable amount of time, it has
to be distributed between multiple compute nodes and processed in parallel. However, the
partitioning of the graph has a large impact on the performance of processing algorithms.

This was one of our observations in the previous chapter and in [31].

Existing graph partitioning algorithms mainly focus on optimizing two metrics: reducing
the number of cross-partition edges, and producing equally sized partitions. The impact of
optimizing these metrics on different graph processing algorithms has already been studied
in previous works like [75]. However, there is no guarantee that optimizing these metrics
will indeed produce the optimal configuration of the graph [47]. In the previous chapter for
example, we show that the optimal partitioning for searching the distributed k-nn graph
actually corresponds to the definition of k-medoids clustering of the nodes. This shows that
another approach for partitioning graphs, based on k-medoids clustering, is desirable.

In this chapter we study the usage of k-medoids clustering to partition large k-nn graphs
with Bulk Synchronous Parallel (BSP) processing frameworks. We first focus on k-medoids
clustering itself and propose two new optimized procedures. Then, in the second part of the

chapter, we propose a method for using k-medoids clustering to partition large k-nn graphs.

The rest of this chapter is organized as follows. In section 5.2 we present existing algorithms
to partition graphs and to compute k-medoids clustering. In section 5.3 we show that
the current state of the art algorithm for computing k-medoids clustering has a very slow
convergence time, so in section 5.4 we propose two optimizations that allow to speedup this
processing, and we experimentally compare them. In section 5.5 we propose a partitioning
procedure based on k-medoids clustering, which we experimentally compare to other classical
partitioning algorithms in two different ways. First we use the usual measures of partitioning
quality: cross-partition edges and partitions size. Then we study the actual impact of the
partitioning by measuring the performance of a distributed search running on the partitioned

graph. Finally, in section 5.6 we present our conclusions and propositions for future work.

o7
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Our contributions in this chapter are the following:

— we provide lower and upper bounds for the convergence time of CLARANS, the current

state of the art algorithm for k-medoids clustering;

— we propose two new distributed algorithms for computing k-medoids clustering and

perform an experimental evaluation;

— we propose a new method for partitioning k-nn graphs that relies on a k-medoids
clustering of the nodes and we perform an experimental evaluation of this partitioning,
which confirms that it allows to improve the results of subsequent algorithms applied

to the k-nn graph, like distributed search.

5.2 Related work

5.2.1 Graph partitioning

A graph partitioning algorithm splits a large graph into several sub-graphs. From the
mathematical point of view, there is a vast literature devoted to graph partitioning, see
for instance [14] for a review. These consider different kinds of graphs, like trees or special

types of trees, different type of constraints, and different optimality criterion.

From the distributed computing point of view, we are interested in distributed balanced
k-way graph partitioning. These algorithms partition a large graph in a fixed number of
partitions and in a way that allows other graph processing algorithms to achieve a better
performance: if the graph is correctly partitioned graph analysis algorithms achieve a better
performance (speed or accuracy) then if the graph is poorly partitioned. The efficiency of

these partitioning algorithms is usually measured using balance and communication cost:

size of largest partition

balance = — -
average partition size

communication cost = number of cross-partition edges

Two approaches exist to partition a graph: vertex and edge partitioning. In the vertex
partitioning approach (also called edge-cut partitioning), the vertices (nodes) are assigned
to different partitions. An edge is cut if its nodes belong to two different components. In
the case of edge partitioning (or vertex-cut partitioning), edges are mapped to partitions

and vertices are cut if their edges happen to be assigned to different components.

It has been shown that edge partitioning is a better approach to process graphs with a
power-law degree distribution, which are common in real-world datasets [38, 4]. Hence most
of the recent literature focuses on this area. There is a large variety of these algorithms
available, like Random Vertex Cut (RVC), Canonical Random Vertex Cut (CRVC), Ja-
Be-Ja-VC [82] and Hybrid-cut [21], and implementations exist for most distributed graph
processing frameworks like Pregel, Giraph or GraphX [100].

In the case of a k-nn graph, the graph is stored using adjacency lists of fixed size k (usually
called neighbor lists), hence only edge-cut partitioning algorithms are applicable. To the
best of our knowledge, only a few of these algorithms currently exist that support distributed
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execution: EdgePartition1D, PT-Scotch, parMETIS, Multi-level Label Propagation (MLP)
and Ja-Be-Ja.

EdgePartition1D [76] is actually an edge (vertex-cut) partitioning algorithm. It assigns
each edge to a partition using a hash value computed from the id of the source node of the
edge. Hence all outgoing edges of a node are assigned to the same partition, which makes it

suitable for partitioning k-nn graphs as well.

PT-Scotch [22], parMETIS [52] and MLP [101] belong to the same family of multi-level graph
partitioning algorithms. They first reduce the size of the graph by collapsing vertices and
edges. Then they partition the smaller graph, and finally they map back this partitioning to
the original graph. These however rely on the Message Passing Interface (MPI) protocol and
assume a fast communication between all nodes in the graph. For this chapter we target a

different programming model, namely Bulk Synchronous Parallel (BSP) processing.

Finally, the Ja-Be-Ja [82] algorithm initially assigns each node to a random partition, then
the algorithm iteratively swaps nodes between partitions to increase the number of neighbors
they have in the same partition as themselves. A BSP implementation of Ja-Be-Ja has also
been proposed in [19].

5.2.2 k-medoids clustering

k-medoids is a clustering algorithm that is very similar to k-means as they both attempt to
minimize the distance between points labeled to be in a cluster and a point designated as
the center of that cluster. However, there are two main differences between k-means and
k-medoids: 1) in k-medoids centers are actual points from the dataset, called medoids and
2) k-medoids minimizes the sum of pairwise dissimilarities instead of the sum of squared
distances. This gives k-medoids two advantages over k-means: 1) it is more robust to noise
and outliers and 2) it can be used with datasets governed by a non-euclidean distance

measure.

The four classical algorithms for performing k-medoids clustering are PAM, CLARA, Lloyd
iteration and CLARANS.

Partitioning Around Medoids (PAM) is one of the first published algorithms for computing
k-medoids clustering. It is an iterative algorithm. At each iteration the algorithm searches
which of the current medoids should be replaced to obtain a better solution. The iterations
are actually greedy, as the algorithm computes the gain obtained by swapping each medoid
with each point in the dataset. Each iteration requires to compute the cost of kn swaps,
where n is the size of the dataset. Some geometric reasoning is used to speed up the
computation of the cost of each swap, but the algorithm remains quite slow and is typically
used for small datasets only (less then 1000 objects) [45].

Clustering LARge Applications (CLARA) is an optimization of PAM that samples the
dataset to perform the clustering. The algorithm draws multiple samples and gives the best

clustering as the output, using the entire dataset to compute the cost of each solution.

Clustering Large Applications based on RANdomized Search (CLARANS) [78] is currently
considered as the most efficient algorithm for performing k-medoids clustering. It considers

the space of solutions as a graph, where each node is a set of k¥ medoids and two nodes are
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neighbors if they differ by one medoid. Hence, from a current solution, k(n — k) neighbor
solutions can be built by swapping one medoid with a random point from the dataset.
Starting from a current solution, CLARANS randomly selects a random neigbor solution,
compute its cost, and move to the neighbor solution if it has a lower cost. Otherwise it picks

another random neighbor, and so on.

PAM and CLARANS are actually different implementations of the local search optimization
strategy: they both try to improve the current solution by swapping a medoid with a point
from the dataset. The main difference between them is that PAM works in a purely greedy
way: for each medoid it tests all points in the dataset before performing the swap, while
CLARANS performs the swap as soon as a point is found that will decrease the cost of the
solution. This allows CLARANS to converge more quickly. As we will see, there is however

room for improvement.

The Lloyd iteration algorithm [80] uses the same approach as the Lloyd algorithm used for
k-means clustering: at each iteration, the algorithm searches the most central point in each
cluster. If all clusters have the same size (n/k), finding the center of each cluster requires to
compute at least O(n?/k?) distances. Hence each iteration requires to compute O(n?/k)

distances, which makes the algorithm quite slow as well.

In [89] and [23], the authors use a simulated annealing based technique to perform k-medoids
clustering. In these papers the authors apply the simulated annealing acceptance criteria
after the CLARANS algorithm computes the cost of the neighbor solution, to escape a
possible local minimum. According to our experience, local minimums are relatively rare
when using CLARANS, hence using simulated annealing this way only slows down the
convergence of the algorithm. In section 5.4 we propose another approach, where we apply
the decision criteria before we compute the cost of the neighbor solution. This allows to

avoid computing the cost of the current solution, which is a costly operation.

5.3 Convergence time of CLARANS

We define an iteration of CLARANS as the process required to improve the current solution.

Hence it consists in finding a new solution with a smaller cost.

A trial is defined as selecting a candidate solution and computing its cost. It requires to
compute kn similarities with the standard algorithm. This can be reduced to n if appropriate

caching is used.

Consider the simple case of a uniform dataset D in Z with k& = 2 and unitary distance
between points, like depicted on Figure 5.1. The space of solutions is the set of (z,y) from
D x D where = # y. It forms a grid in Z2.

The set of the costs of every candidate solution forms a grid. It is symmetric as the solutions

(z,y) and (y,x) are equivalent, and it has only two equivalent maxima: (x,,y,) and (yo, z,).

Consider the grid formed by the solution space. At any iteration, k(n—k) = O(nk) candidate
solutions can be built from the current solution.

We now compute an upper bound for the number of trials required by CLARANS at any
iteration. The progression of CLARANS can be measured using d, the Manhattan distance
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between the current solution and the optimal solution in the solution space, as shown in
Figure 5.1. More formally, d is defined as follows: let og ... 0; .. .ok be the optimal solution
and mq...m;...my be the current solution (the set of medoids at any iteration of the

algorithm). Then:

k
d= Z distance(m;, 0;) (5.1)
i=1
By the definition of CLARANS, at each iteration this distance will decrease by at least 1
(the distance between points in the dataset).

Consider any iteration of the algorithm where d > k. The worst configuration for the
convergence of the algorithm is when the candidate solution is located in a diagonal with
respect to the optimum solution, like in Figure 5.1. This means that, from the current
solution, all medoids have to be swapped before we reach the optimal solution. In this
configuration, in each direction (for each medoid) there are 2d/k — 1 points that lead to an
improved solution, like presented in Figure 5.1. As there are k directions (medoids), the
number of neighbor solutions that have a smaller cost (in red) is (2d/k — 1)k, and the total
number of neighbor solutions is O(nk). Hence this iteration will require O(nk/(2d — k))

trials on average to progress.

At any iteration, and for any value of d (also if d < k), the best configuration is achieved
when the candidate and the optimal solution differ by only one medoid. In this configuration,
there are 2d — 1 solutions that will reduce the cost compared to the current solution. The

cost for completing the iteration is hence o(nk/2d) on average.

Remark that in both cases, the average number of trials required by CLARANS to
complete the iteration, and hence to progress towards the optimum solution, is

proportional to nk.

As an example, suppose we have a solution where d = 1 (right next to the optimal solution),
only one solution will improve the total similarity compared to the current solution (the
optimal solution). Hence CLARANS will require up to nk trials to find this one, which will

require to compute n2k? similarities.

