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1. Introduction

1.1 Objectives of the thesis
At the time of writing these lines, a few Federated Cyber Range projects and concepts are already
existing. Such projects are, however, commercial or at a state or higher level e.g. the European
level for the European network of Cybersecurity centres and competence Hub for innovation on
Operations (ECHO) project. Those projects are still in the phase of development or early release,
it is consequently difficult to find granular and detailed documentation concerning them.

This Master’s Thesis firstly aims to identify the state of the art in terms of Cyber Range (CR)
and Federated Cyber Range (FCR).

CRs are a tool capable to simulate large and complex networks and resources. FCRs can be seen
as CRs distributed across a federation. More formal definitions will be addressed in the state of
the art in chapter 2.

Identify the challenges related the state of the art is also part of the goal of this thesis. The
number of challenges is vast and therefore, this thesis mainly focuses on solving some of them
such as hypervisor, automation and connectivity.

Finally, the last purpose of this work is to propose a concept addressing the identified challenges.
This concept will be demonstrated with a Proof of Concept (PoC). The PoC intends to demonstrate
a way to implement shared cyber exercises and training between the Université Libre de Bruxelles
(ULB) and the Belgian Royal Military Academy (RMA).

1.2 Contribution
The contribution of the work is firstly to provide a clear list of challenges identified concerning
Federated Cyber Ranges.

Secondly, this work also provides a contribution with the concept proposed on chapter 4 and its
proof on chapter 5. The limitations and results identified by this work regarding such concept
are also part of the contribution.

1.3 Structure of the thesis
The structure of the thesis is the following;

The chapter 2, State of the Art, builds the knowledge required to understand the Cyber Ranges
and Federated Cyber Ranges and identify the challenges around those concepts. This chapter is
essentially the output of the scientific research phase realized during this thesis.

The chapter 3, Identified challenges, aims to identify the key challenges around Federated Cyber
Ranges based on the State of the Art.

The chapter 4, Concept proposition, addresses a concept proposition based on key challenges
identified on the previous chapter.
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The chapter 5, Proof of concept, aims to demonstrate the capabilities of the previously defined
concept. The results and limitations of this Proof of Concept are also discussed in this chapter.

The chapter 6, Future work, addresses the future work around this concept based on the results
and limitations identified during the PoC.

Finally, the chapter 7, Conclusion, concludes this Master’s Thesis.



2. State of the Art

This chapter aims to establish the State of the Art in terms of Federated Cyber Range (FCR).
First is defined and explored the definition of a Cyber Range (CR). This chapter then continues
with the use cases of a CR. Once the definition and the use cases of a CR are defined, a comparison
of the existing technologies and implementations of various CRs is explored. The aspect of
federation in terms of CRs is then reviewed.

2.1 Cyber Ranges
The first important step of this work is to define what constitutes a Cyber Range. According to
the report of the Australian Departement of Defense (DoD), a parallelism between a shooting
range and a CR can be established[1]. The Australian DoD gives the following definition;
Definition 2.1 [1]
“The word "range" implies an environment for offensive target practice, much like a shooting
range for soldiers.”

A Cyber Range would therefore be an environment where CyberSecurity operations could be
practiced. The form of these operations could be multiple and will be further developed in
subsection 2.1.1.

The definition 2.2 is abstract and does not give any information regarding hardware and physical
dependencies of such system. As a matter of fact, CRs can be implemented in a various number
of ways. Some of them will be studied in subsection 2.1.4. However, even if the term Cyber Range
is closer to a concept than a concrete piece of technology, similar components can be identified
between different versions and/or implementations. They will be explored in subsection 2.1.3.

Considering the numerous and different existing implementations of CRs, finding the correct
way to define them all correctly with a single definition is not an easy operation. Some CRs are
specialized in specific tasks and are therefore more dedicated to fulfill a strictly defined function.
However, regardless of the specialization they can have, CRs can be seen as an equipment offering
similar functionalities as a sandbox but at a different scale. A very minimal and generic way to
see sandboxes is as an isolated testing environment.[2]

The following definition of a CR will then be used as reference for the rest of this work;
Definition 2.2 [3]
“A cyber range is a tool that allows to simulate a complete network, and is usually used for cyber
training and cybertechnology development. The possibility to simulate large complex networks
allows to improve the realism and quality of training and eventually the knowledge, skills and
attitudes of cyber specialists. This helps strengthen the stability, security and performance of
IT systems used by private companies, governments and military agencies.”

2.1.1 Use cases
As briefly announced previously, CRs can have multiple purpose. They are generally, non-
exclusively, categorized as following [1], [4]–[6];
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2.1.1.1 CyberSecurity Practitioner training
It is crucial for CyberSecurity Practitioners (CSPs) (students, professionals, in military or not
i.e., every individual implied in CyberSecurity), to keep their knowledge up to date in terms of
CyberSecurity. As a matter of fact cyber attacks keep evolving through time. The consequence
being that CSPs must constantly keep their level of knowledge up to date to be able to prevent,
or at least respond to, those cyber attacks. Therefore, exercises designed to maintaining or
improve skills of CSPs can be organized on systems such as CRs.

The training of CSPs is generally realized around scenarios. Those scenarios define the content
of the exercises and are required to be designed before the exercises can take place.

Various types of exercises can be designed. The limits of the type and size of exercises depend on
multiple variables. It feels common sense that hardware limitation is one of them. The amount of
personnel assigned to the management of the CR is also a trivial variable as well at the amount
of maintenance required by the CR. In order to have a functional CR a balance between multiple
constraints should be respected. Those constraints depend on the needs of the use of the CR.
More details on these constraints will be explored in subsection 2.1.3.

Limitations put aside, a common type of exercise supported by CRs is attack/defense as well
incident response.[5] Traditional Capture The Flag (CTF) events can also be realized on CRs.

Attack/defense
In attack/defense scenarios multiple teams confront each other. Each team receives a set of
compromised or vulnerable machines. The goal of each team is to infiltrate other teams while
keeping their machines un-infiltrated and running. To do so, teams must patch their vulnerable
machines while finding how to infiltrate machines of other teams at the same time.[7]

Incident Response
Incident response scenarios are in some ways similar to attack/defense except that there is
only the defense concern. This kind of scenario is designed to handle incidents in a way to
limit damages and reduce time and recovery costs.[8] The difference regarding similarities with
attack/defense scenarios is that the attacks endured by teams in incident response scenarios are
not dependent on other teams. The attacks are controlled by the system which knows the flaws
of the system that defense teams have to handle and can trigger them easily.

CTF events
Cyber Ranges can also host traditional Capture The Flag (CTF) events i.e., Jeopardy CTFs.
This kind of CTF is traditionally based on challenges that teams have to solve to score.[7] Some
of the challenges can require machines to host vulnerable services or challenges to be solved.

2.1.1.2 Penetration testing
Another reason to use CRs is for penetration testing. The United States Department of the
Interior gives the following definition regarding penetration testing;
Definition 2.3 [9]
“Penetration testing is a controlled attack simulation that helps identify susceptibility to
applications, networks, and operating system breaches. By locating vulnerabilities before the
adversaries do, you can implement defensive strategies to protect your critical systems and
information.”

The implication of CRs in penetration testing or pentesting can be double.
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First, as discussed in subsubsection 2.1.1.1, CRs can be used to train CSPs. As CRs can be seen
as a giant sandbox[4], using them can help improve pentesting skill of CSPs without impacting
any production network, application or system.

The second implication of CRs in pentesting is not about the entity performing the pentest, but
about the object of this test. As it is given by the definition 2.3, the objects of penetration testing
are applications, networks and operating systems. A broader definition is that pentesting is the
practice of testing a computer system.[10] This being said, CRs can help to provide an adequate
environment for pentesting a vast amount of computer systems. This environment can be de-
signed in line with the requirements of the penetration testing and the targeted system of this test.

2.1.1.3 Malware analysis
Over the last decade, cyber attacks have evolved to be more complex and smarter than ever
before. Some of the most complex and persistent of them are called Advanced Persistent Threads
(APTs).[11] APTs are complex malware that can escape most detection mechanisms due to their
slow progression rate and low activity. Some of them can stay undetected for years. This type of
malware, once detected are difficult to examine due to their evasive techniques. Those techniques
are designed to avoid detection of most of traditional detection systems. This can be done in
several ways but are out of the scope of this work. However, to cite one in particular, evasive
techniques can take the form of activity detection. This means that the payload of the malware
will only be triggered if some particular activity is observed on the infected system by the malware.

This kind of evasive techniques, whatever they may be, are difficult to circumvent. This is also
due for example to the fact that APTs are targeted attacks. Another example of evasive technique
can be that the payload will be triggered only in a particular environment, and more specifically
the environment of the targeted entity. This makes the job of defensive and preventive solutions
even more complex.

This being said, CRs can help at least in the process of analyzing malware samples, part of an
APT or not. Indeed, CRs, due to their ability to reproduce environments, can be helpful to
study those kind of smart malware.

CRs can naturally be used to study, for example by performing dynamic forensic analysis, of
more standard malware.

2.1.1.4 Research and Development
Cyber Ranges can be used as well in Research and Development (R&D). R&D can take various
forms and some of them overlap with the previously discussed use cases. The idea behind the
role of CRs in R&D is, once more, to be able to deliver an isolated environment. This isolated
and controlled environment can then be used to test new technologies and new methods of
CyberSecurity countermeasures to test their reliability.[5]

In some way, certain aspects of the objectives of this testing process can be similar to some
of penetration testing. If a network security solution is studied or pentested, the goal of such
approaches is to detect flaws in the system and correct them. One of the differences between
penetration testing and R&D, in this case, is the tools available for the testing. Indeed, penetration
testing is sometimes called ethical hacking, which does not always provide the answer of how
to fix the flaws found during this process. If the issue is publicly known, there is much chance
that there is already some known procedure to correct it. On the other hand, if the issue is not
known it could sometimes be very difficult, in complex environment, to understand and detect



2.1 Cyber Ranges 6

the source of the problem. This is where CRs can provide some clarity. One of the particularities
of CRs used for R&D is that they generally have embedded logging and correlation systems
which can be very helpful in complex testing situations.

2.1.2 Where
Cyber Ranges are used by multiple types of institution e.g. governments, military agencies.[3]
However, they can also be used by any entity willing to train CSPs.[1], [5]

Commercial CR solutions exist. Some are open source[12] or part of a bigger project. The only
limit is money and/or time necessary to build such project.

2.1.3 Requirements
Once again, requirements of such environments highly depend on the intended use of the system.
Military CRs will mostly have different set of requirements than the educational ones. And even
for the most advanced and developed CRs, a distinction still remains in the objectives of those
CRs wherever they are designed to be used. Once more, CRs designed for educational purpose
most likely does not have the same set of requirements, or at least not with the same weight over
those requirements, than CRs designed for R&D.

Beyond the point mentioned above, which is that the requirements of a solution depend mainly
on the use of the system as well as whether the system belongs to a highly secure entity or not,
this section aims to establish a list of the functionalities sought in a CR. This list is therefore
not exhaustive but contains many of the generally sought-after criteria concerning CRs.

2.1.3.1 Automation
Automation is, or at least should be common to most CR[1], [6], [13]. Multiple reasons justify the
need of automation in such systems. First is that static documentation and manual configuration
are hard to maintain, error-prone, and rapidly outdated.[6] The other trivial reason is that it
is not feasible to manually deploy machines at scale when the number of machines to deploy
increases. Therefore, tools for deployment and configuration of machines and services should be
as automated as possible. A variety of such tools are already available today. To name some of
them; Ansible[14], Chef[15], Terraform[16] tools can help in the automation process.

2.1.3.2 Realism
The realism of the environment can be multiple and can be seen from different perspectives.
Virtualization offers various advantages and is highly likely that the environment to simulate has
virtualized services or machines. Some other machines, however, like workstations are probably
not. Those kinds of machines, servers, workstations, running standard OS are the visible part
of the iceberg. Indeed, replicating such assets is critical but is, apart from a few details and
exceptions, not the most difficult part of the realism targeted.

If we take the hypothesis that the targeted environment to replicate is a nuclear power plant,
the management of such critical infrastructure is generally not managed and performed the same
way than traditional infrastructures.
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Indeed, replicate1 to the perfection of a nuclear power plant and its management infrastructure
would probably not be the easiest task to accomplish e.g. compared to virtualizing a standard
service running on a Microsoft Windows server.

Such realism is important in some cases.[13] One of them, as briefly announced before in sub-
subsection 2.1.1.3, is malware analysis and more precisely analysis of APTs. The power plant
example stated above is not random. APTs had already targeted nuclear environments in the
past. Stuxnet, a well-known APT, was designed to target this type of environment. It was
targeting specific Siemens industrial systems.[17] This targeting of industrial systems may imply
more challenges to be able to replicate such equipment in CRs. Despite the challenge to replicate
such systems, this illustrates the need for high realism replication in some use cases.

It is also interesting to mention that the need for realism does not always fit for automation.
This being said, a priority in the requirements is probably to establish which are essential and
which are a nice to have.

