

Preface

First, I would like to thank my promotor for the guidance and feedback. I would
also like to thank the jury for reading the text. Finally, my sincere gratitude goes
also to my family, to my friends and especially to Ward for their support.

Hanne Peeters

i

Contents

Preface i
Abstract iv
List of Figures v
List of Tables vi
List of Abbreviations vii
1 Introduction 1

1.1 Embedded systems . 1
1.2 Problem statement . 1
1.3 Research questions . 3
1.4 Thesis structure . 3

2 FACT framework and existing tools 5
2.1 FACT framework . 5
2.2 Firmadyne . 6
2.3 Metasploit . 9

3 Collection of firmware images 11
3.1 Sources . 11
3.2 Firmware images suitable for emulation with Firmadyne 12
3.3 Resulting firmware images . 14
3.4 Conclusion . 14

4 Plugin I. Dynamic CVE verification 17
4.1 Problem statement . 17
4.2 CVE identification by static analysis 18
4.3 CVE verification by dynamic analysis 19
4.4 Evaluation . 22
4.5 Conclusion . 25

5 Plugin II. Comparing fuzzer-based code coverage 27
5.1 Problem statement . 27
5.2 Code coverage of emulated firmware 28
5.3 Fuzzing embedded web interfaces . 29
5.4 Analysis of obtained execution traces 31
5.5 Results . 32

ii

Contents

5.6 Evaluation . 32
5.7 Conclusion . 36

6 Discussion 39
6.1 Previous related research . 39
6.2 Usability of plugins . 40
6.3 Usability of results . 41

7 Conclusion 43
7.1 Overview . 43
7.2 Contribution . 44
7.3 Challenges . 44
7.4 Possible extensions . 44

A Screenshots of web user interface 49
A.1 Plugin I. Dynamic CVE verification 49
A.2 Plugin II. Comparing fuzzer-based code coverage 50

B Configuration for experiments 51
B.1 Fuzzer configurations . 51

C Implemented test cases for plugin 53
C.1 Plugin I. Dynamic CVE verification 53

Bibliography 61

iii

Abstract

The amount of embedded devices increases each year. Consequently, there is the
need for large-scale analysis of their firmware images. To support this the FACT
framework was developed, that currently consist mainly out of plugins for static
analysis. Therefore, we will develop two dynamic analysis plugins for the FACT
framework in this thesis. Here, scalability, both in terms of execution time and in
terms of analysis of firmware images at the same time, is an important factor.

The first plugin, of which the functionality is divided over two actual plugins CVE
exploits and CVE firmadyne, performs dynamic CVE verification. This contributes
to reducing the amount of manual analysis needed to confirm a possible vulnerability
for a specific firmware image. For this plugin, we observed that the number of
Metasploit exploits available for the identified CVEs for a firmware image is limited.
Next, we saw that it is difficult to execute the exploits in an automated way as required
settings are often not set, which means that the exploit can not be tested. Further,
the plugin does not work for privilege escalation exploits, which is a limitation.
Finally, we found that the support currently provided by FACT framework is not
sufficient to implement the interaction between the two plugins in an scalable way.

The second plugin fuzz tracing enables the user to compare the code coverage
of different fuzzer configurations for the embedded web interface of a firmware image.
As full program coverage is often the goal of fuzzing, this plugin enables the user
to determine which fuzzer configuration has the highest code coverage or results in
the most unique code coverage. Therefore, the value of this plugin is that the ratio
between the number of executed fuzzers and the number of detected vulnerabilities
can be optimised. The scalability of this plugin, in terms of needed execution time,
depends on two factors: the firmware image under test and the number of fuzzer
configurations executed. We observed that the execution time varies greatly between
firmware images and even within vendors. This plugin scales well for the amount of
fuzzer configurations that can be tested while the execution time remains reasonable.
A limitation of the plugin is the lack of context for the obtained code coverage per
fuzzer configuration.

The two plugins make use of Firmadyne to obtain software-based full system
emulation. This limits the firmware images that can be tested to network-connected
Linux-based embedded firmware images for which the root file system is present.
The supported CPU architectures are little-endian ARM, little-endian MIPS and
big-endian MIPS.

iv

List of Figures

2.1 FACT upload page [18]. 7
2.2 FACT analysis results page for firmware image. 8
2.3 Code structure for an analysis plugin [16]. 8
2.4 Code structure for the firmadyne plugin. 9
2.5 Categories of exploits in the Metasploit Framework [32]. 10
2.6 Categories of auxiliaries in the Metasploit Framework [32]. 10

4.1 Visualisation of the present dependencies for the dynamic CVE
verification functionality. 19

4.2 Code structure for the CVE exploits plugin. 22
4.3 Code structure for the CVE firmadyne plugin. 24

5.1 An example of an embedded web interface of a collected firmware image. 30
5.2 Code structure for the fuzz tracing plugin. 33
5.3 Unique code coverage reached per fuzzer configuration during ten

executions. 34
5.4 The execution time of the plugin per number of executed fuzzer

configurations. 36
5.5 Distribution of the execution times of the collected firmware images with

the same settings for fuzzing. 37

A.1 Unique code coverage reached per fuzzer configuration during ten
executions. 49

A.2 Web user interface of FACT showing the results of the fuzz tracing
analysis for a firmware image. 50

v

List of Tables

3.1 The stages reached for each of the collected firmware images per vendor. 12
3.2 Detected root file system for both not extracted and successfully

extracted firmware images with Firmadyne. 13
3.3 Found CPU architectures for firmware images containing a Linux file

system per vendor. 14
3.4 Category of devices associated with firmware images and its frequency. 15

vi

List of Abbreviations

Abbreviations
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
FACT Firmware Analysis and Comparison Tool
NTP Network Time Protocol
NVRAM Non-volatile random-access memory
SMB Server Message Block
TDS Tabular Data Stream
QEMU Quick EMUlator

vii

Chapter 1

Introduction

1.1 Embedded systems

Nowadays, embedded systems are ubiquitous. Their applications range from washing
machines, medical implants and routers to car elements and traffic lights [9, 12].
Further, more and more embedded devices are connected to the internet, thereby
forming the Internet of Things, which is estimated to consist of in the order of 20
billion devices by 2020 [20].

The large number of devices connected to the internet combined with the presence
of vulnerabilities, makes attacks possible such as the Mirai botnet in 2016. The Mirai
botnet was used by attackers to launch distributed denial-of-service (DDoS) attacks
at various high-profile targets. Retrospective research pointed out that security
cameras, Digital Video Recorders (DVRs) and consumer routers accounted for the
majority of devices present in the Mirai botnet [2]. This shows the importance of
developing secure embedded devices and finding their vulnerabilities early on so that
they can be patched.

1.2 Problem statement

In this section we start with a discussion of the concept of firmware in the context of
embedded systems. Firmware is defined by Costin et al. as being ‘the software that
is embedded in a hardware device’ [9]. It resides on non-volatile memory and can
be broken down into three principal components: the kernel, the bootloader(s) and
the file system(s) [21, 24]. Together, the kernel and the file system(s) make up the
entire operating system of an embedded device [36]. Firmware images can also be
monolithic, in which case there is no clear distinction between the components [8].

The kernel can be viewed as being the core of an operating system. It mainly
provides services such as: controlling and managing the execution order of processes,
memory usage and communication with peripheral devices and networks [24].

The bootloader takes care of the initialisation of the various hardware components
(e.g. RAM, flash storage, I/O) of the embedded system. It also ensures that the
kernel is loaded into memory for execution. This process can be carried out in one,

1

1. Introduction

two or three stages, thereby using a corresponding number of bootloaders. Each of
these bootloaders has its specific functionality and loads the bootloader of the next
stage [36].

The file system of an embedded device usually includes a root file system with
possibly other file systems mounted on it [8].

Firmware images are often customised for a specific vendor, device, chipset or
geographic retail location [8, 11, 12]. Vendors can distribute their firmware either
as the full firmware image (containing the kernel, one or multiple bootloaders and
one or multiple file systems) or as an update (missing the kernel and/or the root
file system) [9, 10, 36]. Further, firmware can be acquired under one of two forms:
as source code (before compilation) or in a binary format. The latter form is more
often available e.g. due to proprietary firmware [22, 34].

As the example attack given in the previous section points out, it is important
to be able to identify weaknesses and vulnerabilities in the firmware of embedded
devices. Next, we give a general overview of the principal methods used to identify
vulnerabilities in already released firmware images.

For security-focused analysis of firmware images, four kinds of methods are used:
static analysis, dynamic analysis, symbolic analysis and fuzzing [22, 25]. Static
analysis methods attempt to find vulnerabilities by inspecting the code, whereas
dynamic analysis, symbolic analysis and fuzzing execute the firmware on the real
embedded device or on an emulator [30, 37]. The main difference between dynamic
and symbolic analysis, lies in the support of symbolic program memory by the latter
[22]. Fuzzing attempts to discover unknown vulnerabilities in software by executing
the target program with random input data and monitoring the program behaviour
for anomalies [26, 30, 39].

The main challenge in the context of dynamic analysis and fuzzing on firmware
of embedded devices, is designing an emulator that makes running the firmware and
therefore dynamic analysis possible. This is a challenge because of the great variety of
hardware environments that are used in embedded systems [38]. Usually, emulators
that are designed for embedded devices need access to the actual hardware, which
means that it does not scale very well [38]. The solution to this is software-based full
system emulation, which was applied in earlier research for Linux-based embedded
firmware [8, 10, 35]. The choice of the researchers to focus the emulation effort
on embedded Linux is mainly motivated by its observed dominating occurrence in
the obtained datasets in both researches, which was also pointed out by a previous
large-scale analysis of embedded devices [8, 9, 10].

As mentioned earlier, the increase of the number of embedded devices employed
nowadays requires an evolution towards automated large-scale analysis methods
for firmware images. The Firmware Analysis and Comparison Tool (FACT)1 is an
extendable open-source framework that facilitates carrying out firmware analysis, by
storing uploaded firmware images and their analysis results in a local database for
later usage. The different analysis tools, currently principally static analysis methods,
are provided as plugins, which makes it straightforward to add additional tools. An

1https://fkie-cad.github.io/FACT_core/

2

1.3. Research questions

example of static analysis performed with an analysis plugin is the identification
of the different software components present in the firmware. Currently, only one
analysis plugin provides dynamic analysis for a firmware image within the FACT
framework.

1.3 Research questions
In this master thesis, we will focus on providing dynamic analysis plugins for the
FACT framework. We will provide plugins for the following functionality:

• using directed dynamic analysis on a firmware image to verify earlier found
CVEs by static analysis

• comparing code coverage obtained by different fuzzer configurations for a
firmware image

1.4 Thesis structure
The remainder of this thesis is structured as follows. In chapter 2, we provide a
discussion of the existing FACT framework and the tools that we will use to perform
emulation and to carry out dynamic analysis. Next, in chapter 3, we treat the
data collection of firmware images that will be used to test the plugins on. The
two developed plugins are discussed in chapter 4 and chapter 5. The discussion is
provided in chapter 6 and chapter 7 contains the conclusion.

3

Chapter 2

FACT framework and existing
tools

In this chapter, we will discuss the context for both plugins. First, in section 2.1 the
FACT framework, for which the plugins are developed will be described in detail.
Furthermore, we treat two open-source tools that will be used by both plugins.
Firmadyne, which will be used to emulate the firmware, is discussed in section 2.2
and Metasploit, which will be used to carry out the dynamic analysis, is discussed in
section 2.3.

2.1 FACT framework
The Firmware Analysis and Comparison Tool (FACT)1 is an open-source extendable
analysis framework for binary firmware images developed by Fraunhofer FKIE2. Its
goal is to automate a large part of the process of firmware analysis, which is focused on
the security of the firmware images. Consequently, this makes large-scale analysis of
firmware images feasible and manageable. The framework is both accessible through
a web user interface as with a REST API. It integrates many unpacking tools and
various plugins for static analysis, which allows the user to adapt the performed
analysis to the firmware image in question. At the moment, the FACT framework
does provide one dynamic analysis plugin, firmadyne, which is discussed in detail in
the next section. There are three categories of plugins within the FACT framework:
unpacker plugins, analysis plugins and compare plugins [17]. The compare plugins
make it possible to compare two firmware images, for example a vulnerable firmware
image and its update. Furthermore, all uploaded firmware images are kept in a local
database, which can be queried. The framework provides also statistics about earlier
analysed firmwares [13].

