RMA - UCL - ULB - UNamur - HE2B - HELB
Faculty of Science

Master in Cyber Security

Refactoring a cyber range system to

support multiple hypervisors

Simon Wattier

Promoters: Master Thesis in Cyber Security
Prof. Thibault Debatty Prof. Jean-Michel Dricot

Academic year 2019 - 2020

“La vie, c’est comme une bicyclette, il faut avancer pour ne pas perdre I’équili-
”

bre.

Albert Einstein, 1879 - 1955

“Informatique : Alliance d’une science ineracte et d’une activité humaine
faillible.”

Luc Fayard, 2002

ii

Acknowledgment

First of all, I would like to thank the people who have, from near and far, contributed
to its development. I also particularly want to express my gratitude:

To my promotor, Mr. DEBATTY Thibault, for his follow-up and assistance in the com-
pletion of this thesis.

To my co-promotor, Mr. DRICOT Jean-Michel, for the time he has given me in re-
searching subjects.

Finally, I thank the readers, but also my family and friends for their support and en-
couragement throughout this achievement.

Contents

1

[1.1 Objectives| e 1
[.2 Structurel 1

1. ntributions| Lo 2

2 State of the art| 3
I Virtualization] 3
2.1.1 What is virtualization?| 3

[2.1.2 Hypervisors| 4

[2.1.3 Virtualization types|, 6

2.2 Cyber Ranges| 9
[2.2.1 What is a Cyber Range?|. 9

2.2.2 Architecturel oo 9

[2.2.3 Difterent suppliers| 10

[3 Analysis of an existing system| 14
3.1 Mode of operation| 14
[3.2 Composer for the libraries [26| 17
mmand classes| 21

Y n Githabl 23

[3.5 Identified problem| o 25

[4 Proposed solution|

4.1 Design patterns .

4.3 Dependency injection|.

431 Whatis DI7[.o

[4.3.2 PHPexample|. o000

[4.3.3 Javaexampleo

[5 Implementation|

5.2 Code analysis|

5.3 Creation of the interfacel

4 Environmen

5.5 Dependency injection|. Lo

[5.6 Implementation with ESXi|,

[5.6.1 Why VMware ESXi7|.o oo

[5.6.2 Installation and configuration|

[5.6.6 ESXiAdapterclass,

.6.7 PHP Diagram|. 0000

Problem

6 Conclusion|

1

ii

28

28

31

32

32

33

35

37

38

38

39

42

44

45

45

46

46

48

49

69

71

71

73

75

77

[A ESXi and VCenter

installation and configuration|

(B Requests documentation|

IB.3.8 Memory|

B.3.9 Network|

iii

77

99

99

99

102

104

106

106

108

110

112

114

116

116

118

124

127

129

131

135

139

143

151

List of Figures

2.1 Hypervisor type 1 vstype 2[.
2.2 CPU performance per hypervisor|
[2.3

Example of a Vulnerability Lattice in Alpacal

[3.2 Test classes of the cyber range project|
[3.3 PHP diagram before any modifications|.
[5.1 Request example from VMware documentation in PostMan| . .
5.2 Command classes of the cyber range project after modifications]
[C.1 PHP diagram before any modifications (with methods included)|

iv

13

15

24

27

47

72

152

List of Tables

[3.1 Table of composer operator|

Chapter 1

Introduction

1.1 Objectives

The goal of this thesis is to detail and explain the operation of a cyber range solution but
also to refactor a cyber range system to support multiple hypervisors and to implement
it with VMware’s ESXi product.

The choice to refactor the code aims to create independence of the cyber range system
from the hypervisor on which it runs but also to implement good coding practices.

By refactoring the code, we will create a kind of "universal plug”. Thanks to this
operation, the cyber range will not have to monitor the type of hypervisor and will be
able to simply launch its instructions.

A summary of the master thesis can be found in point

1.2 Structure

This thesis is composed of several sections. The first, the introduction, is intended to
give the objectives, the structure, and the contributions.

The second, the state of the art, is the research phase. This section contains the the-
oretical points necessary to understand all this dissertation, as well as what has been
done for cyber range systems.

The third one, the analysis of an existing system, will evaluate in detail a current cyber
range solution. We will cover its operation and its components. In this case, we will
analyze the solution proposed by the Royal Military Academy. We identified multiple
shortcomings and limitations, that could be fixed using dependency injection and design
patterns.

The fourth one, the proposed solution, introduce design patterns, dependency injection
and interfaces. We then show how these could beneficially be applied to the Cyber
Range of the Royal Military Academy.

The last section, implementation, is the practical part of this paper. This will bring
together the problem definition by analyzing the code, the creation of the interface to
overcome this problem, the implementation with VMware ESXi and finally the problems
encountered during the implementation.

Finally, the appendices section contains the step-by-step installation and configuration of
the ESXi and the vCenter. It also contains the documentation of the different requests
used to communicate with the vCenter API and their responses in several formats,
depending on the HT'TP client chosen to send the requests.

1.3 Contributions

The contribution of this thesis is multiple.

First of all, a high-level description of an existing cyber range solution was made in
a paper that Professor Debatty and Professor Mees published. From this paper, we
will analyze this cyber range solution in much more detail, presenting in detail the
functioning and architecture of the cyber range solution. This contribution may be
useful for students and researchers who will work on this project in the future.

Through our detailed analysis of this system but also of the code, it allowed us to bring
to light several problems in it. This leads to the second contribution, which is to propose
various improvements in the way the code and the different components work together.
Indeed, we use design patterns, dependency injection and best coding practice.

The implementation of all these improvements aims to make the code more robust but
also more maintainable by reducing, for example, the links between the different classes.

Finally, thanks to the implementation of the various improvements in the code, this will
allow us to universalize the code through the use of interfaces.

We will also be able to implement the cyber range of the Royal Military School with
another hypervisor (VMware ESXi) than the one currently implemented (VirtualBox).

Chapter 2

State of the art

Before discussing the implementation of the refactoring of the cyber range, we must
address some theoretical points, which will be detailed herein state of the art.

First of all, we will start with a part explaining virtualization, the different types of
existing hypervisors, and finally, the different types of virtualizations.

The last section will define the cyber ranges, their architecture, and the different existing

types and suppliers existing at the moment.

2.1 Virtualization

We will discuss the definition of virtualization, the different types of hypervisors and
their use, a comparison of the two types that exist, and the different types of virtual-
ization that exist.

2.1.1 What is virtualization?

Virtualization is the virtual creation of something physical such as an operating system,
server, application, storage, or network resources. [42]

It allows several operating systems such as Windows, Linux, etc. to run on a single
physical server (the virtualization server) as if they were running on separate physical
machines. Those operating systems are independent of each other.

In order to be able to run the virtual machines, we need to install a hypervisor on a
physical server (see [2.1.2)).

2.1.2 Hypervisors

The hypervisor is an operating system allowing virtualization. It creates a virtualiza-
tion layer that separates the physical hardware from the virtual machine. Due to this
virtualization layer, the VMs are not able to tell the difference between the physical and
the virtual environment.[8][27]

They are two types of them: type 1 (bare-metal) and type 2 (hosted) hypervisors (figure

21).

The classification of these hypervisors is linked to their method of operation.

_
VM VM

Host OS
Hardware Hardware
Type 1 Hypervisor Type 2 Hypervisor
(Bare-Metal Architecture) (Hosted Architecture)

Figure 2.1: Hypervisor type 1 vs type 2

Source: https://www.nakivo.com/blog/hyper-v-virtualbox-one-choose-infrastructure/

2.1.2.1 Bare metal

Type 1 hypervisors are exploitation systems directly installed on the machine, running
directly on the system hardware. Since the hypervisor has direct access to the hardware
with no software in-between, it provides better performance and stability.

There are a few vendors available:

e VMware vSphere with ESXi

o KVM (Kernel-based Virtual Machine)
e Microsoft Hyper-V

o Citrix Hypervisor (Xen Server)

2.1.2.2 Hosted

Type 2 hypervisors are applications installed on a host operating system (like Windows,
MacOS, Linux, ..) that provides virtualization services.

It relies on the host’s pre-existing OS to manage calls to CPU, memory, storage, and
network resources.

There are a few vendors available:

e Oracle VM VirtualBox

o VMware Workstation Pro / VMware Fusion
e Windows Virtual PC

e Parallels Desktop

2.1.2.3 Type 1 VS Type 2

The type of hypervisor chosen only depends on the needs of the person or the enterprise,
as well as the size of the virtual environment. For personal use or smaller deployments,
the type 2 hypervisor is the way to go. On the contrary, if the budget allows it and it is
a bigger deployment for enterprise-level then the type 1 hypervisor is the ideal choice.

From a performance point of view, type 1 is the most efficient because it has no interme-
diate layer and works directly on the host’s hardware, remaining the more performant
compared to type 2.

In the 2016 publication (Performance analysis of selected hypervisors (Virtual Machine
Monitors - VMMs) [14]) in which two researchers compared different hypervisors (in-
cluding Microsoft Hyper-V, VMware ESXi, OVM, VirtualBox and Citrix XenServer)
according to several criteria. The major components tested were the processor, RAM
memory, hard disk, and network interface. These components were tested separately.
We can see in the following figure that the performance at the processor level is
more impacted for the type 2 hypervisor (VirtualBox). This is mainly due to the fact
that type 1 hypervisors have direct access to system resources.

o o o o
o ~ o ™

o
o

Relalwe Soore b he Bes | (HIgher 15 be ler)

1
iy per/ 2008R2
Hy pery 2012R2
ESXN S
=OVM3.27
aVinaBox 436
XenSeners.1
4

Numeric Sort Sting Sot Brfeld FP Emulation Fourker Assignment Hufman Neuml Net LU Decomposition

o

Figure 2.2: CPU performance per hypervisor

Source: [14]

Licensing is also an important factor to consider. Indeed, most type 2 hypervisors are
free, while type 1 hypervisors have several types of licenses. It can be per server, per
CPU, or even per core used.

2.1.3 Virtualization types

2.1.3.1 Data virtualization

The main goal of data virtualization is to create, from different and disparate sources,
a unique and virtual representation of data without having to copy or to move them.
That way, data is accessible by front-end solutions (applications, dashboard, portals)
and can be manipulated in a unified way, regardless of their location. [15] 311 [37, [6]

2.1.3.2 Desktop virtualization

"Desktop virtualization is the concept of isolating a logical operating system (OS) instance
from the client that is used to access it.” [32]

Virtualized desktops are often hosted on a remote server, allowing an administrator
to easily deploy and configure hundreds of simulated desktops. Virtualization enables
virtualized desktops to adapt to changing business or user needs by adding, for example,
more CPU core, more RAM, etc. The end-user can access his machine from any client
(a computer, a tablet, a smartphone, ...).

There are several "types” of desktop virtualization, depending on whether the instance
is running on a local machine or a remote machine:

o Host-based virtual machines: the user connects to a VM hosted in a data center;

o Shared hosted: the user connects to a shared desktop running on a server;
o Host-based physical machines: the OS runs on another device’s physical hardware;

e OS image streaming: OS running on local hardware but boot from a remote disk
image;

o Client-based virtual machine: a VM runs on a fully functional PC with a hyper-
visor in place.

Among the main benefits of the desktop virtualization, we can cite the lower total cost of
ownership, the enhanced security, the reduction of energy costs, and the centralization
of management. On the other hand, it has its drawbacks like the increased downtime
in case of network problems and security risks in case of bad network configurations.
[15] 145, [38]

Desktop virtualization is not to be confused with operating system virtualization (see

2.1.3.9).

2.1.3.3 Operating system virtualization

Unlike desktop virtualization (see[2.1.3.2]), OS virtualization allows us to deploy multiple
operating systems in a single machine.

It is ”a server virtualization technology that involves tailoring a standard operating system
so that it can run different applications handled by multiple users on a single computer
at a time”. [40]

It is a useful way to run Linux and Windows environments side-by-side without inter-
fering with each other. The virtual environment accepts commands from different users
using different applications.

2.1.3.4 Server virtualization

"Server virtualization is a virtualization technique that involves partitioning a physical
server into a number of small, virtual servers with the help of virtualization software.’
[41]

)

Server virtualization is part of the general trend that is virtualization in IT environments

such as storage virtualization (see [2.1.3.1), network virtualization (see [2.1.3.5)), and
operating system virtualization (see [2.1.3.3)).

They are three kinds of server virtualization: [44]

e Full Virtualization: This type of virtualization uses a hypervisor that
directly communicates with the physical server’s disk and CPU. The hypervisor
keeps each virtual server independent while managing the physicals resources,
which can impact server performance.

e Para-Virtualization: Unlike full virtualization, the entire network works to-
gether as a cohesive unit. It means that each virtual server is aware of each other,
and thus the hypervisor uses less processing power to manage the operating sys-
tems.

e OS-Level Virtualization: It does not use a hypervisor. The virtualization ca-
pacity embedded in the operating system of the physical server executes all the
tasks of a hypervisor. In this method, all the virtual servers need to run the same
operating system.

Server virtualization [25], [44] can be used to increase the server availability (by speeding
up the creation of new servers and deployment of an application, it reduces the time of
server rebuilding) and to decrease the investment and equipment.

By integrating virtualized servers, it reduces the number of physical servers needed and
thus, reduces the operating and caring costs like hardware buying, data center spaces,
equipment cabinet, power consumption, and maintenance costs.

Server virtualization can also be used to eliminate server sprawl (when multiple under-
utilized servers take up more space and consume more resources than they can be jus-
tified by their workload [34]). In general, it uses server resources more efficiently and
centralize server management (when a physical server is virtualized, it can be visualized
as a software that can be easily manageable). [25] [44]

2.1.3.5 Network virtualization

"Network virtualization is a method of combining the available resources in a network to
consolidate multiple physical networks, divide a network into segments or create software
networks between virtual machines.” [33]

Network virtual allows to completely reproduce a physical network, but without the
hardware limitations of it. Moreover, network virtualization comes with significant
advantages such as [23] greater flexibility and scalability because it is no longer bound
to hardware limitations. It offers more manageability over the virtual network and
also the possibility to have segregated networks that are isolated from each other. In
addition, it drastically reduces the number of physical components such as switches,
routers, servers, cables to create multiple and independent networks [15].

2.2 Cyber Ranges

After talking about virtualization in the previous [2.1] point, we are going to talk more
easily about cyber ranges.

In this part, we will define a cyber range, explain the different architectures that exist,
and finally, concrete examples of different types/suppliers of cyber range solutions.

2.2.1 What is a Cyber Range?

”A cyber range is a platform for the development, delivery and use of interactive simu-
lation environments.” [12]

A cyber range is an interactive platform, allowing the virtual representation of an infras-
tructure, which can be very simple with a few components up till a complex infrastruc-
ture composed of many different "hardware” such as servers, switches, routers, firewalls,
etc. and thus improving the realism and the quality of the platform.

It allows the simulation of different scenarios, like the simulation of an attack in real-time,
the defense of critical systems (blue teaming), the compromise of systems, pentesting
(red teaming).

A cyber range serves multiple purposes and can be used to train people to certain tech-
nologies, as a certification platform, as Capture The Flag (CTF) exercises, for security
testing, research and education, etc. In other words, Cyber Ranges are platforms on
which users can practice, train, and improve their cybersecurity defense skills.

Cyber Ranges can be used by a multitude of different “typical” users, ranging from stu-
dents to military agencies via researchers, security professionals, and corporates (private
and government).

After having developed the different architecture that a cyber range can have we
will go through some major actors in the field of cyber ranges|2.2.3

2.2.2 Architecture

There are generally three ways that you can build your cyber range’s architecture on
[17] : the physical, the virtual, and the hybrid architecture.

10

The physical architecture replicates the full physical architecture, including all the
network elements and routers, switches, firewalls, servers, etc. One of the main ad-
vantages of this solution is that you can not have a more identical topology than you
infrastructure.

On the other hand, physical architecture has many drawbacks. Indeed, this solution is
the most expensive because we have to buy the material twice in order to obtain the
same infrastructures.

In addition to having to buy additional hardware, you have to provide people to main-
tain the infrastructure, provide sufficient space in the server room, and have enough
electrical and cooling power for all the additional hardware.