2.1.3.3 Supported systems
The importance of realistic replicated systems raised the requirement of the amount supported
systems in the previous subsubsection 2.1.3.2. A part of the realism is to be able to replicate
environments or part of them. However, virtual2replication with a reasonable level of realism is
not always possible, e.g. proprietary, classified technology, etc.

In some cases, this virtual replication is possible. It is then possible to support systems without
having to deal with physical hardware and therefore include automation at some point. However,
this process, which can be achieved via emulation, sometimes comes with limitations. Even if
in the best case, the virtual system does not suffer from limitations and can totally replicate
some hardware virtually, there will always have limitations. The most trivial is that it will not
be possible to physically affect or test the emulated system. Another one may not come from
the result of the virtual system but from the compatibility between the system virtualizing and
other systems, e.g. the rest of the CR environment or even the CR itself.

Another tradeoff between requirements has then to be found between the level of realism and
supported systems.

2.1.4 Types of Cyber Ranges
Generally, when replicating virtually a system, multiple solutions are possible;

Simulation
The Cambridge dictionary gives the following definition regarding simulators;
Definition 2.4 [18]
“Simulator: a piece of equipment that is designed to represent real conditions, for example in
an aircraft or spacecraft.”

Simulators replicate functionalities even if the underlying hardware and mechanisms are not
identical to the original system e.g. flight simulator. The result is that only the system may work

1Here, the word “replicate” does not have to be understood in the process of duplicating the actual environment.
This word is used for abstraction reasons and not the mention any of the technologies implicated in this process at
this stage.

2“Virtual replication” abstractly englobes the means of replicating a system without having to physically build
the exact same system twice.
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in a similar way than the original. Simulation may be sufficient for training but will probably
not be for R&D, which most of the time requires realism as discussed in subsubsection 2.1.3.2.

Emulation
The Cambridge dictionary gives the following definition regarding emulators:
Definition 2.5 [19]
“Emulator: a computer system that is designed to behave in the same way as a different
system.”

Emulators are able to emulate systems and their underlying hardware. This process is helpful
when the system to be emulated requires to run on specific hardware. Emulation allows to have
a virtual system more similar to the original than simulation. Emulators are well known for
their ability to emulate old consoles i.e., to emulate old hardware (that are not produced any
more) and the software on top of it. In terms of CRs, emulation may be used to create virtual
routers that normally require specific architectures to run. GNS3 is a tool performing this exact
function thanks to QEMU, Dynamips and other tools.[20]

Virtualization
When speaking of virtualization, there is generally two types of hypervisor; type 1 and type 2.
According to IBM, those hypervisors can be defined as following;
Definition 2.6 [21]
“Type 1 hypervisors run directly on the system hardware. Type 2 hypervisors run on a host
operating system that provides virtualization services, such as I/O device support and memory
management.”

Schematically, hypervisor types are represented as following;

Figure 2.1: Type 1 & 2 hypervisors, based on [21]–[23]

The Figure 2.1 illustrates the differences between the hypervisor types. Type 2 hypervisors are gen-
erally commonly found on workstations and type 1 are generally more commonly found on servers.

Virtualization is wildly used in development and production environments for various reasons.
However, virtualization in terms of CR has limitations. Indeed, the architecture of virtualized
systems should be x86. Most of OSs used on workstations and servers do not suffer from this
limitation. Other architectures are not supported by hypervisors e.g. virtualizing Cisco IOS
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images.

Virtualization and emulation can be combined to circumvent this limitation. Indeed, it is possible
to have a Virtual Machine (VM) running an emulator e.g. a linux VM running QEMU emulating
a raspberry pi which has ARM architecture.

Virtual systems, all distinguished, can be very useful for automation and replication of physical
systems without having to own twice the hardware. However, this generally impacts the realism
of the virtualized system. In certain cases, this cost is not acceptable and physical hardware is
used.

2.1.4.1 Physical
In state-of-the-art realistic exercises, physical facilities and physical hardware are used. Cy-
bertropolis, a highly realistic training complex, provides those elements. This complex hosts
military exercises with tens of thousands of participants per year.[4] In terms of facilities, the
site is 1000 acres, has 300 structures, 70 multistory buildings, 1,6 kilometers (1 mile) of tunnels
and over 14,4 kilometers (9 miles) of roads. [4] In terms of hardware, this site disposes of a
wireless environment (2G, 3G, LTE), a prison/jail complex, a state-of-the-art smart house, a
water treatment plant, and others.

Having such facilities and hardware can be very interesting when speaking of realism. However,
when speaking of deployment time, cost, and amount of maintenance, such systems are certainly
the worst case possible. Automation can probably be achieved for some part of the systems,
primarily virtual ones, but when hardware3breaks, it will most certainly take more time to fix,
redeploy, or reconfigure than if it was virtual. Since hardware is used, the limit of the supported
systems is the hardware itself.

2.1.4.2 Public clouds
Public clouds are interesting for various reasons. Amazon Web Services (AWS), Microsoft Azure
and Google Cloud Platform (GCP) are the leaders in the domain. Even if they have some
differences, in this work, we will assume that most of what is possible in one cloud provider is
also possible in others and the other way around too.

In terms of public clouds, built-in functionalities like Infrastructure as Code (IaC) can help the
automation process. As these kinds of functionalities/services are native to the cloud provider,
most of the underlying management and deployments of the infrastructure can be easily per-
formed via such IaC services.

In terms of cost and hardware required, public clouds are interesting i.e., most of the functionali-
ties/services are Pay As You Go (PAYG) and are therefore billed only for what is used. They
can also be interesting for entities that do not own hardware. This also means that managing
hardware and dealing with hardware issues is not a concern anymore.

However, public clouds are generally as limited, if not more, than traditional virtualization in the
number of supported systems. It is possible to have dedicated machines on the cloud. However,
limitations will still occur. For example, in a training scenario implicating physical interactions
i.e., an infection via USB stick.

3Here, by hardware, is not only intended bare metal servers but hardware like physical routers, switches, etc.
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This being said, mitigation is possible to counter this limitation. Adopt a hybrid cloud architec-
ture is not always possible and will not always fix the problem, but in some case will mitigate it.
This can be realized via tunneling to the cloud i.e., VPN tunnels.

Existing open source training solutions already exist designed on AWS. EDURange [5][24] and
Open-Source AWS Cyber Range [12] are two of them.

2.1.4.3 Private clouds
Private clouds offer benefits of public cloud, including scalability, elasticity, ease of management,
with the control and customization of on-premise equipment.[25] However, when speaking of
private clouds, one of the differences with public could, is that the hardware is not managed
by the cloud provider as it is by public cloud providers. The hardware is to be managed by
the entity building the private could. This comes with advantages and disadvantages. More
customization is therefore possible but at the cost of hardware failure mitigation. Private cloud
solutions are for example Open Stack and Open Nebula.[26], [27] Using those allows to create a
layer of abstraction in the management of the virtual resources running on the hardware.

KYPO is a CR solution capable of running on both Open Stack and Open Nebula.[5]

2.1.5 Summary
Different technologies and approaches exist to build a Cyber Range. It is possible to combine
multiple of them to fill the requirements of the use of the system. This being said, there is
probably not a better solution than another i.e., best solution for a purpose can be terrific
for another use e.g. a state-of-the-art R&D CR requiring huge technical background in CR
management may not be the state of the art in terms of training. Technologies and concepts
should be picked to fill the requirement gap for the use of the system.

The elements discussed in subsection 2.1.3 and subsection 2.1.4 are not an exclusive list to
determine the best solution for the intended use of the system. However, these criteria can and
should be considered before selecting the concepts and technologies to be used when building a CR.

As said before, those requirements can take form of the quantity of automation possible, the
level of realism compared to production systems or the number of supported systems. A balance
should be found between those elements without forgetting the requirements specific to the entity
managing the system and to the target audience.

2.2 Federated Cyber Range
The first step is to define the sense of federation. The Cambridge dictionary gives the following
definition regarding federations;
Definition 2.7 [28]
“A group of organizations, countries, regions, etc. that have joined together to form a larger
organization or government.”

Federation members, organizations, countries, regions, or any else will be called entities throughout
the rest of this document. The previous definitions perfectly match the definition of a FCR. As a
matter of fact, FCRs are formed by entities who decided to join forces. This could be due to the
desire to split costs, to the desire of sharing information, or also the desire to split the manpower
required to build and manage an advanced CR.
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2.2.1 Cyber Range vs. Federated Cyber Range
The main purpose of FCRs is identical to traditional CRs. However, additional challenges are
encountered by FCRs. Those challenges will be discussed in chapter 3.

Traditional CRs can be very complete and sufficient to deal with the reason of their use. However,
state of the art CRs are not feasible for each entity desiring one. Indeed, costs related to their
creation and management is not always realistic for every entity. In such case a tradeoff between
the desired functionalities or capacities of the systems sometimes has to be found.

2.2.2 Components of the federation
A differentiation between building an FCR from scratch or assembling already existent systems
to form a federation of CRs is to be done. Indeed, building a new system, a new environment is
one thing, but dealing with existent environment is completely different. Both possibilities are
interesting and come with advantages and drawbacks. Another distinction can be established
around merging existing systems into a federation. Extending homogeneous systems running on
multiple different entities is one problem, but merging heterogeneous systems is another one and
comes with a lot more of complexity.

2.2.3 Existing federations
Federations used for training and research already exist. Some of them are dedicated to
CyberSecurity projects and have similarities with CRs. Such projects are rarely explicitly labeled
as FCR. Some of them have similar functionalities and can, in some ways, be considered as such.
Others are still in their development phase. It is therefore difficult to find related documentation
as they are still in their development process.

2.2.3.1 Emulab
Emulab is an open source emulation software for testbeds focused on networking and distributed
systems.[1]Emulab can for example use virtualization (via XEN), containerization (via Docker),
or use bare metal servers.[29] Bare metal servers, which are Dell servers, are reimaged between
users.[29], [30] Emulab is using Chef for its deployments and automation mechanisms.[31]

2.2.3.2 DETER
DETER project is based on Emulab. DETER has federation capabilities but the documentation
on it does not seem to have been updated for six years, at the time of writing these lines.[32]
This can be due to the stop of this branch of the project or just lack of documentation.

2.2.3.3 ECHO
European network of Cybersecurity centres and competence Hub for innovation on Operations
(ECHO) is explicitly labeled as a Federated Cyber Range. ECHO, as its name suggests is
a European project funded by the “European Union’s Horizon 2020 research and innovation
programme”. According to its website, the project is still under development and has 30 partners
from different sectors.[33] The project was officially started on February 25, 2019, and has
roadmap dates from 2020 to 2022.[34]





3. Identified challenges

The purpose of this chapter is to identify the challenges represented by the aspect of the federation
within Cyber Ranges. Some of them are more detailed than others due to their implication
in chapter 4, Concept proposition. However, even if all challenges do not have the same level
of detail, they are identified which indicates the awareness of their existence. The challenges
identified in this chapter are not an exclusive list and it is more than probable that a lot more of
them exist.

In this chapter are first addressed the federation and the homogeneity aspects. This chapter then
continues with the connectivity of multiple sites. Management and the abstraction are explored
thereafter. The chapter continues with the supported systems, the identity management, the
access to the machines, the logging and monitoring, the redundancy, the scalability, the resource
allocation and finally the costs.

3.1 Federation
As introduced in subsection 2.2.2, a differentiation has to be done between types of federations or
at least in their components. The first differentiation to be done is about the initial state of the
systems. As a matter of fact, building from scratch or merging existing components share some
challenges, but having to deal with existing systems may include more constraints. A second
differentiation can be done when merging systems into a heterogenous or homogeneous federation.

Those variations will be discussed in the following subsections;

3.1.1 Building from scratch
Building a federation from scratch implies that multiple entities have a desire to form a federation.
It also implies that the build of the federated system will be done without considering the existing
respective solutions of the entities (if they have any solution already existing). Building from
scratch can be advantageous for multiple reasons. One of them is that the result of the build
will probably not suffer from limitations due to the federative aspect as it is the case when
several systems are merged. Indeed, architecting the solution before building it, without having
to deal with different existing piece of technology can provide a better reflected solution, at least
in terms of management. The opposite situation is merging different existing solutions with
incompatibilities. If there is no way to run all solutions in parallel with a correct level of inte-
gration, a balance must be found. Otherwise, functionalities such as management will be impacted.

Having a federation built from scratch can also help having a better understanding of the
components composing the federation. Documentation, as everywhere else, is a painful task that
requires a lot of maintenance. If every entity is responsible for its documentation, it means that
this same entity will also probably be the only able to document their side of the federation.
This also means that if not all entities correctly maintain their documentation less of it will be
available when troubleshooting will be required. This could be irrelevant if the federation is never
updated and has the same software and hardware running during all its lifetime. In the opposite
case, documentation will require to be maintained, which will need updates from all entities.
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3.1.2 Merging homogeneous systems
The case of merging same systems to form a bigger one is probably the easiest way of forming a
federation, or at least the one requiring the least engineering.

It is not an easy task to draw the line between homogeneous and heterogeneous systems. On
some criteria, systems can be similar and on different criteria completely different. Criteria such
as management, automation, identity management can help to draw this line.