The following procedure is used to perform an analysis for a firmware image
within the FACT framework. Via the web user interface, the user can upload the
firmware image and its corresponding metadata. On this page, the wanted analyses

1https://github.com/fkie-cad/FACT_core
2https://www.fkie.fraunhofer.de/

5

2. FACT framework and existing tools

can be checked off. This is displayed in Figure 2.1. Next, the specified analyses for
the firmware image are carried out and the page that contains the analysis results for
the firmware image is updated. This page is shown in Figure 2.2. Here, the obtained
analysis results can be seen in general for the whole firmware image by clicking on
the wanted results in the ‘Analysis Results’ column and per file by expanding the
file tree and clicking on the wanted file.

Plugins for the FACT framework are written in Python. All plugins within
the FACT framework are open-source and users can write their own plugins. The
development guide mentions that an analysis plugin should follow the code structure
shown in Figure 2.33 [16]. Here, we see that only the code folder, which contains
the actual plugin, is required. The other folders are optional. In the install.sh file
the necessary installations for the plugin can be provided. These will be carried out
during the execution of the FACT installation script. The internal folder is meant
to contain additional code or sources for the plugin. In the test folder tests can be
provided to be executed with pytest. The view folder contains the customised view
for the web user interface that can be provided [16].

New plugins are automatically detected if they are provided in the right place in
the structure of the FACT framework. Next, by default an analysis is performed on
each file that the firmware image contains, but there is also the option to perform
it only on the outer container. A plugin analysis A can be dependent on another
plugin analysis B, which means that for each file the plugin analysis B is executed
first. Through this dependency, plugin analysis A can use the results of the analysis
carried out by plugin analysis B, which are by default passed per file. Here, it is
not possible for plugin analysis B to access the overall result of plugin analysis A
[16].

The FACT framework already provides a plugin for software-based full system
emulation of firmware images, which is discussed next.

2.2 Firmadyne

The firmadyne plugin4 integrates Firmadyne within the FACT framework. Fir-
madyne5 was developed by Chen et al. in 2016 and provides software-based full
system emulation for network-connected Linux-based embedded firmware images of
which the root file system is present. In order to achieve this kind of emulation, the
researchers replaced the existing kernel with one modified by them (and compatible
with the original CPU architecture) to match the emulation environment. Further,
they also provided software emulation of the NVRAM hardware peripheral, as half of
their dataset accessed it. Afterwards, the modified kernel together with the extracted,
original file systems are booted by using QEMU full system emulator. Replacing
the original kernel means that only vulnerabilities affecting the file system of the
firmware can be identified in this way [8, 37]. When the emulation is successful,

3__init__.py files are omitted for better readability
4https://github.com/fkie-cad/FACT_firmadyne_analysis_plugin
5https://github.com/firmadyne/firmadyne

6

2.2. Firmadyne

Figure 2.1: FACT upload page [18].

Firmadyne provides the possibility to carry out three basic automated analyses on
the firmware image: an analysis for publicly available web pages, an analysis that
dumps all unauthenticated SNMP information and an analysis that tries to exploit
possible vulnerabilities. For the last one, the researchers made a default selection of
60 Metasploit exploits well suited for embedded devices and provided 14 self-written

7

2. FACT framework and existing tools

Figure 2.2: FACT analysis results page for firmware image.

analysis plugin
install.sh [OPTIONAL]
code

PLUGIN_NAME.py
internal [OPTIONAL]

ADDITIONAL_SOURCES_OR_CODE
test [OPTIONAL]

test_PLUGIN_NAME.py
data

SOME_DATA_FILES_TO_TEST
view

PLUGIN_NAME.html [OPTIONAL]

Figure 2.3: Code structure for an analysis plugin [16].

8

2.3. Metasploit

exploits for vulnerabilities they discovered. These exploits are executed within the
Metasploit Framework [8].

The code structure for the firmadyne plugin is shown in Figure 2.4. This is
a recursive analysis plugin and works as follows. As it executes its analysis in a
recursive way, each file is processed by the plugin. To be able to emulate a firmware
image with Firmadyne, the root file system needs to be present. Therefore, the
plugin code waits for a file of which the content represents a file system to execute
the code of Firmadyne. Once the analysis is started for the file system, the code
located in the internal folder is executed, which automates the different steps that
need to be performed for Firmadyne.

firmadyne
install.sh
bin

Firmadyne
Metasploit Framework

code
firmadyne.py

internal
steps

prepare.py
emulation.py
analysis.py

firmadyne_wrapper.py
test

test_firmadyne.py
data

view
firmadyne.html

Figure 2.4: Code structure for the firmadyne plugin.

2.3 Metasploit
Metasploit is an open-source Ruby-based framework used for penetration testing.
At a high level, the following components can be distinguished for the Metasploit
Framework: auxiliaries, payloads, exploits, encoders and post-exploitation activities
[32]. In the context of this thesis, we are mostly interested in the exploits (for the
plugin of chapter 4) and the auxiliaries (for plugin of chapter 5) components. The
structure of the exploits component is displayed in Figure 2.5. Here, we see that
the actual exploits are categorised in different categories corresponding to the target
they are applicable for [32].

9

2. FACT framework and existing tools

Figure 2.5: Categories of exploits in the Metasploit Framework [32].

Next, we have the auxiliaries component, of which the structure is shown in
Figure 2.6. For this component, we are in particular interested in the provided
fuzzers. Currently, Metasploit provides a number of protocol-based fuzzers for the
following protocols: DNS, FTP, HTTP, NTP, SMB, SMTP, SSH and TDS [1].

Figure 2.6: Categories of auxiliaries in the Metasploit Framework [32].

10

Chapter 3

Collection of firmware images

In this chapter, we discuss the collection of firmware images that will be used to
evaluate the developed plugins in the next chapters (chapter 4 and chapter 5) on.
For this purpose, it should be possible to successfully emulate the firmware image
with Firmadyne, as this will be the emulation tool used in both plugins.

This chapter is structured as follows. First, in section 3.1, the collection of the
firmware images is discussed. Next, in section 3.2, we carry out the different steps in
the Firmadyne emulation process to determine which firmware images can be used to
evaluate the plugins. In section 3.3, we will see some characteristics of the resulting
dataset. Finally, section 3.4 contains the conclusion for this chapter.

3.1 Sources

Due to the lack of publicly available databases for firmware images, it was necessary
to perform our own collection of firmware images. For this task, we used the scrapers
distributed together with Firmadyne [8]. In order to test and evaluate Firmadyne,
Chen et al. collected 23.035 firmware images developed by 42 vendors. This collection
was done either manually or in an automated way by using their scrapers. Of these
42 vendors, only 14 vendors had at least one of their firmware images reach the
‘network reachable’ phase. This means that their embedded web interface became
reachable over the network and that the emulation succeeded. Of the 23.035 collected
firmware images, 1971 did emulate successfully [8].

As we will use the Firmadyne tool for the emulation of the firmware images in
both plugins, we therefore focused on collecting firmware images of those 14 vendors
with at least one successful emulation with Firmadyne, being: Belkin, CenturyLink,
D-Link, Huawei, Linksys, Netgear, On Networks, OpenWrt, Tenda, Tenvis, Tomato
by Shibby, TP-Link, TRENDnet and ZyXEL. For 12 of these vendors, we were able
to download at least one firmware image. We used Firmadyne’s scrapers wherever
possible, but as some of the websites changed, not all of them worked. Further
collection was performed manually. Here, our aim was to collect firmware images
from as many different hardware products as possible, to maximise the number of
firmware images found that could possibly be emulated with Firmadyne. For On

11

3. Collection of firmware images

Networks, we could not find a download site that contained firmware images for the
products provided by them. Tenvis on the other hand deleted the links for firmware
downloads on their site. Furthermore, we encountered vendors that required an
account for downloading some of their firmware images. This was for example the
case with Huawei, which explains why we could download only two firmware images
for this vendor. A side note is that OpenWrt and Tomato by Shibby do provide
firmware for devices of other hardware vendors [8]. Their third-party firmware images
are Linux-based and thus in theory suitable for emulation with Firmadyne [6, 31].

3.2 Firmware images suitable for emulation with
Firmadyne

In total, we collected 2699 firmware images, of which the distribution per vendor is
displayed in Table 3.1.

Table 3.1: The stages reached for each of the collected firmware images per vendor.

stage reached
vendor downloaded Linux file system supported CPU emulated

architecture

Belkin 65 0 0 0
CenturyLink 21 16 16 0
D-Link 1051 212 184 45
Huawei 2 0 0 0
Linksys 111 58 58 7
Netgear 47 25 24 1
OpenWrt 50 41 38 1
Tenda 294 130 129 0
Tomato by Shibby 674 672 671 17
TP-Link 22 17 17 2
TRENDnet 52 24 24 5
ZyXEL 310 113 113 9

Total 2699 1308 1274 87

Next, we used the Firmadyne extractor to determine if the firmware images
contain a Linux-based file system. This was necessary because other file systems
are not supported by Firmadyne. The extractor script of Firmadyne, attempts to
extract the firmware image and outputs the found file system(s). The different file
systems and their frequency, found for both firmware images of which the extraction
failed and for firmware images of which the extraction was successful, are displayed in
Table 3.2. Here, we see that most firmware images in our dataset contain a Squashfs

12

3.2. Firmware images suitable for emulation with Firmadyne

root file system. For the firmware images for which no root file system could be
detected, the firmware image could either not be unpacked by Firmadyne or it is not
a complete firmware image (e.g. contains only release notes, is a partial firmware
update) [10]. This leaves us with 1308 candidates for successful emulation.

Table 3.2: Detected root file system for both not extracted and successfully
extracted firmware images with Firmadyne.

file system not extracted extracted

Cramfs 20 2
EXT 0 3
JFFS2 14 78
Linux 0 102
Minix 5 0
MPFS 6 0
PFS 3 0
romfs 2 0
Squashfs 44 1115
TROC 8 1
UBIFS 2 4
YAFFS 15 3
no file system 1272 -

Total 1391 1308

After that, the Firmadyne tool was used to determine the CPU architecture
that the firmware was designed to run on. As emulation by Firmadyne supports
only little-endian ARM, little-endian MIPS and big-endian MIPS, we omitted the
firmware images with other CPU architectures in Table 3.1. For 10 firmware images,
we could not determine the CPU architecture due to an error and therefore these are
also omitted from the table. A full overview of all found CPU architectures for the
firmware images with a Linux file system per vendor can be found in Table 3.3. We
see that in our dataset the majority of the firmware images with a Linux-based file
system is made to be run on one of the supported CPU architectures by Firmadyne.

The next step is to check if the firmware image can be actually emulated with
Firmadyne. We count a firmware image as successfully emulated, if the embedded
web interface of a firmware image becomes reachable over the network. During this
stage, a ‘60-second’ learning phase of Firmadyne is executed in order to infer the
expected network interfaces [8]. When a network interface was found, we continued
with the actual emulation of the firmware image. For this final stage, we used a
time limit of 300 seconds to determine if the embedded web interface is reachable
on the host or not. Thus, there are three possible outcomes: a network interface
could not be inferred, the network interface was not reachable on the host within 300
seconds or the emulation was successful. Finally, the firmware images that emulated

13

3. Collection of firmware images

Table 3.3: Found CPU architectures for firmware images containing a Linux file
system per vendor.

CPU architecture
vendor little-endian little-endian big-endian big-endian big-endian

ARM MIPS MIPS MIPS 64-bit PowerPC

CenturyLink 1 1 14 0 0
D-Link 89 6 89 16 5
Linksys 20 32 6 0 0
Netgear 15 1 8 0 1
OpenWrt 3 13 22 0 2
Tenda 27 72 30 0 0
Tomato 117 554 0 0 0
TP-Link 6 2 9 0 0
TRENDnet 2 4 18 0 0
ZyXEL 25 10 78 0 0

Total 305 695 274 16 8

successfully are the ones that will be used for testing the plugins. In our case, we
end up with 87 firmware images. The exact division of those firmware images per
vendor, is displayed in the last column of Table 3.1. For 1070 firmware images, there
could no network interface be inferred. For 117 firmware images, the embedded web
interface became not reachable on the host within the time limit of 300 seconds.