This shows that CLARANS is actually slow to converge because the neighbor
solution is selected purely at random.

5.4 Efficient k-medoids clustering

The slow convergence rate of CLARANS is due to the fact it tries a lot of candidate solutions
before finding one that is actually better, and computing the cost of a solution is a heavy
operation that requires computing nk similarities. However, a lot of candidate solutions can
be quickly and cheaply discarded. Indeed, recall that CLARANS builds a new candidate
solution by swapping a medoid from the current solution with a random point from the

dataset. From Equation 5.1, we can infer that:

Vi : distance(m;, 0;) < d (5.2)



62 Chapter 5. Partitioning k-nn graphs

O Current solution
[[] Optimal solution

o Neighbor solutions with a lower cost

L @ L] [ ] [ ] L]

O]
L @ L] L] d [ ] [ ]
©

d/k
2d/k
2d/k — 1

Figure 5.1: Convergence of CLARANS

Namely, the distance between a current medoid and the optimal medoid is at most d. This

allows to quickly discard candidate solutions that would not improve the current solution.

For any configuration, the number of neighbor solutions that obey this condition is dk.
Hence the average number of trials required to progress is reduced to O(dk/(2d — k) for the
worst configuration and o(dk/2d) = o(k/2) for the best configuration. Remark that this
time the number of trials is not proportional to n. This shows that we can spare a
lot of trials and computations if we only consider neighbor solutions located at a distance

< d from the current solution.

Unfortunately, there is no easy way to compute d as we do not know in advance where
the optimum solution is located. Hence we propose two procedures to perform efficient
k-medoids clustering that discard neighbor solutions that are probably located too

far from the current solution, without actually relying on the value of d.

The first one is inspired by simulated annealing. In the experimental evaluation we show that,
with correct parameters, it converges faster than the current state-of-the-art. However, like all
simulated annealing algorithms, parameter tuning is very difficult. We also present another
approach that relies on a simple to compute heuristic that does not require any configuration
parameter. According to our experiments, it performs better than the state-of-the-art in all

our evaluations.
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5.4.1 Simulated annealing neighbor generation

Our approach to compute k-medoids clustering is based on local search but, instead of
selecting a random neighbor solution like CLARANS, we use an algorithm inspired by
simulated annealing to select the neighbor. In the graph of solutions, we try to discard
solutions that do not fulfill Equation 5.2.

To build a neighbor solution we select a random medoid from the current solution and a
random point from the dataset. The distance between these two points is the measure of
the energy that has to be minimized when the algorithm converges. Hence we use an initial
temperature Ty that will decrease at each iteration according to a cooling factor «y, and the
probability to accept this random point is computed using the formula of Metropolis and
Kirkpatrick [53]: P = e~ distance/T,

Algorithm 5 Simulated annealing neighbor solution generator

Input: current solution S

m < a random medoid from S

p < a random point from the dataset
d « distance(m, p)

T TO . ,yiteration

swap m and p with probability e=%7T

At the first iterations the temperature is high, hence we accept neighbors located at a large
distance from the current solution. As the algorithm progresses towards the optimal solution,
the temperature decreases such that we only generate neighbors located in the vicinity of

the current solution.

After the neighbor solution is generated as depicted in algorithm 5, we continue with the
classical local search procedure: the algorithm computes the cost of the neighbor solution,
which is accepted if it has a lower cost. The advantage compared to classical CLARANS is
that our neighbor solution generators allows to discard neighbor solutions that are located
too far from the current solution in the solution space, before we compute their cost, thereby

sparing unnecessary computation.

Unlike the algorithms presented in [89] and [23], we apply simulated annealing before and
not after the cost of the neighbor solution is computed. Indeed, we try to reduce the number
of computed similarities and to speed up the algorithm by reducing the search space, while
the two aforementioned papers use simulated annealing to escape a possible local minimum,

after computing the cost of the solution.

However, like all methods based on simulated annealing, our method is efficient only if
correct values for Ty and ~ are used, and there are no known approaches for estimating
these values based on specific characteristics of the dataset. Hence we also propose another

neighbor solution generator, based on a simple heuristic that requires no input parameter.

5.4.2 Heuristic based neighbor generation

To explain the idea behind the heuristic based neighbor generator, we consider the situation

illustrated in Figure 5.1. We consider all the neighbors of the current solution along the
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Figure 5.2: Heuristic based neighbor generator

horizontal axis (all the solutions that can be built by swapping one medoid with a random
point from the dataset). On the top of Figure 5.2, we plot the cost of each neighbor solution.
The neighbors with a negative cost are the ones that allow the algorithm to progress, but
they have not been discovered yet (otherwise the algorithm would use one of them as the
current solution). They are all situated at a distance < 2d/k from the current solution.

On the bottom of Figure 5.2 we plot the cost of the discovered neighbors as a function of
the distance with the current solution. In red we plot the average cost of solutions situated
at the same distance. This plot has local minimum (identified with a red square) that also
corresponds to the maximum distance for which solutions exist that will reduce the cost of
the current solution (2d/k).

This is the approach used in the heuristic based neighbor generator: we keep track of the
distance and cost of every evaluated candidate solution and search a local minimum in the
resulting curve. The distance corresponding to this local minimum is used as the maximum

distance for trying a candidate solution.

5.4.3 Experimental evaluation

We now perform an experimental evaluation of our algorithms. All tests are executed on a
Spark cluster composed of one master and 16 workers. Each test is executed twenty times
and we show the average result. We use different datasets to run the tests:

— synthetic-3-12 is a dataset composed of 100.000 points in R? distributed around 12
centers according to a gaussian law;

— synthetic-10-12 is a dataset of 100.000 points in R'© distributed around 12 centers;

— synthetic-3-100 is a dataset of 100.000 points in R? distributed around 100 centers;
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Table 5.1: Optimal parameters identified for simulated annealing neighbor generator

Dataset ol To [-1000]
synthetic-3-12 0.990 60
synthetic-10-12 0.993 15
synthetic-3-100 0.995 10
commercials 0.980 64
spam 0.985 64

— commercials is a dataset from the UCI Machine Learning Repository[61] that contains
features extracted from 129.685 TV sequences;

— spam is a dataset composed of the subject of 100.000 spam emails. The similarity
between spams is computed using Jaro-Winkler string similarity, which does not belong
to a metric space.

A lot of formulas exist to measure the quality of a clustering, like Davies—Bouldin index,
Dunn index or Silhouette coefficient. However, by definition the goal of k-medoids clustering
is to maximize the total similarity between each point in the dataset and its associated
cluster. As a consequence, depending on the geometric configuration of the points in the
dataset, a clustering with higher total similarity may result in a lower Silhouette coefficient
for example. For this chapter, we want to know if the solution found by the different
algorithms actually corresponds to the definition of k-medoids clustering. Hence we use the

total similarity to measure the quality of clustering.

5.4.3.1 Parameter study

We first study the influence of the two parameters required by the simulated annealing
approach: initial temperature T, and cooling rate . For this test we let the algorithm
compute a fixed number of similarities (1E9) while we vary the cooling rate and the initial
temperature. For each experiment we record the sum of the similarity between each point
and corresponding medoid (hence higher is better). The results are presented in Table 5.1
and Figure 5.3. For the sake of visibility we only plot a subset of the results and we shift
the curves vertically to fit on a single Figure. This clearly shows that the optimal value
depends on the dataset: if the initial temperature is too low or the cooling rate too high,
the algorithm wastes time searching for a neighbor solution located too close to the current
solution, which prevents the algorithm from progressing towards the optimum solution. At
the opposite, if the initial temperature is too high or the cooling rate too low, the algorithm
accepts any neighbor solution, which is the same behavior as CLARANS.

5.4.3.2 Comparison with the state-of-the-art

We now experimentally compare the Spark implementation of the three k-medoids clustering
algorithms: CLARANS, our Simulated Annealing approach, and our heuristic approach. To
compare the convergence time of the algorithms we first need to compute the exact solution

of the k-medoids clustering problem. This requires to evaluate all possible solutions:
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(1) = m

This is only feasible within a reasonable amount of time for toy problems. For our datasets,

this would require to compute roughly 10%% solutions (n = 100000 and k = 10). Instead we
show here how fast the algorithms converge by measuring the quality of the clustering after
a fixed number of similarities have been computed. For the simulated annealing approach
we use the optimal parameters identified above. Figures 5.4 and 5.5 show the quality of the

clustering when we vary the number of computed similarities for the five datasets.

We can clearly see that the heuristic based approach performs at least as well as the classical
CLARANS. In some cases the algorithm requires to compute twice less similarities than
CLARANS to achieve the same quality of clustering. The simulated annealing performs
even better, but only if the configuration parameters (Ty and ) are precisely tuned for the
dataset to process and for the number of similarities that can be computed during analysis
(1E9 in our tests).

5.5 k-medoids based graph partitioning

In this section, we propose to use k-medoids clustering to partition a large k-nn graph
between multiple compute nodes. Then we compare our approach to existing algorithms in
two different ways. First we use the classical metrics used to measure the performance of
partitioning algorithms: balance and communication cost. Then we compare the performance
of the distributed search algorithm we presented in Section 4.5 using graphs partitioned

with the different algorithms.

5.5.1 Balanced k-medoids based graph partitioning

We propose here to use a k-medoids based approach to partition a large k-nn graph. Therefore
we first compute the k-medoids clustering of the nodes using the optimized method presented
above, and then we assign each node and its corresponding adjacency list to the partition

corresponding to the most similar medoid.

To achieve a balanced distribution of points between the k partitions (not to confuse with
the k edges per node of the k-nn graph), we use a modified heuristic to assign each point
to a partition. Let po...p;...p, be the set of nodes in the graph and mg...m;...my the
set of medoids at any iteration of the algorithm. Each point p; is assigned to the partition

P(p;) corresponding to the most similar medoid weighted by a penalty function w(m;,t):
P(p;) = arg max(similarity (p;, m;) - w(m;,t))
m;

This penalty function is based on the capacity and current size of the partition, in order to

penalize large clusters.

In a distributed shared nothing environment like Spark, the different workers do not have

access to the total size of each partition at time ¢t. Each compute node can only rely on the
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Figure 5.5: Quality of clustering with different datasets

local number of points already assigned to a partition Pr(m;,t).

Hence, to execute the algorithm in parallel we first randomly distribute the nodes between
the ¢ workers. At each iteration, this randomized dataset is used to assign each node using

a weight function that relies solely on the local size of clusters:

| Pr(my,t)]

: (5.3)
capacityy,

wr(m;,t) =1
where capacity; is the contribution of each compute node to total size of the final partition:

n - imbalance

capacityy = B
-c

Depending on the application, a small size difference can be tolerated between partitions,
hence the capacity of partitions is usually computed using an imbalance factor (imbalance >
1). At the opposite, a perfectly balanced partitioning can be achieved using imbalance = 1.

If the dataset is large enough (with respect to ¢) and randomly distributed, we can assume
that the resulting error (relative number of points that are not assigned to the correct

cluster) can be kept arbitrarily low.