In addition, when the infrastructure of the cyber range changes or evolves, manpower
is needed to reset, modify, and configure the hardware.

The virtual architecture replicates the physical architecture, but virtually every net-
work element, firewalls, servers, etc. are simulated by virtual machines. Compared to
physical architecture, it is cheaper to set up and maintain than physical architecture.
It is also easier, as the scenario evolves, to reset, modify, and configure the different
elements. Another advantage is that the virtual architecture can work on almost any
type of hardware, no dedicated or specific equipment is needed. On the other hand,
virtual architecture also has these weak points.

The simplicity of implementation and management gained with it will be impacted by
"raw” performance. It depends, of course, on the infrastructure and the scenario, but
virtual infrastructures will show poorer performances than the physical ones.

The hybrid architecture combines the simplicity of virtual infrastructure with the
power of physical architecture.

Indeed, the choice is free when it comes to virtualizing such equipment and using such
physical equipment. Also, some specific devices are either not virtualizable or have not
been virtualized.

Consequently, the hybrid architecture allows the advantages of virtual infrastructure to
be combined with the possibility of connecting physical equipment to it.

2.2.3 Different suppliers

We are going to look at some of the big players in the cyber range.

Whether it is a ready-made solution or a custom solution that has been done by hand,
we will detail some of them in the following section.

11

2.2.3.1 HNS plateform [29]

Founded in 2002, DIATEAM is specialized in cybersecurity and the production of highly
innovative solutions.

As a pioneer company in cyber range and associated services, DIATEAM has developed
a complete range of solutions that are marketed under the brand name HNS PLAT-
FORM (https://www.hns-platform.com/). These solutions already equip many civil
and military training centers in France and abroad. DIATEAM’s HNS PLATFORM
cyber range is a software and hardware simulation and virtualization platform, a hy-
brid cyber range that enables security teams to test, train, develop their expertise
and reproduce realistic digital environments through the content of all forms.

They propose a lot of features, including multi-view, multi-user with multi-architecture/multi-
topology, memory dumps for forensics, custom network links simulation (latency, packet
loss and/or duplication...).

They also developed online learning, training, and experimentation platform based on
the HNS platform, accessible directly from the web browser without any other plugin
required (thanks to the full integration of HTML5 web client). The main advantage of
this online platform is the fact that it does not require any installation or dependency,
and that you can access it from wherever you are. [30]

2.2.3.2 Airbus [3]

Airbus has been offering a CyberRange solution since 2017.

It is a hybrid platform, which means that in order to meet the constraints of a complex
environment, the platform is open to be connected with external equipment that is not
virtualized.

CyberRange is also very scalable and can deploy pre-configured scenarios within 15
minutes for the number of users that you need.

Its main purposes are the pre-production tests, the training, the exercises, and the
operational qualifications.

The main scenarios that will be found on this cyber range solution are the formation
and training of the teams: Blue Team, Cyber Challenges, Ethical Hacking I'T and ICS,
preparation for crisis management, tests and evaluations of the customer’s products
security capabilities and the improvement of the cyber defense posture through attack
scenarios.

The CyberRange, just like the HNS PLATFORM is available in a mobile box, in a bay,
or accessible from a cloud.

https://www.hns-platform.com/

12

2.2.3.3 Palo Alto Networks [5]

Palo Alto Networks launched its global Cyber Range initiative in 2017. By making
dedicated cybersecurity training and simulation environments available to customers in
Europe, the Middle East, Africa, the United States, and the Asia-Pacific region, the
company aims to create and develop effective skills to meet today’s and tomorrow’s
cybersecurity challenges.

It is a virtual platform, with a varied environment. On this plateform, each partici-
pant defends the company by using new generation firewalls to block attacks.

The exercises are managed by teams on-site, allowing the real-life reproduction of pro-
duction environments as found in the corporate world.

Of course, the carried out exercises show the results obtained using the applications in
the Palo Alto portfolio.

Like other solutions, this cyber range from Palo Alto offers several structures that we
will quickly discuss below:

e Red Team: simulates malicious users attacking users via different vectors;

o Green Team: simulates legitimate users (on their computer, phone, etc.) connected
to a network infrastructure managed by a Blue Team;

e Yellow Team: simulates users like the green team, but those users install malicious
applications or click on phishing links;

e White Team: creates attack scenarios and monitor how the Blue Team defends
against the Red Team attack while looking at the Green Team metrics.

e Blue Team: simulates those who manage the security and stability of the network
and application infrastructure.

Also, participants in a cyber range event will receive learning credits.

2.2.3.4 Alpaca [11]

Alpaca is an open-source software packageﬂ with a virtual infrastructure, which is
oriented for training students with various scenarios.

Unlike other cyber range solutions, Alpaca uses a vulnerability database coupled with a
custom planning engine to simulate exploits sequences allowing an attacker to achieve
a specific objective.

Thttps://github.com/StetsonMathCS /alpaca.

https://github.com/StetsonMathCS/alpaca

13

Based on these factors, the solution can create a unique cyber range that groups together
the vulnerabilities selected in the database.

To meet the needs of users, when a scenario is created, a minimum number of steps are
required to be able to solve a challenge or exploit a specific vulnerability.

Depending on the scenario, there may be several ways to solve a challenge. In Alpaca,
these different resolution paths are called ”Vulnerability Lattice”. An example of this
"vulnerability lattice” can be found in figure [2.3

Once the lattice is found, a cyber range is built by automatically generating scripts to
instantiate a virtual machine that contains all vulnerabilities that make up the lattice.

" eb login 1 T password 1 Crack i)

| eb login - | Passwor I ogin

! form :_> SQL-injection ! hashes :_> p:ss:]vord ! credentials >
\ \ ashes \

\
Root :
|

"~
Brute-force | Login
login attempts : credentials
-

. \

Deserialization | Reverse
exploit : shell)
-

Figure 2.3: Example of a Vulnerability Lattice in Alpaca

Source: [10]

Chapter 3

Analysis of an existing system

In this section, we will look at the analysis of the cyber range solution proposed by the
Royal Military Academy. We will begin by describing its mode of operation based on
the paper written by Professor Debatty and Professor Mees [10].

We will then go into more detail in the code that makes up this solution. We will then
talk about its implementation in practice by going through its composition for library
management, the different "command” classes allowing to control the infrastructure and
finally the tests that are implemented and performed on GitLab.

This analysis of the cyber range solution will allow a global understanding of the system,
but also a more specific understanding of its components.

3.1 Mode of operation

The solution proposed by the RMA is not like the previous ones, i.e. here it has been
made ”from scratch” and is not "key in hand”. It is also a fully virtual infrastruc-
ture, as explained in Its main use is for training purposes.

As you can see on the following figure the main components of the RMA cyber
range are a hypervisor, a remote desktop gateway, and an orchestrator.

This solution offers many advantages:

o The scenario that will be implemented is written in a text file (yalm or json type)
and facilitates version control, scenario updates, etc.;

14

15

remote desktop _
~ gateway
—-—
trainee il
=
configures
LT W
orchestrator >
VM
hypervisor

Figure 3.1: Architecture of the RMA’s solution

Source: [10]

o The flexibility of the implementation makes it possible to reuse a scenario for 10
or 100 participants;

e Vagrant images can be used directly in the scenarios and imported as virtual
machines, giving access to hundreds of pre-configured images;

e ”"Scenario” files in JSON format allows more extensive configuration of virtual
machines (see listing [3.1)). Those JSON scenario files describe the machines that
need to be instantiated, with their configurations such as the image of the virtual
machine to be used, the number of processors, the amount of RAM, the network
interfaces, and possibly commands to be executed for the update and installation
of specific software.

There are also ”"playbook” files, in YML format, allowing you to specify informa-
tion such as IP address assertion, installation of certain software or even certain
commands to be executed (see listing [3.2]).

Apache Guacamole is currently used for the remote desktop gateway. This allows
users to connect to the cyber range and use the virtual machines from a browser without
requiring additional plugins or flash to be enabled as Guacamole is a pure HTML5
gateway.

At the heart of the cyber range is the orchestrator. Starting from a defined
scenario, it is responsible for provisioning the virtual machines (by deploying the appro-

O U WO DN =

16

priate images, configuring the virtual hardware of each virtual machine, IP addresses,
user accounts, installing and configuring the required additional software), configuring
the various virtual networks, but also creating accounts that will allow users to access
their virtual machines from the remote desktop gateway.

To perform all of the above actions, the PHP code is the basis of everything and is
responsible for all of them. We will discuss the different classes and steps that make it
up in more detail in section We will discuss in a general way how the classes work
and what they are composed of, but we will also focus on some of the more important
classes.

For the cyber range to work correctly, it requires the use of external libraries. Indeed,
some of its components are based on libraries that already exist and are widely used
elsewhere. To manage them as efficiently as possible, Composer has been implemented
here. We will discuss this in more detail in point but in simple words, Composer
is a simplified PHP dependency management tool that will install and update them for
us.

In addition to these various components, there’s a part that we haven’t talked about yet.
In the cyber range, there is also a whole part that is dedicated to testing. These tests
are carried out on the GitLab platform (https://gitlab.cylab.be/cylab/cyber-range). To
make it simple, with each code modification, a "push” in technical terms, on GitLab, a
series of tests is launched.

First of all, we will have Composer which will install all the libraries the program needs.
Then, starting from defined scenario files, the program will be in charge of instantiating
the virtual machines, configuring them, etc. Once all the tests have been passed, GitLab
will provide us with a percentage of classes and methods that the tests have covered. If,
on the contrary, an error occurred during the tests, we will have a console with a stack
trace explaining the error(s) in our code. This allows us to verify the proper functioning
of our code, all in an automated way.

As for the other points mentioned above, the tests have a dedicated part that will be
discussed in more detail in point

Currently, VirtualBox is the hypervisor responsible for running virtual machines and
the network but other hypervisors could be supported.

Therefore the work of code refactoring to support other hypervisors will be based on
this cyber range solution.

"name” : "forensics -1819”,
"networks”: [],
”instances”: 2,
"machines”: |
{ 7ova’”: "vagrant : cylab/ubuntu-16.04-64-desktop”,

https://gitlab.cylab.be/cylab/cyber-range

10
11
12
13
14
15
16
17
18
19
20
21

— O OO0 Ut Wk~

— =

17

"name” : "forensics”,
"networks”: |
{ 7"mode”: ”bridged”,
"bridge__interface”: ”eno507}
],
provision”: |

”sudo apt-get -y -qq update”,
"sudo apt-get install -y -qq python2.7 python-minimal”
I,
“cpu__count”: 4,
"memory”: 4096,
”playbook”: ”playbook.yml”,
"remote__desktop”: true}
I
}
Listing 3.1: Example of scenario file
- hosts: all
become: true
tasks:
- name: install packages
apt:
name: ['git', 'gemu', 'gnusim8085', 'python-pil', 'python-distorm3"]
- name: install volatility
git:
repo: 'https://github.com/volatilityfoundation/volatility.git"

dest: /opt/volatility

Listing 3.2: Example of playbook file

3.2 Composer for the libraries [26]

Composer is a dependency management tool in PHP (similar to Bundler for Ruby appli-
cations). It allows you to declare the libraries needed for your project in a composer.json
file that it will manage (install/update) for you.

This is not to be confused with a packet handler. Indeed, composer works with "pack-
ages” and libraries, but it only manages them on a "per-project” basis, by installing
dependencies in a folder (often called vendor) inside the project.

But then, in which cases are we going to use Composer?

Let’s assume, for example, that we have a project that relies on a large number of
bookstores and that these same bookstores also depend on other bookstores.
Composer will allow us to declare in a JSON file the libraries we need, it will find out
which versions of which packages can and should be installed, and then it will install
them.

Uk W N —

00 ~J O Ui W N

18

Finally, all dependencies of a project can be easily updated in only one command making
it easier to maintain to the latest versions. For online repositories like Github, Gitlab,
etc., Composer will also allow to leave out of the repository the dependent libraries and
to have only the application code.

Composer also allows you to "package” libraries that you would have created yourself
and share them very quickly. There is already an online platform with a ton of packages
available (packagist.org).

Now, how do we use Composer? The very first thing we need to do is obviously
create the composer.json file. Then, the keyword for the packages will be require which
will simply tell Composer which packages our project depends on.

As you can see in the following listing, require takes into account the name of the
package with the vendor as well as the version constraints.

"require”: {

}

”vendor /package”:

71.0.%7

Listing 3.3: Example of composer.json

For version constraints, Composer is based on several operators that can be found in

the following [3.1] table:

Symbol Signification

Role

Example

>= Version Range

Specify ranges of valid version,
Valid operators are >, >=, <, <=, |=

7>=1.0 <1.1 || >=1.2” includes version 1.0 to 1.1
and versions above 1.2

"php”:

Hyphenated Version Range

Defines a range of versions

"php™: 1.0 - 2.0” is equivalent to >=1.0.0 <2.1

* Wildcard Version Range

Extends to all subversions

“symfony/symfony”: "3.1.*¥” includes the 3.1.1
It is equivalent to ">=3.1 <3.2”

~ Tilde Version Range

Extends to the next versions of the
same level

“doctrine/omr”: 7~2.5” also concerns the 2.6, but not the 2.4 nor the 3.0
It is equivalent to ">=2.5 <3.0.0”

Caret Version Range

Same as tilde, only if there is
backward compatibility

“symfony /symfony”: "71.2.3” is equivalent to ">=1.2.3 <2.0.0”

Table 3.1: Table of composer operator

The following listing, coming from the GetComposer website is a summary of version
example that is possible to make with different version

"require”: {

”vendor /package”:

/] > < >= <=

”vendor /package”:
”vendor /package”

wildcard

/1*

71.3.27, // exactly

1.3.2

| specify upper / lower bounds

">=1.3.2", // anything above or equal to 1.3.2

"<1.3.2”7, // anything below 1.3.2

"https://getcomposer.org/doc/articles/versions.md

packagist.org
https://getcomposer.org/doc/articles/versions.md

10
11
12
13
14
15

16
17

18

O© 00O ULk W+

DO DD R = = = e e e
N = OO0 Ui W —O

19

”vendor/package”: 71.3.*7) // >=1.3.0 <1.4.0

// ~ | allows last digit specified to go up

”vendor /package”: 7~1.3.27, // >=1.3.2 <1.4.0

"vendor/package”: ”~1.37, // >=1.3.0 <2.0.0

// = | doesn't allow breaking changes (major version fixed - following
semver)

”vendor/package”: 771.3.27, // >=1.3.2 <2.0.0

”vendor /package”: 770.3.27, // >=0.3.2 <0.4.0 // except if major version
is 0

}

Listing 3.4: Composer file summary

When all the necessary dependencies have been defined in the "composer.json” file, we
will be able to install them. To do so, we will run the "php composer.phar install”
command.

Once Composer has completed the installation and at the first command execution, it
will write in a file, "composer.lock”; the exact versions of the packages it has installed.
This will lock the project to those specific versions, preventing us from automatically
getting the latest versions of our dependencies.

A good practice is to upload the "composer.lock” file to the repository, so that everyone
working on the project will work with the same versions of dependencies.

To go back to the Royal Military Academy’s cyber range solution, you will find below
the "composer.json” file present in the program.