When systems share the same management, automation and identity management processes, it
seems trivial that it will be easier than to design all the system again. However, separate systems
may work just fine individually but not anymore when coupled with others, even if they share
similar processes.

In the best case, when every criterion match, some work will still be required. Of course, systems
will need to be linked together. Connectivity is one of the most important challenges. Indeed,
without connectivity, systems will not be able to communicate.

3.1.3 Merging heterogeneous systems
Merging heterogenous systems is probably the most challenging way to form a federation. There
are several ways to deal with heterogeneousness. One way is to try as much a possible to reduce
the problem to homogeneity. The other way is to deal with heterogeneousness. In such case, if we
take the example of incompatibilities at automation level, if no reduction to homogeneity is done,
this means more knowledge will be required to maintain and manage the federation. This also
means that in some cases some systems may not work correctly and they may require custom fixes.

In other terms, dealing with heterogeneousness may require more time and may induce more
troubles with management of the federation. Globally it is probably possible to integrate every
system to every other system, but it will also probably require a very large amount of time to do
it. Depending on the needs of the federation, it may not be acceptable to have an integration
time of 10 years (without even considering the manpower required) to have a functional solution.

Heterogeneous pieces of systems can, however, probably be integrated with limitations. Those
limitations can take form of automation, management, etc. This means that it will work, but
not as well, or at least not integrated as well as the rest of the system.
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3.2 Connectivity
Connectivity is an essential part of the federation. It is trivial that entities should be connected
one way or another to be able to form a federation. Connectivity between entities, in a way, can
be seen as connecting different sites together. Multiple ways of connecting remote sites exist.
Those various concepts/solutions can be compared on various criteria. Some of them are the
following;

• Bandwidth,
• Redundancy,
• Expensiveness,
• Ease to deploy,
• Time to deploy,
• Feasibility on long physical distances.

3.2.1 Physical connection
The first way to deal with connectivity is by connecting physically the different sites together.
This solution is theoretically feasible, but except for the bandwidth, this solution is the least
convenient. As a matter of fact, deploying such hardware will require time, will not be redundant1,
will be the most expensive, the most difficult and slow to deploy, and will not be feasible on long
distances. This option is only interesting if the dedicated line already exists between the entities.

To have the best redundancy available, each site will require to be connected to each other. If
such thing is implemented, a full-mesh network, will require n(n−1)

2 connections2. In other words,
if 50 sites have to be connected in a full-mesh way, it will require 1225 connections. Without
even considering the physical aspect of it (distances between sites, router/switch interfaces, etc.)
this will be ridiculously expensive, slow and complex to accomplish. If the physical aspect is
added to the equation, doing intercontinental connection is not realistic at all.

In most cases, virtual connections will be the way to go.

3.2.2 Virtual connection
When speaking of virtual connection, Virtual Private Network (VPN) is the well-accepted concept.
VPNs are used to virtually link machines. VPNs are most of the time unicast i.e., machine to
machine. This link between machines is sometimes called a tunnel. On this tunnel can be added
encryption to ensure the confidentiality of data crossing the virtual tunnel. This added layer of
security is important because VPN can be used between two machines connected via the internet.
Internet being a public network, if traffic crossing the tunnel is not encrypted by the application
layer e.g. Telnet or HTTP traffic, then traffic will be in clear text. Having clear text traffic going
over the internet is not ideal if data is not confidential, but if it is, then it is critical. VPNs can
mitigate this issue by providing a layer of security inside the tunnel and then avoid having clear
text traffic exchange between entities.

If applications communicating in clear text between entities are required for an exercise or for
any reason, then VPNs are more than recommended. The layer of security put aside, multiple
ways to connect n entities over VPN exists.

1It could be redundant but this will increase complexity, cost, etc.
2The formula n(n−1)

2 can be seen as each site is connected to all sites but itself, and connections are bidirectional,
no requiring wires in both ways.
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3.2.2.1 Full-mesh
The most redundant and trivial possibility is to create a full-mesh network between sites of
different entities. Indeed, full-mesh architecture provides redundancy when more than two sites
are connected. This way if a tunnel is down e.g. because of misconfiguration or changes on the
tunnel, traffic can still be forwarded to another site and then back to the destination site.

However, with this architecture, the single point of failure will be the VPN endpoints i.e., the
machine on which VPNs are setup e.g. firewalls, routers, etc. To avoid this single point of failure,
HA clustering or equivalent needs to be implemented. The minimal requirement to make this
work is to double the number of VPN endpoints. If this HA mechanism is implemented, with the
hypothesis that each VPN endpoint has a tunnel to each endpoint except for the VPN endpoint
residing on the same site, the amount of required tunnel connections will be much higher than
for the previous scenario. If the same example is used with 5 sites with each site having 2 VPN
endpoints. If we consider n as the number of sites to connect and m the number of devices per
site constituting the HA, then the number of tunnels required will be the following:

n×m((n−1)×m)

2
=

5×2((5−1)×2)
2

= 40 tunnels

More schematically, 5 sites each having 2 VPN endpoints can be represented as following:

Figure 3.1: VPN tunnels between 5 sites each having 2 VPN endpoints.

On Figure 3.1, the VPN endpoints are represented by the blue dots. The tunnels are represented
by the lines between the blue dots.

If the same example is taken but this time not with 5 but with 50 sites to connect, the number
of tunnels will be the following:

n×m((n−1)×m)

2
=

50×2((50−1)×2)
2

= 4900 tunnels
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More schematically, 50 sites each having 2 VPN endpoints can be represented as following:

Figure 3.2: VPN tunnels between 50 sites each having 2 VPN endpoints.

Indeed, this difference between 5 sites (10 endpoints) and 50 sites (100 endpoints) gives an
indication the function grows rapidly. The function is not linear and can be traced as following:
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Figure 3.3: n×m((n−1)×m)
2 , with m = 2 function.

Depending on the size of the federation, or at least depending on the number of sites to connect,
opting for a full-mesh topology may or may not fit. Managing a few dozens of tunnels is a
repetitive task but is feasible. In such case, having the possibility to configure the tunnels as
Configuration as Code (CaC) is a way to deal with the repetitiveness. It is important to mention
that the scalability of this architecture is not as bad as physical connection but is not the best
either.
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3.2.2.2 Central site
Another solution to deal with connectivity is to use one or multiple sites designated as “central
site”. This topology can reduce the number of tunnels required compared to full-mesh topology.
Indeed, if 50 sites have to be connected, if one site is designated central and 2 endpoints per site
are used, it will require the following number of tunnels:

49
¯

Non-central sites

×

Enpoint per site
©

2 × 1
®

Central site(s)

×

Enpoint per central site
©

2 = 196 tunnels

However, having one single central site means that this site will be critical and that the site will
have to be up each time the federation is required. Impossible then for this site to shut down. In-
creasing the number of central sites will make the amount of tunnel tend to the full-mesh function.

Those 196 tunnels can be represented as following:

Figure 3.4: 49 non-central sites connect to 1 central site via 196 tunnels.3

If the same example with 2 central sites and 48 non-central site is used, the number of sites can
be calculated as following:

n×2
±

Amount of endpoints

×

Amount of central endpoints
¬

c×2 +
c×2((c−1)×2)

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Full mesh between central sites

= 96×4×2+4 = 388 tunnels

With c the number of central sites and n the amount of non-central sites and the amount of
endpoint per site is 2.

3To be noted that at the center of the diagram are 2 dots, endpoints
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Those 388 tunnels can be represented as following:

Figure 3.5: 48 non-central sites connected to 2 central sites via 388 tunnels.

This topology requires much less tunnels than full-mesh topology. However, if such topology is
implemented, the bandwidth available on the central site(s) also has to be considered. Indeed, as
all traffic going from non-central to non-central site will transit through the central site(s), it is
recommended that those sites have the best internet bandwidth possible or a bottleneck will be
formed on this/these central site(s).

Public clouds
Public clouds generally offer VPN services[35] without having to deal with the bottleneck of an
on-premise central site. Redundancy is also assured via 2 VPN endpoints on the public cloud
side. This alternative to on-premise central site can also mitigate the issue of the on-premise site
always required to be up. The Figure 3.4 represents the topology offered by public clouds.

3.2.3 Type of tunnel
The protocols supported by the VPN endpoints should also be considered.

3.3 Management
Multiple aspects of the management of the federation can be explored. The VMs management,
including the way of creating and configuring them with as much automation as possible represents
a challenge. Indeed, as explained in section 3.1, when heterogeneousness is part of the federation,
it can rapidly become challenging to find a balance between existing systems and still have all
functionalities required.

3.3.1 Abstraction level
Another way to deal with automation and therefore Infrastructure as Code (IaC) and Con-
figuration as Code (CaC) in heterogeneous environments will be to have a common abstract
language. This language would then be translated in the language spoken by the destination
system. This would, however, significantly increase the amount of code required for it to work.
Indeed, each entity will have to develop and maintain the connector, or translator, performing the
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translation from the abstract language to the language used by the IaC and CaC tools of the entity.

Schematically, this abstraction process can be represented as following:

Figure 3.6: Abstraction at IaC and CaC level.

Where the enumeration is the following:
1. Receives an abstract template,
2. Sends respective part of the abstract template to translators,
3. Translates to concrete declaration,
4. Creates resources based on translation.

Once more, this solution will require much more effort to maintain and to develop than having a
homogeneous management system dealing with the IaC and CaC. It will, however, provide most
flexibility in terms of managing heterogeneous systems part of a heterogeneous federation.

3.3.1.1 Heterogeneous
If the abstraction layer is not possible and merging the existing solutions is the only possibility,
multiple tools will need to be integrated to each other. Those will more than possibly suffer from
limitations one way or another. The reason is the following;

If the first hypothesis4that every piece of software has limitations and/or bugs is taken, then,
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CaC and IaC being software, have those limitations and/or bugs. If the second hypothesis that
not every software suffers from the same limitations and/or bugs is taken, then, CaC and IaC
probably have different limitations and/or bugs. The result of combining multiple tools may then
result in more functionalities but also more limitations and/or more bugs. Combining multiple
tools as a workaround to limitations is one thing, however, combining tools performing the same
functionalities to avoid rewriting code cannot produce a positive result.

Indeed combining multiple tools to perform tasks that could have been achieved with a single
tool is not the best way to go. For federated scenarios, the best way to proceed will be to have a
designated common tool for IaC and for CaC. The designated common tools should only be used
with other IaC and CaC tools in last resort.

3.3.1.2 Homogenous
If the management mechanisms/tools are the same, then this case is trivial. In most of the cases,
the management can then be extended from one system to other parts of the federation and
work properly.

3.4 Supported systems
Supported systems is a challenge more related to CRs then to the federation aspect. As already
introduced in subsubsection 2.1.3.3, the number of supported systems is important for realism.
In terms of federation, one of the challenges is to improve the number of supported systems that
are generally supported by traditional CRs. The federation aspect contains multiple challenges
but this one should not be forgotten when building a federation.

3.4.1 Non-Emulable/simulable/virtualizable devices
If for some reason it is not possible to a use a virtual system which is normally physical, then it
should be considered to integrate it in its actual working form. Limitations will probably occur,
most likely at the automation level. A tradeoff between supporting this system and having full
automation should then be considered.

3.5 Identity Management
Identity management is related to authenticate and authorize users and administrators of the
federation. Multiple solutions are once again possible to deal with this challenge. One way is
to have a central system, redundant if possible, managing Authentication, Authorization and
Accounting (AAA).

3.5.1 Central
Despite the chosen protocol used for AAA purposes, if the central solution is selected, entities
could choose to fill the AAA system with existing users or external directory services. This
solution could help provide a complete visibility of the users. It would also be simpler to have
one AAA system than multiple. Indeed, it would be easier to configure only one system on the
machines requiring authentication than multiple.

4The hypothesis is taken and not explained because demonstrating such hypothesis is out of the scope of this
work. With the limitations of the scope of this work, the hypothesis is trivial.
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3.5.2 Distributed
A distributed AAA system could avoid having an extra single centralized AAA system to manage.
This would, however, restrict each entity to have visibility only on their users. It would therefore
probably be more complex to manage users because no one would have a complete visibility on
all users. An interesting example of distributed identity management is the Eduroam network
dedicated to education and research.[36]

3.6 Access to machines
Ideally, in case of training, access to machines should be possible for advanced users requiring
advanced functionalities as well as for beginners. Beginners would probably have more ease to
access a web portal opposed to advanced users who would probably not want to be limited to
access machines through a browser. For advanced users, access via SSH, VNC or RDP should
be possible. Ideally, it should also be possible for users to access the system offsite. Therefore,
for advance users, remote access should be implemented and could be with VPN remote access.
This feature requires those advanced users to be able to be identified by the remote access VPN.
This identification should ideally be based on the AAA system discussed earlier on section 3.5.