5.5.2 Experimental evaluation

We now experimentally compare the Spark implementation of our k-medoids based graph
partitioning with Ja-Be-Ja and EdgelD !. For the sake of fairness, the Ja-Be-Ja algorithm
implements the optimizations proposed in [19] and [75]. We first build the 10-nn graph
corresponding to each dataset. The resulting characteristics of the graphs are shown in
Table 5.2. Then we partition the graph between our 16 workers, letting each partitioning
algorithm run for a fixed amount of time, and finally we compute the number of cross-
partition edges (communication cost) and the imbalance of the resulting partitioning. For
the k-medoids partitioning, we use a target imbalance parameter of 1.2. As EdgelD is a

1. https://github.com/tdebatty/spark-knn-graphs
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Table 5.2: Characteristics of the graphs used for experimental evaluation

Dataset Vertices (nodes) Edges

synthetic datasets 100.000 1.000.000
commercials 129.685 1.296.850
spam 100.000 1.000.000

single pass algorithm, we simply let it run until it completes, which requires approximatively

3 seconds on our cluster. The results are presented in Figures 5.6 and 5.7.

As we could expect, the quality of the partitioning performed by EdgelD is consistent with
a random distribution of the nodes. We can see that the k-medoids approach manages to
find a good partitioning from the very first iterations, and then keeps slowly improving
the partitioning. At the opposite, Ja-Be-Ja starts with a random partitioning and then
very slowly improves the solution, swapping only a few hundreds of nodes at each iteration.
On the figures we also show the average quality of partitioning achieved by Ja-Be-Ja after
running for 1 hour. We can see that even after 1h of computation, Ja-Be-Ja is not even
close to the quality of the k-medoids based partitioning.

5.5.3 Graph partitioning for efficient distributed search

We now turn back to our initial problem: how to partition a large k-nn graph such that
we can efficiently run other processing algorithms, such as distributed search? We showed
previously that these kind of algorithms require the graph to be partitioned according to a
k-medoids clustering.

We perform here an experimental evaluation to show that a k-medoids based approach
indeed allows the search algorithm to deliver better results. We use the different algorithms
to partition the graph, and this time we measure the accuracy of the distributed search
algorithm. We first split each dataset between a training and a query set. We build the
graph from the training set and we partition it with the different algorithms, then we use

the query set to perform distributed search with the algorithm presented in Section 4.5.

This search algorithm assumes that each partition contains a subgraph of the distributed
graph. Each subgraph is searched independently using a hill-climb approach. When the
search reaches a boundary of the subgraph, it simply restarts from a random node. Finally
the best solution from all partitions is returned. This algorithm has the advantages that 1)

it requires only one iteration and 2) it requires almost no communication.

In Figures 5.8 and 5.9 we show the proportion of correct search results for the different

partitioning algorithms.

The results clearly show that the k-medoids approach largely outperforms the other par-
titioning algorithms. We can also notice that the results are less good for the spam and
the synthetic-10-12 datasets than for the others. For the spam dataset, this is due to the
non-euclidean character of the dataset. For the synthetic-10-12 dataset, this is due to the
higher dimensionality of the dataset. As we also observed in [31], these two configurations

make searching more challenging.
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Figure 5.7: Quality of partitioning with different datasets (lower is better)

5.6 Conclusions and future work

In this chapter we studied the usage of k-medoids clustering to partition large k-nn graphs.

We proposed two new optimized procedures for performing k-medoids clustering. Then we

proposed a method relying on k-medoids clustering to partition large k-nn graphs. Our

experimental evaluation showed that 1) our clustering procedures outperform the current

state-of-the-art and 2) k-nn clustering is an excellent approach for partitioning large k-nn

graphs as it is at the same time faster and more efficient than current partitioning algorithms.

As a future work, we plan to evaluate the quality of the k-medoids partitioning when other

algorithms are executed on the partitioned graph, like Connected Components.

5.7 Contributions

Thibault Debatty, Pietro Michiardi and Wim Mees. Efficient k-medoids based graph
partitioning. Submitted to the 2/th International Conference on Parallel and Dis-
tributed Systems (ICPADS2018). Notification expected on 01 September 2018.

Our Spark implementation of k-medoids based graph partitioning is available at

https://github.com/tdebatty/spark-knn-graphs

Our Spark implementation of k-medoids clustering algorithms (CLARANS, Lloyd
iteration, Simulated Annealing and Heuristic) is available on GitHub and Maven
Central: https://github.com/tdebatty/spark-kmedoids

To support our experimental evaluation, we also implemented a Java library to easily
parse various datasets (DBLP bibliograph database, Reuters-21578 news dataset,
ENRON email dataset, synthetic datasets generated according to a gaussian law,
Wikipedia web pages dataset etc.). This library is also available on GitHub and Maven
Central: https://github.com/tdebatty/java-datasets
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Chapter 6

Scalable k-nn based text

clustering

6.1 Introduction

Data clustering is a fundamental analysis task that consists in finding groups of related data
items. The definition of similarity used to perform the clustering is usually determined by
the application domain at hand. In the same way, measuring the quality of the clustering
obtained by applying one of the numerous clustering techniques that exist is often dependent
on the application domain. A clustering considered as good for one application may not suit

the requirements of another one. This often calls for manual inspection by domain experts.

In this Chapter, we focus on a particular data clustering task, which involves grouping text
data items. The application domain of our work stems from the objective of identifying
SPAM campaigns: we focus on data collected by Symantec Research Labs to perform

root-cause analysis of large scale SPAM email campaigns originating from bot networks.

This a very adversarial context as spammers usually try manipulate text to avoid SPAM
emails being identified as originating from the same campaign, which makes data clustering
even more challenging. As a consequence, the similarity metrics used for clustering must
cope with text mangling. They must be able to detect similar strings, even if typos, character
swapping and other techniques to avoid detection have been applied. According to our
experience, Jaro-Winkler [49, 104] text similarity is suitable for this purpose, although it
has the drawback that is not a metric distance, as it does not obey to triangle inequality.

In addition, data clustering is challenging due to the large volume of data that is collected
nowadays: this calls for the design of scalable algorithms, capable of ingesting millions of

data points and cluster them in meaningful ways.
Current approaches fall short in addressing the above challenges.

For example, the widespread K-means clustering algorithm requires text data to be trans-
formed into d-dimensional vectors to operate correctly. However, such transformations

generally imply high-dimensional vectors, which render distance functions problematic, an

7
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issue known as the “curse of dimensionality”. Other common approaches for text cluster-
ing based on frequency analysis of shingles also suffer from high-dimensionality problems.
Moreover, for applications like the ones we consider in this work where strings are short

sentences (like the subject of an email), frequency analysis is problematic.

Also, the common techniques discussed above are not amenable to non-metric spaces, which
is a requirement for the application domain we study. As a consequence, clustering performs
poorly: data items that should be considered similar and fall in the same clusters are instead

assigned to different groups.

Finally, it is generally very challenging to design scalable clustering algorithms. For example,
K-means — albeit easy to parallelize — requires a large number of similarity computations
and suffers from a long runtime. Frequency based methods are also difficult to scale as it is

generally cumbersome to parallelize frequent itemset mining algorithms.

This is why in this chapter we present a clustering approach that addresses the above
concerns: ¢) it produces high quality clusters that are easy to interpret, i) it accommodates
any kind of similarity functions, even non-metric ones, and iii) it is scalable. The gist of our
clustering algorithm consists in building an approzimate k-nn graph of the input text data,

and compute its connected components, which identify data clusters.

In particular, we aim at understanding the trade-off that exists between accuracy, scalability
and, ultimately, clustering quality. To do so, we proceed with a thorough experimental
evaluation of our clustering method with real, large-scale datasets, using our implementation
— which is publicly available — for the Apache Spark computing framework.

The contributions of this chapter are the following;:

— We design and implement a scalable algorithm for text clustering, which works in an
“adversarial” application scenario, and that produces high quality, and interpretable

clusters.

— We perform a detailed experimental analysis, where we show the impact of the
parameters that govern the degree of approximation of our method. Our results
indicate that even rough approximations are sufficient to obtain high quality clusters,

which is also beneficial for the algorithm runtime.

— We use real-life datasets and evaluate the overall clustering quality of our approach
both using traditional metrics, and with the help of domain experts through manual

investigation, highlighting the interpretability of clustering results.

The remainder of the chapter is organized as follows. In section 6.2 we survey related works,
and discuss the differences with our approach. In section 6.3 we present our approach in
detail. Then, in sections 6.4 and 6.5 we present the experimental setup and our main results,

respectively. We conclude the chapter in section 6.6, where we also discuss our future work.

6.2 Related Work

The problem of clustering data has been widely studied in the computer science literature

at large, with nuances ranging from graph theoretic and data mining principles [39, 6] to
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Figure 6.1: Illustration of our approach

experimental approaches [93, 107]. Since it is outside the scope of this paper to give justice
to all work that has been done in the domain, here we focus on approaches that are closest
to our work.

One of the most popular clustering algorithms is the Lloyd iteration algorithm [64], which
performs K-means clustering. This is a simple approach that operates on d-dimensional vec-
tors. It can also be used to perform text clustering, but this requires a transformation phase
to encode sentences and words into vectors [51, 97]. For example, Mikolov et al. [73] present
an efficient implementation of the continuous bag-of-words and skip-gram architectures for
computing vector representations of words. In our work, we use such approach as a baseline
to which we compare our clustering algorithm. In the experimental evaluation we show that
it suffers from its inability to accept non-metric distance measures, which are essential to

detect similarity between mangled sentences, and from its poor scalability.

Alternative approaches search for frequent terms in the dataset to identify clusters [11, 10,
72]: essentially, the idea is to find subsets of frequent term sets, which are a proxy for
clusters, and map data items containing elements of such subsets to the same cluster. Such
approaches suffer from their inability to scale well (in some cases, clusters may overlap, and
a disambiguation phase based on greedy heuristics is required, which is difficult to scale),

and do not take into account text similarity that is resilient to mangling.

Other approaches aim to optimize the computation of pairwise similarity between text items
using matrix computations [77]. In this category, Lin et al. [62] presented an optimized
algorithm to retrieve clustering of text data from a similarity matrix using cosine similarity.
Once again, such approaches do not accommodate non-metric similarity measures and are
difficult to scale, although recent work [16] has shown the benefits of approximate matrix

operations which scale better than exact, all-pair similarity computations.

An approach that targets goals that are similar to ours is Triage [96], which addresses the
same application domain we target in this paper. However, the focus of Triage is on multi-
feature data items, and not on scalability: as such, the authors mainly address problems
related to information fusion, by defining a method to merge several different distance
metrics operating on text, categorical and numerical values. Recently, a parallel version of
Triage has been proposed [92], which partially addresses scalability issues. However, the
approach still computes all-pair similarity among representative, prototype items, with an

0] (n2) complexity that still makes handling very large data sets difficult.
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6.3 k-nn based clustering

We now present our approach for scalable text clustering and we provide a parallel imple-
mentation. We also underline the important role played by approximation in our algorithm.
Besides the algorithm design itself, using approximation techniques constitutes an important
contribution to our analysis of the trade-off that exists between clustering quality and the

scalability of our method.