"name”: "rucd/vbox”,

7authors”: |
{

"name”: ”Thibault Debatty”,
"email”: ”thibault.debatty@gmail.com”
}

I,

"require”: {
"symfony/process”:
"symfony/console”:
"herrera -io /phar-updzs
"doctrine /orm”: 772.67,
"php-di/php-di”: 775.47
"phpseclib/phpseclib”: 7~2.07,
"vlucas/phpdotenv”: 773.17,

“cylab -be/php-vbox-api”: 770.0.17,
"psr/log”: "T1.17,

”"monolog/monolog”: 771.247,

"cylab -be/php-vagrant - cloud”: 770.0.5”

”
9~

4”)
4%7

3.
3.
tC”: HA2.0w7

b

"require -dev”: {

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

20

"kherge/box”: 7"72.77,
"phpunit/phpunit”: 776.5",
"squizlabs/php_ codesniffer”: 773.47,
”slevomat /coding - standard”: 775.07
s
7autoload”: {
"psr-47: {
"Cylab\\ Cyrange\\”: 7src/”
}
B
7autoload -dev”: {
"psr-47: {
"Cylab\\ Cyrange\\”: 7tests/”
}

Listing 3.5: Composer file Cyber Range

There are several remarks to be made about this file.

symfony/process: The process class executes a command in a sub-process. To
avoid security problems, it takes care of the differences between the operating
system and escaping arguments. It also replaces PHP functions such as exec,
passthru, shell__exec and system;

symfony/console: The Console component allows to create command-line com-
mands and can be used for any recurring task (cronjobs, imports, etc.);

php-di/php-di: This library is the dependency injection container for PHP. We’ll
discuss this further in the section

phpseclib/phpseclib: It is the PHP Secure Communications Library, with imple-
mentations of RSA, AES, SSH2, SFTP, X.509 etc.;

vlucas/phpdotenv: It loads environment variables from a ".env” file into the pro-
gram. It is useful for anything that is likely to change between deployment envi-
ronments like database credentials, etc.;

cylab-be/php-vbox-api: It is a PHP library developed by Pr. Debatty to drive
VirtualBox;

monolog/monolog: It is helful for sending your logs to files, sockets, inboxes,
databases and various web services;

cylab-be/php-vagrant-cloud: It is a PHP client for Vagrant Cloud that allows you
to download Vagrant boxes directly.

phpunit/phpunit: It is the PHP unit testing framework;

squizlabs/php__codesniffer: It tokenizes PHP, JavaScript and CSS files and detects
violations of a defined set of coding standards;

21

o slevomat/coding-standard: It works in pair with "squizlabs/php_ codesniffer” and
complements Consistence Coding Standard by providing sniffs with additional
checks.

Second, the difference between "require” and "require-dev” is that "require-dev” is a
list of packages needed to develop this package, or to run tests, etc. The root package
development requirements are installed by default.

Finally, the keyword "autoload” will allow us to use PHP classes without the need to
require() or include() them. This is considered a feature of modern programming.

Using PSR-4 here is the newest autoloading standard in PHP, and it requires us to use
namespaces. More technical information can be found in the technical documentation?]

3.3 Command classes

Here we are in the command class section. In this part, we will approach in a more
general way the various classes present in this folder as you can see on the figure (3.3

These different classes are used to “control” the whole VirtualBox environment. Each
class has a specific action, either on a specific virtual machine or more generally on a
scenario.

But generally speaking, the different classes are used to instantiate virtual machines, to
configure them, to deploy a scenario, to create access accounts for the VPN but also
for the Guacamole web interface. You can find bellow the different classes with their
general explanation:

e AbstractCommand: Its role is to log commands and possible errors as well;

e DeployResult: It will return the result of deploying a virtual machine, as well
as the fact that it needs RDP enabled;

e GroupList: It will return the list of existing virtual machine groups;
e GroupUp: It will start all virtual machines in a specified group, recursively;

¢ GuacamoleAdapter: It is an adapter acting as a wrapper between the Gua-
camole class and AbstractCommand;
Supprimé

e RDCommand: This class extends the AbstractCommand class. However, this
class is empty and therefore has no use. My advice would be to delete it too;

https://getcomposer.org/doc/04-schema.md#psr-4

https://getcomposer.org/doc/04-schema.md#psr-4

22

RDList: It returns the list of Remote Desktop accounts configured for Guacamole.
However, it also extends the class RDCommand which is empty ... It would be
more judicious that this class be directly linked with the AbstractCommand class:

ScenarioDeploy: It will deploy virtual machines and create guacamole accounts
using a JSON scenario description. More details on this class can be found bellow;

ScenarioDestroy: It will destroy a specified scenario by deleting virtual machines
and associated Guacamole accounts;

ScenarioList: It will return the list of existing scenarios;

Update: This function is useless, it redirects to a “manifest.json” hosted on the
filetray site but which is no longer accessible. Moreover, it is never called in the
code. This class should therefore be deleted.;

VagrantGet: It allows you to download a box directly from Vagrant, by specify-
ing its name;

VBoxAdapter: It is an adapter acting as a wrapper between the VBox class and
AbstractCommand;

VBoxCommand: It allows to extract the name of a scenario from the name of
a specified group;

VMCount: It makes it possible to count the number of virtual machines present;

VMDestroy: It allows deleting a virtual machine specified by som name or its
UUID as well as its associated hard disks;

VMHalt: It sends a stop signal from ACPI to a virtual machine specified by its
name or UUID;

VMImport: It makes it possible to import an OVA file by specifying the path
and start the virtual machine. Optionally, you can preset the number of copies of
the OVA file to be made;

VMKill: It will kill a virtual machine specified by its name or UUID by forcing
the shutdown;

VMList: It will return the list of running virtual machines with their name,
group, UUID and state;

VMReset: It will reset a virtual machine specified by its name or UUID by by
simulating the pressing of a reset button;

VMSuspend: It will suspend a virtual machine specified by its name or UUID;

VMSuspendAll: It will suspend all virtual machine, which can be useful for
updates and reboots;

VMUp: It will bring up (start it or resume it) a virtual machine specified by its
name or UUID;

VMUpALIL: It will bring up (start it or resume it) all virtual machine.

23

e VPNAdd: It will add a VPN user by specifying a username and an expiration
date;

e VPNAddList: It will add multiple VPN users by specifying a list of username
and an expiration date;

e VPNCommand: This class contains several methods allowing it to perform
several actions. It will be able to return an array containing all the usernames,
check if a username is valid or make a backup of a configuration file;

« VPNList: It will list the VPN users with their username and expiration date;

e VPNUser: It describes the structure of a VPN type user with the username and
expiration date.

To go into a little deeper about the ScenarioDeploy class, when configuring virtual
machines, the role of ScenarioDeploy is to:

e Configure the properties of the virtual machines, i.e., their name, description,
group membership;

e Configure the hardware of the virtual machines, such as the number of processors,
the size of the RAM, the activation of the RDP (Remote Desktop Connection);

o Configure port forwarding rules for NAT via SSH;

e Configure the hostname of the machine, its password, the network configuration
but also the installation of the different packet and the execution of the commands
in the playbook (an example scenario in JSON format can be found ;

o And finally, start the machine.

3.4 Tests on GitLab

Another essential part of the cyber range is testing. Indeed, there is a dedicated folder
in the project, the "test” folder, which will simulate the creation of scenarios by creating
and configuring virtual machines, creating user accounts, testing the connection to these
virtual machines with these accounts and then deleting everything.

You will find on figure [3.2] the link between the test classes.

You can find below the different test classes with their general explanation:

o« ExamplesTest: It extends the ScenarioTestCase class, its role is to test the
deployment of example scenarios. Basically, it will use the ScenarioDeploy class
in the ”src” folder to deploy two scenarios that have passed to it, ”scenario.json”

24

Figure 3.2: Test classes of the cyber range project

that we talked about above in

The first is a more complex scenario consisting of 7 virtual machines. In these
machines, there will be two student machines as well as a traffic generator, a
honeypot, a server and two routers. This can represent a typical corporate network
for the students to analyze.

The second is simply an Ubuntu 16.04 virtual machine with a bridged network
interface.

After deploying them, it will wait for the machines to boot and then he will count
them, to verify that the number of instantiated virtual machines matches the
scenario.

ScenarioDeployTest: It extends the ScenarioTestCase class, its role is to test the
deployment of a specific scenario. This scenario is composed of 4 virtual machines.
In these machines, we will find two test machines with four network interfaces (one
per bridge to be connected to the internet, one in private mode for the intranet,
one in internal mode to emulate a connection to a cloud and the last one in private
mode, for a connection to a DMZ), a machine representing an attack with here
two network interfaces (one per bridge to be connected to the internet, and one in
internal mode to emulate a connection to a cloud) and a last machine representing
a server with a single network card in internal mode to emulate the connection to
a cloud.

After deploying them, it will wait for the machines to boot and then he will count
them, check in the machine array that two specific names are present, check that
the remote display is enabled on ports 16000 and 16001, check the IP address of
the machines and finally test if some ports are open.

ScenarioDestroyTest: It extends the ScenarioTestCase class, its role is to test
the destruction of scenarios. In practice, this class will do two actions.

The first will be to import four virtual machines from specified ".ova” files. We
will then assign these virtual machines to different groups, ask the class to delete
machines belonging to a specified group, test if they have been deleted and lastly
remove the remaining virtual machines.

The second is to delete Guacamole’s accounts and connections. To do this, we
will create a user with two different RDP connections, create another user from
another scenario and then delete the users from a specified scenario. We will then

25

verify that this user has been removed before deleting the remaining users.

e ScenarioTestCase: Its role is to set up the MySQL database according to a
”.sql” file that is given to it so that Guacamole can use it but also to connect to
VirtualBox to ”clean it”, i.e. to go and delete the existing virtual machines and
remove the existing DHCP servers.

e GuacamoleTest: Its role will be to create a new MySQL database by passing it
a .sql schema file so that Guacamole can use it.
Then it will create a user and test his connection to Guacamole in RDP.
Finally, it will test the action of defining a password for a newly created user.

e UbuntuTest: This class have several roles.
The first is to review the network interfaces of the VirtualBox server via SSH and
compare them to a specified file.
The second is to test different network interfaces by assigning IPs to them.
The last one is to test the static configuration of interfaces. To do this, it will
import a virtual machine, configure NAT and port forwarding, connect to SSH
using port forwarding, configure the network interface and assign it an IP address
and finally, after a reboot, test the IP address of this machine.

e SSHTest: Its role will be to test the SSH connection to the VirtualBox server
from credentials located in environment variables.
It will then try to transfer a file via SF'TP from the local directory to the virtual
machine, and then test if the transfer was successful.

3.5 Identified problem

When it comes to the definition of the problem, several ideas may come to mind.

On the one hand, we have the problem that the Royal Military Academy’s cyber ranger
solution is strongly linked to one single virtualization technology. Indeed, everything in
the code is "hardcoded” to use the VirtualBox hypervisor and no other.

Besides, if we wanted to implement another solution for the hypervisor right now, it
would be difficult. Indeed, since all classes are linked to VirtualBox, the changes that
could be made would perhaps allow us to use another virtualization solution, but at the
expense of VirtualBox. By this, I mean that the two solutions, in the current state of
the code, would not be able to co-exist.

On the other hand, precisely because of this strong link with VirtualBox, it creates
strong links between classes. This ultimately increases class coupling, which is defined
by ”[...] the degree of interdependence between software modules; a measure of how
closely connected two routines or modules are; the strength of the relationships between

26

modules” [ﬂ In our case, class coupling can be defined as a measure on how classes are
connected or dependent on each other.

A common disadvantage of a large class coupling is that a change in one object or
class often results in a "ripple effect” that requires changes in other classes as well. A
particular object or class may also be more difficult to reuse and/or test because other
objects or classes must be included.

Therefore the refactoring of the RMA cyber range system is necessary. Indeed, it can
help to reduce the link between classes, to reduce class coupling, and to make it "uni-
versal”, regardless of the choice of hypervisor solution.

3https://en.wikipedia.org/wiki/Coupling_ (computer programming)

https://en.wikipedia.org/wiki/Coupling_(computer_programming)

Figure 3.3:

PHP diagram before any modifications

27

Chapter 4

Proposed solution

In this part, we are going to talk about the proposed solution, i.e. the elements that we
are going to put in place to be able to solve the problems identified in the part

In this part, we will discuss the design patterns, the interfaces and the dependency
injection.

These notions discussed here will be useful in part 5, concerning the implementation of
the proposed solution.

4.1 Design patterns

”In software engineering, a design pattern is a general repeatable solution to a commonly
occurring problem in software design. A design pattern isn’t a finished design that can be
transformed directly into code. It is a description or template for how to solve a problem
that can be used in many different situations.” [36]

In other words, design patterns can be used to represent the most effective and widely
used best practices in the programming language. In this way, they provide a kind of
"guideline” for recurring problems by providing solutions to them. They can also be
used as examples when implementing the code, but not as specific piece of code, but a
general concept for solving a particular problem.

In programming, we use a design pattern to be able to accelerate the development
process by providing proven development paradigms, also to anticipate issues that may
only become visible later in the implementation and finally to improve code readability

28

29

by providing some standardization.

The patterns can be structured in three different categories: [20]

¢ Creational Patterns
e Structural Patterns

e Behavioral Patterns

Creational design patterns. Creational design patterns give the program more flex-
ibility and versatility by providing various mechanisms for object creation. Thanks to
these patterns, it is possible to hide their creation logic, rather than instantiating objects
directly using a new operator, but it also allows efficient reuse of existing code.

Here are some examples of creational design patterns:

e Abstract Factory: This creational design pattern allows to produce instances of
objects of several families without specifying their concrete classes;

e Builder: The representation and construction of an object are separate. Thus, it
is possible to to build representations and types of different complex objects step
by step using the same construction code;

o Factory Method: The factory method creates an instance of several derived classes;

o Prototype: This allows to copy existing objects (because it is a fully initialized
instance to be copied or cloned) without making the code dependent on other
classes;

e Singleton: The singleton ensures that a class has only one instance while providing
a global access point to that instance.

Structural design patterns. Structural design patterns concern the composition of
classes and objects. They explain how to assemble them into larger structures using
the concept of inheritance to achieve new functionality while maintaining efficient and
flexible structures.

Here are some examples of structural design patterns:

o Adapter: Allows an incompatible object to collaborate by converting the interface
of one object so that another object can understand it;

o Bridge: Allows you to divide a large class or a set of closely related classes into
two distinct hierarchies (abstraction and implementation) that can be developed
independently of each other by separating the interface of an object from its im-
plementation;

e Composite: Allows you to compose tree-like objects and then work with these
structures as if they were individual objects;

30

e Decorator: Add responsibilities to objects dynamically;

o Dependency Injection: Creates ("injects”) dynamically the dependencies between
different objects based on a configuration file for example. This allows the depen-
dencies between components to be expressed not in a static way in the code, but
rather in a dynamic way at runtime;

e Facade: It is a class that provides a simple interface to an entire complex subsys-
tem;

o Flyweight: It shares common parts between multiple objects, fitting more objects
into the available amount of RAM. It efficiently shares the resources between
objects.

o Proxy: It is an object representing another object. An agent controls access to the
original object, allowing you to perform before or after the request is sent to the
original object.

Behavioral design patterns. Behavioral design models are specifically concerned
with communication between objects, but also with the allocation of responsibilities
between objects.

Here are some examples of behavioral design patterns:

o Chain of responsibility: It is a way of passing a request between a chain of objects.
When receiving one, each handler decides wether to process it or to pass it to the
next one in the chain;

e Command: It transforms a command request into a stand-alone object containing
all information. It allows us to have more control and options over the requests;

o Iterator: It allows sequential access to the elements of a collection without exposing
its underlying representation;

e Mediator: It defines simplified communication between classes, reducing chaotic
dependencies between objects;

e Memento: It captures and restore an object’s internal state without revealing the
details of its implementation;

e Observer: It lets us define a subscription mechanism that notify any change of the
object to a number of classes;

o State: It alters an object’s behavior when its state changes and appears as if the
object changed its class;

e Strategy: It makes it possible to define an algorithm inside a class and make its
objects interchangeable;

e Template method: It defines the skeleton of an algorithm in the superclass but lets
subclasses override specific steps of the algorithm without changing its structure;

e Visitor: It defines a new operation to a class without change.

31

4.2 Interfaces

Another important point to address is the interface. The interface in object-oriented
programming in PHP is widely used.

From the official documentation available on the PHP website, interface objects are
defined as follows: [

”Object interfaces allow you to create code which specifies which methods a class must
implement, without having to define how these methods are implemented.”

In other words, an interface is a preview of what an object can do, on the same level as
a kind of contract. The interface is defined as a traditional class, except that instead of
the term ”class”, the term ”interface” will be used.

An interface contains only prototypes of methods without any data variables. It de-
scribes the methods to be implemented but not how to do it. This is done in the class
that implements the interface. As is the nature of interfaces, all methods in the interface
must be public.