3.3 Resulting firmware images
In this section, we will look at characteristics of the resulting dataset that may help
to interpret the results in the next chapters in a better way. The different categories
of embedded devices for the resulting firmware images can be found in Table 3.4. We
can see that our dataset mainly consists out of access points and routers. When we
map the firmware images to their hardware products (not differentiating between
different hardware versions), we have 40 unique products left.

If we look at the release year of the firmware images, we see that it ranges from
2007 until 2019. This means that Firmadyne is able to emulate firmware released
after its active development ended in 2016, which is indicated on their Github page
[7].

3.4 Conclusion
In this chapter, we saw that, despite our effort to target the vendors that had
firmware images that successfully emulated with Firmadyne [8], only a fraction of

14

3.4. Conclusion

Table 3.4: Category of devices associated with firmware images and its frequency.

device category frequency

Access Point 46
Router 30
Gateway 6
Gigabit Passive Optical Networking 2
Range Extender 1
Mesh Extender 1
Wireless Ethernet Adapter 1

Total 87

the collected firmware images could be emulated successfully. As both developed
plugins will be using Firmadyne for the emulation of a specific firmware image, this
is a first important limitation on the usability of the plugins. Further, we found that
the obtained dataset consists mainly out of access points and routers.

15

Chapter 4

Plugin I. Dynamic CVE
verification

In this chapter, we describe the first plugins that we developed for the FACT frame-
work, that aim to automate the verification of earlier found Common Vulnerabilities
and Exposures (CVEs). For this purpose, we use the already existing CVE lookup
plugin of the FACT framework to identify all the present CVEs for a firmware image.
The rest of the functionality is divided over two plugins: CVE exploits and CVE
firmadyne. The first one performs the preparation for the dynamic CVE verification
(i.e. searches for exploits for the identified CVEs). The second one, which is an
adaptation of the firmadyne plugin, uses Firmadyne for software-based full system
emulation. This enables the plugin to carry out the dynamic verification of the
CVEs, for which an exploit was found, on the firmware image. The exploits used in
the plugins, are those provided by the Metasploit Framework. The goal of the two
plugins together is to reduce the need for manual analysis in order to confirm the
existence of a CVE for the firmware image.

The chapter is structured as follows. First, in section 4.1 we explain what CVEs
are and we describe the problem that our plugins try to solve. Next, in section 4.2 we
discuss the CVE lookup plugin of the FACT framework that performs static analysis
on a given firmware image to identify CVEs for it. Further, in section 4.3 we treat
the plugins that we provided for the FACT framework: the CVE exploits plugin
and the CVE firmadyne plugin. The evaluation of both these plugins in terms of
correctness and usability is carried out in section 4.4. Finally, section 4.5 contains
the conclusion for this chapter.

4.1 Problem statement
To check for known vulnerabilities in software, hardware devices or operating sys-
tems, the Common Vulnerabilities and Exposures1 (CVE) and Common Platform
Enumeration2 (CPE) standards are often used [33].

1https://cve.mitre.org/
2https://nvd.nist.gov/products/cpe

17

4. Plugin I. Dynamic CVE verification

As stated on its website, CVE is a list filled with entries of public disclosed
cybersecurity vulnerabilities and exposures. Each entry contains a standardized
common identification number (referred to as CVE ID number), a description for
the vulnerability or exposure and at least one public reference (e.g. vulnerability
reports) [28]. These CVE ID numbers are of the form of CVE-<year>-<sequence
number> [29]. In the rest of this thesis, we will refer to these CVE entries as CVEs.

Further, to make it possible to identify software, hardware devices and operating
systems affected by a CVE, each CVE entry is associated with a list of products, de-
scribed according to the CPE standard. This way, it is possible to find vulnerabilities
for specific products by searching for their CPE identifier [33].

In general, static analysis yields often false positives, which need to be identified
through manual analysis [8, 10]. In this context and with the growing number of
embedded devices kept in mind, it is therefore interesting to apply dynamic analysis
directed towards the found vulnerabilities by the used static analysis tool. This
method was suggested and applied by Costin et al. in 2016 in their large-scale
analysis of embedded web interfaces of embedded devices [10]. Methods like this
are interesting because they provide a way to focus manual analysis on confirmed
vulnerabilities.

In this chapter, we will therefore develop a plugin that can confirm possible
CVEs through dynamic analysis. The two main criteria for the plugin are the
following. First, the plugin has to work within the FACT framework. Second, it
has to determine and output which CVEs were confirmed by dynamic analysis for a
given firmware image.

4.2 CVE identification by static analysis

The FACT framework does already contain an analysis plugin that matches a given
firmware image with the present CVEs in that firmware image. This plugin, CVE
lookup, looks for CVEs by using the results of another FACT plugin, software
components, which identifies the different software components (e.g. kernel version)
that are present in the firmware image. After this, each identified software component
is looked up in the CPE database3 to obtain their unique CPE ID. Next, these CPE
IDs are used to find the corresponding CVEs.

This analysis is performed in a recursive way, which means that as soon as
the software components plugin has processed a file, the CVEs for the file can
be searched. Therefore, it is possible to consult the results for this plugin per file,
although a summary overview of all found CVEs is also provided. The results of
this plugin contain a list with all the found CVEs (i.e. to generate the summary
overview), which we will be using in the CVE exploits plugin. We used version
0.0.3 of the CVE lookup plugin in the development of the other plugins.

3https://nvd.nist.gov/products/cpe

18

4.3. CVE verification by dynamic analysis

4.3 CVE verification by dynamic analysis

After we have obtained the CVEs for a firmware image, the next steps, to be able
to confirm a possible CVE for a firmware image, are the following. First, we need
to find the exploits available for each identified CVE. This will be implemented by
the CVE exploits plugin and is treated in subsection 4.3.1. After that, we need to
emulate the firmware image, perform the dynamic analysis by executing the found
exploit and interpret the results. This will be implemented by the CVE firmadyne
plugin and is discussed in subsection 4.3.2.

A visualisation of the interaction of the different plugins and their dependencies
is provided in Figure 4.1.

Figure 4.1: Visualisation of the present dependencies for the dynamic CVE verifi-
cation functionality.

4.3.1 CVE exploits plugin

First, we need a framework that contains exploits for the identified CVEs and
supports their execution. For these tasks, we chose to use Metasploit. This choice
was made for the following reasons. First of all, it can be easily used in combination
with Firmadyne as this was done in the original research [8]. It is thus already
implemented in the FACT framework together with Firmadyne. Further, it is open-
source as we mentioned earlier. Lastly, their Vulnerability and Exploit database4

allows to search on CVE ID number to find a corresponding Metasploit exploit. A
limitation of the choice for Metasploit is that exploits will not be found for each

4https://www.rapid7.com/db/

19

4. Plugin I. Dynamic CVE verification

identified CVE as the exploit database currently contains only 2005 exploits5 while
the 100 000th CVE entry was published in 2018 [3].

Our implemented plugin, which we call CVE exploits, will be an analysis plugin
and can therefore use the results of other plugins to perform its analysis [15]. To be
able to use the found CVEs by the CVE lookup plugin, we need to make our plugin
dependent on the CVE lookup plugin. This means that for each file of the firmware
image, the CVE lookup analysis is performed before carrying out our CVE exploits
analysis. As the CVE lookup plugin works in a recursive way, our plugin has to
perform its analysis in the same recursive way because of the established dependency.
This dependency is represented by the arrow between the two plugins in Figure 4.1.

The plugin uses the following scheme to find the available Metasploit exploits for
the identified CVEs. For each CVE, it determines if there is a Metasploit exploit
available by looking it up in the Vulnerability and Exploit Database. If there is one
available, the path in the Metasploit Framework for the exploit is extracted. The
results of this plugin contain a mapping of CVEs to their corresponding Metasploit
exploits (if available). The summary contains all the found Metasploit exploits.
Further, the plugin provides the exploits file for the found exploits to be used in
the CVE firmadyne plugin. However, to be able to generate this file in the right
way, multithreading needs to be disabled for the plugin. This could increase the
needed execution time. We made the choice to generate the exploits file by the CVE
exploits plugin. This because the recursive way in which all of the plugins work,
does not allow the CVE firmadyne plugin to retrieve all the found exploits before
starting the emulation of the firmware image.

We implemented this functionality as a separate plugin as it allows the user to
get an overview of all available Metasploit exploits for the firmware image before any
emulation is executed. This can be useful to avoid a dynamic CVE verification in
the case that no Metasploit exploits are available. Further, it can give an insight for
which CVEs the user needs to look for exploits implemented by other frameworks or
if the user needs to write its own exploits.

4.3.2 CVE firmadyne plugin

Next, we need to be able to emulate the firmware image and execute the exploits corre-
sponding to the found CVEs. Therefore, this plugin, which is called CVE firmadyne
(an adaptation of the firmadyne plugin6 provided by the FACT framework), is
going to be dependent on the previous discussed CVE exploits plugin as shown in
Figure 4.1. This way, the exploits file used by Firmadyne to execute Metasploit
exploits is adapted to contain only the found Metasploit exploits (i.e. instead of the
default selection of Metasploit exploits made by the researchers of Firmadyne [8]).

The main challenge in this context is the file-based processing mechanism, which
the FACT framework uses for recursive analysis plugins. If the first plugin in a series
of dependencies performs its analysis in a recursive way, the other plugins need to
do it as well in a recursive manner. As the file type, for which the CVE Firmadyne

5Metasploit v5.0.87-dev-
6https://github.com/fkie-cad/FACT_firmadyne_analysis_plugin

20

4.3. CVE verification by dynamic analysis

plugin looks to start the analysis (i.e. file system)7, is skipped by both the CVE
lookup and CVE exploits analyses, this file will be one of the first files that is
ready to be processed by CVE firmadyne. This means that Firmadyne will start the
emulation before all the CVEs and exploits are looked up for a firmware image and
thus with none or an incomplete collection of exploits to be tested. Currently, the
FACT framework has no easy way to detect if an analysis is terminated for all files
of a given firmware image. Therefore, we tried to implement the suggestion that
was made on their Github: to check if the analysis was done for all included files
of the firmware image [19]. We used the results of the unpacker tool to determine
the files present in the firmware image and then checked for all these files if the
CVE exploits analysis was already carried out. However, this does not solve the
problem as the FACT scheduler does not wait for the unpacker to finish before other
scheduled analyses are carried out. Neither is there another way to detect if the
unpacker has finished. This is a problem as the number of files that a firmware
image contains is not known beforehand. Therefore, we queried two times for the
results of the unpacker by using the REST API with a time interval between the
two queries. The chosen time interval should be large enough to allow the unpacker
to process additional files. In this case, if the results of the two queries are equal, the
unpacker has finished. We used the REST API for this task because it returns the
analysis results for the whole firmware image (when queried with the right identifier)
and can display for a chosen file the analyses that were already carried out.

When the process of searching Metasploit exploits for the found CVEs is finished,
the emulation of the firmware image can be carried out. As already mentioned
before, instead of using the default exploits file, we will use a customised one that
only contains the found exploits. This exploits file was created by the CVE exploits
plugin. After this, the Metasploit logs are interpreted. For executing the exploits
with Metasploit, we have the limitation that it may be the case that a required
setting for an exploit is not set (i.e. a setting that has no default value such as
LHOST). Currently, we only set the RHOST and RHOSTS settings and therefore
it can be the case that the exploit can not be executed due to a missing setting.
Further, we provided a configuration file for Metasploit to which configurations (i.e.
the name of the setting and the value for the setting) can be added to improve the
number of exploits that can be executed.

The results of this plugin consist of the successfulness of the different steps of
the emulation process, the same way as is done for the firmadyne plugin. Next,
the results for the Metasploit exploits are displayed, which consist out of the CVE,
the tested exploit, if the exploit was executed successfully on the firmware image,
the parameters which were missing and the corresponding Metasploit log file. It is
useful to include this log in the results to be able to know if the exploit could not be
executed due to a missing setting. A screenshot of the results of the plugin can be
found in Figure A.1 in Appendix A.