The problem of text clustering we consider is particularly challenging due to the application
scenario we study. We face an adversarial setting in which text data is generated such that
finding similar items is cumbersome: SPAM campaigns use text mangling, spelling errors
and generally variations on some baseline text which makes SPAM items belonging to the
same campaign appear different one from each other. As a consequence, we need to use a

similarity metric between items that can overcome, or at least mitigate, the problem.

6.3.1 Similarity measure

There exist numerous algorithms to measure the similarity between items. In particular, for

text data, the Hamming distance and Levenshtein distance have been extensively used.

In this work, for the reasons illustrated above, we choose the Jaro-Winkler [49, 104] similarity
measure which, simply stated, counts the common characters between two strings even if
they are misplaced, misspelled, and mangled by a “short” distance. Jaro-Winkler is not

however a metric distance as it does not obey to the triangle inequality.

Given the choice of the similarity metric we use in this work, the wide spectrum of techniques
to find clusters of similar text items reduces to few methods. This is the main driving factor

that steers the algorithmic design choices we make in this work.

6.3.2 Illustrative example

Before delving into the technical details of our method, we first provide an overview of
our algorithm, and proceed with an illustrative example. Our text clustering approach
works in two phases. In the first phase, it builds an approximate k-nn graph of text dataset.
The first phase concludes with a pruning stage, which strives at eliminating spurious links
between items with low similarity. In the second phase, we use a parallel approach to identify

connected components in the k-nn graph, which are a proxy for clusters of similar items.

Figure 6.1 illustrates the process, where we consider 5 SPAM email subjects: note the swap
of letters and typos, which are typical of SPAM emails. Each email subject corresponds to a

node in the intermediate graph structure our approach builds.

Initially, each node connects to k = 2 randomly chosen nodes. First, our algorithm iteratively
builds an approximate 2-nn graph. On the Figure, edges having low similarity are dashed.
The number of iterations used to buid the graph constitutes one parameter of our approach.
At this point, the pruning phase eliminates edges between nodes that have a low similarity,
using a threshold value that constitutes the second parameter of our algorithm. Finally,

using the pruned 2-nn graph, our method finds its connected components, which we use as
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a proxy of the clusters in the original dataset.

We now describe each step of our clustering algorithm in detail.

6.3.3 Phase 1: k-nn Graph Construction

In the first phase of our method, we build a k-nn graph. In this work, we limit our attention to
text features: for example, we extract the subject of a SPAM email as the only representative
feature of the item. Considering additional or heterogeneous features is outside the scope of

this work, and we defer it to an extension of our approach.

The naive approach to build a k-nn graph consists in finding all-pairs similarity among
all items of a dataset, then select the k£ most similar items to each item. Clearly, this
“brute-force” approach is not scalable, as it requires O(n?) similarity computations, where
n is the number of items in the dataset. Note that the “brute-force” algorithm produces
ezact k-nn graphs, which we use in this work as a baseline to determine the approximation

quality of our method.

Instead, we use a Spark implementation of NN-Descent, similar to the Hadoop MapReduce
implementation that we already presented in Chapter 3. Remember that this algorithm
uses an iterative approach to progressively refine the k-nn graph and eventually build an

approximation of the exact k-nn graph.

In this work we are particularly interested in the role of the number of iterations of
the algorithm, which determines its approximation quality. We claim that even rough
approximations of the k-nn graph are sufficient for the ultimate goal of our clustering
method. Intuitively, the existence of a path between similar items on the k-nn graph is

sufficient for the last phase of the clustering algorithm we propose.

6.3.4 k-nn Graph Pruning

The iterative procedure to build an approximate k-nn graph may induce neighboring relations
between text items that have a low pairwise similarity. Indeed, the algorithm necessarily
outputs the k most similar neighbors for each item: any skew in the distribution of the
pairwise similarities may produce a k-nn graph in which some node are only “loosely” similar.
We thus use a pruning phase, with parameter 6 € [0,1] to determine a cut-off similarity
value, below which edges between any pair of nodes are eliminated. The pruning phase
inspects each node of the k-nn graph, and prunes such edges.

Choosing an appropriate threshold 8 determines the final output of our clustering method:
as 8 — 1 clustering is strict, which leads to a large number of small clusters of essentially
identical items; as # — 0 clustering is loose, leading toward the degenerate case of a single,

giant cluster.

6.3.5 Phase 2: Connected Components

The second and last phase of our approach uses the pruned k-nn graph, and outputs its

connected components, that we use as a proxy for identifying clusters of similar items. Recall
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that the problem of finding the connected components of a graph amounts to searching for

sub-graphs in which any two vertexes are connected to each other by paths.

Finding connected components in large-scale graphs using scalable algorithms is a well
studied and understood problem, the abundant literature on the subject bears witness to
this [87, 54, 67].

In this work we use a parallel implementation of the Cracker algorithm [67], wherein each
node is tagged with the smallest node identifier of its component called seed node identifier.
The key idea of Cracker is to reduce the graph size in each step of the computation, by
employing a technique inspired by the “contraction algorithm” to compute minimum cuts of
a graph [50]. At termination, all nodes tagged with the same seed identifier are grouped in

the same component.



Table 6.1: Symantec Dataset: characteristics

Feature Unique Value 1 Value 2 Value 3 Value 4 Value 5

bot 11669 Lethic 20.41% | Unclassified 18.63% | Bagle 11.24% | Cutwail 9.36% | Grum 9.20%
city 33905 16.22% | Seoul 3.61% | Kiev 2.16% | Hanoi 1.76% | Moscow 1.70%
country 224 Russian Federation | 10.46% | India 8.53% | Brazil 5.83% | Korea, Republic of | 5.73% | Ukraine 4.62%
day 393 10/31/2010 0.31% | 10/30/2010 0.30% | 10/23/2010 0.30% | 2/19/2011 0.30% | 11/3/2010 0.29%
fromDomain | 241117 domain555065.com | 11.10% | domain359761.com | 2.22% | domain572911.com | 0.90% | domain425436.com | 0.86% | domain384117.net | 0.56%
host 32915 42.09% | airtelbroadband.in | 1.71% | ukrtel.net 1.67% | localhost 1.62% | hinet.net 1.40%
i 2227174 | anonymous_IP_1 0.04% anonymous_ [P 2 0.03% anonymous_ [P 3 0.03% anonymous_ [P 4 0.02% | anonymous_IP_5 0.02%
reptDomain | 8641 domain555065.com | 81.66% | domain806676.fr 3.27% | domain946987.org | 2.18% | domain240360.br 1.93% | domain801669.com | 1.64%
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6.4 Experimental Setup

This section provides details about our experimental setup, including datasets used, evalua-

tion metrics, parameters and system environment.

Distribution
o
()]

P ——

0.3 BOT -
0.2 HOST - _
CITY ---@--
0.1 COUNTRY -—-&— |
| DAY —v—
O . L L L Lo I Lo L Lo
100 101 102 103 104 10° 108 107

Group Size

Figure 6.2: Symantec dataset: feature distribution

Table 6.2: Symantec Dataset: average similarity

Feature Similarity
bot 0.6

city 0.49
country 0.49

day 0.5
fromDomain | 0.54

host 0.5

i 0.51
reptDomain | 0.5

Experimental platform. All the experiments have been conducted on a cluster consisting
of 17 nodes running Ubuntu Linux (1 master and 16 slaves), each equipped with 12 GB of
RAM, a 4-core CPU and a 1 Gbit interconnect.

We implemented our approach and the baseline method we use for our comparative analysis

using Apache Spark [8] and our source code is publicly available.

Evaluation Metrics. We now discuss the metrics we use to analyze the parameter space of
our approach, and for its global validation in terms of clustering quality. Also, we manually
investigate the clusters we obtain, using domain knowledge to evaluate the goodness of

clustering.

We study the role of the parameters of our approach —namely the number of iterations used
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to build the k-nn graph and the pruning threshold - using the following metrics:

— Number of clusters: measures the number of clusters identified by the clustering
algorithm. If not otherwise stated, we only consider clusters to be “useful” if they

have more than 1,000 elements;

— Largest cluster size: measures the size of the largest cluster identified by the

algorithm.
We compute clustering quality using well-known metrics [35, 63]:

— Compactness measures how closely related the items in a cluster are. We obtain
the compactness by computing the average pairwise similarity among items in each

cluster. Higher values are preferred.

— Separation measures how well clusters are separate from each other. Separation
is obtained by computing the average similarity between items in different clusters.

Lower values are preferred.

— Silhouette [88] constitutes an aggregate metric, that takes into account the inter-

and intra-cluster pairwise similarity between items. Higher values are preferred.

— Recall relates two data clustering obtained by different methods. Using clustering
C as a reference, we compute the recall of clustering D by computing the fraction of
items that belong to the same cluster in both C' and D. In particular, we use as a
reference the exact clustering we obtain with the “brute force” approach to compute

the k-nn graph. Higher values of recall are preferred.

It is important to notice that computing the above metrics is computationally as hard
as computing the clustering we intend to evaluate. For this reason, we resort to uniform
sampling: instead of computing the all-to-all pairwise similarity between items, we pick

items uniformly at random, with a sampling rate of 1%.1!

The datasets. The main dataset we use in our evaluation consists of a subset of SPAM
emails collected by Symantec Research Labs, between 2010-10-01 and 2012-01-02, which
is composed by 3,886,371 email samples. Each item of the dataset is formatted according
to JSON and contains the common features of an email, such as: subject, sending date,
geographical information, the bot-net used for the SPAM campaign as labeled by Symantec
systems, and many more. For instance, a subject of an email in the dataset is “19.12.2011
Rolex For You -85%” and the sending day is “2011-12-19".

In this work, we are interested in identifying clusters of SPAM emails using subjects alone,

as they constitute a compact description of the email.

Next, we provide an overview of the dataset we use, to gain a better understanding of its
characteristics; we also proceed with a naive approach to clustering emails, by grouping

them according to some of their fields.

Table 6.1 illustrates such a preliminary analysis: the “Unique” column identifies the number
of distinct values for each feature we use, whereas additional columns in the table indicate
the top individual values for each feature. For instance, “grouping by” the feature “bot”

indicates that there are 11,669 unique bot-nets in the dataset, with “Lethic” taking roughly

1. We increase the sampling rate up to 10% for small clusters.
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20% of the emails, followed by 18% of “Unclassified” bot-nets and 11% from the “Bagle”
bot-net. The dataset contains emails sent from 224 different countries, as shown when

“grouping by” the feature “country”.

Figure 6.2 describes how the size of each group is distributed in the dataset. For example,
90% of the groups having the same bot-net value have a size lower than 10 emails, indicating
skewness when considering the “bot” feature. Instead, groups having the same “day” feature
are more uniformly distributed: only 10% of the days have less than 10* emails, while the

remaining 90% of the days have similar group size around the value 10%.

Finally, we verify if grouping emails according to the features of Table 6.1 results in email
having similar subjects: in other words, we are interested in understanding if using similar
subjects to cluster emails would boil down to simply grouping them by some other features.
The right side of Figure 6.2 pinpoints at a negative answer: essentially, grouping by any of
such features results in email subjects being very loosely similar, which is not sufficient to

consider such groups a useful proxy for email clusters.

To cross-validate our approach on a different dataset, we also use a data obtained using the
Twitter API, and consisting of 1,530,623 tweets in JSON format.