The fact that a class implements an interface gives a certain guideline on the minimum
methods to be defined. Note that a class can implement several interfaces.

Implementing interfaces in your code has multiple advantages.

On the one hand, as said above, it provides a kind of model, a flexible basic structure
for the minimum methods to be defined for the classes that implement the interface.
On the other hand, it allows, for the caller of the object, to be concerned only with the
interface and not with the object or even with the implementation of the methods of
the object itself.

The interface allows classes that are not related to each other to implement the same
set of methods, regardless of their position in the class inheritance hierarchy, and also
allows them to define methods according to their requirements.

In our case, the interface will be handy. Indeed, before, when the program needed to
call a function to control or drive the deployment of a scenario, a virtual machine, etc.,
the interface would be useful. It needed to call a ”VBOX?” object. In contrast, in the
future, it will call a "THYPERVISOR” object, making the program more universal, and
also allowing to disregard the technology and hypervisor used underneath.

"https://www.php.net/manual /en/language.oop5.interfaces. php

32

4.3 Dependency injection

After having covered the interfaces, we are now going to tackle the dependency injection
part.

In this point, we will define and explain what dependency injection is, see a concrete
example of the application of dependency injection in a PHP program and finally end
with the exploration of dependency injection in another language, here object-oriented
Java.

4.3.1 What is DI?

Dependency injection is a design pattern belonging to the structural design pattern (see

for definition).

The purpose of the dependency injection is “to implement a loosely coupled architecture
in order to get better testable, maintainable and extendable code.’ﬂ It can also reduce
code coupling by making classes or methods less tightly linked together.

We can use dependency injection to write modular, testable, maintainable and extensible
code: [2]

e Modular: dependency injection allows the creation of completely autonomous
classes or modules;

o Testable: this makes it easy to write testable code, e.g. with unit tests;

e Maintainable: as indicated above, as each class becomes modular, it becomes easier
to manage;

o Extensible: it allows us to easily add new functionality to the code.

There are generally three types of dependency injection:

1. The constructor injection: it is the class constructor that provide the dependencies;

2. The setter injection: a setter method is exposed by the customer. This will be
used by the injector to inject the dependency

3. The interface injection: an injector method is provided by the addiction. It will
inject the dependency into all the clients she has passed on to her. Clients must
implement an interface that exposes a setter method that accepts the dependency.

https://designpatternsphp.readthedocs.io/en/latest/Structural /DependencyInjection/

33

Using dependency injection will set up a pattern called ”Inversion of Control” (IoC),
where dependency control is reversed from the one called to the one calling [24].

It exists a lot of dependency injection containers in different languages. Here is a non-
exhaustive list for a few different programming languages: [10]

e .NET: AutoFac, Simplelnjector, Ninject, StructureMap, Castle Windsor, Unity,
Spring. NET;

e PHP: Laravel IoC, PHP DI, Zend DI, Symfony, Dice;
e Java: Pico container, Guice, Spring, Silk DI;

o JavaScript: di-lite, inverted, wire.js, bottle.js, pimple, cujo.js (Spring like).

What are the advantages and disadvantages of using dependency injection?

We can cite different benefits such as assistance for unit testing, easier application
extensions and reduced class coupling. To discover the disadvantages, it is a bit more
complex to learn, as a theoretical and comprehension base is required to be able to set
it up without causing management problems, but it can also lead to more compilation
time errors at runtime. Finally, the use of some frameworks can hinder the automation
of some IDEs.[18]

How to choose a Dependency Injection container?

There are several parameters to consider when choosing a solution to implement depen-
dency injection. It seems obvious, but obviously it will depend on the programming
language used.

In a second step, it is advisable to use a container with an easy to understand API
whose configuration is simple and readable, which has a large enough community and
finally meets the needs of the code.

To sum up, a class should focus on the fulfilment of its responsibilities, not on the
creation it needs to fulfil these responsibilities.

That is why we set up the dependency injection, to provide the necessary objects to the
classes that need them.

4.3.2 PHP example

From a more practical point of view, let us now look at a concrete example of the
application of dependency injection.

0 ~J O UL~ W N~

34

What could be better as a concrete example than the solution of the cyber range of the
Royal Military Academy?

As seen above in the different types of dependency injection containers, we use PHP-DI
herd?]

As it was explained in how Composer managed libraries, PHP-DI is easy to install
with Composer. We can even see in the 1isting that "php-di/php-di”: ”5.4” is present.

One of the first steps to get started with the PHP-DI library will be to create a container.
You can create a pre-configured container instance for easy development, or you can use
the container builder to save definition files or modify other options.

In this case, the second option has been chosen; this can be seen in the listing [4.1] below
on line 5 where the ”"ContainerBuilder” is used. We can also see that we indicate a file
named "injection.php” where the dependencies we are going to need are defined.

PHP-DI will load the definitions that have been made into the specified file and use
them as instructions on how to create objects.

Despite this, objects are only created when they are requested by the container (e.g.
$container->get(...)) or if they are to be injected into another object.

This means that we can have a large number of definitions in our file, and PHP-DI will
not create all the objects unless we specifically "request” it.

PHP-DI’s definitions are written using a specific language called "DSL” (Domain Specific
Language), which is written in PHP and based on helper functions. In our case, we will
use “constant magic” for the classes.

#!/usr/bin/env php

<?php

require_once __DIR . '/../vendor/autoload.php';
]

$builder = new \DI\ContainerBuilder () ;
$builder->addDefinitions(__DIR___ . 7/injection.php”);
$container = $builder->build () ;

[...]

Listing 4.1: Part of the Main.php file

Speaking precisely about this famous ”injection.php” file, we can see in the listing 4.2
below the definition of the objects.

In our case, we will have defined as object the class VBoxAdapater. This will allow us,
in the program, to inject the VBoxAdapter class when we need the VBox class.

return |
\Cylab\Vbox\VBox:: class =>
DI\ object (\ Cylab\ Cyrange\Command\ VBoxAdapter:: class)
I

3https://php-di.org/

https://php-di.org/

O© 00O Ui Wik

— e
=W = O

35

Listing 4.2: Injection.php file

4.3.3 Java example

We are going to show a dependency injection in another language, here, the java pro-
gramming language. In absolute terms, the idea is almost the same, except for changes
in the way of coding. To express this point, we will use the simple and concise example
of the article [46].

In Java, a class is said to be dependent on another class if it uses an instance of that
class, and this will be called a class dependency.

Let’s take the example of a class that needs to access a logger service; it has a dependency
on this service class in the listing |4.3

Following coding best practice in Java, classes should be as independent as possible from
other classes. This makes it easier to reuse these classes on the one hand, and on the
other hand, to be able to test these classes independently of each other.

If an instance of a class is created by another class using the "new” operator, it cannot
be used or tested independently of the other class. This case is called a hard dependency.

package com.vogella.tasks.ui.parts;
import java.util.logging.Logger;
public class MyClass {
private Logger logger;
public MyClass(Logger logger) {
this.logger = logger;
// write an info log message
logger.info (7This is a log message.”)
}
}

Listing 4.3: Example of a normal class in Java with no hard dependencies

Several approaches exist when it comes to describing the dependencies of a class. The
most common way in Java is to use so-called annotations. These annotations represent
dependencies directly in the class.

As can be seen in the listing below, the most common way described in the Java
Specification Request 330 (JSR330) is to use the annotations "@Inject” and "@Named”.

O© 00O Ui Wik -

36

// import statements left out
public class MyPart {
@Inject private Logger logger;

// inject class for database access
@Inject private DatabaseAccessClass dao;

@Inject

public void createControls(Composite parent) {
logger.info (7Ul will start to build”);
Label label = new Label(parent, SWI.NONE) ;
label .setText (7" Eclipse 47);
Text text = new Text(parent, SWI.NONE) ;
text .setText (dao.getNumber ());

Listing 4.4: Example of a class using annotations to describe these dependencies

The place where dependency injection can be done is almost identical to PHP, except
that the wording changes.

According to the document JSR330, the injection is done first in the constructor injec-
tion, in the field injection and finally in the injection method:

e in the constructor of the class, we talk about ”construction injection”;
e in a field, so it is called "field injection”;

e in the parameters of a method, we speak of the "method injection”.

Note that it is possible to use the principle of dependency injection on static and non-
static fields and methods.

Chapter 5

Implementation

We are now in the implementation part. In this part, we will describe the different
development steps that have been made during the realization of the thesis to be able
to use the cyber range with several hypervisors, and then implement it with VMware’s
solution, ESXi.

We will begin by introducing the definition of the problems at present. Then we will
do an analysis of the code to understand better how everything fits together and the
changes that need to be made. After that, it will be detailed how the interface has
been created, but also how the environment variables and dependency injection have
been modified. Finally, we will talk about the implementation of VMware ESXi and the
problems we encountered.

When looking at the main steps of the implementation, we can mention the following:

e Creation the Hypervisor interface;
o Modification of the VBox class to implement the Hypervisor interface;

e In ScenarioDeploy, make a list of the methods used and then put them in the
Hypervisor interface;

e In the ScenarioDeploy class, replace the references to the VBox class by the Hy-
pervisor interface. This way, the ScenarioDeploy class can be used with VBox or
ESXi, or even with any other hypervisor (in the future), as long as there is a class
that implements Hypervisor;

e Creation the ESXi class that implements the Hypervisor interface;

e Implemention with ESXi.

37

38

The idea is that it can be used with any of the two hypervisors (VirtualBox or ESXi).

5.1 Problem definition

For this part of defining the problem, several ideas may come to mind.

On the one hand, we have the problem that the Royal Military Academy’s cyber range
solution is strongly linked to one single virtualization technology. Indeed, everything in
the code is "hardcoded” to use the VirtualBox hypervisor and no other.

On the other hand, precisely because of this strong link with VirtualBox, it creates
strong links between classes. This ultimately increases class coupling, which is defined
by ”/[...] the degree of interdependence between software modules; a measure of how
closely connected two routines or modules are; the strength of the relationships between
modules.’ﬂ In our case, class coupling can be defined as a measure on how classes are
connected or dependent on each other.

A common disadvantage of a large class coupling is that a change in one object or class
often results in a "ripple effect” that requires changes in other classes as well.

A particular object or class may also be more difficult to reuse and/or test because other
objects or classes must be included.

It is for all these reasons that the refactoring of the RMA cyber range system is nec-
essary, to reduce the link between classes, to reduce class coupling, and to correct bad
programming habits.

5.2 Code analysis

The code was analyzed in the item [3| It was concluded that the programming code was
very dependent on VirtualBox and that to remedy this problem, several solutions were
going to be implemented.

We will start with the creation of an interface, to "universalize” the code (see point
and then we will implement the injection of dependency (see point making
the cyber range compatible with other hypervisors. Finally, the implementation with
VMware ESXi will be presented in point

"https://en.wikipedia.org/wiki/Coupling_ (computer_ programming)

https://en.wikipedia.org/wiki/Coupling_(computer_programming)

O© 00O O Wi

39

5.3 Creation of the interface

The first step is to create the "Hypervisor” interface. As explained above in the point
the interface will be useful for universalization of the code, but it will also allow us
to disregard the technology and hypervisor used underneath. Indeed, later in the code,
we will modify the call to this interface.

To create the interface, we first need to check in our code which types of functions the
program uses. Indeed, since the "VBox” class will implement our interface, we must, as
indicated in the point indicate the prototype of the methods used.

<?php
namespace Cylab\Cyrange;

interface Hypervisor

{
* ok
* Hypervisor constructor.
*/
public function _ _ construct();
public function importMultiple(string $ova, int $instances);
public function allVMs();
}

Listing 5.1: Hypervisor interface

As can be seen in the listing above, prototype functions have already been written. We
will skip one step to explain why the interface is not "empty”.

Indeed, an analysis had been done beforehand to determine the indispensable functions
that should be found in the interface, and which will later be redefined in another class
managing another hypervisor.

Once the interface has been created, the following changes can be made. To do this,
several steps will be required.

The first one will be that the class responsible for VirtualBox implements the newly
created interface; that is to say the VBoxAdapter class.

In the following listing, we can see how the class was just before its modification and
also once the interface has been implemented by VBoxAdapter, the class definition can
be found in the following [5.2] listing.

1| // VBoxAdapter before implementing the interface

2

40

3| <?php

5| class VBoxAdapter extends \Cylab\Vbox\VBox

6/ {

7 // Class code

8|}

9

10| // VBoxAdapter after implementing the interface

11

12| <?php

13| [...]

14| class VBoxAdapter extends \Cylab\Vbox\VBox implements \Cylab\Cyrange\
Hypervisor

15| {

16 // Class code

17}

O© 00O Ui Wi

e T e e
QU W N~ O

16
17
18
19
20

Listing 5.2: VBoxAdapter class implementing the interface

Now that the VBoxAdapter class implements the Hypervisor interface well, we can
proceed to the next steps in the code. These next steps will mainly involve refactoring.

To do so, it will be a rather simple principle that we will detail right away.
We will replace the places where the getVboz() function was called by the more generic
getHyperviseur() function. Also, to make it more logical and tend towards this univer-
salization of code, we will rename the variables called $vbox to $hypervisor.

As can be seen in the following listing [5.3] we have refactorized the code as described
above.

// ScenarioDeploy before beeing refactored

class ScenarioDeploy extends VBoxCommand

{

public function ___ construct(\Cylab\Vbox\VBox $vbox) {
parent:: _ construct($vbox);

/L]

// ScenarioDeploy after beeing refactored

<?php
class ScenarioDeploy extends VBoxCommand

{

public function _ _ construct(Hypervisor $hypervisor)

{

parent :: __ construct ($hypervisor);

/L]

Listing 5.3: ScenarioDeploy class being refactored

Then, we do exactly the same thing for the AbstractCommand class, i.e. to replace the

© 00 ~JO Uik Wk -

I o T W
Tl W N~ O

O© 00O Ui Wi

=W N =

41

getVBox function by the getHypervisor function; as we can see in the following listing

G4

// AbstractCommand function before beeing refactored

/)L

protected function getVBox()

{
}
// AbstractCommand function after beeing refactored
/)L

protected function getHypervisor ()

{
}

return $this->vbox;

return $this->hypervisor;

Listing 5.4: AbstractCommand class being refactored

As we discussed in point in addition to the "normal” code, there is also a part of
tests that are performed when a push is done on GitLab. This other part must also be
adapted so that it uses the new methods and variables correctly.

To do this, it will be the same principle as what we have done above, i.e. by replacing
getVbox() by getHyperviseur() and by replacing $vbox variables to $hypervisor.
An example of several of these code changes in different classes can be found below in

the listing and

Here we have an example of refactoring for the class ScenarioDeployTest:

public function testDeploy ()

{
$import = new ScenarioDeploy ($this->getVbox());
$import->setRemoteDesktopStartPort (16000) ;
// rest of the code

// That becomes:

public function testDeploy ()

{

$import = new ScenarioDeploy ($this->getHypervisor());
$import->setRemoteDesktopStartPort (16000) ;
// rest of the code

Listing 5.5: Example of ScenarioDeployTest class refactoring

Here we have an example of refactoring for the class ScenarioDestroy:

public function destroyVMs($scenario)

{
// Destroy VM's
$vbox = $this->getVBox () ;

—
S O 00O U

11
12
13

© 00 ~JO Uik Wk -

e e T e T e T
O 00O Ui WN - O

42

foreach ($vbox->allVMs() as $vm) {
// That becomes:
public function destroyVMs($scenario)
{
// Destroy VM's
$hypervisor = $this->getHypervisor () ;
foreach ($hypervisor->allVMs() as $vm) {

Listing 5.6: Example of ScenarioDestroy class refactoring

Here we have an example of refactoring for the class ExampleTest:

public function testUbuntul604 ()
{
$deployer = new ScenarioDeploy ($this->getVbox());
$deployer->setRemoteDesktopStartPort (16000) ;
$machines = $this->getVbox ()->allVMs () ;
$this->assertEquals (1, count($machines));
}
// That becomes:
public function testUbuntul604 ()
{
$deployer = new ScenarioDeploy ($this->getHypervisor());
$deployer->setRemoteDesktopStartPort (16000) ;
$machines = $this->getHypervisor ()->allVMs () ;
$this->assertEquals (1, count($machines));
}

Listing 5.7: Example of ExampleTest class refactoring

5.4 Environment variables

During the dependency injection, as explained more theoretically in point and as we
will see in more detail in the next point there is also a large amount of environment
variables that are defined (as you can see in the listing below). These are variables
that are used by several different classes but in the same way and therefore they do not
need to be defined in several different places.