7functionality originating from firmadyne plugin

21

4. Plugin I. Dynamic CVE verification

4.4 Evaluation

In this section, we will evaluate both the correctness and the usability of the
CVE exploits and CVE firmadyne plugins separately and the correctness of their
interaction.

4.4.1 CVE exploits plugin

An overview of the code structure for the CVE exploits plugin is given in Figure 4.2.
The internal folder contains the template for the exploits file.

cve exploits
code

cve_exploits.py
internal

template_runExploits.py
test

test_cve_exploits.py
view

cve_exploits.html

Figure 4.2: Code structure for the CVE exploits plugin.

Correctness

First, we look at the correctness of the CVE exploits plugin. To evaluate this,
we implemented a number of test cases, which are displayed in Appendix C in
subsection C.1.1. With these test cases we obtained a test coverage of 99% for the
code of our plugin.

However, when testing the plugin in the FACT framework, there occurs a timeout
error for the files that do contain exploits. This means that there are no results
registered for this file and the results for this file can not be queried. We obtain only
results for the files with CVEs that do not match any Metasploit exploit. We were
not able to solve this. This hinders the usability of the CVE exploits plugin itself,
but as the exploits file is generated correctly the overall dynamic CVE verification
functionality is not affected.

Usability

To assess the usability of the plugin, we look at its performance in terms of time-
consumption, the range of firmware images on which it can be used and the usability
of its results when tested on the collected firmware images in chapter 3.

We tested the execution time of the plugin with and without multithreading for
the same firmware image to get an idea of the impact of disabling this option on the
execution time. With the multithreading option of the FACT framework enabled for

22

4.4. Evaluation

this plugin, the execution time is 59 minutes. Without the multithreading option of
the FACT framework, the execution time is 60 minutes. This is a negligible increase
in execution time, which could be due to the fact that the CVE lookup plugin is
still executed with multithreading and that the execution time per file of the CVE
exploits plugin makes no significant contribution to the total execution time. The
needed execution time for this plugin depends on the size of the firmware image that
is analysed. The execution time was tested with a firmware image of size 8.5 MB.

As this part of the functionality is rather a preparation for the verification phase,
which takes place in the CVE firmadyne plugin, the plugin is not limited to firmware
images that can be emulated with Firmadyne and can be used on all firmware images
that can be unpacked by the FACT framework.

Next, we tested the plugin on the collected firmware images that emulated
successfully with Firmadyne. First, we discuss the amount of CVEs identified by the
CVE lookup plugin. The lowest amount of CVEs found for a firmware image was
12. The highest amount of CVEs found for a firmware image was 702. The median
of the number of found CVEs lies on 405. For these results obtained by the CVE
lookup plugin, we need to note that they display stability issues in identifying the
right CVEs due to inconsistent use of keywords used to look up the exact software
component (e.g. linux kernel and kernel).

For these CVEs, we found the following amount of Metasploit exploits. For 33
firmware images there were no Metasploit exploits available for the identified CVEs.
For 28 firmware images there is one Metasploit exploit found and for 24 firmware
images we found two Metasploit exploits. Further, one firmware image had three
Metasploit exploits and one firmware image had four Metasploit exploits. For the
whole dataset, we obtained six unique Metasploit exploits.

Here, we see that only a fraction of the identified CVEs has an available Metasploit
exploit. This limits the usability of the CVE firmadyne plugin and of the whole
dynamic CVE verification process.

4.4.2 CVE firmadyne plugin

An overview of the code structure for the CVE firmadyne plugin can be found in
Figure 4.3. Here, the code structure of the firmadyne plugin was maintained. The
implementation of the functionality required changes in the cve_firmadyne.py code
and in the analysis.py code.

Correctness

To evaluate the correctness of the CVE firmadyne plugin, we implemented a number
of test cases to be executed with pytest. The correctness of the waiting mechanism,
which is implemented in cve_firmadyne.py is discussed in subsection 4.4.3. Once
the right exploits file is available, the rest of the plugin (i.e. the part implement in the
internal folder) can be tested via the implemented tests. For the cve_firmadyne.py

7version numbers are omitted for readability

23

4. Plugin I. Dynamic CVE verification

cve_firmadyne
install.sh
bin

Firmadyne
Metasploit Framework

code
cve_firmadyne.py

internal
metasploit_configuration.csv
steps

prepare.py
emulation.py
analysis.py

firmadyne_wrapper.py
test

test_cve_firmadyne.py
view

cve_firmadyne.html

Figure 4.3: Code structure for the CVE firmadyne plugin.

code, we obtained a test coverage of 43%. For the analysis.py code, we have
currently a test coverage of 96%.

Usability

The execution time of this plugin (around 150 seconds) represents only a fraction of
the whole execution time for the dynamic CVE verification process.

The CVE firmadyne plugin can only perform its analysis on firmware images that
can be emulated with Firmadyne and therefore the application range of the whole
dynamic CVE verification process is limited in terms of support for firmware images.

For 54 firmware images we found at least one Metasploit exploit. Of these, none
were executed successfully and thus effective in exploiting the firmware image. For
each of the six unique exploits, there was the same required setting missing (i.e.
SESSION). All these exploits are privilege escalation exploits, for which another
exploit needs to be executed first and the number of the opened session by this
other exploit needs to be set as SESSION. The execution of an exploit to enable the
execution of another exploit is not supported by our plugin.

4.4.3 Interaction between CVE exploits plugin and CVE firmadyne
plugin

Here, we discuss the correctness of the interaction between the two plugins.

24

4.5. Conclusion

Correctness

For part of the plugin that implements the waiting mechanism, it is not possible to
test it via test cases per plugin due to the fact that it needs the FACT database
and the CVE exploits plugin to be running. Therefore, this interaction was tested
manually. Although the waiting mechanism works, there is a more structural solution
in the FACT framework needed that enables a recursive plugin to wait on all the
results of another recursive plugin before carrying out its analysis. Further, it should
be made possible to retrieve the ID of a firmware image in a more easy way starting
from a file of it such that all analysis results for all files of the firmware image can
be found by the plugin. This would eliminate the need for the CVE exploits plugin
to generate the exploits file. This would make the processing of multiple firmware
images at the same time possible.

4.5 Conclusion
In this chapter, we developed two plugins (CVE exploits and CVE firmadyne) that
together dynamically verify possible CVEs for firmware images in the context of
the FACT framework. This plugin helps in reducing the amount of manual analysis
needed to confirm a CVE for a firmware image. The two criteria for this plugin are
satisfied since it works in the FACT framework and the results report if a possible
CVE is confirmed or not.

The advantage of this plugin is that a large part of the analysis is automated.
The first limitation for this plugin is the time needed for the analysis as the execution
of the CVE firmadyne plugin waits for the CVE lookup and CVE exploits plugins
to terminate. Furthermore, the scalability of the plugin is limited due to the fact
that the CVE exploits can not be executed for multiple firmware images at the
same time. Disabling the multithreading option for the CVE exploits plugin in the
FACT framework did have a negligible impact on the execution time as the CVE
lookup plugin is still executed with multithreading.

Next, we have some limitations of the plugin that are related to the usability.
First, there is a limited number of Metasploit exploits available for possible CVEs.
Next, we observed that all executed exploits for the earlier collected firmware images
missed the same required setting and could therefore not be tested. This setting
could not be set in the configuration file for Metasploit because another exploit needs
to be executed successfully to set it. Furthermore, there is the reduction in firmware
images that can be tested due to the use of Firmadyne as emulator.

Finally, we needed to be creative in the implementation of the interaction be-
tween the two plugins as this functionality is currently not supported by the FACT
framework. However, for this a structural solution should be provided.

25

Chapter 5

Plugin II. Comparing
fuzzer-based code coverage

This chapter treats the second developed analysis plugin for the FACT framework.
The aim of this plugin is to make it possible to compare the code coverage obtained
by the use of different fuzzer configurations for embedded web interfaces of firmware
images. These execution traces are gathered by emulating the firmware images with
Firmadyne while replacing the original kernels with QEMU kernels for which tracing
capabilities are enabled. The file system of the firmware images, which contains
the embedded web interface if there is one available, remains untouched for this
execution tracing.

The structure of this chapter is as follows. An introduction to fuzzing and the
problem statement for the plugin is given in section 5.1. Next, section 5.2 discusses
obtaining code coverage of an emulated firmware image. In section 5.3 the fuzzing
of embedded web interfaces is treated. Further, in section 5.4 the analysis of the
obtained execution traces is dealt with. The results of the plugin for one firmware
image are discussed in section 5.5. The evaluation of the plugin in terms of correctness
and usability is treated in section 5.6. Finally, section 5.7 contains the conclusion for
this chapter.

5.1 Problem statement

Muench et al. provide the following definition for fuzzing:

“Fuzz-testing or fuzzing describes the process of automatically generating
and sending malformed input to the software under test, while monitoring
its behavior for anomalies [30].”

In general, it is used to identify previously unknown vulnerabilities in the software
under test and it does so in a effective, fast and scalable way [26, 30]. The goal with
fuzzing is often to reach full program coverage, as this results in a higher probability
of finding vulnerabilities [25, 27].

27

5. Plugin II. Comparing fuzzer-based code coverage

Fuzzing of embedded devices brings additional challenges with it compared to
regular fuzzing. According to Muench et al. one of those challenges is instrumentation,
which is more difficult to obtain in the case of embedded devices, because source
code is rarely available and rewriting of binary code is time-intensive [30].

Our plugin does not solve the need for using instrumentation (or another solution)
to detect faults resulting by fuzzing a firmware image. However, with the goal of
full program coverage in the back of our minds, it can be valuable information to
know which fuzzer configuration results in the highest code coverage or in the most
unique code coverage (i.e. code not reached by other fuzzer configurations). With
the term fuzzer configuration, we mean the entirety of the fuzzer module and the
chosen values for its settings.

We will thus develop a plugin which makes it possible to map a fuzzer configuration
to the corresponding obtained code coverage for a given firmware image. Further, will
we limit us here to measuring reached code by fuzzing the embedded web interface
of firmware images as it can be easily determined when the embedded web interface
is ready for fuzzing. Another argument for this choice was made by Costin et al.,
who pointed out the considerable role of embedded web interfaces as attack surface
for embedded devices [10].

We have two main criteria for this plugin. First, it has to work within the FACT
framework. Second, it has to determine and to output the code coverage obtained by
executing different fuzzing configurations for a given firmware image. Thus, it needs
to emulate the firmware image in order to be able to perform fuzzing on its embedded
web interface. Next, it will be necessary to log execution traces to determine the
corresponding code coverage for each fuzzer configuration.

We will tackle this problem step-by-step. First, we need to achieve emulation
of the firmware image. As discussed before in the other chapters of this thesis, we
opt to use Firmadyne for this task as it is already available as plugin in the FACT
framework and as there is no hardware associated to the firmware required, which
makes it scalable. Next, we need to adapt the execution environment for execution
tracing in order to obtain code coverage of the firmware image. This is discussed
in section 5.2. After that, we explore more in depth the fuzzing that needs to be
performed on the embedded web interfaces, which is described in section 5.3. Finally,
we have the analysis of the obtained trace files to obtain the code coverage achieved
by each fuzzing configuration. This is treated in section section 5.4.

5.2 Code coverage of emulated firmware

As mentioned in the previous section, we will be using Firmadyne to achieve software-
based full system emulation [8]. This means that we do not need the hardware
associated with the firmware image to be able to run it. Therefore, our plugin is
more scalable. Furthermore, Muench et al. stated in their research about fuzzing
embedded devices, that the best fuzzing results in terms of efficiency are obtained
when using full emulation [30]. Finally, the fact that Firmadyne replaces the kernel of
the firmware image poses no problem for our plugin, as the web server that provides

28

5.3. Fuzzing embedded web interfaces

the embedded web interface for a firmware image are located in the root file system
[10, 11].

To obtain the code coverage for a firmware image, we need to be able to log
execution traces. As stated by Felbinger et al. there exist three different methods
to obtain code coverage: instrument the source code, instrument the object code
or obtain the execution traces from the execution platform [14]. Since the first two
methods are not possible in our situation as we only have already compiled firmware
at our disposal, we opted to obtain the execution traces from the execution platform,
which is Firmadyne. Another advantage of this approach is that the extraction
of execution traces happens in a non-intrusive way as the firmware image itself is
not instrumented [14]. To carry out the full system emulation, Firmadyne uses the
underlying QEMU full system emulator. It extracts the file system of the firmware
image and boots it together with a pre-built kernel in the QEMU full system emulator
[8].