6.5 Results

In this section we present our result, and we organize it as follows. First, we analyze the
parameter space of our algorithm, and discuss the impact of such parameters on the metrics
we defined above. Then, we focus on clustering quality, and compare the performance of our
approach to that of the baseline algorithm we discuss in section 6.2. Finally, we study the

clustering scalability.

6.5.1 Analysis of the parameter space

First, we summarize the parameters underlying our algorithm and discuss about their role.
Our approach has 3 main parameters: k, the number of neighbors to construct the k-nn
graph; the number of iterations of the first phase of the algorithm; and 6, the pruning
threshold.

The experimental results we show in this section are obtained with a sampled version of
the Symantec dataset, and account for 800,000 data items. A sampled dataset allows us to

execute the “brute force” method to compute the k-nn graph.

In what follows, we let the number of iterations and 6 to be free parameters, and instead
select a few representative values for k. We chose k to be small, i.e., we allow a few neighbors
per node in the k-nn graph. First, each iteration of the k-nn graph construction step has
O(k?n) complexity [37]: lower values of k lead to better runtime performance. Note also
that the approximation quality of the k-nn graph, that we measure using recall, increases
with k: larger values imply a better approximation. Since we are interested in understanding
the approximation / clustering quality trade-off of our algorithm, we deliberately chose lower
values of k. Finally, consider that large values of k& produce dense k-nn graphs, which remain

so even after pruning. For all these reasons, in what follows, we counsider k € {5,10, 15}.
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Impact of the number of iterations. Next, we show that the number of iterations of the
k-nn graph building phase, which is proportional to the accuracy of the k-nn graph, does not
need to be large for the algorithm to settle to a “steady state”. Even rough approximations
of the k-nn graph, obtained with a small number of iterations, are sufficient for the algorithm

to stabilize.

We show this in Figure 6.3 representing the Silhouette of the clustering and the number
of unique clusters (with more than 1,000 items), as a function of the number of iterations.
In particular, the top Figure 6.3 indicates that clustering quality stabilizes already after
roughly 5 iterations, for a range of choices of k and 6. Bottom Figure 6.3 focuses on k = 5,
which produces very rough k-nn graph approximations: in this case, roughly 10 iterations
are sufficient for the number of unique clusters to stabilize. We note that the range displayed
in the figure is suitable for a manual investigation from domain experts to further dig into

understanding the clustered data.

Impact of the pruning threshold . We now discuss how the pruning mechanism
modifies the k-nn graph, and what is the impact on clustering. As discussed in section 6.3,
as 6 tends to 0, pruning is less effective, and the k-nn graph tends to have a single giant
component. Instead, when 6 tends to one, only very similar neighbors survive pruning, and

the k-nn graph is fractioned in a large number of small clusters.

Figure 6.4 shows the fraction of nodes for which a given number of edges are removed after
pruning, as a function of 8. For values of § < 0.8, pruning is less effective, as the number
of pruned edges is small. Instead, for 6 > 0.9, a large fraction of nodes remain with one
or fewer edges after the pruning phase. This translates in sizes of the largest clusters to
approach the entire dataset, for 8 = 0.5 already, or to be extremely small, for § = 1, as

shown in Figure 6.4.

Overall impact of approximation. We now study the impact of the k-nn graph approx-
imation on clustering quality, by analyzing the deviation of our approach from the results
obtained from an ezact k-nn graph computed using the “brute force” approach. Our results
indicate that approximate k-nn graphs obtained with a low k and few iterations are sufficient
to obtain data clustering that is practically indistinguishable from that obtained by an

onerous O(n?) k-nn graph construction phase.

Figure 6.5 shows how clustering recall varies as a function of the k-nn iterations. As a
reminder, clustering recall accounts for the fraction of items belonging to the same clusters,
when comparing the results obtained by the approximate algorithm to those of the “brute
force”. As shown in the Figure, k = 10 and 5 iterations are sufficient to obtain a clustering
which is essentially identical to that obtained with exact k-nn graph. Even a very low value

of k = 5 settles to a 0.8 recall, after roughly 10 iterations.

We conclude our analysis of the parameter space by evaluating the cluster quality from the
application perspective, using domain knowledge. In general, a SPAM campaign is likely to
have originated from one or few bot-nets, and to last for only a few days. For this reason,
we consider a clustering result to be useful if clusters contain a substantial number of emails
(1,000 in our case) that have been sent only from two or less bot-nets, within a time-frame
of less than a week. Figure 6.6 compares the number of “good” clusters obtained with our
approach to those obtained with exact k-nn graphs, for a range of k£ and 6 parameters, and
10 idterations. Clearly, the approximation introduced by our approach does not substantially
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ruin clustering quality, while — as we show in the following sections — it is very beneficial for

algorithmic runtime.
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Table 6.3: Symantec Dataset: Manual Investigation

cluster size

bot

days

subjects sample

7255

Grum, Unclassified

2011/12/14-2011/12/20

"17.12.2011 Rolex For You -73%" "15.12.2011 Rolex For You -89%" "19.12.2011 Rolex For You -85%"

"jadevnn, Alena (status-online) invites you for chat." "Hi zmes40, Alena (status-online) invites you for chat.

4512 Rustock, Unclassified | 2010/12/04-2010,/12/06 e m
"keumd,, Alena (status-online) invites you for chat."
4412 Rustock, Unclassified | 2011/01/28-2011/02/01 | "Re: User kilmernn" "Re: User anguinet" "Re: User hudnalli’
"t dwilkev. v P I I o PRI I I
4116 Rustock, Unclassified | 2011/03/12-2011/03/14 tdwilkey, you have a new PRIVATE MESSAGE", "dbeltondd, you have a new PRIVATE MESSAGE
"bn, you have a new PRIVATE MESSAGE"
"cseeberd @A . TAGRA ? 84% consensus!" "Maia@Amega.c: TAGRA ? 50% cons s!"
2992 Grum, Unclassified 2011/08/19-2011/08/23 cseeberd@Amega.com VIAGR. 84% consensus aia@Amega.com VIAGR. 50% consensus

"zelmo38dd@Amega.com VIAGRA ? 16% consensus!"

76
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6.5.2 Analysis of the clustering quality

We now move to a global evaluation of the algorithm we present in this chapter, and compare
clustering quality to the baseline algorithm described in section 6.2. In particular, we
use the efficient K-means implementation available in Spark’s MLLib package [1], and the
word2vec package [3], as illustrated in [2]. It is important to note that the parameter K, in
K-means is substantially different from the parameter k of the k-nn graph algorithm: it
indicates the number of clusters the K-means algorithm is set to produce. If not otherwise
specified, we set K = 1000 such that the baseline algorithm output 1,000 clusters. This
configuration yields the best result in term of Silhouette metric.

For the sake of completeness, we first focus on the full Symantec dataset of more than 3
million emails, and corroborate our results with the Twitter dataset. In addition, in what
follows and if not otherwise specified, we set the operating parameters of our algorithm
as follows: k = 10, and 10 dterations, which are the parameters that offer a good trade-off

between clustering quality, approximation quality, and algorithm runtime.

Symantec dataset. Figure 6.7 shows the three main metrics we use to judge clustering
quality, namely separation, compactness and Silhouette, as a function of 6, and for various
values of k. Such metrics are computed both for our approach, and for the baseline algorithm

based on K-means.

The separation metric evaluates how “far apart” the clusters output by the algorithms are:
lower values of separation indicate that the inter-cluster distance is large, which is a desirable
property to distinguish clusters well. As shown in Figure 6.7, both our method and the
baseline algorithm achieve good separation, with a slight advantage for the baseline method,

that produces clusters that are more pairwise dissimilar. 2

On the other hand, the compactness metric indicates how similar are the items within
a cluster: larger values of compactness are desirable, because they are indicative of the
absence of outliers that could “pollute” the quality of individual clusters with unrelated
items. Figure 6.7 indicates that our approach is superior to the baseline method with respect
to this metric, the latter producing clusters with emails that are unrelated to the majority

of other items in a cluster.

Figure 6.7 illustrates that the clustering Silhouette obtained by our approach is superior to
the baseline algorithm, and this holds for all parameter choices. This is confirmed also in
Figures 6.8 and 6.8, which show the number of “good” clusters (with at least 1,000 items)
as determined by domain knowledge metrics. Essentially, these figures report the number of
clusters amenable to manual inspection of the results, as a function of features such as the
number of bot-nets and the time-frame of a SPAM campaign. For example, in Figure 6.8,
domain experts can extract valuable information when the number of SPAM bots in a cluster
is small, in the 1-2 range: in this case, our approach is superior to the baseline algorithm,
which performs slightly better for the less interesting cases of 3-4 and 5-6 bots. Similarly,
Figure 6.8 shows that the number of “good” clusters identified by our approach is always
better than that of the baseline algorithm, and this is especially true for the 1-7 range,

indicating cluster with emails spanning a 1 week time-frame. In summary, we find that the

2. An “artifact” due to the distance metric used in K-means, which separates text items even if they
differ because of mangling.
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algorithm we present in this work performs well, especially when selecting an appropriate
operating point, with 6 € [0.8,0.9].

Finally, we proceed with a manual inspection of the clusters we obtain with our approach,
to further illustrate the “goodness” of the clustering we achieve, with k = 10, 5 iterations
and 6 = 0.9.

Table 6.3 illustrates a few email samples in clusters where both the number of bot-nets is
less or equal to 2, and all emails are all sent within one week time-frame. For instance,
we obtain a cluster of 7255 emails sent from the Grum bot-net, between 2011/12/14 and
2011/12/20: the subjects of the email are related to a SPAM campaign involving a Rolex
discount. Note that subjects are all related, albeit not identical.
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Figure 6.9: Twitter Dataset: Clustering quality in terms of inter and intra cluster similarity,
and clustering Silhouette. As for the Symantec dataset, the algorithm proposed in this work

outperforms the baseline method in all metrics.



Table 6.4: Twitter Dataset: Manual Investigation

cluster size

sample

1542

Wind 9.1 km/h WSW. Barometer 1002.0 hPa, Falling. Temperature 0.5C. Rain today 0.3 mm. Humidity 34%
Wind 0.0 mph —. Barometer 1022.4 mb, Steady. Temperature 21.4F. Rain today 0.00 in. Humidity 79%
Wind 1.9 km/h S. Barometer 1026.5 hPa, Falling. Temperature -9.6C. Rain today 0.0 mm. Humidity 84%

194

"#IfIHadItMyWay I would have a fast metabolism so I could eat MORE!"
"#IfTHadItMyWay Chicken strips would be served everyday at ranger"
"#IfIHadItMyWay school would be just gym. And back home"

564

Miami Valley Hospital: CLINICAL NURSE - CNN ( #TROY , OH) http://t.co/adVBYzCK #Nursing #Job #Jobs #TweetMyJobs
Miami Valley Hospital: OB SURGICAL TECH ( #DAYTON , OH) http://t.co/Bh80vn0k #Healthcare #Job #Jobs #TweetMyJobs
Miami Valley Hospital: CLINICAL NURSE-CN ( #FRANKLIN , OH) http://t.co/ry2YR2yK #Nursing #Job #Jobs #TweetMyJo

228

"#PrettyLittleLiars was intense!!"
"#prettylittleliars marathon!"
"Pretty Little Liars with breakfast :)"

73

"I just became the mayor of Roszkowski Haus on @foursquare! http://t.co/4RzAisZg"
'T just became the mayor of Bertha’s Place on @foursquare! http://t.co/t07P13EL"
I just became the mayor of Mini Mini Mart on @foursquare! http://t.co/d6xFIIQM

Surreisno xo) paseq uu-y o[qeresg ‘g mydeyn)

66
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Table 6.5: Symantec dataset: breakdown of the algorithm runtime (in seconds)

k-nn graph phase Iteration

k 5 10 15 20 | CC
5 675 | 2293 | 3185 | 4897 66
10 2281 | 4610 | 5320 | 7061 81
15 4061 | 8475 | 13594 | 18203 | 107

Twitter dataset. In this section, we cross-validate our results with the Twitter dataset,
which includes 1,530, 623 tweets sent in USA and collected on the day 2012/02/21. This
dataset is fundamentally more diverse than the Symantec dataset: the average weight on
the generated k-nn graph (i.e., the similarity of the neighbours) is 0.75, as compared to 0.96

for the Symantec dataset.