3.6.1 Users’ credentials
Managing the credentials of the machines and installing appropriate services on those machines
are also part of the automation challenge and should be as automated as any other features i.e.,
as much as possible. This challenge of accessing machines also shares some common points with
identity management. Indeed one way to deal with credentials to access the machines could be
via the AAA system discussed earlier on section 3.5. This use of the AAA system would require
a fine-tuning in the authorization part of the AAA system. Indeed, authenticating users is one
thing, but limiting their access to certain machines is another. Ideally, managing users access
should be as automated as possible. However, complexity may appear if the AAA system uses
external user directories and cannot deal with their authorization level. In this case, the ideal
schema would be to be able to authenticate users maybe on external directories, but also be able
to control their authorization level automatically. If not possible, then it would imply that users
may have flat level of access resulting in users able to access too much, or not enough resources.
This could result in training scenario failure where users were able to access systems they should
not and destroyed resources mandatory for the exercise impacting all other CSPs on the training.

If this authorization tuning is not possible, a workaround could be to generate random credentials
automatically on creation of resources and only communicate them to users that are supposed to
access those resources.

3.7 Logging & monitoring
Logging and monitoring is an important part of a CR. Indeed, loging and monitoring can be very
helpful in R&D scenarios to have a global perspective of what is running in the system. Logging
and monitoring can also be an important part of training to be able to mark CSPs. Once more
the challenge is not directly due to the federation aspect but the federation is increasing the
complexity of accomplishing such task. Again, here the possibilities are multiple but mainly, the
options are to opt for a centralized or distributed solution.

3.8 Redundancy
Redundancy has been evoked multiple times before with tunnels and connectivity redundancy.
Redundancy plays an important role in the federation. As a matter of fact, if critical systems are
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not redundant and one of them fails, the entire scenario, whether training, R&D or any else, could
also tend to fail. In some cases, such failure could impact the reliability of the federation itself.
Indeed, if such incident occurs repeatedly, the reliability of the federation could be questioned.
However, reliability is important to train CSPs, and is probably even more important for R&D
to obtain stable results. Indeed, base R&D results on a non-stable and/or non-reliable system
does not make any sense. In worse case scenarios, this could imply that results are not based
on what is expected but on unknown or uncontrolled variable and thus introduce a bias on the
results making them unusable and/or false.

3.9 Scalability
Scalability in terms of users and integration of new members of the federation is also a challenge.
As a matter of fact, if it is planned to increase the size of the federation regarding its users
or entities, scalability should not be left out. It is not always trivial to predict how scalable a
system would need to be. The best approach is to keep the scalability in mind when picking
components to use for the federation. Physical devices can be an issue in terms of scalability.
Network bandwidth can also form a bottleneck. Another important aspect of scalability is how
complex it will be to add another entity to the federation.

It was discussed in section 3.2 the challenge of connecting entities together. The complexity to
manage a large full-mesh topology makes even more sense when a new entity joins the federation.
If another entity joins the federation, and if a full-mesh topology is used, this means that each
entity will have to create one or multiple new tunnels(based on the HA level) to the new entity. It
would require more intervention from administrators of each entity already part of the federation
to create those tunnels to connect the new entity. If a central site was used, only its configuration
should be updated to add the connection to the new entity. And on the side of the new entity, it
would only be required to create tunnels to the central site. This reduces the required number of
tunnels to be created to only a few, depending on the HA level. With this central site approach,
the number of new tunnels to setup is not dependent on the number of entities already part of
the federation. On the other hand, in case of a full-mesh topology, the number of tunnels to be
created is proportional to the number of entities part of the federation as seen in section 3.2.

3.10 Resources allocation
If hardware on each entity is dedicated to the federation, resource allocation does not make any
sense as the hardware is fully dedicated to the federation. However, even if it is probably not the
best option, if the hardware is not dedicated and shares another purpose then it becomes more
challenging. Here is why;

First, if the hypothesis that the system used contains an hypervisor, is taken. Then the question
of identity management is asked; who can access the system, the VMs? Who can manage the
system? The question is more about how to limit access to users from the federation to only
access federated resources. Access management will probably increase in complexity.

Second, how to make sure that only VMs are able to communicate between federation resources
and not with services external to the federation running on same hypervisor? Indeed, federation
resources should no be able to impact services outside of the federation scope.

Last, what about the incompatibilities between federation and non-federation technologies? This,
of course, depends on the context of the (non-)federation.
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It seems trivial that opting for non-dedicated hardware could drastically increase the complexity
of multiple points previously discussed.

3.11 Costs
One of the last identified challenges is about costs. Costs can have different models. Hardware
costs are no surprise. They are mostly upfront costs and maintenance costs when hardware
breaks. However, if a public cloud is used e.g. for VPNs tunnels to connect sites, one of the most
popular billing methodology is PAYG. Those costs should be discussed before thinking of using
a public cloud in order to avoid falling in an unpleasant situation where costs are too high but
the federation requires cloud components.



4. Concept proposition

This chapter aims to describe a concept of Federated Cyber Range including automation, Virtual
Machines management, hypervisor management and connectivity between sites. The concept
proposed in this work is centered around virtualization. The goal of this concept is to be
applicable to existing systems as well as new systems. The heterogeneousness and how the
concept proposes to deal with, will be addressed it this chapter.

4.1 Automation
Automation is an essential part of the concept. Ideally, as stated in subsection 3.3.1 and in
Figure 3.6, it should be possible to have an abstraction level and a multi-layer automation tool.
This would be the best way to proceed. There are multiple ways to add this level of abstraction;

4.1.1 Abstraction + translators
One of them, as stated in subsection 3.3.1, is to have a central server dealing with abstract
templates which distributes the relevant configuration to each site to a translator at that site.

The creation and configuration of resources will then be the responsibility of this translator. To
fit with the central point of management, those translators should inform the central abstract
server of the output of the creation and configuration of resources. This would provide visibility
on a single point about the deployment of scenarios dispatched on multiple entities.

For this topology to work, it would be required to at least develop the central abstract server,
the translators and their communication protocol.
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4.1.2 Abstraction + custom tools
Another way is to have the central abstract server performing the translation and directly creating
resources and configuration on different entities. This would reduce the communication overhead
between the central server and translator. It would, however, complexify the code of the central
server. Indeed, integrating popular Configuration as Code and Infrastructure as Code tools to
the central abstract server would be one thing, but integrating custom automation tools would
be a much more complex challenge. This part will also be only possible to be developed by the
persons having knowledge of the custom automation tools. It would therefore be required that
entities work together on the code of this element.

Schematically it could be represented as following:

Abstractor
Ressource

3

3

1

3

2

Figure 4.1: Abstraction at IaC and CaC level.

Where the enumeration is the following:
1. Receives an abstract template,
2. Translates to concrete declaration,
3. Creates resources based on translation.



4.1 Automation 27

4.1.3 Abstraction + well-known tools
The last method to deal with abstraction is to have abstraction being translated in a well known,
documented and publicly available as-Code tools. For elements not compatible with the selected
tool i.e., custom automation tools, it should ideally be possible to delegate this part of the
configuration to a tier server residing inside the concerned entity. Communicating with this
server could be done via API calls or SSH.

This solution can be seen as a hybrid solution between having a fully custom automation tool
distributed between entities and having only a custom central server dealing with the abstraction.
The difference between this solution and the previous one is that the abstraction server will not
deal with the custom automation tool. Indeed, the custom automation will reside on a server
and will only be triggered by the abstraction server.

Schematically it could be represented as following:

Abstractor
Custom automation
tool server
Ressource

3

4

5

3

1

3

2

Figure 4.2: Abstraction at IaC and CaC level.

Where the enumeration is the following:
1. Receives an abstract template,
2. Translates to concrete declaration,
3. Creates resources based on translation.
4. Custom resources and automation tools is handled by a delegated server,
5. Delegated server creates custom resources.

This last solution fits better with integration of tools that already exists and will therefore be
used in this concept.



4.1 Automation 28

To manage Infrastructure as Code and Configuration as Code, multiple well-known tools will be
used;

4.1.4 Hashicorp Terraform
Terraform is an agent-less open source IaC tool. Terraform uses a declarative model. This
allows the declaration of resources to be created without having to deal with the order of their
declaration in the code. Terraform will manage the creation order all by itself. Dependencies
between resources can, however, be defined to help Terraform with the creation order. This
tool is capable of powerful IaC operations but is sometimes limited in the configuration of the
deployed machines. Terraform keeps track of the state of the resources created. Based on the
state of resources, Terrafrom is for example able to create a resource graph. It also accelerates
the destruction of resources. Terraform can also parallelize the creation and modification of any
non-dependent resources. This can be very useful when deploying large scenarios.

Schematically, the way Terrafom work is the following;

Figure 4.3: How Terraform works.[37]

4.1.5 Red Hat Ansible
Ansible is an agent-less open source CaC tool capable of some IaC. Ansible is a very powerful
tool in terms of configuration. Ansible can help circumvent Terraform limitation in terms of
configuration.[38]



4.2 Hypervisors 29

4.1.6 Hashicorp Packer
Packer is a tool capable to automate the creation of VMs images or templates.[39] It will be
useful in this concept to create VMs templates with the minimal requirement of the federation
before more configuration is performed at deployment time by Ansible.

4.1.7 Combination of the tools
The previous tools will be used together to fill most of the automation process need. Packer will
first be used to create custom images, or VM templates to be deployed by Terrafom and then
(re)configured by Ansible when required.

Schematically, the workflow is the following:

Figure 4.4: Tools combination.[14], [37], [39]

4.2 Hypervisors
As the concept is centered around virtualization, it is trivial that one of the blocks required
for this concept to work is hypervisors. Indeed this or these hypervisors should offer various
functionalities. Some of them were already discussed in the previous chapters and applies directly
to hypervisors. Some functionalities are nice to have but will vastly improve multiple aspects
such as automation or manageability.

4.2.1 Networking
As already discussed in chapter 3, automation and manageability are required to deal with
deployment of exercises requiring large amount of resources. Such large exercises could have as a
requirement to connect multiple VMs together. An example is having a virtual firewall and VMs
behind it. In such case, like it would be done physically, VMs behind the firewall should not be
connected at the same layer than the firewall itself. Indeed, it should be possible to have a virtual
switch connecting the firewall to the VM behind it. Virtual switches can be managed in multiple
ways but it would be nice to have an hypervisor with built-in virtual switches capabilities. Indeed,
having such functionality will decrease the amount of automation required to create topologies
using multiple layers of virtual switches.

This feature will also reduce the amount of customization required to isolate VMs. Indeed,
virtual switches are the first step to isolate VMs.

4.2.2 Manageability
Manageability is a global and vague term is this context. Indeed, manageability can be found on
multiple categories of tasks. Manageability can take form of the way resources are created and
manipulated, but it could also concern the way hypervisors are managed. Manageability should
always be kept in mind when selecting components forming the federation.
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4.2.3 Upgrades
Like every computer system, hypervisors need to be updated for security reasons. This element
should also be considered when picking hypervisors.

4.2.4 Functionalities and complexity
Functionalities are required to have a working solution. However, too much of them can increase
the complexity of the system. Too much complexity could result in difficulties to troubleshoot
problems when they occur. A balance between functionalities and complexity should also be
considered before picking any component of the federation.

4.2.5 Hypervisor’s selection
Most of today’s hypervisors offer more or less the same set of functionalities and fill the previous
requirements. However, automation capabilities are not always at the same level. The criteria can
be used to make the distinction between hypervisors. Therefore, hypervisors can be compared
on the integration with official1modules of the tools chosen on section 4.1;

Official Terraform modules[40] Official Ansible modules[41]

KVM 0 0 + 3 libvirt modules

Microsoft Hyper-V 0 0

Oracle VirtualBox 0 0

VMware ESXi + vCenter ∼50 ∼150

Xen 0 3 + 3 libvirt modules

OpenNebula ∼13 5

OpenStack ∼127 ∼54

Table 4.1: Hypervisors compared in terms of the number of Ansible and Terraform modules.

Having none or a small number of modules is not a good sign in terms of official support. Not
having official modules does not mean that the automation tool does not support the hypervisors.
It is most of the time possible to find community modules. However, since they are not official,
their functionalities may be reduced compared to official ones. It could also be tricky to find
correct documentation on those modules.

On the other hand, having a certain amount of official modules does not mean that modules
do not have limitations. The number of modules can only be used to determine if there is at
least some official modules. If there is no official modules, the integration of the tool with the
hypervisors may be limited, inexistent or not possible.

The Table 4.1 contains OpenStack and OpenNebula. However, they are not hypervisors. They
can be seen as superior layer adding private cloud functionalities sitting on top of hypervisors.

OpenStack supports the following hypervisors: Ironic, KVM, LXC, QEMU, VMware ESX/ESXi,
Xen (using libvirt), XenServer, Hyper-V, PowerVM, UML, Virtuozzo, zVM.[42]

1When official is mentioned, modules part of official documentation are implied.
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OpenNebula supports the following hypervisors: KVM, LXD and VMware vCenter.[43]

This extra layer adds some functionalities in terms of manageability, availability, etc. but with
it also comes the complexity to manage this additional private cloud layer. As discussed in
subsubsection 2.1.4.3, private clouds also come with complexity.

VMware ESXi + vCenter seems to be most capable solution in terms of “as Code”, at least for
Terraform (and Ansible) without having to deal with the complexity of OpenStack and Open
Nebula. They will be therefore used as the central pieces of this concept.