5.2.1 QEMU full system emulation

QEMU emulates a target CPU on a (possibly) different host CPU and therefore
makes it possible to run a complete operating system in a virtual machine [4]. The
target CPU instructions are translated into host CPU instructions by the dynamic
translator of the CPU at runtime and it provides a simulated program counter [4].
This means that we can trace the code coverage by using this simulated program
counter. To achieve this, we need to replace the pre-built kernel provided and used
by Firmadyne by a QEMU kernel that has this kind of tracing enabled.

In the context of the COUVERTURE project, the researchers extended a version
of QEMU for logging execution traces [5]. Because this extended version of QEMU
is not publicly available anymore, we opted to use the tracing feature provided by
newer versions of QEMU kernels as was done and documented by Jones in his blog
[23]. By enabling this tracing feature, the simulated program counters by QEMU are
logged for specified trace-events. As Firmadyne currently only supports the CPU
architectures little-endian ARM, little-endian MIPS and big-endian MIPS [8], we only
made pre-built tracing-enabled QEMU kernels available for these CPU architectures.
An advantage of pre-building QEMU kernels in this way with tracing enabled, is the
possibility to easily extend the provided kernels if more CPU architectures would
be supported by Firmadyne. The second adaptation, that we need to make is to
provide the trace file (which contains the specified trace-events) to the QEMU run
command.

5.3 Fuzzing embedded web interfaces

In this section, we describe the implementation of fuzzing of embedded web interfaces.
Administration of embedded devices happens often through web interfaces, for which
the web server and web application files are present in the file system of the firmware
image [10, 11].

29

5. Plugin II. Comparing fuzzer-based code coverage

As fuzzing framework, we opted to use the Metasploit Framework. The main
reasons for this choice are that it is already available in the FACT framework, it is
open-source, it works well with Firmadyne and it has fuzzer modules available, of
which the configuration can easily be adapted [32].

Figure 5.1: An example of an embedded web interface of a collected firmware
image.

A typical example of an embedded web interface (originating from one of the
earlier collected firmware images) can be found in Figure 5.1. For the firmware
images collected in chapter 3, we found that all the firmware images, that could be
emulated, have similar embedded web interfaces that are username and password
protected or only password protected. This is useful information for choosing the
right fuzzer modules.

Metasploit has currently three available protocol-based fuzzers for the HTTP pro-
tocol: http_form_field, http_get_uri_long and http_get_uri_strings. The
exact functionality of these fuzzers can be found in the description in their scripts.
The HTTP Form Field Fuzzer collects the available forms and subsequently per-
forms POST actions on those forms in order to fuzz them. The HTTP GET Request
URI Fuzzer (Incrementing Lengths) sends HTTP GET requests with increment-
ing URL lengths. The HTTP GET Request URI Fuzzer (Fuzzer Strings) sends a
series of HTTP GET requests with malicious URIs. This means that we have one
fuzzer for the available username and password fields and two fuzzers for trying if
some other URL is also available for the firmware image.

Those three fuzzers will be used in the plugin in the context of this chapter. A
current limitation of the FACT framework, is the lack of possibility to provide a

30

5.4. Analysis of obtained execution traces

plugin with custom input at the start of the analysis, e.g. to indicate the wanted
fuzzers or some specific fuzzer configuration. Therefore, we provide a default fuzzing
file, which can be extended and adapted, but not yet in a user-friendly way.

Each fuzzer has different settings available that together form the configuration
for the fuzzer. In our implementation, multiple values for one setting can be specified
whereafter all possible configurations for the fuzzer are determined. After the
embedded web interface becomes reachable, each fuzzer configuration is executed
for a beforehand specified period. During this, the start and end time of each phase
are registered (e.g. when the embedded web interface became available, when an
execution phase for a fuzzer configuration is started).

5.4 Analysis of obtained execution traces

After the fuzzing, we need to analyse the code coverage obtained by the execution
tracing. First, the trace file needs to be converted to a readable trace file so it can
be further processed. For this, we used the script for this purpose provided with
QEMU, simpletrace.py. It is however important to note that this conversion is
slow and the main bottleneck of this plugin.

Next, the relative timestamps are converted to absolute timestamps and the
timing of the trace file is corrected. This correction is needed because there is a
difference between the total execution time measured by the trace file and the total
execution time measured by our own the timing registering. This is probably due
to the fact that Firmadyne first sets up the network interface on the host before it
starts to emulate the firmware image.

After that, the registered program counters can be assigned to their corresponding
execution phase. Here, there are in general two possibilities; either the program
counter belongs to the start-up phase of the firmware image (thus before the web
interface becomes reachable) or it belongs to a fuzzing execution phase. Here, we
made the assumption that the amount of program counters that are not the result
of the execution of the fuzzer configuration (e.g. background processes, influence
of earlier executed fuzzer configuration) is negligible or consistent during the whole
execution (e.g. present during all execution phases).

Now, it is possible to determine how many program counters are reached by
each fuzzer. For this plugin, we determined three numbers for the code coverage per
fuzzer configuration. It is important to note that those numbers have no meaning on
itself, as the total number of program counters to be reached (to obtain full coverage)
is unknown. The importance of these numbers lies in the possibility to compare
them to the numbers obtained by the other fuzzer configurations during the same
execution.

First, we determined how many program counters each fuzzer configuration
reached in total. Second, we determined how many unique program counter were
reached by each fuzzer configuration. Comparing the first and the second number
gives an idea of the amount of times that the same program counter was executed.
Third, we calculated how many unique program counters were reached by each fuzzer

31

5. Plugin II. Comparing fuzzer-based code coverage

configuration that were not reached by another fuzzer configuration. This gives an
idea about the amount of program counters that were reached only by this fuzzer
configuration. A limitation of tracing program counters is the lack of context. Jones
showed in his blog that some context could be added by mapping program counters
to their corresponding kernel symbols (and removing them from the final result as
the kernels are not part of the original firmware image), but this very time-intensive
process is not desirable for a plugin [23].

5.5 Results
Next, we discuss the results of the plugin for one firmware image, as it would not
be meaningful to compare them between firmware images as was discussed in the
previous section. The plugin returns (besides the successfulness of the different
steps in the Firmadyne emulation process) four results: the settings of the executed
fuzzer configurations, the total number of reached program counters by each fuzzer
configuration, the unique number of reached program counters by each fuzzer con-
figuration and the global unique number of reached program counters only by that
fuzzer configuration.

We will use all three available Metasploit fuzzers for the HTTP protocol. For
the HTTP Form Field Fuzzer, we will define two possible values for the handle
cookies option (true and false). All other settings are set on their default values
(if there is one). In total, we have thus four different fuzzer configurations that
will be executed. The exact used values per fuzzer configuration can be found in
Appendix B in section B.1. As execution time for each fuzzer configuration, we took
20 seconds. This experiment was performed with the Netgear WNAP320 firmware
image (version 2.0.3), which is provided as example on the Firmadyne Github
page1.

A screenshot of the result in our developed plugin can be found in section A.2 in
Appendix A.

5.6 Evaluation
In this section we will evaluate the developed plugin in terms of correctness and
usability.

5.6.1 Fuzz tracing plugin

The high-level code structure for the plugin is displayed in Figure 5.2. It follows the
same code structure as the firmadyne plugin2 with the addition of some scripts and
of two folders in the internal folder (kernels and trace) and a results folder.
The runFuzzers.py script is an adaptation of the runExploits.py file present in
Firmadyne and performs the execution of the Metasploit fuzzers. The wanted fuzzer

1https://github.com/firmadyne/firmadyne
2https://github.com/fkie-cad/FACT_firmadyne_analysis_plugin

32

5.6. Evaluation

configurations to be tested can be adapted in this file. The kernels folder contains
the QEMU kernels for which tracing is enabled. The trace folder contains the code
used to convert the trace file to a readable trace file usable for further processing.
This code originates from QEMU. The results folder contains all the files generated
during processing (e.g. program counters per phase).

fuzz tracing
install.sh
bin

Firmadyne
Metasploit Framework

code
fuzz_tracing.py

internal
steps

prepare.py
emulation.py
processing.py

runFuzzers.py
kernels

qemu-system-arm
qemu-system-mips
qemu-system-mipsel

trace
simpletrace.py
tracefile
trace-events-all

firmadyne_wrapper.py
results
test

test_fuzz_tracing.py
data

view
fuzz_tracing.html

Figure 5.2: Code structure for the fuzz tracing plugin.

Correctness

As this plugin is an adaptation of the firmadyne plugin, we limited the additional
implemented test cases to the code that we changed. This means that we discuss
the code coverage obtained by our test cases for prepare.py, emulation.py and
processing.py. For the preparation phase, we obtained a code coverage of 88%.
For the emulation phase, we got 94%. For the processing phase, the code coverage
comes to 97%.

33

5. Plugin II. Comparing fuzzer-based code coverage

Usability

In this section, we will investigate the usability of the developed plugin.
First, it would be interesting to test if the plugin produces a stable result under

the same execution conditions. It is important to have a stable result for it to
be usable. This experiment was also performed with the the Netgear WNAP320
firmware image (version 2.0.3). We used the same fuzzer configurations as in
the experiment in the previous section, of which the exact used values for each setting
can be found in Appendix B and choose the execution time per fuzzer configuration
to be 20 seconds. With these settings, the plugin was executed 10 times. The results
for this experiment are displayed in Figure 5.3. In this figure, fuzzer configuration

Figure 5.3: Unique code coverage reached per fuzzer configuration during ten
executions.

1 corresponds to the HTTP Form Field Fuzzer with the handle cookies setting set
on true. Fuzzer configuration 2 corresponds to HTTP Form Field Fuzzer with the
handle cookies setting set on false. Fuzzer configuration 3 corresponds to HTTP GET
Request URI Fuzzer (Fuzzer Strings). Fuzzer configuration 4 corresponds to
the HTTP GET Request URI Fuzzer (Incrementing Lengths). From this figure,

34

5.6. Evaluation

we can derive that fuzzer configuration 3 reaches more code than the other fuzzer
configurations and is stable in doing so. For the other fuzzer configurations it is not
clear from this experiment if one performs better than another.

When looking at the total unique number of program counters reached by each
experiment, we see that the minimal amount is 6943 program counters and the
maximal amount is 7833 program counters. The median lies on 7428 program
counters. For this, we see three possible factors. First, the difference could occur
due to the fact that the fuzzer configurations were not always executed in the same
order. However, these differences are also present among experiments that used the
same execution order for the fuzzer configurations. Second, noise of background
processes could attribute to the distribution of the obtained values. However, as the
program counters reached by any other fuzzer configuration are filtered out, this
would eliminate the background processes present in at least two fuzzing phases.
Therefore, this noise would be negligible. Third, it could be the case that a fuzzer
configuration reaches deeper paths (and covers more program counters) due to
differences in the random generated data.

Next, we conducted an experiment to see how the amount of executed fuzzer
configurations influences the total execution time of the plugin, as this execution
time is an important property of a plugin. We used the exact same configuration
for the plugin as in the previous experiment. The execution time for each amount
of fuzzer configurations was measured 5 times. Next, the mean of the execution
time for each amount of executed fuzzer configurations was calculated. These results
are plotted in Figure 5.4. In this figure, we see that within 6000 seconds, 98 fuzzer
configurations could be tested and compared in terms of code coverage, which means
that the plugin scales well for multiple fuzzer configurations. As mentioned earlier,
the bottleneck of the plugin is the conversion of the trace file to a readable trace file
by the script provided by QEMU. Adding an additional fuzzer configuration means
that the execution of the firmware image is traced for an additional 20 seconds in
this case and that the total execution time increases. However, the size of the trace
file did not increase significantly. Therefore there is another bottleneck present in
this case, which is the division of program counters per phase.