Figure 6.9 shows separation, compactness and Silhouette, as a function of €, and for various
values of k, for both our approach, and for the baseline algorithm based on K-means (with
K =1000). A glance at the Figure indicates that our approach achieves similar or better
performance than the baseline method for clustering. It is interesting to notice that for the
Twitter dataset, k = 5 — which produces very rough approximations of the k-nn graph —

achieves better performance than for larger values of k.

We conclude the analysis of the Twitter dataset with a manual investigation of the clusters,
as shown in Table 6.4. We focus on clusters with at least 100 tweets: in this case, a smaller
cluster size is justified by the lower similarity between tweets as compared to the Symantec
dataset. Our results confirm that clusters are meaningful, for example clustering weather
forecasts in one case and job positions at the Miami hospital in another. We also have
identified clusters related to hashtags such as #Ifl[HadltMyWay and a popular TV-series,
#PrettyLittle Liars.

6.5.3 Analysis of algorithm scalability.

Next, we study the scalability of our approach and compare it to the baseline algorithm
discussed earlier: first, we vary the dataset size maintaining the same number of compute
machines that execute the parallel algorithms, then we keep the dataset size constant, and

increase the level of parallelism by adding compute machines to our compute-cluster.

Figure 6.10 shows the algorithm runtime with varying dataset sizes, using 5 different samples
of the Symantec dataset of size 100,000, 200,000, 400,000, 800,000 and 1,600,000 emails
respectively. All values plotted are the average of 5 independent executions. Our results
indicate roughly a linear scalability with respect to dataset size, an observation that holds

irrespectively of the value of k.

Figure 6.10 also shows the algorithm runtime as the number of cores we devote to the
computation varies between 4 and 64, considering datasets 400,000 and 800,000 items; in
both cases, our results indicate a quasi-linear speed-up, especially for the biggest dataset.
For example, increasing doubling the number of cores from 8 to 16, for the large dataset,

cuts almost in half the algorithm runtime.

Finally, Table 6.5, reports the runtime breakdown of the k-nn graph construction phase
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Table 6.6: Symantec dataset: K-means, baseline algorithm runtime (in seconds)

K time

1000 3498 (1.53x%)

2000 10004 (4.39%)
K-means

3000 28411 (12.46x)

4000 56008 (24.55x)
Our approach, k£ = 10 and 5 iterations 2281

for various numbers of iterations, and of the connected component phase of our algorithm,
for several values of k and for # = 0.9. Again, all values are the average of 5 independent

executions.

As expected, the k-nn graph construction runtime increases both with & and with the iteration
number, although more slowly than the worst scale asymptotic analysis and experimental
results presented in [37].% In addition, it is important to notice that the first phase of our
approach dominates the overall algorithm runtime, as computing the connected components
is fast. Once the k-nn graph is built, it is possible to quickly proceed with various versions
of the pruning phase (tuning 6 for the application at hand) and obtain different clusters.

Table 6.6 illustrates the runtime of the baseline algorithm that uses K-means: the table
reports the “slow-down” of the baseline algorithm with respect to our approach, when
k = 10 and with 10 dterations, and for different values of K, the number of clusters K-
means constructs. Our approach outperforms the baseline algorithm in terms of end-to-end

clustering times, even for small values of K.

6.6 Conclusion

Exploratory data analysis requires fundamental techniques to understand, describe and
eventually extract value from large amounts of data. One of such techniques is data clustering.
In this chapter we presented a scalable approach for text data clustering, that accommodates

arbitrary similarity measures and that produces high quality clusters.

To overcome the quadratic nature of typical approaches to text clustering, we studied
the role of approximation in establishing a trade-off between high clustering quality and
fast algorithmic runtime. We showed, through a detailed experimental campaign, that
our method does not require accurate representations of pairwise similarity across data
items to produce high quality, interpretable clusters. We supported our claims using real
traces covering adversarial applications aiming at identifying SPAM campaigns, and through

manual inspection by domain experts of the clusters output by our algorithm.

Our next steps include the design of an LSH-based k-nn graph algorithm supporting arbitrary
similarity metrics to push approximation even further, the extension of our method to a
density-based approach and, ultimately, to take into account multiple, heterogenous features
of the data.

3. Recall that we use a different parallel execution framework in our work, Spark, which is geared towards

efficient execution of iterative algorithms.
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6.7 Contributions

— Alessandro Lulli, Thibault Debatty, Matteo Dell’Amico, Pietro Michiardi, and Laura
Ricci. Scalable k-nn based text clustering. In Proceedings of the 2015 IEEE Interna-
tional Conference on Big Data (Big Data), BIG DATA 15, pages 958-963, Washington,
DC, USA, 2015. IEEE Computer Society

— Our Spark implementation of k-nn graph based text clustering is available at https:

//github.com/alessandrolulli/knnMeetsConnectedComponents

This idea has been further developed in a follow-up paper, although the indexing structure
is not a pure k-nn graph anymore: Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi,
and Laura Ricci. Ng-dbscan: Scalable density-based clustering for arbitrary data. Proc.
VLDB Endow., 10(3):157-168, November 2016
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Figure 6.10: Scalability analysis, varying dataset sizes and compute-cluster sizes. Our

approach scales roughly linearly.
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Chapter 7

Graph based APT detection

7.1 Introduction

Advanced Persistent Threats (APT) are targeted cyber attacks committed over a long period
of time by highly skilled attackers.

An example of an APT is the Miniduke attack [84] that targeted the governments of at
least 20 countries including the Czech Republic, Ireland, Portugal, Romania and the United
States. The malware infected PCs when victims opened a cleverly disguised Adobe PDF
attachment to an email, which was specifically tailored to the target. The attachment
referred to highly relevant subjects like foreign policy, a human rights seminar, or NATO

membership plans.

Such attacks are becoming evermore sophisticated and manage to bypass the state of the
art commercial-off-the-shelf protections that are currently in place. The attackers regularly
succeed in remotely controlling hosts in our networks long enough to locate the information
they are after, gain access to it and finally exfiltrate sensitive data. APT attacks have

therefore become a major concern for network security professionals around the world.

All APT’s have some characteristics in common. First, they use advanced techniques like
0-day attacks and social engineering to infect the target organization. This makes them
impossible to detect using regular, signature based, detection tools like antiviruses and

intrusion detection systems (IDS).

Second, once a computer is infected, an APT will try to establish a communication channel
with a command and control (C2) server outside the organization. This channel will be used
to download a payload, to download further instructions or to exfiltrate data. This link can
be established using any protocol allowed through the borders of the organization: HTTP,
DNS, SMTP, or even SIP.

In a security conscious organization, however, all these protocols should take place through
some sort of choke-point. For the HTTP protocol, this would be a proxy server installed in
the demilitarized zone (DMZ). This allows to log all connections taking place with servers
located outside the organization, and offers a chance to detect the activity of the APT.

105
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In this chapter, we focus on the detection of APT’s that use the HT'TP protocol to establish
a communication channel with their C2 server. Naive APTs perform connections to their
C2 server at fixed or variable time intervals. This results in traces in the proxy logs that are
quite easy to detect, like on top of Figure 7.1. The most evolved APT’s however are able to
sense user activity and wait for outgoing traffic to perform connections to the C2 servers.
This makes them much more difficult to detect, like on the bottom of Figure 7.1. In this

chapter we focus on detecting the latter, activity-sensing APT’s.

Therefore we build a graph of HTTP traffic. In this graph, the APT becomes an anomaly
that can be detected. The rest of this chapter is organized as follows: in Section 7.2 we
show how we model HTTP traffic, and we explain how this graph can be used to detect
APT’s; in Section 7.3 we present how we implemented this algorithm in a complete detection
system; in Section 7.4 we perform an experimental evaluation and we study the impact of
the different parameters of the algorithm using data collected on a real network; finally, in

Section 7.5 we present our conclusions.

7.2 Graph modeling of HTTP traffic

7.2.1 Modelization of legitimate traffic

When a user is browsing the Internet, each page requested by the browser triggers multiple
HTTP request. Usually, the first request contains HTML code, then the browser downloads
javascript, CSS, font files and images referenced in the code. These may further trigger the
download of other files, or trigger AJAX requests, and so on. Each page visited by a client
can thus be represented by a tree, where the root is the original page requested by the user,
and each subsequent request has a single edge (a link) to the request that triggered this
download. These trees can be built from the logs of the proxy server. This is depicted on
Figure 7.2. The user successively opened three pages (pink, green and blue), which triggered

a number of requests that can be observed in the logs of the proxy server.

In real-life, reconstructing the HT'TP graph is much more complicated. First, requests
belonging to multiple pages do frequently take place at the same moment. This can lead to

the construction of incorrect trees. This is illustrated in Figure 7.3.

Second, as most pages on the Internet are built dynamically, loading the same page multiple

times usually results in the execution of different, although similar, series of requests.

Finally, browsers try to keep in cache memory content that is not supposed to change, like

images, javascript and css files. This also modifies the requests executed to display the same

page.

Therefore we actually build a weighted graph, a graph where each node may have edges
(links) to multiple other nodes, and each edge has a weight. In our graph, the weight of the
edge from request B to request A indicates the probability that request B is a consequence
of request A. How we exactly compute these probabilities is explained below. Hence, a
request (B) may have edges to multiple other requests, each indicating the probability that

request A is a consequence of each other request.
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Figure 7.1: HTTP traffic generated by a single computer, infected by a frequency-based

APT (top) and a sensing APT (bottom).
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Figure 7.2: Graph model of HTTP traffic reconstructed from the logs of a proxy server

Figure 7.3: Graph model of HTTP traffic reconstructed from the logs of a proxy server when

multiple pages are loaded in parallel.

7.2.2 Detection of APT traffic

When an APT waits for legitimate traffic (caused by a user browsing the Internet) to contact
its C2 server, the requests performed by the APT take place roughly at the same moment
as other requests from the graph. Hence, these requests have weak edges to multiple other

requests.

This is illustrated in Figure 7.4: the requests performed by the APT happen together with
the requests caused by the pink page, the green page and the blue page. As a consequence,

the APT request has weak edges to all three root-requests.