There are two files where these environment variables are stored: the "env.vbox” file
and the ”env.test” file. The first one is for the main program, and the second one is for
the tests performed on Gitlab. In our case, we will focus on the first one.

We can see in the following listing the file containing the environment variables of

© 00O ULk W+

DO DD = = = b e e
— O O ULikWN—=O

0 ~J O Ui W

43

the cyber range, before any modification.

This file contains several important environment variables. It contains, for example, the
username, password, IP address and port of the VirtualBox server used, but also the
location where the OVA images of the virtual machines are stored. The file also includes
the IP address, username and password of the MySQL database for the Guacamole
connection interface (presented in [3[above).

#

Meant to run cyrange on the same host has vbox and mysql
#

VBOX USER = "vbox”

VBOX_ PASSWORD = ”password”

VBOX_SERVER = 7127.0.0.1”

VBOX_PORT = 18083

where ova files are stored when we use relative paths

VBOX_ROOT = 7 /home/vbox”

VBOX_ADDRESS = ”http://${VBOX SERVER}:${VBOX PORT}/”
GUAC MYSQL HOST = 127.0.0.1

GUAC_MYSQL USER = root

GUAC_MYSQL PASSWORD = "cyl@b2019!”

NETWORK INTERNEI=eno1l

Where vagrant images and deployment summaries are stored

CYRANGE ROOT = 7 /tmp”

Listing 5.8: Environment variable file "env.vbox”

The first modification we are going to make to this file is the addition of a variable
that we are going to name "HYPERVISOR”. This variable will be useful when injecting
dependencies, we will discuss this matter in more detail in the following point This
will allow us to determine in a simple way and in one place which hypervisor will be
used when starting the program.

We will also add environment variables related to the ESX environment, which we will
need later when dealing with the implementation with ESXi, detailed in point below.

Therefore, we will find the IP address (which will have to be modified depending on
the environment), the URL of the REST API, and the username and password of the
System.

Where we specify which hypervisor to use

HYPERVISOR = "vbox”

ESXi environment variables
ESXI_IP = 7127.0.0.1”7

ESXI_URL = "https://{ESXI IP}/rest”
ESXI USER = ”"Administrator”

ESXI PASSWORD = "P@ssword123”

— =

44

9| ESXI_USER_PASS = "QWRW5 pc 3Ry YXRvejpQQHNzd2 9yZDEyMwe=—"

=W N =

— O © 00O Ui Wk

Listing 5.9: Updated environment variables

5.5 Dependency injection

We are now in the dependency injection part. We talked about the theoretical concept
and also about its application in the cyber range of the Royal Military School.

As a little reminder, here is in listing the current state of the injection.php file,
before it was modified.

return |
\Cylab\Vbox\VBox:: class =>
DI\ object (\ Cylab\ Cyrange\Command\ VBoxAdapter:: class)

Listing 5.10: Injection.php before modification

Instead of retrieving the VBoxAdapter class when the VBox class is requested, we will
put a condition here.

Indeed, in the previous point 3, we dealt with the refactoring of the MRE. For the cyber
range to be used with several different hypervisors, it must be indicated at a place in the
code. Thanks to the refactoring, the program simply expects to have a "Hypervisor”
object returned to it.

Consequently, we used the "function()” argument of PHP-DI, allowing us, depending on
the "THYPERVISOR” environment variable that had been defined, to inject the appro-
priate class. If we define in the above environment variable file 5.4 " HYPERVISOR” as
being ”wvboz”, then the VBoxAdapter class will be injected. On the contrary, if it had
been defined as ”eszi”, then the ESXiAdapter class will be injected.

<?php
return |
\ Cylab\ Cyrange\ Hypervisor :: class =>
function () {

if (getenv ("HYPERVISOR”) = "vbox”) {
return DI\object (\ Cylab\Cyrange\Command\VBoxAdapter:: class) ;
} elseif (getenv(”HYPERVISOR”) = 7esxi”) {

return DI\object (Cylab\Cyrange\Command\ESXiAdapter:: class);

}

Listing 5.11: Injection.php after modification

45

5.6 Implementation with ESXi

We are now in the part where we talk about the implementation with ESXi. In this part,
we will justify why we chose to use ESXi as another hypervisor, how it was installed
and configured. We will detail how we decided to interface, communicate with it. We
will explain the methods we need and finally implement them in a class, depending on
the choice of interfacing with ESXi.

5.6.1 Why VMware ESXi?

In the previous sections, we explained what we had put in place to make the cyber
range compatible with other hypervisors. In this case, we are going to implement it
with another hypervisor.

When the question arose as to which hypervisor to use for this implementation, several
points were discussed.

Firstly, the current solution runs with a type 2 hypervisor, which, as we know from our
analysis earlier in the point [2.1.2.3| but also from the article [14] also referenced in this
point, is generally less powerful than a type 1 hypervisor.

Indeed, as a small reminder, type 2 hypervisor is installed directly on the machine, by
running directly on the system hardware. This allows it to have direct access to the
resources, without having a system or application in between.

This is the reason why we have decided to move towards a type 1 hypervisor,
compared to a type 2 hypervisor.

In a second step, we had to choose which type 1 hypervisor we were going to use.

On the one hand, we were interested in the thesis that was written by Mr. Michaux
[28]. In his thesis, a section is dedicated precisely to the comparison of hypervisors; he
concluded that VMware’s solution, ESXi, was the most efficient.

On the other hand, ESXi is a solution, often combined with others, widely used in the
business world. There is also a whole part of their site dedicated to documentation (as
can be seen here by following the link). Finally, there is a whole community aspect
available on their site, with dedicated people to answer possible problems.

For these reasons, in addition to moving towards a type 1 hypervisor, we have chosen
to use VMware’s solution, ESXi, to serve as the hypervisor with which we will

46

implement the cyber range.

5.6.2 Installation and configuration

After choosing the hypervisor, we must now proceed to its installation.

In appendix [A] is a kind of "tutorial”, explaining step by step the steps that have been
performed both for the installation and configuration of the ESXi, but also for the
installation and configuration of the vCenter.

The latter being essential to link the communications between our program and the
hypervisor.

We will discuss the issue of interfacing with the ESX in the next point

5.6.3 How to interface with ESXi?

5.6.3.1 Communication

Now that our system’s installed, we are going to have to be able to communicate with
it. To do so, we had two choices:

e VMware PowerCLI;
« REST APL

On the one hand, we could use a module made to be used with PowerShell, "VMware
PowerCLI".

This is defined as a ”/[...] command-line and scripting tool built on Windows PowerShell,
and provides more than 700 cmdlets for managing and automating vSphere, vCloud Di-
rector, vRealize Operations Manager, vSAN, NSX-T, VMware Cloud Services, VMuware
Cloud on AWS, VMware HCX, VMuware Site Recovery Manager, and VMware Horizon
environments. 2l

It is a pretty powerful tool, allowing us to do everything we need for our cyber range.
The only problem with it was to know how to make our PHP program communicate
with this tool, created mainly to run on a machine with a Windows operating system.

Although it is, of course, also possible to install PowerShell on a computer running Linux

Zhttps://code.vmware.com/web/tool/12.0.0/vmware-powercli

https://code.vmware.com/web/tool/12.0.0/vmware-powercli

47

EL this would have required more installation and configuration before starting, making
it less efficient.

On the other hand, we have the possibility to drive our hypervisor thanks to REST API
requests.

To be able to experiment and test the different available requests, VMware provides on
its website what they call the "vSphere Automation REST API Postman Resources and
Samples’ﬂ Those are JSON files that will have to be coupled and imported with the
Postman software. Postman is simply a development software that will allow you to test
calls to APIs.

Several collections were available, but to base our research, we will use the collection
entitled vSphere-Automation-REST-Resources.postman,__collection.json. This provides
the individual API resources. These are stand-alone queries that we will be able to
run or use to set up an end-to-end workflow. An overview of the collection of available
queries is shown in figure [5.1

Q
History Collections APls
+ New Collection
v B vSphere Automation REST Resources
* Ithenti on

GET Details
GET

GET Find
DEL Delete

Figure 5.1: Request example from VMware documentation in PostMan

After comparing the two solutions outlined above, we chose to use the API to make
our requests because of its documentation and its facilitation to be integrated with
the rest of the program.

3https://github.com/PowerShell /PowerShell

“https://code.vmware.com /samples /2562 /vsphere-automation- rest-api- postman-resources-and-samples

https://github.com/PowerShell/PowerShell
https://code.vmware.com/samples/2562/vsphere-automation-rest-api-postman-resources-and-samples

0 ~JO Uik Wk

48

5.6.3.2 Framework

We know how we are going to communicate with ESXi, we need to look at how we are
going to implement that into our program.

From the Postman software, we can export the requests in different languages. Since the
whole cyber range has been coded in PHP, it is PHP that we are interested in. Postman
offers us 3 "framework” available to export our requests to PHP:

« PHP - cURL: object-oriented wrapper of the PHP cURL extension;

e PHP - HTTP Request2: uses pluggable adapters and provides an easy way to
perform HTTP requests;

« PHP - pecl http: provides a convenient and powerful set of functionality for one
of PHPs major applications.

Although some of these frameworks might have been interesting, we finally went to
Guzzleﬂ Among the various advantages it offered, we could retain that it is a simple
interface allowing to build request chains, POST requests, the use of HT'TP cookies and
JSON data download.

In addition, we also take advantage of the fact that we use Composer in our program to
facilitate its installation. So we are going to modify our "composer.json” file by adding
the following line:

{
[

"require”: {

[-]

"guzzlehttp /guzzle”: 7~6.07,

(...

Listing 5.12: Adding Guzzle to Composer file

5.6.4 Methods list

Before looking in the VMware API documentation, we first need to perform an anal-
ysis of the methods and thus the requests we will need. To do so, we will use the
”ScenarioDeploy” class for this purpose.

https://docs.Buzzlephp.org/ f the requests we needed

https://docs.guzzlephp.org/

49

e Login function

o Test if the session is still active, otherwise login again
e Creation of VMs

o Get list of VMs

e Import a VM from an OVA file

e Configure network of a VM

o Get the API version

o Get/Set the name of VM

o Get/Set state of the VM (also include Start/Pause/Reset/Suspend/Resume/Halt
the VM)

e Destroy a VM
¢ Get network adapter
o Get/Set number of CPU

o Get/Set memory seize

We will find in appendix [B| the documentation of all the requests which were retained
according to the list stated above. This appendix includes all the requests necessary for
our program. These have been exported in the 3 frameworks we saw in point
(cURL, HTTP Request2 and pecl http) proposed by Postman.

The methods and queries used with Guzzle will be explained in the following section.

5.6.5 ESXi class

Now that we have defined how and with which framework we will communicate with
the ESXi, the last part is to create functions to do so. That’s why in this section, we
will detail the different functions that have been created within the ESXi class, to allow
us to manage our program, but also to send our requests through Guzzle.

This class has been designed with the best ways of coding in mind. That is to say that
we have, for example, created a method specially made to send our HT'TP requests
and handle the different errors in a personalized way. This allows us to have cleaner
code without unnecessary repetition while managing errors in the best possible way by
allowing faster debugging thanks to custom errors.

In addition to detailing the various functions that have been written, a sample response
has also been included where necessary.

© 00 ~JO Ui Wk -

14

15
16
17
18
19
20
21
22

23
24
25
26
27
28

50

5.6.5.1 Login function

The first function is the login function. It allows, from the environment variables dis-
cussed in section to connect to the ESXi API to obtain a session. This session is
sent afterwards in each request and is mandatory.

For the connection, we have two choices: either we use the username and password stored
in the environment variables, which we must then encode in Base64 before sending the
request, either we store directly in the environment variables the encoding specified just
before, which will save us a few lines.

public function login ()
{
$api url = getenv ('ESXI URL');
// First option is to have user and password in env variable
$user = getenv ('ESXI USER'");
$password = getenv ('ESXI PASSWORD"') ;
/* Second option is to have the Base64 of ”user:password” in env variable
* $authorization = getenv('"ESXI USER_PASS');
*/
try {
//Encode in Base64 the user:password
$authorization = base64_encode(Suser . ':' . $password);
$client = new Client (['headers' => ['"Authorization' => 'Basic ' . §
authorization . '']]);
$response = $client->request ('POST', $api url . '/rest/com/vmware/cis
/session');
// Status code and reason phrase of the response
if ($response->getStatusCode () == 200) {
$array = json_decode($response->getBody (), true);
$sessionld = $array['value'];
putenv (”SESSION_ID=$sessionld”);
} oelse {
throw new \Exception(”Failed to login: 7 . $response->
getStatusCode() . 7 : 7
$response->getReasonPhrase ());
}
} catch (RequestException $e) {
throw new \Exception(”Failed to login”, 1, $e);
}
}

Listing 5.13: Login function

5.6.5.2 CheckConnected function

The purpose of this function is to check if our session is still active and to return the
boolean "true” if it is and on the contrary the boolean ”false” if it is no longer active.
CheckConnected will be useful in the next function below.

~N O ULk W N

10
11
12
13
14
15
16
17
18

~N O U W N

10
11
12
13

14
15
16
17
18
19

o1

public function checkConnected ()

{
$apiUrl = getenv ('ESXI URL'");
$sessionld = getenv ('SESSION ID'");
try {
$client = new Client ();
$response = $client->request ('"POST', $apiUrl . '/com/vmware/cis/
session?~action=get', |
'cookies' => 'vmware-api-session -id=' . $sessionld
1)
if ($response->getStatusCode() = 200) {
return true;
} else {
return false;
}
} catch (RequestException $e) {
throw new \Exception(”Failed to check session”, 1, $e);
}
}

Listing 5.14: CheckConnected function

5.6.5.3 Logout function

As its name suggests, this function will be used to disconnect us from the ESXi. In
other words, it will delete our session.

public function logout ()

{
$apiUrl = getenv ('ESXI_URL");
$sessionld = getenv ('SESSION ID");
iy {
$client = new Client ();
$response = $client->request ('DELETE' , $apiUrl . '/com/vmware/cis/
session', |
'cookies' => 'vmware-api-session -id=' . $sessionld
1)
if ($response->getStatusCode() = 200) {
return true;
throw new \Exception(”Failed to logout: 7 . $response->
getStatusCode () . 7 : 7
$response->getReasonPhrase ());
}
} catch (RequestException $e) {
throw new \Exception(”Failed to logout”, 1, $e);
}
}

Listing 5.15: Logout function

© 00 ~JO Ui Wk —

52

5.6.5.4 myRequest function

Once the login function and the session verification requests were set up, another es-
sential function was created, "myRequest”. This is the function that will allow you to
make HTTP requests like "GET”, "POST”, etc. to the ESXi. It needs as arguments of
the method (if it’s a GET, POST, ...), the URL of the API on which the request will
be made (we will see many examples just below) and any additional data.

First it will check to see if our session is still active. If this session is no longer active, the
login function will be called. myRequest will then make the request to the API based
on what it has received in input, and send everything back to the function that called
it.

public function myRequest(string $method, string $uri, string $dataBody)
{
if ($this->checkConnected () = false) {
$this->login () ;
}
$apiUrl = getenv ('ESXI URL');
$sessionld = getenv ('SESSION_ID");
try {
// Create a client with a base URI and return the Response $client
$client = new Client();
return
$client ->request ($method, $apiUrl . Suri, |
'cookies' => 'vmware-api-session -id=' . $sessionld ,
"body' => $dataBody
1)
} catch (RequestException $e) {
throw new Exception(”Failed to complete the request”, 1, $e);
}
}

Listing 5.16: myRequest function

5.6.5.5 vCenter version function

This function will simply return the version of the vCenter that is in use.

\begin{lstlisting}
public function getVcenterVersion ()
{
$response = $this->myRequest ('GET', '/appliance/system/version', null);
return $results = json_decode($response->getBody ()->getContents (), true);
}

Listing 5.17: vCenter version function

O© 00O Ui Wi

O O© 00O Uik WK

—_

W N =

0 O Ot

53

5.6.5.6 Get Host function

This function returns a list with the ID, the name, and the connection and startup
status of the hosts. A host is simply a server on which an ESXi is installed.