For our next experiment, we will be using the earlier collected firmware images
that could be emulated with Firmadyne in chapter 3. We will be comparing the
execution times of these firmware images for exact the same fuzzer configurations
and carried out in the same execution environment. The results of this experiment
are displayed in Figure 5.5. Each item represents a firmware image and its colour
and shape indicate its vendor. The lowest observed execution time was 676 seconds.
This firmware image originated from a Wireless Range Extender of ZyXEL. The
highest observed execution time was 3329 seconds, belonging to a Wireless Access
Point of TRENDnet. The median of all execution times lies on 1634 seconds. For
the remaining 12 firmware images no results could be obtained due to a too big trace
file (i.e. 4 GB and more) which results in a memory error while converting it to a
readable trace file. The generation of so many program counters could be attributed
to specific missing hardware for the firmware image [10].

In Figure 5.5, we observe even within the same vendor variety in the obtained

35

5. Plugin II. Comparing fuzzer-based code coverage

Figure 5.4: The execution time of the plugin per number of executed fuzzer
configurations.

execution times. However, all those firmware images have similar characteristics due
to the fact that emulation with Firmadyne is necessary in order to be successfully
run with this plugin.

5.7 Conclusion

In this chapter, we developed a plugin for comparing code coverage obtained by
executing different fuzzer configurations on an embedded web interface of an emulated
firmware image in the context of the FACT framework. This plugin helps in choosing
the most promising fuzzer configurations in terms of most code coverage and most
unique code coverage. The two criteria for this plugin where met, as it works in
the FACT framework and as it gives an idea of the code coverage obtained for the
different fuzzer configurations.

The advantages of this plugin are its scalability in terms of the number of fuzzer
configurations that can be tested while the execution time remains reasonable and

36

5.7. Conclusion

Figure 5.5: Distribution of the execution times of the collected firmware images
with the same settings for fuzzing.

its relative stability over multiple executions. The first limitation of this plugin is
the restricted amount of firmware images that are well suited for this plugin due to
the use of Firmadyne for emulation, which is further restricted by firmware images
that could not be analysed due to the generation of a too big trace file. The second
limitation of the plugin consist of the lack of context for the code coverage results.

37

Chapter 6

Discussion

We will start this chapter with a discussion of previous research related to the
implemented functionality of both plugins in section 6.1. Afterwards, we will discuss
the overall usability of the plugins in section 6.2 and their results in section 6.3.

6.1 Previous related research
In this section, we will discuss previous research related to the dynamic analysis
implemented in both plugins.

6.1.1 Dynamic CVE verification

Costin et al. used in 2016 the method of looking for vulnerabilities for firmware
images with static analysis and afterwards applying dynamic analysis to be able to
confirm the vulnerability for a firmware image in their large-scale analysis of web
interfaces of embedded devices. The framework they developed for this purpose is
fully automated and they also used the approach of emulating the firmware image
with a generic kernel and the original root file system to be able to perform the
dynamic analysis. However, they did not limit the dynamic analysis to the possible
vulnerabilities found by their static analysis phase, but rather guided the dynamic
analysis to certainly test the possible high impact vulnerabilities found. Another
difference with our approach, is that the researchers focussed on the PHP source code
present in firmware images and did identify previously unknown vulnerabilities [10].
In our case, the found vulnerabilities were already publicly known for the different
software components used in the firmware images and the dynamic analysis was used
to confirm if the firmware image in question could be effectively exploited by those
vulnerabilities.

6.1.2 Tracing code coverage of fuzzers for emulated embedded
devices

In 2010, Bordin et al. adapted QEMU, in the context of the COUVERTURE project,
to support the generation of execution traces. For this purpose, they provided two

39

6. Discussion

kinds of execution traces: synthetic bounded-size traces and full historical traces,
which both contain information about conditional branches [30]. We were not able to
use this adapted version1 of QEMU as it was not publicly available any more. We did
find a version2 provided by Adacore but we were not able to build this successfully.
Therefore, we used the trace functionality provided by QEMU. The method we used
to obtain code coverage [23], yields only the simulated program counters and provides
no information about conditional branches encountered.

In 2018, Muench et al. performed a research to the challenges in fuzzing embedded
devices and focused more in particular on memory corruptions. One of their findings
is that with full system emulation, a better fuzzing efficiency can be achieved than
with the actual physical devices [30]. Here, we can clearly see the added value that
our plugin offers, namely to optimise the ratio between the fuzzer configurations that
are executed and the number of detected vulnerabilities.

In 2019, Zheng et al. developed FIRM-AFL, a fuzzing solution for firmware
that achieves both transparency (i.e. no modifications to the program are made)
and efficiency (i.e. the fuzzing throughput approaches the one obtained under user-
mode emulation). They showed that full system emulation contains three major
bottlenecks that significantly increase the execution time for the fuzzers: memory
address translation, dynamic code translation and syscall. Therefore, to improve this
efficiency, they use augmented process emulation. This approach combines AFL and
Firmadyne to obtain the advantages of both user-mode emulation and full system
emulation [39].

Srivastava et al. developed FirmFuzz in 2019. This provides an analysis framework
that combines static analysis with fuzzing to find deep vulnerabilities in firmware
images and focusses on custom vendor-developed applications. The goal is to achieve
a deeper analysis of the firmware images, which resulted in a less scalable framework.
Furthermore, FirmFuzz attempts to increase the code coverage of the used fuzzer
by using static analysis to extract the username-password pair for the web interface.
If that fails, it tries to brute-force this authentication [35]. As the functionality of
finding usernames and passwords for a firmware image is already provided in the
FACT framework in the users and passwords plugin, the use of its results would
be an interesting extension for the fuzz tracing plugin.

6.2 Usability of plugins

As both plugins are dynamic analysis plugins and both use Firmadyne to emulate
the firmware images, they have both the limitation that only Linux-based embedded
firmware images are supported. As we saw in chapter 3, only a fraction of the
collected firmware images could be emulated with Firmadyne and can thus be tested
with the developed plugins. Chen et al., who developed Firmadyne, encountered the
same kind of reduction when testing Firmadyne on all the collected firmware images
[8]. However, the problem is not limited to the emulation provided by Firmadyne.

1http://forge.open-do.org/projects/couverture-qemu
2https://github.com/AdaCore/qemu

40

6.3. Usability of results

Srivastava et al. experienced the same reduction of usable firmware images while
testing their tool FirmFuzz, for which the web interface of the firmware image needed
to be accessible in order to carry out the fuzzing [35]. Costin et al. saw a similar
reduction in the number of Linux-based embedded firmware images to those that
were usable to test their large-scale dynamic analysis framework on (i.e. those for
which the embedded web interface could be started) [10]. In all these cases, the
researchers focussed on supporting Linux-based embedded firmware images because of
its prevalence and because these firmware images are well structured into bootloaders,
kernels and file systems, which makes the unpacking and emulation process easier
[10].

Furthermore, we found that the encountered limitations of the FACT framework
impact the usability of the plugins. For the dynamic CVE verification functionality,
we have the problem that the CVE firmadyne plugin can not access all the results
for all the files of the firmware image as it is not possible to derive the ID associated
to the firmware image from a file of that firmware image. This was solved by having
the CVE exploits plugin generate the exploits file. To achieve this, multithreading
needed to be disabled, but this has a negligible impact on the execution time. For
both plugins, the usability can be improved if there would be the possibility in
the FACT framework to provide some input for a plugin. For the dynamic CVE
verification plugin, this would consist of the indication of additional name-value pairs
that are set for the configuration of Metasploit. In the context of the comparison for
the code coverage obtained by different fuzzer configurations, this would consist of
indicating how many fuzzer configurations should be tested and/or which the wanted
values are for the settings of a fuzzer configuration. For both plugins, these settings
are currently provided in a file in the internal folder.

Next, as the focus of the FACT lies on providing scalable analysis for firmware
images, it is important to assess the plugins in terms of scalability. As mentioned
earlier, their application field in terms of supported firmware images is limited due to
the used emulation tool. Furthermore, the scalability of the first plugin is limited by
its current implementation through which it is not possible to execute the analysis
for multiple firmware images at the same time. For the fuzz tracing plugin, this
restriction is not present and multiple firmware images can be analysed at the same
time (with the same settings for the analysis). The scalability of this plugin depends
on its execution time, which is mainly influenced by two factors: the firmware image
to be tested and the number of fuzzer configurations to be executed.

6.3 Usability of results

In this section, we discuss the usability of the results produced by both plugins (i.e.
if they produce valuable information).

For the dynamic CVE verification plugin, we observed that the automatic verifi-
cation of CVEs by our plugin is limited due to the following two factors. First, there
is only a fraction of exploits available for all CVEs in the Metasploit Framework.
Second, there is the limitation caused by the required settings for which the value

41

6. Discussion

needs to be set in advance. This is not possible for e.g. SESSION, a setting that is
required for privilege escalation exploits, which requires the successful execution of
another exploit on the firmware image. However, other settings could be provided
beforehand by the user e.g. LHOST, hence we provided the possibility to specify
the Metasploit configuration. When an exploit can be executed successfully for a
firmware image or not (i.e. the values for all required settings are present), this
provides useful information.

For the fuzz tracing plugin, the usability of the results is limited due to the
lack of context for the logged program counters. Therefore, it can give no insight
on which parts of the firmware image are reached, this could be an added value.
However, the results obtained are relatively stable. With the current mechanism for
obtaining execution traces in place, bug detection capabilities could be added for
this plugin under the form of reboot detection. The program counters generated
and logged during the operational phase (i.e. when the firmware image boots) could
be compared with the program counters logged during one of the fuzzing phases
to detect the boot pattern. A threshold could be set for the number of program
counters of the boot pattern that should return in the same order during a fuzzing
phase.

42

Chapter 7

Conclusion

In this chapter the main conclusions are discussed. An overview of the thesis and
the obtained results is given in section 7.1. In section 7.2 our own contribution is
discussed. Next, section 7.3 lists the main challenges that we experienced in the
context of this thesis. Possible extensions for both plugins are treated in section 7.4.

7.1 Overview

In this thesis, we developed two emulation-based dynamic analysis plugins for the
FACT framework. The main requirements for these plugins are that they function
in the FACT framework and that they effectively implement the intended dynamic
analysis. Furthermore, as the main goal of the FACT framework is to provide
large-scale analysis of firmware images, scalability is an important factor.

The first plugin, which performs dynamic CVE verification, is divided in two
actual plugins CVE exploits and CVE firmadyne. This plugin aims to reduce the
amount of manual analysis needed to confirm a possible vulnerability for a specific
firmware image. The results of this plugin are limited by two factors. First, there
is only for a fraction of the identified CVEs an exploit available in the Metasploit
Framework. Second, it is difficult to execute the exploits in an automated way as
required settings are sometimes not set and the exploit can not be executed in that
situation. To mitigate this issue, we provided a configuration file for Metasploit in
which the value for settings can be specified. However, even with this adaption it is
still not possible to support the testing of privilege escalation exploits on a firmware
image with Metasploit. For the collected firmware images, we found only privilege
escalation exploits and we were therefore unable to successfully execute an exploit.
Finally, we found that the support provided by FACT framework is not sufficient to
implement the interaction between the two plugins in a scalable way.

The second plugin fuzz tracing enables the user to compare the code coverage
of different fuzzer configurations for the embedded web interface of a firmware image.
As full program coverage is often the goal of fuzzing, this plugin enables the user to
know which fuzzer configuration obtains the highest code coverage or results in the
most unique code coverage. Therefore, the plugin can be used to optimise the ratio

43

7. Conclusion

between the number of executed fuzzers and the number of detected vulnerabilities.
The scalability of this plugin in terms of needed execution time depends on two
factors: the firmware image under test and the number of fuzzer configurations to
be executed. The results of the plugin are relatively stable (i.e. in terms of which
fuzzer configuration performs the best), but here we have a limitation by the lack of
context of which parts of the firmware image are reached.

Both plugins could be improved in terms of usability if there would be a possibility
to provide input at the start of the analysis for a plugin in the FACT framework.

The two plugins use Firmadyne to obtain software-based full system emulation
and this limits the firmware images that can be tested to network-connected Linux-
based embedded firmware images for which the root file system is present and that
have little-endian ARM, little-endian MIPS or big-endian MIPS as CPU architecture.