A simple way to detect those requests is thus to prune the graph, which means to cut all

edges whose value is lower then a threshold. The APT requests then appear as isolated

ot

Figure 7.4: Graph model of HTTP traffic reconstructed from the logs of a proxy server with
the impact of a sensing APT.
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Figure 7.5: Web interface of the detection system

nodes, while other legitimate requests are linked together into clusters.

7.3 Implementation

To test the algorithm, we implemented a complete detection system. The system offers a
web interface that allows the analyst to interactively analyze the requests taking place on
the network using his browser. The detection relies on multiple parameters that the analyst
can easily modify to spot hidden APT’s. A screenshot of the web interface is presented in
Figure 7.5. This view was generated using log files from a real network, hence the domains

were anonymized. APT’s were simulated by injecting requests in the log.

The system consists in two components: 1) the batch processor and 2) the web interface

that allows interactive analysis of the data.

7.3.1 Batch processing

The system is designed to allow the analysis of HT'TP traffic generated by large networks
of computers. In such networks, millions of requests are generated each day. Storing a
complete (fully connected) graph requires to store O(n?) values, where n is the number
of nodes in the graph. Hence, storing a graph containing just 1 million requests requires
roughly 1TB of storage. With current hardware, this is heavy to store on disk and almost
impossible to store in memory unless a supercomputer is used. Hence, we instead build a
k-nearest neighbors (k-nn) graph, a graph were each node has an edge to the k£ most similar
other nodes in the graph. These graphs are a close approximation of a complete graph if &
is large enough. However, they have the huge advantage that their memory requirement is

linear in n (namely kn), which makes them also faster to process [65].
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Before the k-nn graph is stored, it has to be computed, which requires to compute O(n?)
similarities using a naive algorithm. This is not acceptable either for the large graphs we
envision. Hence we use instead a fast approximate algorithm called nn-descent that requires
to compute O(n'14) similarities to build the k-nn graph [37]. Moreover, this algorithms can
easily be implemented in parallel, which allows to take advantage of all the cores available

on the processing server.

Even using theses two optimizations (k-nn graphs and nn-descent algorithm), building the
graph is a computationally heavy process that requires a non-negligible amount of time.
Hence the system is split in two separate components: a batch processor and a web interface

to perform the analysis.

The batch processor is responsible for computing the initial graph, without applying any
detection. As the name states, this time consuming processing is meant to be run only once
for each dataset.

Moreover, the system is designed to let the analyst tweak the definition of similarity between
requests. Indeed, multiple criteria can be used to measure the probability that request B is

a consequence of request A:
— requests A and B belong to the same domain;
— request B took place shortly after request A;
— etc.

In a naive implementation, modifying the definition of similarity, even slightly, requires to
recompute the complete k-nn graph. Once again, this is a time consuming operation that
would not allow to interactively analyze the data. Instead, during batch processing, we

compute multiple graphs: one for each elementary similarity.

The time graph is built using the following measure of similarity:

1

Htime = T\éﬂ

where dt is the time difference (in seconds) between two requests.

The domain graph, however, is built using the following measure of similarity:

Hdomain = i
MR max(y(A), v(B))

In this equation, 3(A, B) is the number of labels in common in the domain names of request
A and B, starting from the Top Level Domain (TLD), and excluding the TLD itself. For
example, S(cnn.com, www.cnn.com) = 1 because they have the label "cnn" in common. ~(A)
is the number of labels in the domain name of A, without taking the TLD into account. For

example, y(www.cnn.com) = 2
The complete batch processing thus involves the following steps:

— Split The data is first split between the different clients in the network, which
correspond to the "source IP" field in the proxy logs;
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— Graphs For each client, the different k-nn graphs are computed

— Domains As we suspect the APT will use different URL’s belonging to the same
domain, the different requests from the same domain are merged together to build

graphs of domains;

— Save The graphs of domains are saved to disk.

The batch processor only takes one parameter, k, the number of edges per node in the k-nn
graph. The impact of varying this parameter is shown below.

7.3.2 Interactive analysis

Once the batch processor has computed the k-nn graphs, these can be interactively analyzed
using the web interface. The analysis mainly requires to: 1) merge the different k-nn graphs,
2) remove weak edges (pruning), 3) cluster the graph, 4) filter the graph to show only

isolated domains and 5) rank the remaining suspicious domains.
In this process, the operator can provide several parameters to improve the detection.

First, he can choose which clients from the network are analyzed. Merging the graphs
corresponding to multiple clients reinforces the edges between naturally related domains.

This makes the domains contacted by the APT more isolated and hence easier to detect.

The analyst can also modify the definition of similarity used to link requests by providing
a different weight for the time similarity and for the domain similarity.

He can provide a pruning threshold to remove weak edges from the the final graph. A
high threshold removes a lot of edges in the graph, which leaves a lot of requests isolated.
This causes a higher number of false positives. At the opposite, a lower value leaves almost
all edges unaffected. Hence the requests generated by the APT have a higher probability of
remaining connected to other requests, which decreases the probability of detection. The
pruning threshold can be defined as an absolute value or as a z-score. The relation between
a z-score z and an absolute value x is defined as follows:

where pu is the average of the values and o is the standard deviation.
Using z-scores allows to specify values that are independent of the data.

For the filtering step, the analyst can provide a maximum cluster size. Theoretically,
after the pruning step the APT is supposed to be completely isolated. However, if the
pruning threshold is chosen slightly too low, the APT may remain connected to some other
domains, thus creating a small cluster. By using a filter to show only small clusters, the
analyst may be able to spot the APT.

To further filter the results, the analyst can specify a minimum number of requests per
domain. During our experimental evaluation with real data, we discovered that regular
HTTP traffic contains a lot of domains that have very few requests each. Because they have

very few requests, they are weakly connected to other domains, and are thus considered
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as suspicious by our system. An APT, however, has to regularly contact its C2 server to
download further instructions or to exfiltrate data. Hence we give the analyst the possibility

to filter out domains with very few requests.

Finally, the system performs a ranking of remaining suspicious domains. Therefore we
use three parameters, with weights provided by the analyst: 1) the number of requests to
this domain, as a stealthy APT is supposed to perform only a few requests, 2) the number
of child domains in the graph and 3) the number or parent domains in the graph, as the

domain used by an APT is supposed to be weakly connected to multiple other domains.
In summary, the following steps are executed to perform the analysis:
— Load The k-nn graphs are read from the disk;

— Feature fusion The domain and time graphs are merged using the weights provided
by the analyst;

— Users fusion The graphs corresponding to the different users selected by the analyst

are merged;
— Pruning Weak edges are removed from the graph;
— Clustering;
— Filtering Clusters larger then a threshold provided by the analyst are removed;
— Filtering Domains that don’t have enough requests are removed;

— Ranking The remaining suspicious domains are sorted using weights provided by the

analyst.

Although this may seem heavy, processing k-nn graphs is actually extremely fast. This

allows to interactively analyze huge amounts of data.

7.4 Parameter study and experimental evaluation

7.4.1 Test setup

To test the system, we use the logs from the proxy server of a real, large organization. From
this dataset, we chose a subnet consisting of 26 computers, and a time period of 10 days.
This subset contains a total of 721921 requests.

In this log file, requests are inserted to simulate the activity of 4 APT’s in the network.
These APT’s are chosen to exhibit different typical behaviors. The least stealthy APT
generates 239 requests to its C2 server while the most stealthy APT performs only 13
requests in total, which makes it very difficult to detect.

To test the quality of detection, we build the receiver operating characteristic (ROC) curve of
the detection system: we generate a ranking of the requests according to their suspiciousness
using the provided parameters set. Then we walk the list from the top, and we compare
each request to the known list of requests performed by the APT’s. At each level of the list,
we compute the probability of detection (pgq) and probability of false alarm (pyq):
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Figure 7.6: Building the receiver operating characteristic (ROC) curve of a detection system

number of domains corresponding to an APT

Pa= number of domains considered in the list

number of legitimate domains

Pfa= number of domains considered in the list

This allows to draw the ROC of the system, like depicted in Figure 7.6.

Finally, to compute the quality of the detection, we compute the area under the curve (AUC).
Indeed, for a perfect detection system pq =1V py,, hence AUC = 1. At the opposite, the
worst detection system has pg =0V pyq, hence AUC = 0.

7.4.2 Number of edges per node k

For the first test, with vary values for k, the number of edges per node in the initial graphs.

We use the following values for the tests:

Weight time similarity 0.5
Weight domain similarity 0.5
Pruning (z-score) 0.0
Filtering: max cluster size 1000000
Filtering: requests/domain/client 1
Ranking: weight parents 0.35
Ranking: weight children 0.35
Ranking: weight number of requests 0.3

The resulting ROC and AUC are presented on Figure 7.7.

Surprisingly, k& = 40 seems to give better results then k = 100. To study this effect, we

perform additional tests where we compare these two cases by varying the other parameters.
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The values used for the different tests are presented in Table 7.1 and the results are shown
on Figure 7.8.



Test 1 2 3 4 5 6 7 8 9 10
k 40 100 40 100 40 100 40 100 40 100
Weight time similarity 0.1 0.1 04 04 01 01 01 01 01 0.1
Weight domain similarity 09 09 06 06 09 09 09 09 09 09
Pruning (z-score) 0.0 00 00 00 -01 -01 -05 -05 0.0 00

Filtering: max cluster size 1000000

Filtering: requests/domain/client 5

Ranking: weight parents 04 04 04 04 04 04 04 04 05 05
Ranking: weight children 04 04 04 04 04 04 04 04 05 0.5
Ranking: weight number of requests 0.2 0.2 0.2 0.2 02 02 02 02 0.0 0.0

Table 7.1: Parameters used to compare k = 40 and k = 100

uo191ep [JV poseq yderr) -, mydey)

a1t
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As we can see, although k& = 40 does provide slightly better results in some cases, kK = 100 is

generally better, as we expected. From now on, we use k = 100 for all our tests.

7.4.3 Fusion weights

We now study the impact of varying the weights used to merge the graph built using time
similarity and the graph built using domain similarity. To perform the test, we have to fix a
value for all other parameters. Therefore we choose neutral values, even though we know
these are suboptimal. For example, we use a large value for the maximum cluster size, such
that we don’t filter clusters out:

k 100
Pruning (z-score) 0.0
Filtering: max cluster size 1000000
Filtering: requests/domain/client 1
Ranking: weight parents 0.35
Ranking: weight children 0.35

Ranking: weight number of requests 0.3

The results are shown on Figure 7.9.

The best result is achieved when the weight for time based similarity is 0.1 and the weight
for domain based similarity is 0.9. This shows that the fact that two requests belong to the
same domain is a better indicator of the link between the requests than the fact that these
two requests happen slightly at the same moment. This was expected, as APT’s wait for

activity to contact their C2 servers. From now on we use these values for other tests.

7.4.4 Pruning

We now vary the pruning threshold. To keep the test independent of the data, we actually

vary the z-score of the pruning threshold. The other parameters used for the test are:

k100
Weight time similarity 0.1
Weight domain similarity 0.9
Filtering: max cluster size 1000000
Filtering: requests/domain/client 1
Ranking: weight parents 0.35
Ranking: weight children 0.35

Ranking: weight number of requests 0.3

The results are shown on Figure 7.10.