4.2.6 VMware ESXi
ESXi is a type 1 hypervisor developed by VMware. vCenter is an extra layer sitting on top
of ESXi adding functionalities such as central management point of ESXis, VMs migration,
VMs templates, VMs clone, etc. This vCenter will provide the manageability required for the
management and automation of the hypervisors of the federation.

ESXi is the main hypervisor of the concept. However, to have a sense of heterogeneousness, the
concept should also be able to support other hypervisors. Having multiple hypervisors supported
by the federation will allow to have a larger number of supported systems. Therefore, the benefit
is having more flexibility in the requirements when a new entity joins the federation. In other
terms, when an entity that has a hypervisor running that is supported by the federation, it will
be easier for that said entity to join the federation with its existing hypervisors than to have to
install another one supported by the federation. It is, however, recommended to use ESXi when
it is possible. Indeed, using different types of hypervisors will result in an increased complexity
of management because other hypervisors will not be able to be managed by the vCenter. As a
matter of fact, the vCenter can only manage ESXi hypervisors. If ESXi cannot be directly used
as the main hypervisors, the workaround is to use nested virtualization.

Nested virtualization, as its name suggests, makes possible to use virtualization embedded in
virtualization. In other words, nested virtualization adds the ability to virtualize hypervisors and
their underlying VMs. It is then possible to benefit from ESXi and vCenter functionalities while
still being able to use the host hypervisors. More specifically, if an entity has only one machine
running KVM hypervisor (or any other hypervisors supporting nested virtualization (of ESXi))
and cannot migrate from KVM to ESXi for a specific reason, virtualizing ESXi in a nested VM
will provide the solution to still be able to connect this system to the federation.

Nested virtualization requires hardware-assisted virtualization compatibility. For Intel processors,
this piece of hardware is called Intel VT-x/EPT and AMD-V/RVI for AMD processors.[44]

Nested virtualization also adds ability to control resources allocated to the federation. Because
the nested ESXi, or virtual ESXi (vESXi), is a VM, resources allocated to the federation can be
controlled as a standard VM e.g. the amount of CPU, RAM and disk. In the previous example,
KVM was the host hypervisor that could not be migrated, with this same example, the resources
allocated to the federation can be controlled on the KVM hypervisor. This process can also be
used to provide isolation between VMs running on the host hypervisor i.e., the KVM hypervisor,
and the guest hypervisor i.e., the vESXi hypervisor.

Due to the additional layer of virtualization, nested virtualization can suffer from performance
loss.
The following procedure should be followed when adding hypervisors to the federation:
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Figure 4.5: Hypervisor integration procedure.
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At this stage, the concept includes hypervisors and how to deal with the automation required
for deployment of resources. Schematically, except for hypervisor and vCenter installations and
configurations, it is possible to automatically create the following resources;

Nested
vESXi

Endpoint tier
federated VMs

Routing/FW tier
federated VMs

Hypervisor
Supporting nested 
virtualization

VMware 
vSwitches

VMWare 
vSwitches

with outside 
connectivity

vCenter

Entity n°1

Figure 4.6: Hypervisor capabilities with nested virtualization.

The Figure 4.6 has several VMs and virtual switches. The virtual switch is connected to a
physical (network) adapter and to the routing/FW(firewall) tier . This virtual switch is basically
the bridge between the VMs on the routing/FW tier and the outside connectivity e.g. the
internet. The routing/FW tier is where VMs performing firewalling or sub-routing should be
placed. Such process can be interesting for exercises requiring such machines e.g. trainings or
experimentations. Deploying those type of machines can also help segment network access of
the endpoint tier . The virtual switches are connecting the resources from the routing/FW tier
and endpoint tier together. VLANs can also help improve the network segmentation across all tiers.

It is worth noting that when nested virtualization is not required, the guest hypervisor and the
host hypervisor are the same machine, removing the nested layer and leaving only one layer of
virtualization.
The next element to add to the concept is the ability to connect multiple entities together.
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4.3 Connectivity
The next element is about the connectivity between the hypervisors. Two scenarios have to be
considered. The first one is trivial and is about a federation formed only by two entities each
having only one machine. In such scenario, the best way to deal with the connectivity is with a
VPN tunnel from one entity to the other. It is common to find multiple protocol supporting site
to site VPN capabilities on current technologies. Depending on the use case, a protocol may fit
better than another.

The other scenario is when there is more than two sites to connect. In that case, one central site
should be designated. When the load cannot be handled by one of the sites of the federation,
moving the central site to a public cloud could resolve the problem. It is suggested to review the
estimated cost of such migration before doing it. The protocols supported by the cloud provider
should also be considered. Most of the time, IPSec is the only protocol supported by cloud
providers for site-to-site VPNs.[45]–[47]

Those two solutions are the simplest to configure and to manage. They should also not have a
negative impact on the quality of the connection between sites.

On the hypervisor side, any VM with VPN capabilities and with compatibilities with the selected
protocol can be used to assure the VPN connection between sites. This system should ideally
also support dynamic routing protocols to avoid static routing between site (at least when more
than two sites). Using a VM for the VPN connectivity will put the system under control of the
hypervisor part of the federation. No additional hardware will therefore be required. Adding
this connectivity VM will impact the topology initially defined by Figure 4.6 as following;

Nested
vESXi

Endpoint tier
federated VMs

Routing/FW tier
federated VMs

Hypervisor
Supporting nested 
virtualization

VMware 
vSwitches

VMWare 
vSwitches

Site-to-site
VMs

VMware 
vSwitches

with outside
connectivity

vCenter

Entity n°1

Figure 4.7: Hypervisor capabilities with nested virtualization and VPN VM.
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The only different elements between Figure 4.6, and Figure 4.7 is the virtual switch and the
site-to-site VM. The site-to-site VM is assuring the VPN connection to the federation.

Conceptually, the sites will then be connected via the VPN VMs as following;
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Figure 4.8: Hypervisor capabilities with nested virtualization and VPN connectivity.

Where the entities are the same on the Figure 4.7 then on the Figure 4.8. The added elements
on Figure 4.8 are the site-to-site connections and internet connections.

4.3.1 Encapsulation
If a specific scenario requires a particular encapsulation, it should be possible to re-encapsulate
interesting traffic inside another tunnel with the required encapsulation represented in blue.

4.3.2 API manageable
Like any other component of the federation, it should be better to have a system capable of
being configured with API calls or any other automation capabilities. This can speed up the
process of adding new entities to the federation. It can also decrease the number of configuration
error by using a template created for this purpose. If the selected solution is not able to work
with API, VM templates and Packer can help produce a base system and decrease the amount
of manual configuration required when adding a new entity to the federation.





5. Proof of concept

This chapter aims to demonstrate the concept previously evoked on chapter 4.

Ideally, this concept should have been implemented and tested in real conditions between the
Université Libre de Bruxelles (ULB) and Belgian Royal Military Academy (RMA). However, it
was not possible due to COVID-19 situation in Belgium at the time of realizing this work. The
following Proof of Concept (PoC) has only been tested in a laboratory. The context of this PoC,
its results and limitations will be discussed on this chapter.

In this chapter is first addressed the context of the PoC. Based on this context is then explained
the scenario of the PoC. The code used by the as-Code tools is then explained. Based on this
code is explained how to create and destroy the resources of the PoC. Finally, the results are
observed and the limitations addressed.

5.1 Context
The global hardware context of the laboratory used for this PoC is the following;

• 1 × HP Proliant DL380 G7:
12 CPUs hyper-thread 24,
72GB RAM,
2 × 10Gbps NIC,
2 × 1To SATA SSD (RAID0),
4 × 600GB SAS HDD (RAID5),

• 1 × HP Proliant DL380 G7:
12 CPUs hyper-thread 24,
72GB RAM,
2 × 10Gbps NIC,
8 × 300GB SAS HDD (RAID5),

• 1 × HP Proliant DL380 G7:
6 CPUs hyper-thread 12,
36GB RAM,
2 × 10Gbps NIC,
3 × 300GB SAS HDD (RAID5),

• 1 × Manageable switch:
24 × 1 Gbps ports,
4 × SFP+ ports,

• 1 × Physical firewall.
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Schematically, the laboratory can be represented as following;

Laboratory

vCenter Server

HP Proliant DL380 G7: 12 CPUs hyper-thread 24, 72Go RAM, 2*10Gbps NIC
HP Proliant DL380 G7: 6  CPUs hyper-thread 12, 36Go RAM, 2*10Gbps NIC

Figure 5.1: Laboratory infrastructure.

5.1.1 Hypervisors
5.1.1.1 VMware ESXi
ESXi hypervisors used the base image: HPE-ESXi-6.7.0-Update3-iso-Gen9plus-670.U3.10.4.5.19 1.
ESXis were updated to the last available version, the last update is, 6.7.0, 16075168. ESXi
hypervisors are installed on HP Prolaint DL380 G7 with 12 CPUs (represented in blue of
Figure 5.1).

5.1.1.2 VMware vCenter Server
The last update of the vCenter server is: VMware vCenter Server Appliance 6.7.0.44000 Build
number 16046470.

The installation of ESXi hypervisors and the vCenter is anterior to the realization of this work.

5.1.1.3 KVM
The server with 6 CPUs (represented in orange in the Figure 5.1) is running Ubuntu 18.04.4
LTS with KVM version 2.11.1(Debian 1:2.11+dfsg-1ubuntu7.23). The use of KVM hypervisors
aims to prove the compatibility of the concept with non-VMware host hypervisors.

1The HPE-ESXi-6.7.0-Update3-iso-Gen9plus-670.U3.10.4.5.19 base image is supposed to run on the ninth
generation (G9) of HP servers. This version of ESXi is not officially supported on the seventh generation (G7) of
HP servers but runs without any issue.
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5.1.1.4 Nested virtualization
VMware does not officially support nested virtualization. SLA and support are not assured
when using nested virtualization. However, even if it is not officially supported by VMware,
nested virtualization of ESXi works.[48] The additional layer of virtualization may impact
performance and is the reason why VMware does not support it officially. If performance delta be-
tween standard ESXi usage and nested usage is relevant, dedicated hardware should be considered.

Nested ESXis are used on each of the three hypervisors of the laboratory. The installation was
done with the same logic of installing standard ESXis; installed then upgraded to the last version:
6.7.0, 16075168.

The nested virtual context is the following:
• On HP Proliant DL 380 G7 running ESXi, nested ESXis have;

12 vCPUs,
36GB RAM,

• On HP Proliant DL 380 G7 running KVM, nested ESXi has;
8 vCPUs,
24GB RAM,

Schematically, the nested infrastructure is the following;

ESXis: → vESXi 12vCPUs 36Go RAM
KVM:   → vESXi 8 vCPUs 24Go RAM

Laboratory

vESXi

vESXi

vESXi

vCenter

Figure 5.2: Laboratory nested infrastructure.
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5.2 Scenario
The global scenario is to spawn and configure machines on nested hypervisors connected via
VPN connections. Nested hypervisors are named;

• vesxi-u-01.rack,
• vesxi-u-02.rack,
• vesxi-r-03.rack.

Three sites are used to avoid the trivial case of only having two sites connected. The protocol
used is OpenVPN. It creates L3 tunnels. IPSec could also have been used as easily as OpenVPN.

The VPN connections are performed by pfSense firewalls. Each hypervisor has one nested
hypervisor and one pfSense VM running inside this nested hypervisor. They can be represented
as following;

vesxi-u-02.rack vesxi-u-01.rack vesxi-r-03.rack

Connectivity VMs
vESXi scope
VPN tunnels

Figure 5.3: Laboratory nested infrastructure with connectivity.
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The PoC scenario only has two layers of VMs connected to each other; the connectivity layer
composed of pfSense firewalls and the machines behind the connectivity layer. It is, however,
possible to add as much layer as required with the same logic. In this scenario, VMs connected
to the connectivity layer are Ubuntu 18.04.04 LTS servers.

5.3 as-Code tools
Every machine, except ESXis, is built, deployed and configured via as-Code techniques. First,
VMware VM templates are built with Packer. They are then deployed with Terrafom and
configured with Ansible when required as shown in Figure 4.4. Packer builds VM templates on
manual request. Indeed, there is no need to rebuild each template if there are no changes on the
content of the template.

5.3.1 Packer
In this PoC Packer version 1.5.4 is used.

The VMware vCenter OS customization feature is used by Terraform, but does not support
FreeBSD, on which pSfense is based. pfSense does not have built-in API capabilities. The
configuration file can be injected in pfSense but the required packages need to be installed
independently before injecting the configuration. To avoid such configuration injection and loss
of time at boot, a dedicated VM template per pfSense is used. As shown on Figure 5.3, one
pfSense instance is used on each vESXi to ensure VPN connections.

Before taking a look at the code, the Packer directory structure is represented as following:
1 packer
2 ubuntu-18.04
3 preseed.cfg
4 ubuntu-18.json
5 variables.json

Listing 5.1: Packer file tree

The Listing 5.1 gives a simple representation of the file structure required to build the VM
templates with Packer. The code required for the pfSense VM templates is similar except for the
preseed file. For pfSense, boot commands and configuration file injection are used.