7.2 Contribution

For this thesis, two dynamic analysis plugins were developed for the FACT framework.
For the dynamic CVE verification plugin, the functionality is divided over two actual
plugins: CVE exploits and CVE firmadyne. The first one was developed from
scratch with the use of the provided template by the FACT framework. For the
second one, we started with the firmadyne plugin1 and made the necessary changes
to achieve the wanted functionality. For the fuzz tracing plugin, we also started
from firmadyne plugin and adapted the code from there to obtain the wanted
functionality. For the part of this plugin that logs the reached program counters by
building and using a tracing-enabled QEMU kernel, we followed the method provided
by Jones [23].

7.3 Challenges

In the realisation of this thesis, we encountered several challenges. First, there was
the lack of extensive publicly available documentation for the FACT framework.
The explanation for the development of a plugin is concise and not all the options
are covered. Second, we had the implementation of the interaction between the
two developed plugins for the dynamic CVE verification process, which turned out
to be quite time-intensive. Furthermore, while building the QEMU kernels with
tracing-enabled, we encountered some system-specific errors. Finally, we encountered
the challenge of obtaining a collection of firmware images, which was also quite
time-intensive.

7.4 Possible extensions

For the dynamic CVE verification functionality, it would be interesting to examine
if the combined use of multiple frameworks, that provide exploits, could lead to a

1https://github.com/fkie-cad/FACT_firmadyne_analysis_plugin

44

7.4. Possible extensions

higher coverage of the CVEs.
For the fuzz tracing plugin, it would be interesting to test the influence of

adding username-password authentication for the plugin on the results produced by
the fuzzer configurations.

45

Appendices

47

Appendix A

Screenshots of web user
interface

This appendix contains the screenshots made of the web user interface for the two
developed plugins.

A.1 Plugin I. Dynamic CVE verification

Figure A.1: Unique code coverage reached per fuzzer configuration during ten
executions.

49

A. Screenshots of web user interface

A.2 Plugin II. Comparing fuzzer-based code coverage

F
ig

ur
e

A
.2

:
W
eb

us
er

in
te
rf
ac
e
of

FA
C
T

sh
ow

in
g
th
e
re
su
lts

of
th
e
fu
zz

tr
ac
in
g
an

al
ys
is

fo
r
a
fir
m
w
ar
e
im

ag
e.

50

Appendix B

Configuration for experiments

This appendix contains configurations used in experiments with the plugins.

B.1 Fuzzer configurations

This section contains the fuzzer configurations for the Metasploit fuzzer modules
used for the experiments in chapter 5.

B.1.1 HTTP Form Field Fuzzer

• CODE : [‘200,301,302,303’]

• CYCLIC : [‘false’]

• DELAY : [0]

• ENDSIZE : [40000]

• FUZZHEADERS : [‘false’]

• HANDLECOOKIES : [‘true’, ‘false’]

• RPORT : [80]

• STARTSIZE : [1000]

• STEPSIZE : [1000]

• TIMEOUT : [15]

• TYPES : [‘text,password,inputtextbox’]

• STOPAFTER : [2]

51

B. Configuration for experiments

B.1.2 HTTP GET Request URI Fuzzer (Incrementing Lengths)

• MAXLENGTH : [16384]

• RPORT : [80]

• URIBASE : [‘/’]

B.1.3 HTTP GET Request URI Fuzzer (Fuzzer Strings)

• RPORT : [80]

• URIBASE : [‘/’]

52

Appendix C

Implemented test cases for
plugin

This appendix contains the test cases for the CVE exploits plugin. The test cases
are provided with each plugin. All tests can be executed with pytest.

C.1 Plugin I. Dynamic CVE verification

C.1.1 CVE exploits plugin

These test cases are provided in the test_cve_exploits.py file and can be executed
with pytest.

import os
from objects.file import FileObject
from common_helper_files import get_dir_of_file

from test.unit.analysis.analysis_plugin_test_class import AnalysisPluginTest
from ..code.cve_exploits import
AnalysisPlugin,
collect_exploits,
search_metasploit_exploit_for_cve,
create_metasploit_files,
check_if_exploit_for_cve_is_present, add_exploit_to_run_exploits_file,
INTERNAL_DIRECTORY_PATH

TEST_FILE_PATH = os.path.join(get_dir_of_file(__file__), 'data')

CVE_EXPLOITS = {
'CVE-2015-8660': ['exploits/linux/local/overlayfs_priv_esc'],
'CVE-2010-3310': ['N/A'],
'CVE-2013-6376': ['N/A'],
'CVE-2016-2117': ['N/A'],

53

C. Implemented test cases for plugin

'CVE-2012-3430': ['N/A'],
'CVE-2016-5412': ['N/A']
}

CVE_EXPLOITS_2 = {
'CVE-2017-7308': ['exploits/linux/local/af_packet_packet_set_ring_priv_esc'],
'CVE-2010-3310': ['N/A'],
'CVE-2013-6376': ['N/A'],
'CVE-2016-2117': ['N/A'],
'CVE-2012-3430': ['N/A'],
'CVE-2016-5412': ['N/A']
}

CVES = ['CVE-2015-8660', 'CVE-2019-5747', 'CVE-2010-4250']

CVE_LOOKUP_ANALYSIS_RESULT = {
'summary':
['CVE-2015-1328', 'CVE-2019-19052', 'CVE-2010-2492',
'CVE-2010-3067', 'CVE-2011-2525', 'CVE-2019-16995',
'CVE-2012-0055', 'CVE-2015-4003', 'CVE-2019-19065',
'CVE-2012-2745', 'CVE-2019-15030', 'CVE-2019-15807',
'CVE-2018-10840', 'CVE-2019-20096', 'CVE-2011-2182',
'CVE-2016-4997', 'CVE-2013-2897']

}

CVE_EXPLOITS_ANALYSIS_RESULT = {
'summary': ['exploits/linux/local/overlayfs_priv_esc'],
'tags': {'root_uid':
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855_0',
'cve_exploits': {'color': 'info', 'propagate': True,
'value': 'metasploit exploit'}},
'exploits': {

'CVE-2019-15030': ['N/A'], 'CVE-2019-16995': ['N/A'],
'CVE-2016-4997': ['N/A'], 'CVE-2019-19052': ['N/A'],
'CVE-2010-2492': ['N/A'], 'CVE-2019-15807': ['N/A'],
'CVE-2012-0055': ['N/A'], 'CVE-2018-10840': ['N/A'],
'CVE-2019-20096': ['N/A'], 'CVE-2011-2182': ['N/A'],
'CVE-2015-4003': ['N/A'], 'CVE-2010-3067': ['N/A'],
'CVE-2019-19065': ['N/A'], 'CVE-2012-2745': ['N/A'],
'CVE-2011-2525': ['N/A'], 'CVE-2013-2897': ['N/A'],

'CVE-2015-1328': ['exploits/linux/local/overlayfs_priv_esc']
}

}

54

C.1. Plugin I. Dynamic CVE verification

CVE_LOOKUP_ANALYSIS_RESULT_2 = {'summary': ['CVE-2016-8655',
'CVE-2014-0038', 'CVE-2017-7308']}

CVE_EXPLOITS_ANALYSIS_RESULT_2 = {
'summary': [

'exploits/linux/local/af_packet_chocobo_root_priv_esc',
'exploits/linux/local/recvmmsg_priv_esc',
'exploits/linux/local/af_packet_packet_set_ring_priv_esc'

],
'exploits': {

'CVE-2017-7308': ['exploits/linux/local/af_packet_packet_set_ring_priv_esc'],
'CVE-2014-0038': ['exploits/linux/local/recvmmsg_priv_esc'],
'CVE-2016-8655': ['exploits/linux/local/af_packet_chocobo_root_priv_esc']

},
'tags': {

'cve_exploits': {
'color': 'info',
'value': 'metasploit exploit',
'propagate': True
},

'root_uid': 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855_0'}
}

OUTPUT =
{'output': '\n7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov :
2016-05-21\np7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,
64 bits,4 CPUs x64)\n\n
Scanning the drive for archives:\n1 file, 5362552 bytes (5237 KiB)\n\n
Extracting archive:
/tmp/extractor/input/4c1697358f55d659f156ed9d05e74e55c8385e85c13a06397e9b9077b2a9e06a
_5362552\n--\nPath = /tmp/extractor/input/4c1697358f55d659f156ed9d05e74e55c
8385e85c13a06397e9b9077b2a9e06a_5362552\nType = zip\nPhysical Size = 5362552\n\n
Everything is Ok\n\nFiles: 2\nSize: 5429867\nCompressed: 5362552\n',
'number_of_unpacked_directories': 0,
'entropy': 0.8959860330786459, 'size_unpacked': 5429867,
'plugin_version': '0.7', 'size_packed': 5361056, 'summary': ['no data lost'],
'plugin_used': '7z', 'analysis_date': 1589131192.4340925, 'number_of_unpacked_files': 2,
'file_system_flag': False}

class TestAnalysisPluginsCVEexploits(AnalysisPluginTest):

PLUGIN_NAME = 'cve_exploits'

def setUp(self):

55

C. Implemented test cases for plugin

super().setUp()
config = self.init_basic_config()
self.analysis_plugin = AnalysisPlugin(self, config=config)

def test_process_object(self):
'''
Perform analysis for dummy file object with list of found CVEs.
'''

setup
test_file = FileObject(file_path='{}/file.txt'.format(TEST_FILE_PATH))
test_file.processed_analysis['cve_lookup'] = CVE_LOOKUP_ANALYSIS_RESULT

perform analysis
processed_file = self.analysis_plugin.process_object(test_file)
result = processed_file.processed_analysis[self.PLUGIN_NAME]

check result
assert result == CVE_EXPLOITS_ANALYSIS_RESULT

def test_process_object_no_exploits(self):
'''
Perform analysis for dummy file object with list of found CVEs.
'''

setup
test_file = FileObject(file_path='{}/file.txt'.format(TEST_FILE_PATH))
test_file.processed_analysis['cve_lookup'] = {'summary': ['CVE-2010-3310']}

perform analysis
processed_file = self.analysis_plugin.process_object(test_file)
result = processed_file.processed_analysis[self.PLUGIN_NAME]

check result
assert result == {'summary': [], 'exploits': {'CVE-2010-3310': ['N/A']}}

def test_process_object_all_exploits(self):
'''
Perform analysis for two dummy file object with lists of found CVEs.
'''

setup for first analysis
test_file = FileObject(file_path='{}/file.txt'.format(TEST_FILE_PATH))
test_file.processed_analysis['cve_lookup'] = CVE_LOOKUP_ANALYSIS_RESULT_2

56

C.1. Plugin I. Dynamic CVE verification

perform first analysis
processed_file = self.analysis_plugin.process_object(test_file)
result = processed_file.processed_analysis[self.PLUGIN_NAME]

check result for first analysis
assert result == CVE_EXPLOITS_ANALYSIS_RESULT_2

setup for second analysis
test_file_2 = FileObject(file_path='{}/file_2.txt'.format(TEST_FILE_PATH))
test_file_2.processed_analysis['cve_lookup'] = CVE_LOOKUP_ANALYSIS_RESULT

perform second analysis
processed_file_2 = self.analysis_plugin.process_object(test_file_2)
result = processed_file_2.processed_analysis[self.PLUGIN_NAME]

check results for second analysis
assert result == CVE_EXPLOITS_ANALYSIS_RESULT

check that right exploits file is generated with exploits of both analyses
exploits_file = '{}/runExploits.py'.format(INTERNAL_DIRECTORY_PATH)
verified_exploits_file = '{}/runExploits_2.py'.format(TEST_FILE_PATH)

test_file = open(exploits_file, 'r')
verified_file = open(verified_exploits_file, 'r')
test_lines = test_file.readlines()
verified_lines = verified_file.readlines()
for line in test_lines:

assert line in verified_lines

def test_collect_exploits():
'''
Check if the right exploits are found.
'''

function under test
result, exploits = collect_exploits(CVE_LOOKUP_ANALYSIS_RESULT_2['summary'])
assert result == {
'CVE-2017-7308': ['exploits/linux/local/af_packet_packet_set_ring_priv_esc'],
'CVE-2014-0038': ['exploits/linux/local/recvmmsg_priv_esc'],
'CVE-2016-8655': ['exploits/linux/local/af_packet_chocobo_root_priv_esc']
}

assert exploits == ['exploits/linux/local/af_packet_chocobo_root_priv_esc',
'exploits/linux/local/recvmmsg_priv_esc',
'exploits/linux/local/af_packet_packet_set_ring_priv_esc']