7.4.5 Size of clusters

Now we vary the maximum size of clusters using following parameters:
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k100

Weight time similarity 0.1

Weight domain similarity 0.9

Pruning (z-score) 0.0

Filtering: requests/domain/client 1

Ranking: weight parents 0.35
Ranking: weight children 0.35

Ranking: weight number of requests 0.3

The results are presented on Figure 7.11. Interestingly, the best result is obtained when
the maximum cluster size is 1000,000, which shows that even after pruning, the APT’s are

usually still linked to some much larger clusters.

7.4.6 Minimum number of requests per client

This parameter is studied using the setup:

k 100

Weight time similarity 0.1

Weight domain similarity 0.9

Pruning (z-score) 0.0

Filtering: max cluster size 1000000

Ranking: weight parents 0.35

Ranking: weight children 0.35

Ranking: weight number of requests 0.3

The results are presented in Figure 7.12.

As we explained above, filtering out the domains that receive very few requests per day
(less then 5) allows to drastically reduce the background "noise" and improves the quality of

detection.

7.4.7 Ranking weights

We now vary the weights used to perform the ranking of remaining domains. We use the

following parameters:

k100

Weight time similarity 0.1

Weight domain similarity 0.9

Pruning (z-score) 0.0
Filtering: max cluster size 1000000

Filtering: requests/domain/client 5

We first vary the weight of the number of requests, and set the two other weights accordingly:
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1 — weight number of requests
2

= weight number of children

= weight number of parents

The results are shown in Figure 7.13.

Using a negative value for the number of requests seems to provide the best results. However,
this also first enlightens the less stealthy APT’s, that perform a lot of requests to their C2
servers. Hence we recommend here to use a slightly positive value, namely 0.2.

7.4.8 Cross validation

We have now identified the parameters that seem to offer the best quality of detection.
These parameters must of course be tuned by the analyst for the network under test, and
for the kind of APT he tries to detect on the network (is the APT supposed to be more
or less stealthy, etc.). However, we assume these are robust enough to represent a relevant
starting point for the analyst.

To test this hypothesis, we use another subnet of the proxy log. This time, the subnet
contains 66 clients, 10 days of data and 1032021 requests. We simulate the infection with 8

APT’s and we analyze the data with the optimal parameters identified previously.

The resulting ROC is presented in Figure 7.14 and has an AUC of 0.9036. This shows the
algorithm is very resilient and performs equally well with a different dataset. It also shows
that the system quickly discovers 90% of the APT’s. This is equivalent to the performance
of most antiviruses on the market.

7.4.9 Detected domains

As we stated above, the dataset used to perform the tests is produced from the logs of the
proxy server of a real network. Hence we manually analyzed the domains that were ranked
as APT’s by the system. These are mainly:

— Content Delivery Networks (CDN);

— domains that display advertising on multiple websites;

— domains that deliver Javascript libraries to multiple websites;
— websites with very few visits.

Although these are not C2 servers per se, they are characterised by the same behavior as
the APT’s that we are trying to detect: they have weak links with a lot of other domains.
This shows that the algorithm is actually performing very well at detecting domains that
behave like the domains used by an APT to contact its C2 server.
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Figure 7.7: Result of varying k¥ when building the graphs.

7.5 Conclusion and future work

The results obtained by our detection algorithm are very promising as they do not rely on a
previous knowledge of the attacks. As a future work we plan to further tune the detection

parameters, for example using deep learning, to further improve the quality of detection.

7.6 Contributions

— Thibault Debatty, Wim Mees, and Thomas Gilon. Graph Based APT Detection.
In Proceedings of the International Conference on Military Communications and

Information Systems ICMCIS, 2018

— The source code of the APT detection system is available at https://github.com/
RUCD/apt-graph
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Chapter 8

Conclusions and perspectives

8.1 Conclusions

In this thesis we studied the usage of k-nn graphs to process large datasets.

In Chapter 3 we presented NNCTPH, a MapReduce algorithm that builds an approximate
k-nn graph from large text datasets. We used datasets containing the subject of spam
emails to experimentally test the influence of the different parameters of the algorithm on
processing time and on the quality of the final graph. We also compared the algorithm
with a sequential and a MapReduce implementation of NN-Descent. For our datasets, the
algorithm proved to be up to ten times faster than the MapReduce implementation of
NN-Descent for the same quality of produced graph. Moreover, the speedup increased with
the size of the dataset, making NNCTPH a perfect choice for very large text datasets.

In Chapter 4 we proposed an algorithm that is able to update a distributed k-nn graph by
quickly adding or removing nodes. We performed an experimental evaluation that shows the
algorithm can be used with very large datasets and produces graphs that are highly similar
to the graphs produced by a brute-force algorithm, while it requires the computation of far

less similarities.

In Chapter 5 we studied the usage of k-medoids clustering to partition large k-nn graphs.
We also proposed two new optimized procedures for performing k-medoids clustering. Then
we proposed a method relying on k-medoids clustering to partition large k-nn graphs. Our
experimental evaluation showed that 1) our clustering procedures outperform the current
state-of-the-art and 2) k-medoids clustering is an excellent approach for partitioning large
k-nn graphs as it is at the same time faster and more efficient than current partitioning

algorithms.

In Chapter 6 we presented a scalable approach for text data clustering that relies on k-nn
graphs. This new method accommodates arbitrary similarity measures and produces high
quality clusters. To overcome the quadratic nature of typical approaches to text clustering,
we studied the role of approximation in establishing a trade-off between high clustering
quality and fast algorithmic runtime. We showed, through a detailed experimental campaign,

that our method does not require accurate representations of pairwise similarity across data

125
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items to produce high quality, interpretable clusters. We supported our claims using real
traces covering adversarial applications aiming at identifying SPAM campaigns, and through

manual inspection by domain experts of the clusters output by our algorithm.

Finally, in Chapter 7 we proposed an interactive detection system relying on k-nn graphs to
detect APT’s in a network. We also performed a complete experimental evaluation, using
logs from the proxy server of a real network. The results obtained are very promising as
we reached a high probability of detection, without relying on a previous knowledge of the
attacks.

8.2 Perspectives

As we could show in this thesis, k-nn graphs are a powerful tool for data analysis. There
are however other siblings data structures that are also good candidates for indexing large
datasets.

A small-world network (SWN) is also a type of graph, but the neighbors of a node are not
necessary the most similar other nodes. On the contrary, neighbors are built in such a way
that most nodes can be reached from every other node by a small number of hops (or steps).
Specifically, a small-world network is defined to be a network where the typical distance L
between two randomly chosen nodes (the number of steps required) grows proportionally to

the logarithm of the number of nodes N in the network: L x logn.

This property makes the SWN suitable as an indexing structure for nearest-neighbors search,
as the average number of hops required to reach a node from any random node in the graph
is L. This has been shown in [70]. Nonetheless this also makes the efficient partitioning of a
SWN much more challenging. As neighbor nodes can be very dissimilar, a large SWN has
much more cross-partition edges if it is partitioned according to the k-medoids rule. A SWN
might thus be much more efficient than a k-nn graph for sequential processing, but may not

be an appropriate choice if the graph has to be distributed between different compute nodes.

In [71] the authors propose a related data structure, called a Hierarchical Navigable Small
World graph (HNSW or Hierarchical NSW). This structure has multiple layers where:

— each layer holds a subset of the nodes in the lower layer and;
— each layer is a nearest neighbor graph.

This allows to nicely separate long edges (in the upper layers of the structure) from short
edges (in lower layers of the structures). When the HNSW is used to perform nearest
neighbor search, the upper layers can be used to quickly find a rough estimate of the nearest

neighbors, then the lower layers are used to refine the solution.

At the same time, properly choosing the ratio for keeping nodes in the upper layers allows
to contain the memory requirement of the data structure. In their paper, the authors show
that HNSW outperforms other state-of-the-art approaches for performing nearest neighbor
search.

However, just like SWN, the question remains to know whether this data structure remains

as efficiently when implemented in parallel. Moreover, this data structure has been evaluated
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only in the context of performing nearest neighbor search. Is it usable for performing other

analysis like clustering for example?

It is interesting to note that, just like we did, the authors of these papers underline one
main advantage of graph based indexes: they can be used with any measure of similarity,

even non-metric.

An interesting extension of this work would be to broaden the scope of the analysis to graph
based indexing structures in general (k-nn graphs, NSW, HNSW and possibly others).

In this thesis we focused solely on k-nn graphs, from two different viewpoints:
1. how to build or update them efficiently and;
2. how to use them.

These two aspects, although completely different, are also strongly related: one has no need
to build a data structure if it cannot be used afterward to process the data, and a data

structure that is too heavy to compute is equally useless.

Our perspective for the future is that those two aspects should be further investigated: how
to build graph-based indexing structures, and how to use them for concrete applications. Of
course, these graphs should also be compared against each other, and against other classical

indexing structures.
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Chapitre 9

Introduction

L’une des tendances actuelles dans le domaine des technologies de I'information est celle des
grands ensembles de données (Big Data). Pour comprendre le phénomene, il faut revenir a
sa naissance. Au cours des années 1990, le prix du stockage des données a chuté de fagon
spectaculaire, passant d’environ 40 000 euros par Go en 1987 a environ 2 euros par Go en
2002 et & 0,05 euros par Go en 2015 [42]. En raison des colits de stockage prohibitifs, les
entreprises ne conservaient jusqu’alors que les données strictement nécessaires a la gestion de
la relation avec leurs clients (nom, adresse, services ou produits commandés, factures, etc.).
De plus, les données obsoletes étaient rapidement supprimées pour économiser de 1’espace et
de Pargent. Avec la démocratisation du stockage de masse, ces entreprises ont également
commencé a stocker toutes les informations concernant les interactions avec leurs clients
potentiels, sans jamais rien effacer, et sans méme se soucier de leur utilité éventuelle. Google
et Yahoo! par exemple, les précurseurs de Big Data, ont depuis stocké toutes les activités

menées par leurs utilisateurs.

A T'heure actuelle, le phénomene ne fait que s’amplifier. La quantité de données produites
chaque seconde dans le monde explose. Les objets connectés, les applications de commerce
électronique, la sécurité ou les services financiers continuent de générer d’énormes quantités
de données qui sont capturées et stockées. L’utilisation de ces données est actuellement
considérée comme une clé de la compétitivité et de la croissance : ’analyse de ces données
permet aux entreprises de découvrir des tendances et opportunités cachées.

Le traitement efficace de ces grandes quantités de données nécessite des structures d’in-
dexation appropriées : sans index, chaque opération sur les données (recherche, cluster,...)

nécessite de scanner I’ensemble des données, éventuellement plusieurs fois.

Il existe différentes structures d’indexation. Le type d’index le plus simple est un arbre
binaire trié (aussi appelé arbre de recherche binaire, BST) [27]. Il suppose que les données a
indexer peuvent étre ordonnées (triées par ordre croissant). Une BST maintient une structure
arborescente des données ou les éléments sont triés. Ceci permet de rechercher un élément
avec un temps de recherche O(logn), ot n est le nombre d’éléments dans Parbre. Figure 9.1

montre comment un BST peut étre utilisé pour rechercher un