The code required to build the Ubuntu 18.04.04 LTS servers VM template is the following;

5.3.1.1 Variables
The following listing is the content of the variables.json file:

1 {
2 "vcenter_server": "vcenterserver.rack",
3 "vsphere-datacenter": "FCR",
4 "username": "{{env ‘PACKER_USERNAME‘}}",
5 "password": "{{env ‘PACKER_PASSWORD‘}}",
6 "datastore": "vESXI-U-01-DS1",
7 "host": "vesxi-u-01.rack",
8 "cluster": "vesxi-u-01.rack",
9 "network": "VM Network - vesxi-u-01",

10 "network-second": "VM Network - vesxi-u-01",
11 "ssh_username": "ubuntu",
12 "ssh_password": "ubuntu",
13 "iso_url": "[vESXI-U-01-DS1] ISO/ubuntu-18.04.4-server-amd64.iso",
14 "template_name": "Packer-Ubuntu-18.04-TEMPLATE-FCR"
15 }

Listing 5.2: Packer Ubuntu server variables



5.3 as-Code tools 42

Variables defined on Listing 5.2 are used to define the following parameters:
• The address of the vCenter server (line 2),
• The data center to use on the vCenter server (line 3),
• The credentials to connect to the vCenter server (lines 4-5),
• The datastrore to use on the destination ESXi (line 6),
• The destination ESXi on which the template will be built (line 7),
• The destination cluster (here the same than the ESXi) on which the template will be built

(line 8),
• The virtual network connections (lines 9-10),
• The SSH credentials of the template (to run script on the template) (lines 11-12),
• The path to the ISO disk image on the destination ESXi (line 13),
• The name of the template to create (line 14).

5.3.1.2 Preseed
Preseed files are used to automate the deployment of Ubuntu machines. Those files are not
Packer-specific but can still be used by Packer.[49] The following listing is the content of the
preseed.cfg file:

1 d-i passwd/user-fullname string ubuntu
2 d-i passwd/username string ubuntu
3 d-i passwd/user-password password ubuntu
4 d-i passwd/user-password-again password ubuntu
5 d-i user-setup/allow-password-weak boolean true
6
7 d-i partman-auto/disk string /dev/sda
8 d-i partman-auto/method string regular
9 d-i partman-partitioning/confirm_write_new_label boolean true

10 d-i partman/choose_partition select finish
11 d-i partman/confirm boolean true
12 d-i partman/confirm_nooverwrite boolean true
13
14 d-i passwd/root-login boolean true
15 d-i passwd/root-password password ubuntu
16 d-i passwd/root-password-again password ubuntu
17
18
19 d-i pkgsel/include string open-vm-tools openssh-server cloud-init perl git ansible
20
21 d-i grub-installer/only_debian boolean true
22
23 d-i preseed/late_command string \
24 echo "@reboot root ping 8.8.8.8" >> /target//etc/crontab; \
25 echo ’ubuntu ALL=(ALL) NOPASSWD: ALL’ > /target/etc/sudoers.d/ubuntu ; \
26 in-target chmod 440 /etc/sudoers.d/ubuntu ;
27
28 d-i finish-install/reboot_in_progress note

Listing 5.3: Packer Ubuntu server preseed

The parameters defined on the Listing 5.3 are the following:
• The normal user credentials (lines 1-5),
• The disk partitioning (lines 7-12),
• The root user credentials (lines 14-16),
• The packages installation (line 19),
• The bootloader installation (line 21),
• The custom configuration part (lines 23-26),
• The end of the installation process (line 28),

5.3.1.3 Template
The template file is the file to provide to Packer to start the build process. This template uses
user variables. These variables were defined on the variable file on subsubsection 5.3.1.1. User
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variables are used with the structure "{{ user ‘<varibale_name>‘ }}" where <variable_name>
has to be replaced with the name of the variable to use e.g. "{{ user ‘password‘ }}".[50] The
following listing is the content of the ubuntu-18.json file:

1 {
2 "builders": [
3 {
4 "type": "vsphere-iso",
5
6 "vcenter_server": "{{user ‘vcenter_server‘}}",
7 "username": "{{user ‘username‘}}",
8 "password": "{{user ‘password‘}}",
9 "insecure_connection": "true",

10
11 "datacenter": "{{user ‘vsphere-datacenter‘}}",
12
13 "vm_name": "{{user ‘template_name‘}}",
14 "datastore": "{{user ‘datastore‘}}",
15 "host": "{{user ‘host‘}}",
16 "convert_to_template": "true",
17 "cluster": "{{user ‘cluster‘}}",
18 "network": "{{user ‘network‘}}",
19 "boot_order": "disk,cdrom",
20
21 "guest_os_type": "ubuntu64Guest",
22
23 "ssh_username": "{{user ‘ssh_username‘}}",
24 "ssh_password": "{{user ‘ssh_password‘}}",
25
26 "CPUs": 4,
27 "RAM": 4096,
28 "RAM_reserve_all": false,
29
30 "disk_controller_type": "pvscsi",
31 "disk_size": 15000,
32 "disk_thin_provisioned": true,
33
34 "network_card": "vmxnet3",
35
36 "iso_paths": ["{{user ‘iso_url‘}}"],
37 "iso_url": "http://cdimage.ubuntu.com/releases/18.04/release/ubuntu-18.04.4-server-

amd64.iso",
38 "iso_checksum": "d5bc5c59c24191bb45dd85fc6a420b34",
39 "iso_checksum_type": "md5",
40
41 "floppy_files": [
42 "./preseed.cfg"
43 ],
44 "boot_command": [
45 "<enter><wait><f6><wait><esc><wait>",
46 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
47 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
48 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
49 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
50 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
51 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
52 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
53 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
54 "<bs><bs><bs>",
55 "/install/vmlinuz",
56 " initrd=/install/initrd.gz",
57 " priority=critical",
58 " locale=en_US",
59 " file=/media/preseed.cfg",
60 "<enter>"
61 ]
62 }
63 ],
64 "provisioners": [
65 {
66 "type": "shell",
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67 "inline": ["echo ’template build complete’"]
68 }
69 ]
70 }

Listing 5.4: Packer Ubuntu server template

The parameters defined on the Listing 5.4 are the following:
• The builder section; where the build part resides (lines 2-63 ),

– The type of builder to use (line 4),
– The vCenter connection with credentials using variables (line 6-9),
– The data center selection on the vCenter using the vsphere-datacenter variable (line

11),
– The VM name using the template_name variable (line 13),
– The datastore name using the datastore variable (line 14),
– The destination ESXi name using the host variable (line 15),
– The template flag; flagging this VM as template when build is finished (line 16),
– The destination cluster name using the cluster variable (line 17),
– The network name using the cluster variable (line 18),
– The boot order of the machine; disk then cdrom (line 19),
– The OS type (line 21),
– The SSH credentials (lines 23-24),
– The resources allocated to the VM template (lines 26-32),
– The network card type (line 34),
– The ISO configuration (lines 36-39),
– The preseed file configuration (lines 41-43),
– The boot commands loading the preseed file (lines 44-61).

• The provisioner section; where the configuration part resides (lines 64-69),
– The final echo signaling the end of the build.

5.3.1.4 Run
The Packer build can be started with the following bash command:

packer bu i ld −var− f i l e v a r i a b l e s . j s on ubuntu −18. j son
Listing 5.5: Run Packer Ubuntu server template build

5.3.2 Terraform
In this PoC Terraform version 0.12 is used. Terrafom uses HCL, a JSON compatible file format.[51]

pfSense VMs are deployed in the PoC with Terraform as it is possible to reach each vESXi before
the VPNs are deployed in the laboratory context. Outside of laboratory context, it would not be
possible to deploy every VPN VM from a single point because they will require connectivity,
that is set up by those exact VMs.

Doing such pfSense deployment in the laboratory only simplifies the context and proves the
ability to deploy pfSense VMs without having to add another layer of VMs.

Terraform scripts are segmented in two parts;
1. The first is the previously evoked pfSense deployment script,
2. The second is deploying Ubuntu server VMs.
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Before taking a look at the code, the (essential part of the) Terraform directory structure is
represented as following:

1 tf-fcr
2 00-global-variables.tf
3 01-variables-u-01.tf
4 02-variables-u-02.tf
5 03-variables-r-03.tf
6 010-data-retrieve.tf
7 020-network.tf
8 060-ubuntu_vm.tf
9 ansible

10 apache2
11 files
12 apache.conf.j2
13 index.html.j2
14 inventory.yml
15 playbook.yml
16 vars
17 default.yml
18 users
19 playbook.yml
20 vars
21 default.yml
22 zsh
23 playbook.yml
24 vars
25 default.yml
26 packer
27 ubuntu-18.04
28 preseed.cfg
29 ubuntu-18.json
30 variables.json
31 scripts
32 dns-ssh.sh
33 terraform.tfstate
34 terraform.tfstate.backup
35 versions.tf

Listing 5.6: Terraform file tree

The required structure for Terraform deployment is displayed in Listing 5.6. The Packer (lines
26-30) and Ansible (lines 9-25) directories are part of the Terraform directory and therefore are
included on the listing. As for Packer listing, this one gives a simple representation of the file
structure required to deploy resources with Terraform. The code structure required to deploy
the pfSense VMs is similar to this one.

The content and purpose of each file or directory are the following:
• 00-global-variables.tf: definition of global variables used by multiple files,
• x-variables-y-z.t: definition of variables proper to specific resources,
• 010-data-retrieve.tf: retrieval of data on the vCenter,
• 020-network.tf: creation of networking resources,
• 060-ubuntu_vm.tf: creation of Ubuntu 18.04 servers,
• packer: Packer directory; as explained on subsection 5.3.1,
• ansible: Ansible directory; will be explained on subsection 5.3.3,
• scripts: script directory

– dns-ssh.sh: script pushing DNS configuration and SSH public keys on created VM,
• terraform.tfstate: Terraform-specific file containing the state of the resources,
• terraform.tfstate.backup: Terraform-specific file containing a backup of the state of the

resources,
• versions.tf: Terraform-specific file containing the version of Terraform used.
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Essential content
The code shown from subsubsection 5.3.2.1 to subsubsection 5.3.2.5 is the essential extracted
code required to deploy two Ubuntu 18.04.04 LTS server VMs on only one host; vesxi-u-01 ;

5.3.2.1 Global variables
Global variables file is used to define variables related to the vCenter and establish its connection.
Varibles common to the entire deployment are also defined is this file. The following listing is
the essential content (as defined in section 5.3.2) of the 00-global-variables.tf file:

1 variable "vcenter_user" {
2 default = "user"
3 }
4
5 variable "vcenter_password" {
6 default = "password"
7 }
8
9 variable "vcenter_vsphere_server" {

10 default = "vcenterserver.rack"
11 }
12
13 provider "vsphere" {
14 user = var.vcenter_user
15 password = var.vcenter_password
16 vsphere_server = var.vcenter_vsphere_server
17 allow_unverified_ssl = true
18 }
19
20 variable "template_image_ubuntu_18_04" {
21 default = "Packer-Ubuntu-18.04-TEMPLATE-FCR"
22 }
23
24 variable "dc" {
25 default = "FCR"
26 }
27
28 variable "hosts" {
29 default = [
30 {
31 name = "vesxi-u-01"
32 hostname = "vesxi-u-01.rack"
33 }
34 ]
35 }
36
37 variable "clusters" {
38 type = map
39 default = {
40 vesxi-u-01 = "vesxi-u-01.rack"
41 }
42 }
43
44 variable "vswitches" {
45 type = map
46 default = {
47 vesxi-u-01-vs-0 = "vSwitch0"
48 vesxi-u-01-vs-1 = "vSwitch1"
49 }
50 }
51
52 variable "port_groups" {
53 type = map
54 default = {
55 vesxi-u-01-pg-0 = "VM Network - vesxi-u-01"
56 }
57 }

Listing 5.7: Terraform global variables
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The variables defined on the Listing 5.7 are the following:
• The credentials of the vCenter (lines 1-7),
• The address of the vCenter (lines 9-11),
• The connection to the vCenter: with allow_unverified_ssl set to true to allow the use of

the self-signed ssl certificates (lines 13-19),
• The name of the template to use for the Ubuntu 18.04 machines on the vCenter (lines

20-22),
• The name of the data center to use for the vCenter (lines 24-26),
• The host(s) names (ESXi(s)) definition (lines 28-35),
• The cluster(s) name (ESXi(s) in this case) definition (lines 37-42),
• The virtual switche(s) name definition (lines 44-50),
• The port group(s) name definition (lines 52-57),

5.3.2.2 Variables for Virtual Machine(s)
The following listing is the essential content (as defined in section 5.3.2) of the 01-variables-u-01.tf
file:

1 variable "ubuntu_vm_params_vesxi-u-01" {
2 default = {
3 vcpu = "4"
4 ram = "4096"
5 disk_datastore = "vESXI-U-01-DS1"
6 disk_size = "25"
7 }
8 }
9

10 variable "ubuntu_network_params_vesxi-u-01" {
11 default = {
12 domain = "test.local"
13 label = "ubuntu_network_vesxi-u-01"
14 vlan_id = "0"
15 subnet = "172.10.0.0/24"
16 gateway = "172.10.0.254"
17 dns = ["8.8.8.8", "8.8.4.4"]
18 }
19 }
20
21 variable "ubuntu_base_hostname_vesxi-u-01" {
22 default = "u-01-ubuntu0"
23 }
24
25 variable "ubuntu_vm_desired_capacity_vesxi-u-01" {
26 default = "2"
27 }

Listing 5.8: Terraform variables for Virtual Machine(s)

The variables defined on the Listing 5.8 are the following:
• The variables defining resources allocated to the VM(s): number of virtual CPU(s), amout

of RAM, disk space and destination datastore (lines 1-8),
• The domain used on the deployed machines lines (line 12),
• The label (the name) fo the port group (line 13),
• The VLAN id of the port group (line 14),
• The network configuration of the machine (subnet, gateway, DNS) (lines 15-17)
• The base name of the machines deployed (lines 21-23),
• The number of machines to deploy (lines 25-27).