In our case, we only had one host, that is why in the following answer we see only one.

public function getHostList ()
{
$response = $this->myRequest ('GET', '/vcenter/host', null);
$results = json_decode($response->getBody (), true);
if ($response->getStatusCode () = 200) {
return $results;
} else {
throw new \Exception(”Failed to get list of hosts: 7 . $response->
getStatusCode () s
$response->getReasonPhrase(), 1);
}
}
Listing 5.18: Get Host function
{
“value”: |
{
"host”: "host-28",
"name”: 7192.168.1.18"7,
”connection_ state”: "CONNECITED” ,
"power__state”: "POWERED ON”
}
]
}

Listing 5.19: Get Host function response

5.6.5.7 Search Host function

This function will return the ID, name, connection status and startup status of the hosts
by passing the name of the host we are looking for as a parameter.

public function searchHost(string $host)

{
$response = $this->myRequest ('GET', '/vcenter/host?filter .names.1=" . §
host, null);
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode() = 200) {
return $results;

} else {

10
11
12

O O 00O UL Wk~

—_

© 00O Ui Wk

0 ~J O Ui W

o4

throw new \Exception(”Failed to search specific host 7 . $host
7 . $response->getStatusCode () 7
$response->getReasonPhrase (), 1);
}
}
Listing 5.20: Search Host function
{
"value”: |
{
"host”: "host-28",
"name”: 7192.168.1.18"7,
"connection__state”: "CONNECTED” ,
"power_state”: "POWERED ON”
}
J
}

Listing 5.21: Search Host function response

5.6.5.8 Get Datastore function

This function returns a list including the ID, name, type as well as the remaining disk

space and the total capacity of all the datastores present.

A datastore is a manageable storage entity, usually used to store logs, virtual machine
files, virtual machine disks, etc. It can be used to manage the data of a virtual machine.

public function getDatastoreList ()

{
$response = $this->myRequest ('GET', '/vcenter/datastore', null);
$results = json_ decode($response->getBody (), true);
if ($response->getStatusCode() = 200) {
return $results;
} oelse {
throw new \Exception(”Failed to get list of datastores: 7 . $response
->getStatusCode () s
$response->getReasonPhrase(), 1);
}
}
Listing 5.22: Get Datastore function
{
Pvalue”: |
{
"datastore”: ”datastore-297,
"name”: "ESXi_local”,

” L}fpe ” : T?VVI\[F‘STT ,
"free space”: 678754779136,
capacity”: 992137445376

95

10]
1]}

Listing 5.23: Get Datastore function response

5.6.5.9 Search Datastore function

This function returns the ID, name, type as well as the remaining disk space and the
total capacity of the datastore searched by looking with its name as an argument.

1| public function searchDatastore(string $datastore)
2| {
3 $response = $this->myRequest ('GET', '/vcenter/datastore?filter .names.1='
$datastore, null);
4 $results = json_ decode($response->getBody (), true);
)
6 if ($response->getStatusCode() = 200) {
7 return $results;
8 } else {
9 throw new \Exception(”Failed to search specific datastore 7 . $
datastore . 7 : 7 . S$response->getStatusCode ()
10 . Sresponse->getReasonPhrase(), 1);
11 }
12|}
Listing 5.24: Search Datastore function
L1
2 Pvalue”: |
3 {
4 "datastore”: ”datastore-297,
5 "name”: "ESXi_local”,
6 "type”: "VMFS”,
7 "free_space”: 678754779136,
8 "capacity”: 992137445376
9 }
10]
11}

Listing 5.25: Search Datastore function response

5.6.5.10 Get Folder function

This function returns a list including the ID, name and the type of all the folders present.

A folder can be used to group objects of the same type together, allowing easier man-
agement. A folder can contain other folders, specific virtual machines, etc.

© 00O ULk W+~

© 00O ULk WN -

© 00O Ui Wk

56

public function getFolderList ()
{
$response = $this->myRequest ('GET', '/vcenter/folder', null);
$results = json_ decode($response->getBody ()->getContents (), true);
if ($response->getStatusCode() = 200) {
return $results;
} else {
throw new \Exception(”Failed to get list of folders: 7 . $response->
getStatusCode () 2
$response->getReasonPhrase (), 1);
}
}
Listing 5.26: Get Folder function
{
"value”: |
{
"folder”: ”group-s24”,
"name”: "datastore”,
"type”: "DATASTORE”
IS
{
"folder”: "group-v22”,
"name”: "vm” ,
"type”: "VIRTUAL MACHINE”
}
]
}

Listing 5.27: Get Folder function response

5.6.5.11 Get Networks function

This function returns a list of all networks available on the server with their name, type
and ID.

Simply put, networks are groups of ports assigned to interfaces. Often in a simple
architecture, a virtual machine will be connected to the "VM Network” group, allowing
it to have access to the internet for example.

public function getNetworkList ()

{
$response = $this->myRequest ('GET', '/vcenter/network', null);
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode () = 200) {
return $results;
} oelse {
throw new \Exception(”Failed to get list of networks: 7 . $response->

getStatusCode ()

10
11
12

O© 00O ULk W+

© 00O Ui Wk

© 00O ULk~ WN

o7

$response->getReasonPhrase(), 1);
}
}
Listing 5.28: Get Networks function
{
“value”: |
{
"name”: ”Management Network”,
"type”: "STANDARD PORTGROUP” ,
"network”: "network-917
Iz
{
"name”: "VM Network” ,
"type”: "STANDARD PORTGROUP” ,
"network”: "network-307
}
]
}

Listing 5.29: Get Networks function response

5.6.5.12 Get VMs function

This function will return the list of all virtual machines present on the ESXi. This
includes details such as the size of the RAM, the ID and name of the virtual machine
as well as its status and the number of CPUs assigned to it.

public function getVmList ()

{
$response = $this->myRequest ('GET', '/vcenter/vin', null);
$results = json_ decode(Sresponse->getBody ()->getContents (), true);

if ($response->getStatusCode() = 200) {
return $results;

} oelse {

throw new \Exception(”Failed to get list of VMs: 7 . $response->
getStatusCode ()
$response->getReasonPhrase(), 1);

Listing 5.30: Get VMs function

"value”: |
{
"memory_size_ MiB”: 4096,
"vm”: "vin-1027
"name”: "DebianTest”,
"power__state”: "POWERED OFF” ,
7cpu__count”: 2

})

10
11
12
13
14
15
16
17
18

= O O© 00O ULk Wi+

—_ =

13
14

© 00O UL WN -

o8

{

"memory_ size. MiB”: 10240,
ym”: Pvm-317,
"name”: "VMware vCenter Server Appliance”,
?power__state”: "POWERED ON” ,
7cpu__count”: 2

| }

}

Listing 5.31: Get VMs function response

5.6.5.13 Create VM function

This function, as its name indicates, will allow you to create a virtual machine. It waits
for a JSON configuration file as input. This JSON file, as we can see in the listing
regroups all the characteristics of the virtual machine including its location (on
which datastore/host /folder, hence the importance of the requests explained above), its
virtual hardware, the basic ISO file, the virtual hard disk with its size, and its network
connection. Finally, if the creation of the virtual machine went well createVM() will
return its ID to us.

public function createVM (array $specs)

{

$dataBody = json__encode($specs);

$response = $this->myRequest ('POST', '/vcenter/vim', $dataBody) ;
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode() == 200) {
return $results;
} else {
throw new \Exception(”Failed to create VM: 7 . $response->
getStatusCode ()
$response->getReasonPhrase (), 1);

Listing 5.32: Create VM function

{
"spec”: |
"name”: "DebianTest”,
7guest_ OS”: "DEBIAN 10 647,
"placement”: {
"datastore”: ”datastore-29",
"host”: "host-28",
"folder”: ”group-v61”
}
“memory”: {
7size_ MiB”: 4096,
"hot add enabled”: true

b

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
95
96

98
99
60
61
62
63
64
65

DN =

99

“floppies”: [],

7ecpu”: {
"hot__remove__enabled”: true,
Pcount”: 2,
”cores__per_socket”: 2,
7hot add enabled”: true
}
7cdroms”: [
{
"type”: 7IDE”,
"start__connected”: true,
"backing”: {
7iso_ file”: 7[ESXi_local] ISOs/debian-10.3.0-amd64-netinst.iso”,
"type”: 7ISO_FILE”
}
}
I
7disks”: |
{
"new_vmdk”: {
"name”: ”DebianTest”,
"capacity”: 17179869184
}
}
I,
"boot_devices”: |
{
"type”: "CDROM”
}
],
"boot”: {
"type”: "DISK”
7delay”: 1,
"retry__delay”: 1,
"retry”: true
I
“nics”: |
{
"type”: ”E1000E”,
"pci__slot__number”: 0,
"mac_ type”: "AUTOMATIC” ,
"wake__on_lan__enabled”: true,
"start__connected”: true,
7allow__guest__control”: true,
"backing”: {
"type”: 7"DISTRIBUTED PORTGROUP” ,
"network”: ”dvportgroup-90”
}
}
]

Listing 5.33: JSON configuration file

?value”: "vm-1217

Listing 5.34: Create VM function response

— =
— O O 00O Ui WK -

DN =

5.6.5.14 Deploy OVF VM function

60

This function allows you to deploy OVF files. It expects as input a JSON configuration
file, as shown in Listing 8, which will indicate where the virtual machine will be deployed.
It also expects as argument the ID of the OVF file to be imported. If the deployment
of the virtual machine went successfully, deployVM() will return its ID to us.

Small parenthesis here, generally in the program with VirtualBox implemented, the files
that were imported were OVAs, which are specific to VirtualBox. However, we can,

thanks to the "VMware OVF tool” softwar(ﬁ, manage to convert our OVA files into

OVF so that it is functional with VMware.

public function deployVM(array $specs, string $ovfld)

{

$dataBody = json_encode($specs);

$response = $this->myRequest('POST', '/vcenter/ovf/library -item/id:"

ovfld .'?~action=deploy', $dataBody);
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode() = 200) {
return $results;
} else {
throw new \Exception(”Failed to deploy VM: 7 . $response->
getStatusCode () 7
$response->getReasonPhrase (), 1);

.3

Listing 5.35: Deploy OVF VM function

”deployment__spec”: {
7accept_all_EULA”: true,
?default__datastore_id”: "datastore-14"
}s
"target”: {
"folder_id”: ”group-v7”,
“host__id”: "host-107,
"resource__pool_id”: "resgroup-9”

Listing 5.36: JSON configuration file for OVF deployment

?value”: "vm-1257

Listing 5.37: Deploy OVF VM function response

Shttps://www.vmwarearena.com/convert-ova-to-ovf-using-the-vmware-ovf-tool/

https://www.vmwarearena.com/convert-ova-to-ovf-using-the-vmware-ovf-tool/

O 00 ~JO ULk W -

10

12

W N =

W N =

-1 o Utk

61

5.6.5.15 Delete VM function

The purpose of this function will be to delete a specific virtual machine. It expects as
input the ID of the virtual machine in question.

If the deletion is performed correctly, the answer we will receive would be a 7200 - OK”
code. We will receive a code ”400 - Bad Request” if, for example, the machine is still
running. We will receive a code 7404 - Not Found” if the ID we specified does not
correspond to any existing virtual machine.

public function deleteVM(string $vmld)
{
$response = $this->myRequest('POST', '/vcenter/vin' . $vmld, null);
$results = json_decode($response->getBody ()->getContents (), true);
if ($response->getStatusCode() = 200) {
return true;
} else {
throw new \Exception(”Failed to delete specific VM 7 . $vmId . 7 : 7
$response->getStatusCode () K
$response->getReasonPhrase (), 1);
}
}
Listing 5.38: Delete VM function
200 OK -> deleted
400 Bad Request -> still on for example
404 Not Found -> if vmld not correct

Listing 5.39: Delete VM function response

5.6.5.16 Search VM function

This function will search for the details of a virtual machine by specifying its name, not
its ID as in other functions.

It will return the size of RAM memory, its ID, name, status, and the number of CPUs
assigned to it.

public function searchVM(string $vmName)

{
$response = $this->myRequest ('GET', '/vcenter/vin? filter .names.1=" . §
vmName, null);
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode () = 200) {
return $results;

©

10
11
12

— O © 00O Uik Wk

—_ =

O U WO N —

62

} else {
throw new \Exception(”Failed to search specific VM 7 . $vmName .
' $response->getStatusCode () K
$response->getReasonPhrase(), 1);
}
}
Listing 5.40: Search VM function
{
"value”: |
{
"memory_size. MiB”: 4096,
ym”: "vm-1027
"name”: ”DebianTest”,
"power__state”: "POWERED_ OFF” ,
“cpu__count”: 2
}
]
}

Listing 5.41: Search VM function response

5.6.5.17 Get VM State function

This function will return the state of a specified virtual machine (powered off, running,
etc.) by specifying its ID.

public function getStateVM(string $vmlId)
{
$response = $this->myRequest ('GET', '/vcenter/vmm/' . $vmld . '/power',
null);
$results = json_decode($response->getBody (), true);
if ($response->getStatusCode() = 200) {
return $results;
} else {
throw new \Exception(”Failed to get VM state: ” . $response->
getStatusCode () 7
$response->getReasonPhrase (), 1);
}
}
Listing 5.42: Get VM State function
{
"value”: {
7clean__power_ off”: true,
"state”: "POWERED OFF”
}
}

Listing 5.43: Get VM State function response

W N =

© 00~ O U~

10

12

© 00O ULk W+

63

5.6.5.18 Change VM State function

This function allows you to change the operating state of a virtual machine. It expects
as input the id of this one, but also the change of state. Several states are available:

« stop: allows to power off the virtual machine;
o start: allows to power on the virtual machine;
e suspend: allows to suspend the virtual machine;

« reset: allows to reset the virtual machine (stimulates a press on a reset button).

When the function has been executed, it can return several different answers; if the
status change has been successful, we will receive a 7200 - OK”, if the ID of the virtual
machine passed was not correct, we will receive a 7404 - Not Found” and finally, if we ask
to start the machine when it is already running, we will receive a 7400 - Bad Request”
with the error message.

public function setStateVM (string $vmld, string $action)
{
$response = $this->myRequest('POST', '/vcenter/vin/' . $vmld . '/power’
$action, null);
$results = json_ decode($response->getBody ()->getContents (), true);
if ($response->getStatusCode() = 200) {
return true;
} else {
throw new \Exception(”Failed change state of VM 7 . $vmId . 7 : 7 . §
response->getStatusCode () ’ 7
$response->getReasonPhrase (), 1);
}
}
Listing 5.44: Change VM State function
* JSON response 200, if OK
* JSON response 404 Not Found, if VM not found
* JSON response 400 Bad Request:
{
"type”: "com.vmware.vapi.std.errors.already_in_desired_state”,
"value”: {
"messages ”7: |
{
7default _message”: ”Virtual machine is already powered on.”
7id”7: 7com.vmware. api.vcenter .vm.power.already powered_on”
}
{
args 7 [],
7default__message”: "The attempted operation cannot be
performed in the current state (Powered on).”
7id”7: 7vmsg. InvalidPowerState .summary”

18
19
20
21

W N =

© 00 N O Ut

10

12

0 ~J O UL~ W+~

64

Listing 5.45: Change VM State function response

5.6.5.19 Get VM CPU counts function

This function is intended to return details about the number of CPUs in a virtual
machine. To do so, it will need the ID of the virtual machine.