57

C. Implemented test cases for plugin

def test_search_metasploit_exploit_for_cve():
'''
Check if the right exploit paths are extracted.
'''

function under test
result = {}
for cve in CVES:

exploits = search_metasploit_exploit_for_cve(cve)
result[cve] = exploits

CVE has one metasploit exploit
assert result['CVE-2015-8660'] == ['exploits/linux/local/overlayfs_priv_esc']

CVE has no metasploit exploit but multiple vulnerabilities
assert result['CVE-2019-5747'] == []

CVE has no metasploit exploit but multiple vulnerabilities
assert result['CVE-2010-4250'] == []

def test_create_metasploit_files():
'''
Check if right exploits file is created.
'''

setup file paths
exploits_file = '{}/runExploits.py'.format(INTERNAL_DIRECTORY_PATH)
verified_exploits_file = '{}/runExploits_3.py'.format(TEST_FILE_PATH)

cleanup
if os.path.isfile(exploits_file):

os.remove(exploits_file)

function under test
for cve in CVE_EXPLOITS:

exploits = CVE_EXPLOITS[cve]
if exploits != ['N/A']:

for exploit in exploits:
create_metasploit_files(cve, exploit)

verify if exploit file is created
assert os.path.isfile(exploits_file)

58

C.1. Plugin I. Dynamic CVE verification

verify the file contents
test_file = open(exploits_file, 'r')
verified_file = open(verified_exploits_file, 'r')
test_lines = test_file.readlines()
verified_lines = verified_file.readlines()
assert test_lines == verified_lines

cleanup
if os.path.isfile(exploits_file):

os.remove(exploits_file)

def test_check_if_exploit_for_cve_is_present():
'''
Check if the detection of the exploits that are already present in the exploits file is correct
'''

setup file paths
exploits_file = '{}/runExploits.py'.format(INTERNAL_DIRECTORY_PATH)

cleanup
if os.path.isfile(exploits_file):

os.remove(exploits_file)

prepare
for cve in CVE_EXPLOITS:

exploits = CVE_EXPLOITS[cve]
if exploits != ['N/A']:

for exploit in exploits:
create_metasploit_files(cve, exploit)

function under test
cve = 'CVE-2015-8660'
exploit = 'exploits/linux/local/overlayfs_priv_esc'
true_result = check_if_exploit_for_cve_is_present(cve, exploit)
assert true_result

cve = 'CVE-2016-8660'
exploit = 'exploits/linux/local/overlayfs_priv_esc'
false_result = check_if_exploit_for_cve_is_present(cve, exploit)
assert not false_result

cleanup
if os.path.isfile(exploits_file):

59

C. Implemented test cases for plugin

os.remove(exploits_file)

def test_add_exploit_to_run_exploits_file():
'''
Check if exploits are added to the exploit file.
'''

setup file paths
exploits_file = '{}/runExploits.py'.format(INTERNAL_DIRECTORY_PATH)
verified_exploits_file = '{}/runExploits.py'.format(TEST_FILE_PATH)

cleanup
if os.path.isfile(exploits_file):

os.remove(exploits_file)

prepare
for cve in CVE_EXPLOITS_2:

exploits = CVE_EXPLOITS_2[cve]
if exploits != ['N/A']:

for exploit in exploits:
create_metasploit_files(cve, exploit)

function under test
cve = 'CVE-2015-8660'
exploit = 'exploits/linux/local/overlayfs_priv_esc'
add_exploit_to_run_exploits_file(cve, exploit)

verify the file contents
test_file = open(exploits_file, 'r')
verified_file = open(verified_exploits_file, 'r')
test_lines = test_file.readlines()
verified_lines = verified_file.readlines()
assert test_lines == verified_lines

cleanup
if os.path.isfile(exploits_file):

os.remove(exploits_file)

60

Bibliography

[1] M. Agarwal and A. Singh. Metasploit penetration testing cookbook. Packt
Publishing Ltd, 2013.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding
the mirai botnet. In 26th {USENIX} Security Symposium ({USENIX} Security
17), pages 1093–1110, 2017.

[3] T. Beardsley. CVE 100K: A Big, Round Number. https://blog.rapid7.com/
2018/04/30/cve-100k-a-big-round-number/. Accessed on 11 May 2020.

[4] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[5] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and T. Quinot.
Object and source coverage for critical applications with the c ouverture open
analysis framework. 2010.

[6] T. by Shibby. About Tomato (ang.). https://tomato.groov.pl/?page_id=81.
Accessed on 21 April 2020.

[7] D. Chen. Issue 121. https://github.com/firmadyne/firmadyne/issues/121.
Accessed on 22 April 2020.

[8] D. D. Chen, M. Woo, D. Brumley, and M. Egele. Towards automated dynamic
analysis for linux-based embedded firmware. In NDSS, pages 1–16, 2016.

[9] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis
of the security of embedded firmwares. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 95–110, 2014.

[10] A. Costin, A. Zarras, and A. Francillon. Automated dynamic firmware analysis
at scale: a case study on embedded web interfaces. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pages
437–448. ACM, 2016.

[11] A. Costin, A. Zarras, and A. Francillon. Towards automated classification of
firmware images and identification of embedded devices. In IFIP International

61

https://blog.rapid7.com/2018/04/30/cve-100k-a-big-round-number/
https://blog.rapid7.com/2018/04/30/cve-100k-a-big-round-number/
https://tomato.groov.pl/?page_id=81
https://github.com/firmadyne/firmadyne/issues/121

Bibliography

Conference on ICT Systems Security and Privacy Protection, pages 233–247.
Springer, 2017.

[12] Y. David, N. Partush, and E. Yahav. Firmup: Precise static detection of
common vulnerabilities in firmware. In ACM SIGPLAN Notices, volume 53,
pages 392–404. ACM, 2018.

[13] J. V. Dorp. Improving your firmware security analysis pro-
cess with FACT. https://passthesalt.ubicast.tv/videos/
improving-your-firmware-security-analysis-process-with-fact/.
Accessed on 21 October 2019.

[14] H. Felbinger, J. Sherrill, G. Bloom, and F. Wotawa. Test suite coverage measure-
ment and reporting for testing an operating system without instrumentation.
In Proceedings of the 17th Real-Time Linux Workshop, pages 13–22. ., 2015.

[15] fkie cad.

[16] fkie cad. analysis plugin development. https://github.com/fkie-cad/FACT_
core/wiki/analysis-plugin-development/. Accessed on 16 May 2020.

[17] fkie cad. FACT - Developer’s Manual. https://github.com/fkie-cad/FACT_
core/wiki. Accessed on 25 February 2020.

[18] fkie cad. FACT screenshots. https://github.com/fkie-cad/FACT_core/
blob/master/docs/FACT_screenshots/02_upload.png. Accessed on 25 May
2020.

[19] fkie cad. How to detect a firmware analysis completed. https://github.com/
fkie-cad/FACT_core/issues/215. Accessed on 3 April 2020.

[20] Gartner. Gartner Says 8.4 Billion Connected "Things"
Will Be in Use in 2017, Up 31 Percent From 2016.
https://www.gartner.com/en/newsroom/press-releases/
2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016.
Accessed on 7 November 2019.

[21] A. Gupta. The IoT Hacker’s Handbook. Springer, 2019.

[22] G. Hernandez, F. Fowze, D. J. Tang, T. Yavuz, P. Traynor, and K. R. Butler.
Toward automated firmware analysis in the iot era. IEEE Security & Privacy,
17(5):38–46, 2019.

[23] R. W. Jones. Tracing QEMU guest execution. https://rwmj.wordpress.com/
2016/03/17/tracing-qemu-guest-execution/. Accessed on 16 March 2020.

[24] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A cyber-physical
systems approach. Mit Press, 2016.

[25] J. Li, B. Zhao, and C. Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6, 2018.

62

https://passthesalt.ubicast.tv/videos/improving-your-firmware-security-analysis-process-with-fact/
https://passthesalt.ubicast.tv/videos/improving-your-firmware-security-analysis-process-with-fact/
https://github.com/fkie-cad/FACT_core/wiki/analysis-plugin-development/
https://github.com/fkie-cad/FACT_core/wiki/analysis-plugin-development/
https://github.com/fkie-cad/FACT_core/wiki
https://github.com/fkie-cad/FACT_core/wiki
https://github.com/fkie-cad/FACT_core/blob/master/docs/FACT_screenshots/02_upload.png
https://github.com/fkie-cad/FACT_core/blob/master/docs/FACT_screenshots/02_upload.png
https://github.com/fkie-cad/FACT_core/issues/215
https://github.com/fkie-cad/FACT_core/issues/215
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://rwmj.wordpress.com/2016/03/17/tracing-qemu-guest-execution/
https://rwmj.wordpress.com/2016/03/17/tracing-qemu-guest-execution/

Bibliography

[26] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang. Fuzzing: State of the art.
IEEE Transactions on Reliability, 67(3):1199–1218, 2018.

[27] D. Liu, Y. Tang, B. Wang, W. Xie, and B. Yu. Automated vulnerability detection
in embedded devices. In IFIP International Conference on Digital Forensics,
pages 313–329. Springer, 2018.

[28] MITRE. About CVE. https://cve.mitre.org/about/index.html. Accessed
on 3 April 2020.

[29] MITRE. Frequently Asked Questions. https://cve.mitre.org/about/faqs.
html. Accessed on 3 April 2020.

[30] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti. What
you corrupt is not what you crash: Challenges in fuzzing embedded devices. In
NDSS, 2018.

[31] Openwrt. Welcome to the OpenWrt Project. https://openwrt.org/. Accessed
on 21 April 2020.

[32] S. Rahalkar, Rahalkar, and Karkal. Quick Start Guide to Penetration Testing.
Springer, 2019.

[33] L. A. B. Sanguino and R. Uetz. Software vulnerability analysis using cpe and
cve. arXiv preprint arXiv:1705.05347, 2017.

[34] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In NDSS, 2015.

[35] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer. Firmfuzz:
Automated iot firmware introspection and analysis. In Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-Things,
pages 15–21, 2019.

[36] S. Vasile, D. Oswald, and T. Chothia. Breaking all the things-a systematic survey
of firmware extraction techniques for iot devices. In International Conference
on Smart Card Research and Advanced Applications, pages 171–185. Springer,
2018.

[37] W. Xie, Y. Jiang, Y. Tang, N. Ding, and Y. Gao. Vulnerability detection in iot
firmware: A survey. In 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS), pages 769–772. IEEE, 2017.

[38] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti, et al. Avatar: A framework
to support dynamic security analysis of embedded systems’ firmwares. In NDSS,
pages 1–16, 2014.

63

https://cve.mitre.org/about/index.html
https://cve.mitre.org/about/faqs.html
https://cve.mitre.org/about/faqs.html
https://openwrt.org/

Bibliography

[39] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. Firm-afl: high-
throughput greybox fuzzing of iot firmware via augmented process emulation. In
28th {USENIX} Security Symposium ({USENIX} Security 19), pages 1099–1114,
2019.

64

	Preface
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Embedded systems
	Problem statement
	Research questions
	Thesis structure

	FACT framework and existing tools
	FACT framework
	Firmadyne
	Metasploit

	Collection of firmware images
	Sources
	Firmware images suitable for emulation with Firmadyne
	Resulting firmware images
	Conclusion

	Plugin I. Dynamic CVE verification
	Problem statement
	CVE identification by static analysis
	CVE verification by dynamic analysis
	Evaluation
	Conclusion

	Plugin II. Comparing fuzzer-based code coverage
	Problem statement
	Code coverage of emulated firmware
	Fuzzing embedded web interfaces
	Analysis of obtained execution traces
	Results
	Evaluation
	Conclusion

	Discussion
	Previous related research
	Usability of plugins
	Usability of results

	Conclusion
	Overview
	Contribution
	Challenges
	Possible extensions

	Screenshots of web user interface
	Plugin I. Dynamic CVE verification
	Plugin II. Comparing fuzzer-based code coverage

	Configuration for experiments
	Fuzzer configurations

	Implemented test cases for plugin
	Plugin I. Dynamic CVE verification

	Bibliography