5.3.2.3 Data retrieval
Data retrieval is required to have the object (hosts, datastores, port groups, etc.) IDs from
the vCenter. The following listing is the essential content (as defined in section 5.3.2) of the
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010-data-retrieve.tf file:
1 data "vsphere_datacenter" "dc" {
2 name = var.dc
3 }
4
5 data "vsphere_host" "vesxi-u-01" {
6 name = var.clusters.vesxi-u-01
7 datacenter_id = data.vsphere_datacenter.dc.id
8 }
9

10 data "vsphere_resource_pool" "vesxi-u-01" {
11 # If you haven’t resource pool, put "Resources" after cluster name
12 name = "${var.clusters.vesxi-u-01}/Resources"
13 datacenter_id = data.vsphere_datacenter.dc.id
14 }
15
16 data "vsphere_datastore" "ubuntu-vesxi-u-01" {
17 name = var.ubuntu_vm_params_vesxi-u-01["disk_datastore"]
18 datacenter_id = data.vsphere_datacenter.dc.id
19 }
20
21 data "vsphere_network" "ubuntu-vesxi-u-01" {
22 name = var.ubuntu_network_params_vesxi-u-01["label"]
23 datacenter_id = data.vsphere_datacenter.dc.id
24 depends_on = [vsphere_host_port_group.ubuntu_port-vesxi-u-01]
25 }
26
27 data "vsphere_virtual_machine" "template_ubuntu_18_04" {
28 name = var.template_image_ubuntu_18_04
29 datacenter_id = data.vsphere_datacenter.dc.id
30 }

Listing 5.9: Terraform data retrieval

The elements retrieved from the Listing 5.9 are the following:
• The data center (lines 1-3),
• The host (ESXi) (lines 5-8),
• The resource pool (lines 10-14),
• The datastore (lines 16-19),
• The network (lines 21-25),
• The virtual machine template (lines 27-30).

5.3.2.4 Port group creation on vSwitch
The following listing is the essential content (as defined in section 5.3.2) of the 020-network.tf
file:

1 resource "vsphere_host_port_group" "ubuntu_port-vesxi-u-01" {
2 name = var.ubuntu_network_params_vesxi-u-01["label"]
3 host_system_id = data.vsphere_host.vesxi-u-01.id
4 virtual_switch_name = var.vswitches.vesxi-u-01-vs-1
5 vlan_id = var.ubuntu_network_params_vesxi-u-01["vlan_id"]
6 allow_promiscuous = true
7 }

Listing 5.10: Terraform port group creation on vSwitch

The result on the vCenter of such configuration is the following (highlited by the blue rectangle):
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Figure 5.4: Results of port group creation.

5.3.2.5 Virtual Machine(s) creation
This part of the code is managing the creation of the VM(s) and running Ansible to configure them.
The following listing is the essential content (as defined in section 5.3.2) of the 060-ubuntu_vm.tf
file:2

1 # Create random passwords
2 resource "random_password" "password-u-01" {
3 count = var.ubuntu_vm_desired_capacity_vesxi-u-01
4 length = 32
5 special = false
6 }
7
8 # Create the VM(s)
9 resource "vsphere_virtual_machine" "ubuntu_vm_vesxi-u-01" {

10 count = var.ubuntu_vm_desired_capacity_vesxi-u-01
11 name = "${var.ubuntu_base_hostname_vesxi-u-01}${count.index + 1}"
12 num_cpus = var.ubuntu_vm_params_vesxi-u-01["vcpu"]
13 memory = var.ubuntu_vm_params_vesxi-u-01["ram"]
14 datastore_id = data.vsphere_datastore.ubuntu-vesxi-u-01.id
15 host_system_id = data.vsphere_host.vesxi-u-01.id
16 resource_pool_id = data.vsphere_resource_pool.vesxi-u-01.id
17 guest_id = data.vsphere_virtual_machine.template_ubuntu_18_04.guest_id
18 scsi_type = data.vsphere_virtual_machine.template_ubuntu_18_04.scsi_type
19 annotation = "ubuntu:ubuntu"
20
21 # Define network interface
22 network_interface {
23 network_id = data.vsphere_network.ubuntu-vesxi-u-01.id
24 }
25
26 # Define disk parameters
27 disk {
28 name = "${var.ubuntu_base_hostname_vesxi-u-01}${count.index + 1}.vmdk"
29 size = var.ubuntu_vm_params_vesxi-u-01["disk_size"]
30 }
31
32 # Define template and customisation parameters
33 clone {

2For clarity reasons, the explanations are given by the comments on the code (comments are identified by a
line starting with #)
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34 template_uuid = data.vsphere_virtual_machine.template_ubuntu_18_04.id
35
36 customize {
37 linux_options {
38 host_name = "${var.ubuntu_base_hostname_vesxi-u-01}${count.index + 1}"
39 domain = var.ubuntu_network_params_vesxi-u-01["domain"]
40 }
41
42 network_interface {
43 ipv4_address = cidrhost(var.ubuntu_network_params_vesxi-u-01["subnet"], count.index

+ 10)
44 ipv4_netmask = split("/", var.ubuntu_network_params_vesxi-u-01["subnet"])[1]
45 dns_server_list = var.ubuntu_network_params_vesxi-u-01["dns"]
46 }
47
48 ipv4_gateway = var.ubuntu_network_params_vesxi-u-01["gateway"]
49 }
50 }
51
52 # Define dependency on the port group on the vswitch
53 depends_on = [vsphere_host_port_group.ubuntu_port-vesxi-u-01]
54
55 # Inject base script file injecting RSA SSH key and fixing DNS
56 provisioner "file" {
57 connection {
58 type = "ssh"
59 user = "ubuntu"
60 password = "ubuntu"
61 host = cidrhost(var.ubuntu_network_params_vesxi-u-01["subnet"], count.index + 10)
62 }
63 source = "scripts/dns-ssh.sh"
64 destination = "/tmp/dns-ssh.sh"
65 }
66
67 # Running the script on the remote machine
68 provisioner "remote-exec" {
69 connection {
70 type = "ssh"
71 user = "ubuntu"
72 password = "ubuntu"
73 host = cidrhost(var.ubuntu_network_params_vesxi-u-01["subnet"], count.index + 10)
74 }
75 inline = [
76 "chmod +x /tmp/dns-ssh.sh",
77 "sudo /tmp/dns-ssh.sh",
78 ]
79 }
80
81 # Run ansible playbook with the previously injected RSA SSH key; installing custom shell
82 provisioner "local-exec" {
83 command = "ansible-playbook ansible/zsh/playbook.yml -u ubuntu -i ${cidrhost(var.

ubuntu_network_params_vesxi-u-01["subnet"], count.index + 10)},"
84 }
85
86 # Run ansible playbook with the previously injected RSA SSH key; installing apache2 with

configuration
87 provisioner "local-exec" {
88 command = "ansible-playbook ansible/apache2/playbook.yml -u ubuntu -i ${cidrhost(var.

ubuntu_network_params_vesxi-u-01["subnet"], count.index + 10)}, -e ’http_host=${var.
ubuntu_base_hostname_vesxi-u-01}${count.index + 1}’"

89 }
90
91 # Run ansible playbook with the previously injected RSA SSH key; change credentials of the

machine
92 provisioner "local-exec" {
93 command = "ansible-playbook ansible/users/playbook.yml -u ubuntu -i ${cidrhost(var.

ubuntu_network_params_vesxi-u-01["subnet"], count.index + 10)}, -e ’password=${
random_password.password-u-01[count.index].result}’"

94 }
95 }
96
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97 # Display IP addresses of the machines created by Terraform
98 output "Ubuntu-u-01-IPs" {
99 value = zipmap(vsphere_virtual_machine.ubuntu_vm_vesxi-u-01[*].name,

vsphere_virtual_machine.ubuntu_vm_vesxi-u-01[*].default_ip_address)
100 description = "The IP addresses of all ubuntu machines on u-01"
101 }
102
103 # Display passwords of the machines created by Terraform
104 output "Ubuntu-u-01-Passwords" {
105 value = try(zipmap(vsphere_virtual_machine.ubuntu_vm_vesxi-u-01[*].name,

random_password.password-u-01[*].result), "None")
106 description = "The passwords of all ubuntu machines on u-01"
107 }

Listing 5.11: Terraform Virtual Machine(s) creation

5.3.3 Ansible
In this PoC Ansible version 2.9 is used.

Also in this PoC, Ansible runs three playbooks, their usage is the following;
• Install custom shells; this playbook illustrates were custom scripts can be integrated into

Ansible,
• Install Apache2 with basic configuration (playbook from GitHub of Digital Ocean community

[52]); this playbook illustrates standard Ansible playbook capabilities,
• Credentials update of the machine; this playbook updates the default credential of the VM

template for security reasons.

Those playbooks are launched on Ubuntu server VMs. The following playbook is used to update
passwords based on the Terraform random_password resource;

5.3.3.1 Credentials update
1 ---
2 - hosts: all
3 become: true
4 vars_files:
5 - vars/default.yml
6
7 tasks:
8 - name: Set ubuntu password
9 user:

10 name: ubuntu
11 password: "{{ password | password_hash(’sha512’) }}"
12 - name: Set root password
13 user:
14 name: root
15 password: "{{ password | password_hash(’sha512’) }}"

Listing 5.12: Ansible update users credentials

Such short playbook only aims to show that any standard Ansible playbook can be used by
Terrafrom.
5.4 Run
To run the Terrafrom script, it is only required to perform a terraform apply bash command
within the directory containing the Terrafom code. Terraform will then create the resources
declared in the code.

The final output of Terraform should be similar to the following screenshot;
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Figure 5.5: Result of terraform apply bash command.

As password credentials are generated by Terraform, they will remain in the Terraform state and
not be altered if some resources are added or destroyed.

5.5 Destroy
Terrafom is very powerful in terms of destruction of resources. Indeed to destroy the resources it
is only required to perform a terraform destroy bash command within the directory containing
the Terrafom code.

5.6 Results
5.6.1 Creation
The time to create resources is dependent on multiple factors. The hardware is the main bottle-
neck, and more specifically, the network connection between sites, the disks speed, the amount of
resources created in parallel and in total, the size of the resources created, etc.

The following two tests and their results are designed to give an indication of the time required
to deploy resources;

5.6.1.1 2 VMs on each vESXi
The deployed VMs have 4 vCPu, 4GB of RAM and 25GB of disk. The size on disk of machines
deployed is 6,5GB. The VM template is located on the datastore of the vesxi-u-01.

The time dispatch is the following;
• Creation of network resources on all vESXis: ∼ 0s,
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• Clone on vesxi-u-01: ∼ 2m,
• Clone on vesxi-u-01 with the 3 Ansible playbooks: ∼ 3m49s,

• Clone on vesxi-u-02: ∼ 2m30s,
• Clone on vesxi-u-02 with the 3 Ansible playbooks: ∼ 4m10s,

• Clone on vesxi-r-03: ∼ 5m,
• Clone on vesxi-r-03 with the 3 Ansible playbooks: ∼ 7m10s,

Sum of 6 VMs created and configured in ∼ 7m30s.

5.6.1.2 5 VMs on each vESXi
The deployed machines have 4 vCPu, 4GB of RAM and 25GB of disk. The size on disk of
machines deployed if 6,5GB. The VM template is located on the datastore of the vesxi-u-01.

The time dispatch is the following;
• Creation of network resources on all vESXis: ∼ 0s,

• Clone on vesxi-u-01: ∼ 2m to 2m20s,
• Clone on vesxi-u-01 with the 3 Ansible playbooks: ∼ 4m10s to 4m20s,

• Clone on vesxi-u-02: ∼ 2m30s,
• Clone on vesxi-u-02 with the 3 Ansible playbooks: ∼ 4m10s to 5m20s,

• Clone on vesxi-r-03: ∼ 9m,
• Clone on vesxi-r-03 with the 3 Ansible playbooks: ∼ 11m30s to 11m40s,

Sum of 15 VMs created and configured in around 20m.