In addition to returning the number of CPUs, this function will also give us the number
of cores per sockets, but also other information as we can see in the listing [5.47]

public function getCpuCount(string $vmld)

{
$response = $this->myRequest ('GET', '/vcenter/vm/' . $vmld . '/hardware/
cpu', null);
$results = json_decode($response->getBody (), true);
if ($response->getStatusCode() = 200) {
return $results;
} oelse {
throw new \Exception(”Failed to get CPU count for VM 7 . $vmld .
7 . $response->getStatusCode () 7
. $response->getReasonPhrase(), 1);
}
}
Listing 5.46: Get VM CPU counts function
{
"value”: {
"hot_remove_enabled”: false ,
Pcount”: 2,
"hot__add__enabled”: false ,
?cores__per__socket”: 2
}
}

Listing 5.47: Get VM CPU counts function response

5.6.5.20 Set VM CPU counts function

This function will allow us to set and/or change the number of CPUs of a specific virtual
machine. It expects as input a JSON configuration file and the virtual machine ID.

00 3O Ui W

0 ~JO ULk W

N =

65

Once the request is executed, the function will return the CPU information, just like
the previous request.

public function setCpuCount(array $specs, string $vmld)
{
$dataBody = json_encode($specs);
$response = $this->myRequest ('"PATCH', '/vcenter/vm/' . $vmld . '/hardware
/cpu', $dataBody) ;
$results = json_decode($response->getBody (), true);

if ($response->getStatusCode() = 200) {
return $results;
} else {
throw new \Exception(”Failed to set CPU count for VM 7 . $vmld
” . $response->getStatusCode () ’
$response->getReasonPhrase(), 1);

Listing 5.48: Set VM CPU counts function

{
"spec”: {
7count”: 2,
"hot__remove__enabled”: false ,
”"cores__per_socket”: 1,
"hot__add__enabled”: false
}
}

Listing 5.49: JSON configuration file for setting VM CPU counts

"value”: {
"hot__remove__enabled”: false,
Pcount”: 2,
"hot__add_enabled”: false ,
”"cores__per_socket”: 2

Listing 5.50: Set VM CPU counts function response

5.6.5.21 Get VM Memory amount function

This function is intended to return the amount of memory that a virtual machine has.
To do so, it will need the ID of the virtual machine.

public function getMemoryAmount(string $vmld)

{
$response = $this->myRequest ('GET', '/vcenter/vm/' . $vmld . '/hardware/
memory', null);
$results = json_ decode($response->getBody (), true);

66

)
6 if ($response->getStatusCode() = 200) {
7 return $results;
8 } else {
9 throw new \Exception(”Failed to get memory amount for VM 7 . $vmld .
7 : 7 . $response->getStatusCode ()
10 . $response->getReasonPhrase(), 1);
11 }
12|}
Listing 5.51: Get VM Memory amount function
1
2 7value”: {
3 "size MiB”: 4096,
4 "hot add enabled”: true
5 }
6]}
Listing 5.52: Get VM Memory amount function response
5.6.5.22 Set VM Memory amount function
This function will allow us to set and/or change the amount of ram of a specific virtual
machine. It expects as input a JSON configuration file and the virtual machine ID.
Once the request is executed, the function will return the memory information, just like
the previous request.
1| public function setMemoryAmount(array $specs, string $vmld)
2| {
3 $dataBody = json_encode($specs);
4 $response = $this->myRequest ('PATCH', '/vcenter/vmn/' . $vmld . '/hardware
/cpu', $dataBody) ;
5
6 if ($response->getStatusCode() = 200) {
7 return true;
8 } else {
9 throw new \Exception(”Failed to set memory amount for VM 7 . $vmld .
T $response->getStatusCode ()
10 . $response->getReasonPhrase(), 1);
11 }
12|}
Listing 5.53: Set VM Memory amount function
117
2| 7spec’: {
3 7size_ MiB”7: 2048
4}
5}

Listing 5.54: JSON configuration file for setting VM Memory amount

W N =

S O 00O U Wk~

—_

—_

(VN \]

0~ O O

67

5.6.5.23 Get Network info function

This request will return the ID of the network cards that are connected to a specific
virtual machine. To do this, we need to provide the function with the ID of that virtual

machine.
public function getNetworkInfoVm (string $vmld)
{
$response = $this->myRequest ('GET', '/vcenter/vm/' . $vmld . '/hardware/
ethernet', null);
$results = json_decode(S$response->getBody (), true);
if ($response->getStatusCode() == 200) {
return $results;
} else {
throw new \Exception(”Failed to get network info for VM 7 . $vmld .
s $response->getStatusCode () ’ K
$response->getReasonPhrase (), 1);
}
}
Listing 5.55: Get Network info function
{
"value”: |
{
"nic”: 740007
s
{
"nic”: 740017
}
]
}

Listing 5.56: Get Network info function response

5.6.5.24 Get Network details function

Contrary to the previous request, this one will provide us, for a specific virtual machine,
all the details of the network adapters. An overview of the query response can be found

in Listing [5.58

public function getNetworkDetailsVm(string $vmld, string $nicld)

{

$response = $this->myRequest ('GET', '/vcenter/vmm/' . $vmld . '/hardware/
ethernet' . $nicld, null);
$results = json decode($response->getBody ()->getContents(), true);

if ($response->getStatusCode() == 200) {
return $results;

} else {

10
11
12

~N O Uk W N

10
11
12
13
14
15
16
17
18
19
20

Uk W N —

=R K=

68

throw new \Exception(”’Failed to get network details for VM 7 . $vmld
T $response->getStatusCode () ”
$response->getReasonPhrase (), 1);
}
}
Listing 5.57: Get Network details function
{
Pvalue”: {
"start__connected”: true,
"pci__slot__number”: 0,
"backing”: {
"connection__cookie”: 677560597,
"distributed__switch__uuid”: ”50 07 e6 b7 98 b5 ff 60-4c a7 96 06 4
4 32 bd 517,
"distributed__port”: 7207,
"type”: "DISTRIBUTED_ PORTGROUP” |
"network”: ”dvportgroup-90”
}
"mac_ address”: 700:50:56:87:3e:78",
"mac__type”: "ASSIGNED” ,
7allow__guest__control”: true,
"wake_on_lan_enabled”: true,
7label”: ”"Network adapter 17,
"state”: "NOT_CONNECTED” ,
"type”: "E1000E”
}
}

Listing 5.58: Get Network details function response

5.6.5.25 Add Network card function

This function will allow us to add a network card to a specific virtual machine. To do
this, it waits for a JSON configuration file containing the type of network card, and in
the "backing” part, the type and the network on which the card will be connected. We

saw the different possible types in point [5.6.5.11

In return, the function will return the ID of the network card just created.

public function addNetworkVm(array $specs, string $vmld)

{

$dataBody = json_encode($specs);

$response = $this->myRequest('POST', '/vcenter/vin/' . $vmld . '/hardware/
ethernet', $dataBody);
$results = json_decode($response->getBody ()->getContents (), true);

if ($response->getStatusCode() = 200) {
return $results;
} oelse {

11

12
13
14

—_
OO 0T W~

N =

69

throw new \Exception(”Failed to add network card for VM 7 . $vmld .
: 7 . S$response->getStatusCode () ’
. $response->getReasonPhrase(), 1);

}
}
Listing 5.59: Add Network card function
{
"spec”: {
type”: "E10007,
"start__connected”: true,
"backing”: {
"type”: "{NEIWORK TYPE}”,
"network”: ”{NEITWORK ID}”
}
}
}
Listing 5.60: JSON configuration file for adding Network card
{
7value”: 74003”
}

Listing 5.61: Add Network card function response

5.6.6 ESXiAdapter class

We end with the ESXiAdapter class. This class is similar to the VBoxAdapter class in
the way they work. Indeed, this class will link the Hypervisor interface and the ESXi
class.

We will, therefore, find here the methods present in the interface, which have been
redefined using the adapted functions present in the ESXi class.

We have the "importMultiple()” function, which simply allows importing several virtual
machines at once. Importing into ESXi requires in addition to VirtualBox a JSON
configuration file telling it where to place this new virtual machine. In our case, we
assumed that we had only one ESXi host, hence the previous requests to know the ID of
the datastores, folder and host are more straightforward. We then make a loop allowing
to import several virtual machines, depending on the number of instances specified.

As for the 7allVMs()” function, it will simply return the list of virtual machines present
on the ESXi host.

1| class ESXiAdapter extends \Cylab\Cyrange\ESXi implements \Cylab\Cyrange)\

2| {

Hypervisor

© 00~ O Uk~ W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39
40
41
42
43
44
45
46
47
48
49
50

52
93

public function ___ construct()
{
parent :: __ construct (
getenv ("ESXI USER”) ,
getenv ("ESXI PASSWORD”) ,
getenv ("ESXI_ADDRESS”)

)
}
public function importMultiple(string $ovf, int Sinstances)
{
try {
$datastore = $this->getDatastoreList () ;
$folder id = $this->getFolderList () ;
$host id = $this->getHostList () ;
$resource__pool id = $this->getResourcePoolList ();
$specs = <<<JSON
{
”deployment_spec”: {
“accept_all EULA”: true,
?default datastore id”: $datastore
I
"target”: {
“folder id”: $folder_id,
“host_id”: $host_id,
"resource_ pool_id”: $resource_pool_id
}
}
JSON;
$i = 1;
$vms = array () ;
while ($i <= $instances) {
$vms[] = ESXi::deployVM($specs, $ovf);
}
return $vms;
} catch (Exception $e) {
echo (”Failed to import multiple OVF: 7 . $e);
}
}
public function allVMs()
{
try {
return $this->getVmList () ;
} catch (Exception $e) {
echo (”Failed to retreive VM list: 7 . $e);
}
}

70

Listing 5.62: ESXiAdapter class

71

5.6.7 PHP Diagram

To end this chapter, on the next page, you will find figure taking a PHP diagram
of the classes in the program after their modifications.

5.7 Problems encountered

We address one of the last parts of this thesis, the one that will talk about the prob-
lems that were encountered throughout the development of this thesis. We encountered
several ”"obstacles” during the realization of this thesis.

The first one, which happened at the very beginning, concerns the programming lan-
guage. Indeed, it was a novelty for us to have to program in object-oriented PHP.
Luckily, we had some necessary PHP programming skills when we created various web-
sites. This allowed us, after having investigated more deeply how object-oriented was
articulated, to understand all the code quickly, and then to be able to modify it.

A second, smaller obstacle was the adaptation of the tests running on GitLab. Indeed,
after modifying the code in different classes, the tests no longer worked. It was, therefore,
necessary to investigate and modify the tests according to the adaptations that had been
made in the main code.

A final obstacle that can be cited was encountered when using ESXi. Indeed, to be able
to use the API to control the hypervisor from our program, we had to install a vCenter.
VMware provides a 60-day trial version. So once everything had to be reinstalled with a
new license, to be able to take advantage of the 60-day trial again, allowing us to finish
our tests on the requests.

Figure 5.2: Command classes of the cyber

72

range project after modifications

Chapter 6

Conclusion

There have long been ways to improve one’s code, be it through the use of design
patterns, coding best practices, or even more precisely in our case dependency injection
or the use of interfaces. All these methods, techniques, and guides aim to improve the
maintainability of your code or to facilitate the addition of new components or features.
It is also beneficial during error debugging, for example.

From the point of view of the existing cyber range of the Royal Military Academy, an
in-depth analysis of the code and the interactions between them has been carried out.
This allowed us to have a complete analysis of the code to be used in future work.
However, it also made it possible to shed light on various problems in the code, which
brings us to this conclusion.

From the point of view of improving the code, several solutions have been made.
Whether in the implementation of design patterns, dependency injection, the application
of best coding practices, or the modification of individual classes. These improvements
in the code have made it more maintainable, robust, and even easier to test. Another
benefit of this code refactoring is discussed in the following paragraph.

In addition to the improvements mentioned in the previous point, we have taken advan-
tage of this to universalize the cyber range to make it compatible with other hypervisors.
Indeed, and thanks to the implementation of an interface, we were able to universalize
the cyber range code to dissociate it from the hypervisor with which it was working. This
allowed us to theoretically apply it to another hypervisor of a different type, VMware
ESXi. An analysis was performed to determine how to install it, and then to commu-
nicate with it through the current cyber range. The equivalence of requests made with
VirtualBox was found to work best with ESXi.

The limitation of this contribution lies in the fact that everything theoretically has been

73

74

achieved, but unfortunately, it could not be tested on the hardware of the Royal Military
School. This point will be further developed in section [7] regarding future works.

To conclude, this work led to the implementation of improvements in the existing code,
allowing later to universalize the code to implement it with another hypervisor.

Chapter 7

Future works

Due to a lack of time and health circumstances at the moment, we were, unfortunately,
unable to physically implement the ESXi on the ERM servers.

One of the future contributions would be to be able to install ESXi on one of the servers
of the Royal Military School and to be able to see our program working with another
hypervisor than VirtualBox.

On the other hand, it might be interesting to have two identical servers, one that would
be installed and configured to use VirtualBox, and the other for ESXi. This would
allow us to measure the performance of each hypervisor by basing our comparison on
various criteria such as CPU consumption, RAM, disk usage, and why not also power
consumption for defined scenarios. Consequently, we could compare the results obtained
by Mr. Michaux during the realization of his thesis and see if the results corroborate
each other.

A second contribution, which will be in line with continuing to improve the code, would
be the refactorization of what has been called "the orchestrator”. Indeed, all the different
commands and especially the ”ScenarioDeploy” command takes care of creating the VMs
based on the scenario. However, all its classes are linked together, and one, in particular,
takes care of performing many tasks. It could be interesting to start on the principle of
"single responsibility” for each class.

75

Appendices

76

Appendix A

ESXi and VCenter installation
and configuration

The next pages are a kind of tutorial that was made during the installation of the ESX.
It includes the installation and configuration of the ESX, but also the installation and
configuration of the vCenter, which allows us to use the Rest APL.

77

78

ESXi and VCenter 1installation
and configuration

ESXi installation

Creation of the bootable USB key
To create the bootable USB, we need to use Rufus (on Windows):

&
Options de Périphérique

Périphérique
MEDIA (E:) [8 Go] ~

Type de démarrage

VMware-VMvisor-Installer-201912001-15160138.x86_6d.isc ~ lf:fl SELECTION |+
Taille de partition persistente

] 0 (Désactivie)

Schéma de partition Systeme de destination

MER ~ BIOS ou UEFI ~

w Afficher les options de périphérique avancées

Options de Formatage

Mom de volume
| ESX1-6.7.0-20191204001-STANDARD

Systéme de fichiers Taille d'unité d'allocation
FAT3Z (Défaut) ~ 4096 octets (Défaut) ~

~ Afficher les options de formatage avancées

Statut

' PRET
| @ O = DEMARRER FERMER
Image utilisée : VMware-VMvisor-Installer-201912001-15160138.x36_64.iso

Then we need to boot the computer/server on that previously created bootable USB and follow
the installation steps by filling out the hostname, IP address, root password, etc.

ESXi configuration
NTP

To be sure the time is set correctly, we specify the Belnet NTP server in the parameters.

79

T3 Navigator 11 || [J ESXilan - Manage
5! ﬁ Host ‘ System ‘ Hardware Licensing Packages Services Security & users
Monitor Advanced settings | @ Refresh | §F Actions
Autostart :
{31 Virtual Machines m . Current date and time Monday, February 17, 2020, 21:15:49 UTC
I wap
~ (1 Storage n " NTP service status Stopped
Time & date
~ B datastore1
NTP servers None

Monitor

More storage...

Q_ Networking n

[Edit time configuration

NTP servers

Specify how the date and time of this host should be set.

() Manually configure the date and time on this host

(®) Use Network Time Protocol (enable NTP client)

NTP service startup policy

B8

Start and stop with host ~

ntp.belnet.be

P
Separate servers with commas, e.g. 10.31.21.2, fe00::2800

Save l [Cancel
)
We then start the service.
[J] ESXilan - Manage
|. System | Hardware Licensing Packages Services Security & users
Advanced settings / Editsetings | (@ Refresh | |ﬁAcﬁons |
Autostart Current date and time /" Editsettings 18 UTC
Swap . @ NTP service
NTP service status -
NTP servers 1. ntp.belnet be
=) Policy

Auto-start

Here we will skip a few steps, but we will activate the automatic start of the vCenter later.