The time delta between the two examples is due to the default setup of parallel task run by
Terraform which is 10. More load was also going through the network between machines. A
bottleneck can be due to the limitation of the vesxi-r-03 running under KVM hypervisor which
is not able to map the 10Gbps NIC to the hypervisors. Indeed on the vesxi-r-03, the 10Gbps
NIC appears as a 1Gbps NIC.

5.6.2 Destruction
The destruction is fast, a few seconds was enough to destroy the infrastructure in both previous
evoked examples.

5.6.3 Benchmark
Benchmarking was performed to estimate the performance loss due to nested virtualization. The
phoronix-test-suite[53] tool was used to conduct the benchmarks. The version 9.6.0 was used.
Benchmarks were performed on VMs and nested VMs on host virtualizing the vesxi-u-01 and on
the KVM host. VMs used for the benchmarks were Ubuntu 18.04 LTS server with 4vCPU, 4GB
RAM and 25GB disk (thin provisioned).
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5.6.3.1 I/O - Disk
To benchmark the I/O disk performances the pts/iozone 1.9.6 [54] benchmark was used. The
parameters used were the following:

• Record Size: 1MB,
• File Size: 4GB,
• Disk Test: Read and write (all options).

The configurations of the disk bus on the KVM host were the following:
• Ubuntu 18.04 standard VM: VirtIO,
• ESXi nested VM: IDE.

The ESXi nested VM does not use the VirtIO disk bus because disks were not detected on the
nested ESXi VM when the VirtIO bus type was tested. The only configuration on which the
disks were detected was IDE. The results are the following:

Figure 5.6: I/O read speed of ESXi system. Figure 5.7: I/O read speed of KVM system.

Figure 5.8: I/O write speed of ESXi system. Figure 5.9: I/O write speed of KVM system.
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The Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9, standard and nested, are all based on 100
samples.

Observations
On the previous Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9, the median is represented as
the orange line and the mean is represented as the green triangle. Medians and means can be
used to compare the results of the benchmarks.

Also on the same previous figures, performance loss is to be observed between standard and
nested virtualization. Indeed, the mean and the median of nested virtualization performance are
lower than the mean and median of standard virtualization. It is only relevant to compare the
plot boxes of the same figures. Indeed, the aim of the figures is to compare standard and nested
virtualization of machines running on the same physical hardware. The goal of such observation
is not to compare the performance between different physical machine but only observe the
performance loss (if any) introduced by the layers of virtualization.

Therefore, when comparing standard and nested virtualization of each figure individually, disk
performance loss is to be observed. This performance loss is the result of additional virtualization
layer.

It is worth mentioning that ESXis were not configured with cache disks. However, a delta
between the benchmark result and the monitoring embedded inside the vCenter exists. The
monitoring outputs can be found on the Appendix A and more precisely on Figure A.1. The
maximum disk read value observed by the built-in monitoring is around 420MBps. The delta
between the maximum value returned by the benchmark (around 600 MBps) and the by the
built-in monitoring is probably the result of some disk caching at the ESXi or Ubuntu itself level.
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5.6.3.2 CPU
To benchmark the CPU performances the pts/compress-7zip 1.7.1 [55] benchmark was used. No
parameter is required for this benchmark. The results are the following:

Figure 5.10: CPU speed of ESXi system. Figure 5.11: CPU speed of KVM system.

The Figure 5.10 and Figure 5.11, standard and nested, are all based on 100 samples. MIPS
stands for Million Instructions Per Second.[56]

Observations
On the previous Figure 5.10, and Figure 5.11, the median is represented as the orange line and
the mean is represented as the green triangle. Medians and means can be used to compare the
results of the benchmarks.

The observation realized concerning disk performance loss can be applied for the CPU. Indeed,
on the Figure 5.10 and Figure 5.11 a CPU performance loss is to be observed. The reason of this
performance loss is identical to the disk performance loss i.e., to the additional virtualization
layer.
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5.6.3.3 RAM
To benchmark the RAM performances the pts/mbw 1.0.0 [57]
benchmark was used. The parameters used were the following:

• Test: Memory Copy,
• Array Size: 1024 MiB.

The results are the following:

Figure 5.12: RAM speed of ESXi system. Figure 5.13: RAM speed of KVM system.

The Figure 5.12 and Figure 5.13, standard and nested, are all based on 100 samples.

Observations
On the previous Figure 5.12 and Figure 5.13, the median is represented as the orange line and
the mean is represented as the green triangle. Medians and means can be used to compare the
results of the benchmarks.

The observation realized concerning disk performance loss can be applied for the RAM. Indeed,
on the Figure 5.12 and Figure 5.13 a RAM performance loss is to be observed. The reason of
this performance loss is identical to the disk and CPU performance loss i.e., to the additional
virtualization layer.

5.7 Remarks
All the code displayed previously in this chapter is only a part of the code. The whole code is
split in +50 files and can be found on GitHub:

• VPNs: https://github.com/NicodemeB/tf-vpns,
• FCR: https://github.com/NicodemeB/tf-fcr.

5.8 Limitations
During experimentations, build and different tests, limitations regarding the concept were found.
They are the following:

https://github.com/NicodemeB/tf-vpns
https://github.com/NicodemeB/tf-fcr
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5.8.1 VMware OS customization
The VMware OS customization feature used by Terraform, as stated in subsection 5.3.1, suffers
from limitations. Indeed, not all OSs are supported by this feature.[58] VMware support in
particular multiple version of Microsoft Windows, Red Hat, CentOS, Oracle Linux, Ubuntu and
SLES. It should, however, be possible to bypass this limitation with Packer.

5.8.2 Nested virtualization
During different tests, the support of nested virtualization of ESXi on other hypervisors than
ESXi and KVM was tested. VMware Fusion was rapidly tested and functional. VirtualBox was
extensively tested. As a matter of fact, VirtualBox supports nested virtualization since version
6.0.[59] It was, however, impossible to make a vESXi with its additional Virtual Machines to run.
All nested virtualization options were tested on multiple different hardware always obtaining the
same negative result.

5.8.3 KVM
5.8.3.1 10G NIC
As already introduced in the subsection 5.6.1 10Gbps interface is bottlenecked to 1Gbps in nested
ESXi on KVM. On KVM, multiple drivers are available, but only the e1000 driver resulted in
a working network adapter on the nested ESXi. Using such driver, the result is a 1Gbps NIC.
Screenshots are available on Appendix B

5.8.3.2 Disks bus type
As already mentioned in the subsubsection 5.6.3.1 the VirtIO bus type was not working on the
nested ESXi. When this type of bus was tested the result was that the disks were not detected
by the nested ESXi. IDE was the only bus type working, which is less performant the VirtIO
bus type but offers more compatibility.

5.8.3.3 Hypervisors and VMs performances
As seen in the subsection 5.6.3, variable performance loss is possible due to the additional layer
of nested virtualization. This limitation and the resulting performance should be considered
before using nested virtualization.

5.9 PoC conclusion
The elements shown and explained in this chapter demonstrated the concept exposed on chapter 4
which were automation, hypervisors support and connectivity. Indeed, automation between
multiple site running on multiple hypervisors was demonstrated as working. Limitations regarding
the concept and the PoC were also addressed.



6. Future work

This chapter aims to describe future work that could be the next step of this work.

In this chapter is first discussed the scenario abstraction. The automation is then evoked, followed
by the router emulation and identity management and finally, the logging and monitoring.

6.1 Scenarios abstraction
The main future work is developing the abstraction mechanism in the scenarios. As a matter
of fact, there are a lot of tasks that can be achieved with the concept of this work. However,
this requires a Terraform, Packer and Ansible expertise to make it work. The approach about
abstraction in scenarios could be to use a language (or create one if required) to structure
scenarios. This piece of code could then be transformed in the appropriate IaC and CaC tool
and then deploy and configure the required resources.

YAML or JSON language could be used to declare the template files. This will, however, still
come with knowledge requirements for the declaration of such template file. The best alternative
will probably be to design an application, probably a web application, capable of guiding users
to generate templates then perform the resources deployment and configuration.

One of the drawbacks of such solution is once more, the limitations of the application itself.
At some point it will be difficult to design complex topologies without having to deal with
complex deployment challenges. Graphical representation can improve clarity but configuration
will still have limitations in terms of non-expert users. It would probably be possible to create
few template and derive configurations from them but at some point if custom configuration is
required, custom code will follow.

6.2 Automation
6.2.1 Packer automation
Actually, in the actual form of the concept and the PoC the Packer builds of VM templates are
launched manually. The next step could be to be able to determine when the build instructions
have changed and integrated the build of required VM templates to Terraform. Doing such
thing could also help reduce the time required for deployments if VM templates are not copied
from a single ESXi but are distributed in the required destination ESXis. Storage space on each
ESXi should be considered before doing such thing. Indeed the total space occupied by the VM
templates will be higher if templates are copied on multiple ESXis.

The speed of deployments will probably take more time when VM templates will require to be
built.

6.2.2 Hypervisor’s deployment automation
Deployment of ESXis are actually performed manually. One of the next steps could be to create
an image template of ESXi. This image could be used for deploying ESXis or virtual ESXis.
Creating such template could improve the deployment speed when adding new hardware to the
federation.



6.3 Router emulation 60

6.3 Router emulation
Emulation of routers such as Cisco IOS should be theoretically possible in the actual concept
and PoC. It will, however, require lots of customization to make it work. Another next step
could be to improve this process and integrate it to the actual concept. Configuration of such
devices should also be addressed.

Improving such functionality will increase the range of supported devices and should improve
realism.

6.4 Identity management
At the moment, the PoC is using flat role segmentation. When accessing machines, it is all or
nothing, meaning all rights or no rights at all. When deploying large scenarios, this concern
should be addressed to segment rights and access to machines as discussed in section 3.5. Indeed
users and federation administrators should be distinguished. As also discussed in section 3.6,
segmentation of users right restricting access to certain resources should also be addressed.

At the moment there is also no directory integration nor central AAA system. Adding those
elements will probably help with management of credentials.

6.5 Logging & monitoring
As discussed in section 3.7, logging and monitoring could be useful in certain scenarios. This
layer could be centralized and collect logs from resources deployed. Those deployed resources
could be configured to use the central system as logging server.



7. Conclusion

The goal of this Master’s Thesis was to provide a Proof of Concept (PoC) to demonstrate a
way to implement shared cyber exercises and training between the Université Libre de Bruxelles
(ULB) and Royal Military Academy (RMA). Multiple steps have been taken to provide this PoC.

First, the State of the Art in terms of Cyber Range (CR) and Federated Cyber Range (FCR) was
addressed. The concept of CR was firstly introduced. The question of their purpose and of their
usage was then addressed and answered. The requirements of such technology was identified and
rigorously analyzed. The types of existing CR solutions with their advantages and disadvantages
were evaluated. This phase of research allowed to gain knowledge and understanding regarding
CRs and the federation aspect. Such first phase was elementary for the next phases of the work.
The research process also allowed to identify the lack of clear documentation regarding concepts
and projects explicitly labeled as FCR.

Once the knowledge and understanding gained, it was possible to address the identification
of challenges encountered by FCRs. This identification phase was essential to propose a well-
considered and relevant concept. To have the best approach regarding the identification of those
challenges, experimentations were conducted in parallel to the theoretical research phase. Key
challenges such as hypervisors, automation and connectivity were identified.

After the identification of the challenges took place the formulation of the concept proposition.
The concept addressed the automation, hypervisor and connectivity aspects.

The deployments of resources were to be performed via as-Code tools to provide the required
automation level. Packer by Hashicorp, Terraform by Hashicorp and Ansible by Red Hat, were
chosen to fill the automation requirements. Packer was used to build custom VM templates,
Terraform was the element deploying those templates, and then finally Ansible was used to
configure the deployed resources.

The hypervisor element of the concept was to use ESXi, or nested ESXi when it was not possible
to use this hypervisor directly on the hardware. Those hypervisors were to be controlled via the
vCenter.

The connection between the hypervisors was delegated to Virtual Machines providing Virtual
Private Network (VPN) capabilities residing on those same hypervisors. Using a central site was
designated as the best option to connect sites. It was also stated that public cloud providers
could help mitigate the creation of a network bottleneck at the central site.

The PoC was originally supposed to be experimented between the ULB and the Belgian RMA.
Due to the COVID-19 situation at the time of implementing the PoC, such implementation
was not possible. Therefore, the concept has only been implemented and tested in laboratory
environment. The PoC implicated multiple host hypervisors: ESXi and KVM all running nested
virtualized ESXi. The connectivity between the hypervisors was assured by pfSense VMs residing
on the nested ESXi of each host.

To conclude, the PoC successfully demonstrated the ability to deploy some resources automatically
on multiple nested hypervisors on multiple sites via as-Code tools. The limitations, performances
and future work regarding this PoC and its initial concept were also addressed.
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A. ESXi monitoring

A.1 Standard virtualization

Figure A.1: ESXi built-in monitoring - disk read benchmark.





B. KVM NIC limitation

B.1 KVM side

Figure B.1: KVM limitation system.
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B.2 vCenter side

Figure B.2: RAM speed of KVM system.
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