80

E ESXilan - Manage

[System W Hardware Licensing Packages Services Security & users
Advanced settings /' Edit settings
Enabled No
Swap
. Start delay 120s
Time & date
Stop delay 120s
Stop action Power off
Wait for heartbeat No

D | @ Refresh |
Virtual machine
No virtual machines
Quick filters ~
[ESXilan - Manage
[System } Hardware Licensing Packages Services Security & users
Advanced settings / Edit settings
Erabed o
Swap
- Start delay 1208
Time & date
Stop delay 1208
Stop action Power off
Wait for heartbeat No
 Start later ftearier (g Configure (i Disable | (¥ Refresh | £ Actions (Qsearch)
Virtual machine ~ | Shutdown behavior v Autostartor..v Startdelay v Stopdelay
(% VMware vCenter Server Appliance System defauit 1 1208 1205
1 it
Quick fiters v items

81

vCenter 1installation
The installation of the vCenter will be done via a machine connected to the same network as

the ESXi, there is no longer any need to create a bootable USB key as before.

We need to get the ISO for installing the vCenter at this link:
https!//my.vmware.com/group/vmware/evalcenter?p=vsphere-eval

An account must be created in order to receive a 60-day trial license.

After mounting the ISO, we launch the installer.

Lecteur de DVD (F:) VMware VCSA vesa- ui-installer win32

MNom Type Taille
B content_resources_200_percent.pak 0-1¢ / Fichier PAK

. content_shell.pak 214 Fichier PA
] d3dcompiler_47.dll 0 214 xtension de I'app...
E ffrmpeg.dil X n de l'app...
KE icudtl.dat : it file
@ installer.exe 0-19 Application
nsion de I'app...
ibGLESv2.dII : nsion de I'app...
[N LicEnSE 0-19 23:14 Fichier
2 LICEMSES.chromium.html : Chrome HTML Do...
Extension de I'app...
Fichier BIN

vCenter deployment

3 vCenter Server Appliance Installer - o x

Installer

vm vCenter Server Appliance 6.7 Installer (@ English v

Install Upgrade Migrate Restore

82

The first step is the deployment of the appliance:

i3 vCenter Server Appliance Installer — [m] x

Installer

vm Install - Stage 1: Deploy appliance

Introduction

Introduction

This installer allows you to install a vCenter Server Appliance 6.7 or a Platform Services Controller 6.7

8}

End user license agreement

3 Select deployment type

'S

Appliance deployment target

w

Set up appliance VM

6 Select deployment size

~

Select datastore
Deploy appliance

8 Configure network settings
Installing the appliance is a two stage process. The first stage involves deploying a new appliance to the
9 Ready to complete stage 1 tar Center Server or ESXi host. The second stage completes the setup of the deployed appliance. Click
Next, to proceed with stage 1.
) vCenter Server Appliance Installer — a x
Installer

vm Install - Stage 1: Deploy appliance

End user license agreement

Introduction

Read and accept the following license agreement.

2 End user license agreement
VMWARE END USER LICENSE AGREEMENT .
3 Select deployment type
PLEASE NOTE THAT THE TERMS OF THIS END USER LICENSE AGREEMENT SHALL GOVERN YOUR
4 Appliance deployment target USE OF THE SOFTWARE, REGARDLESS OF ANY TERMS THAT MAY APPEAR DURING THE
INSTALLATION OF THE SOFTWARE.
5 Setup appliance VM IMPORTANT-READ CAREFULLY: BY DOWNLOADING, INSTALLING, OR USING THE SOFTWARE, YOU
(THE INDIVIDUAL OR LEGAL ENTITY) AGREE TC BE BOUND BY THE TERMS OF THIS END USER
(e . LICENSE AGREEMENT (“EULA"). IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA, YOU MUST
6 Select deployment size . - o N e _ _
’ NOT D NLOAD, INSTALL, OR USE THE SOFTWARE, AND YOU MUST DELETE OR RETURN THE
UNU SOFTWARE TO THE VENDOR FROM WHICH YOU ACQUIRED IT WITHIN THIRTY (30) DAYS
7 Select datastore AND REQUEST A REFUND OF THE LICENSE FEE, IF ANY, THAT YOU PAID FOR THE SOFTWARE.
EVALUATION LICENSE. If You are licensing the Software for evaluation purposes, Your use of the
8 Configure network settings Softw

only permitted in a non-production environment and for the period limited he License
stwithstandina anv other nravision in this FUILA_an Fvaluation License of the Software is

©

Ready to complete stage 1
¥ | accept the terms of the license agreement.

83

For the type of deployment, we choose the “embedded” version.

(2 wCenter Server Appliance Installer - o X

Installer

vm Install - Stage 1: Deploy appliance

1

Select deployment type

Introduction

Select the deployment type you want to configure on the appliance

2 End user license agreement
3 Select deployment type For more information on deployment types, refer to the vSphere 6.7 documentation
4 Appliance deployment target Embedded Platform Services Controller Appiance
© vCenter Server with an Embedded Platform
Platform Services
5 setup appliance VM S es Controller Control
vCenter
6 Select deployment size Server
7 select datastore
8 Configure network settings External Platform Services Controller
Appliance

Deprecated Deployment Model

— Platform Services
Ready to complete stage 1) Platform Services Control E

er Controller

©

ser (Requires External Platform

Controller)

Appliance

vCenter

Here we enter the IP address of the ESXi on which the vCenter will be deployed and we accept
the certificate.

") vCenter Server Appliance Installer - O ®

Installer

vm Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller

Appliance deployment target
1 Introduction PP pioy 9
_ Specify the appliance deployment target settings. The targ the ESXi host or vCenter Server instance on
2 End user license agreement
which the appliance will be deployed
3 Select deployment type
ESXi host or vCenter Server name 192.168.118 @
4 Appliance deployment target
HTTPS port 443
5 Setup appliance VM
User name root @
6 Select deployment size
Password
7 Select datastore

Certificate Warning

If an untrusted SSL certificate is installed on 192.168.1.18, secure communication
cannot be guaranteed. Depending on your security policy, this issue might not
represent a security concern

The SHA1 thumbprint of the certificate is

1:5D:36:B2:9A:32:38:33:85:26:6B:38:0F:0D:FA:42:F5:13:A3:ED

To accept and continue, click Yes

84

We define the name and password of the vCenter.

() vCenter Server Appliance Installer

Installer

vm |Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller

Introduction

[N}

End user license agreement

w

Select deployment type

ES

Appliance deployment target

o

Set up appliance VM

6 Select deployment size

~

Select datastore

3

Configure n

©

Ready to complete stage 1

Set up appliance VM

Specify the VM settings for the appliance to be deployed

VM name

Set root password

Confirm root password

VMware vCenter Server Appliance

Depending on the number of virtual machines running and the power of the server, we choose
the size of the deployment (“Tiny” in our case).

() vCenter Server Appliance Installer

Installer

Introduction

[N}

End user license agreement

w

Select deployment type

-

Appliance deployment target

3}

Set up appliance VM

@

Select deployment size

~

Select datastore

@

Configure

o

Ready to comple

Select deployment size

vm Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller

enter Server with an Embedded Platform Services Controller.

For more information on deployment sizes, refer to the vSphere 6.7 documentation

Deployment size

Storage size

Resources required for different deployment sizes

Deployment Size

Tiny
Small
Medium
Large

X-Large

vCPUs

2

Tiny

Default

Memory (GB)
10 300
16 340
24 525
32 740
48 180

Storage (GB)

Hosts (up to)

VMs (up to)

CANCEL BACK NEXT

85

We choose the datastore on which the appliance will be installed (if there are several disks in
the server for example).

) vCenter Server Appliance Installer -] X
Installer
vm Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller
: Select datastore
1 Introduction
_ Select the storage location for this appliance
2 End user license agreement
3 Select deployment type © Install on an existing datastore accessible from the target host
4 Appliance deployment target Name 4 Type g Capacity ¥ Free r Provisioned T Thin Provisioning v
datastorel VMFS-6 924 GB. 922.58 GB 142 GB Supported
5 Set up appliance VM
6 Select deployment size
item
7 Select datastore
[_] Enable Thin Disk Mode
8 Configure network settings “ ode @
Install on a new VSAN cluster containing the target host @
9 Ready to complete stage 1
We define the vCenter network parameters
() vCenter Server Appliance Installer - m} x

Installer

vm

S}

w

o~

2}

o

©

Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller

Introduction

End user license agreement

Select deployment type

Appliance deployment target

Set up appliance VM

Select deployment size

Select datastore

Configure network settings

eady to complete stage 1

Configure network settings

Configure network settings for t

Network

IP version

IP assignment

FQDN

IP address

Subnet mask or prefix length

Default gateway

DNS servers

HTTPS

his appliance

VM Network

1Pvd

static

192.168.1.240

255255.255.0

19216811

19216811

30

443

CANCEL

NEXT

86

We click on “Finish” and the deployment begins.

() vCenter Server Appliance Installer — O X
Installer
vm Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services Controller
) Ready to complete stage 1
1 Introduction
_ Review your settings before starting the appliance deployment.
2 End user license agreement
~ Depl t Detail
3 Select deployment type SRR s
Target ESXi host 192.168.1.18
4 Appliance deployment target
VM name VMware vCenter Server Appliance
9 = up BDD‘IEF\CS U Deployment type vCenter Server with an Embedded Platform Services Controlier
6 Select deployment size Deployment size Tiny
Storage size Default
7 Select datastore
Datastore Details
8 Configure network settings
Datastore, Disk mode datastore], thick
9 Ready to complete stage 1 . Network Details
Network VM Network
IP settings IPv4 | static
IP address 192.168.1.240
Subnet mask or prefix length 255.255.255.0
Default gateway 192.168.11
CANCEL FINISH

Install - Stage 1. Deploy vCenter Server Appliance with an Embedded Platform Services
Controller

0%

Initializing...

Install - Stage 1: Deploy vCenter Server Appliance with an Embedded Platform Services
Controller

@ You have successfully deployed the vCenter Server with an Embedded Platform Services Controller.

To proceed with stage 2 of the deployment process, appliance setup, click Continue

If you exit, you can continue with the appliance setup at any time by logging in to the vCenter Server Appliance Management Interface

https:/192.168.1.240:5480/

87

vCenter configuration

We will now configure the vCenter

Install - Stage 2- Set Up vCenter Server Appliance with an Embedded Platform Services Controller

1 Introduction

2 Appliance configuration

w

SSO configuration
4 Configure CEIP

5 Ready to complete

NTP

Introduction

vCenter Server Appliance installation overview

Stage 2

o

fi;g"
e

Set up vCenter Server Appliance

nstalling the vCenter Server Appliance is a two stage process. The first stage has been
completed. Click Next, to proceed with Stage 2, setting up the vCenter Server Appliance

We start with the NTP, as previously done with the ESXi.

vm Install - Stage 2: Set Up vCenter Server Appliance with an Embedded Platform Services Controller

1 ntroduction
2 Appliance configuration

S50 configuration

w

4 Configure CEIP

5 Ready to complete

SSO domain

Appliance configuration

Time synchronization mode Synchronize time with NTP servers ~

NTP servers (comma-separated list) ntp belnetbe

SSH access Disabled ~

0 For vCenter Server High Availability (HA), enable SSH access.

We then configure the SSO domain. For our part, we will create a new one.

Install - Stage 2: Set Up vCenter Server Appliance with an Embedded Platform Services Controller

1 ntroduction

)

Appliance configuration

3 S50 configuration

4 Configure CEIP

5 Ready to complete

SSO configuration

® Create a new SSO domain

Single Sign-On domain name vsphere loca @
Single Sign-On user name administrator

Single Sign-On password semesaseen @
Confirm password Ereern

Join an existing SSO domain

Install - Stage 2: Set Up vCenter Server Appliance with an Embedded Platform Services Controller

1 Introduction Configure CEIP

X Join the VMware Customer Experience Improvement Program
Appliance configuration

%)

w

SS0O configuration
VMware’s Customer Experience Improvement Program (“CEl

4 Configure CEIP VMware with information that enables VMware to improve its praducts and
services, to fix problems, and to advise you on how best to deploy and use our
products. As part of the CEIP, VMware collects technical information about your
organization's use of VMware products and services on a regular basis in
association with your organization’s VMware license key(s). This information
does not personally identify any individual

5 Ready to complete

Additional information regarding the data collected through CEIP and the
purposes for which it is used by VMware is set forth in the Trust & Assurance

Center at http:/w mware.com/trustvmware/ceip.html.

If you prefer not to participate in VMware's CEIP for this product, you should
uncheck the box below. You may join or leave VMware’s CEIP for this product at
any time

Joining CEIP will also enable vSphere Health and if you have vSAN, vSAN -

Join the VMware's Customer Experience Improvement Program (CEIP)

After reviewing the parameters, the second phase is executed.

vm Install - Stage 2: Set Up vCenter Server Appliance with an Embedded Platform Services Controller

1 Introduction Ready to complete

X X X Review your settings before finishing the wizard
Appliance configuration

%)

3 SSO configuration Network Detalls
Network configuration Assign static IP address
4 Cenfigure CEIP b version Pud
5 Ready to complete Host name photon-machine
P Address 192.168.1240
Subnet mask 255.255.265.0
Gateway 192.168.11
DNS servers 192.168.11
Appliance Details
Time synchronization mode Synchronize time with NTP servers
NTP Server ntp.belnet.be
SSH access Disabled
S50 Detalls
Domain name vsphere.loca
User name administrator
Install - Stage 2: Complete
o You have successfully setup this Appliance
_________________________________|
Complete

vCenter Server Appliance setup has been completed successfully. Click on the link below to get
started. Press close 1o exit

Appliance Getting Started https://photon-machine: 443
Page

89

Dashboard

To continue the configuration,

VCENTER]/?workflow=installer

Welcome to VMware

< c O

vmware

Getting Started

reverting to the Flash-based Web Client when necessary.

LAUNCH VSPHERE CLIENT (HTMLS)

’ LAUNCH VSPHERE WEB CLIENT (FLEX)

Documentation

VMware vSphere Documentation Center

Functionality Updates for the vSphere Client (HTMLS)

The vSphere Flash-based Web Client is deprecated in vSphere 6.7. We recommend
switching to the all-new modern HTML5-based vSphere client as the primary client and only

Deprecated

we

For Administrators
Web-Based Datastore Browser
Use your web browser to find and download files (for
example, virtual machine and virtual disk files).
Browse datastores in the vSphere inventory
For Developers
vSphere Web Services SDK
Leamn about our latest SDKs, Toolkits, and APls for
managing VMware ESXi and VMware vCenter. Get
sample code, reference documentation, participate in
our Forum Discussions, and view our latest Sessions
and Webinars.
Learn more about the Web Services SDK
Browse objects managed by vSphere
Browse vSphere REST APls

Download trusted root CA certificates

We can see that there is a section dedicated to the REST API.

We launch the vSphere client and connect with the account created previously.

VMware® vSphere

administrator@vsphere local

the following link: https:/[IP-

90

So that’s the vCenter dashboard.

€ c o0

CPU Memory Storage
0 Hz free 0B free 0B free
& VMs [} Hosts o
(o) o] 0 o o] o]
Objects with most alerts o £ Installed Plugins 3

Hem @ Atents Warnings

Recent Tasks
Task Name. Target

Hosts and clusters
We go to the “Hosts and Clusters” tab and then create a new Datacenter.

This will make it easier, if multiple servers are associated with the vCenter, for
administrative tasks. This also allows you to manage the various ESXs only through the
vCenter.

vm vSphere Client Menu v

% Shortcuts Home

;] 192.168.1.240 v

||J—:I| Hosts and Clusters |

7] VMs and Templates vm vSphere Client Menu w

] Storage CPU

& Networking) =] Q 7 192.168.1.240 ACTIONS v
E Content Libraries 7] 192.168.1.240 {5 Actions - 192.168.1240 itor Configure Permis

[F4 Global Inventory Lists
[l New Datacenter.

. . £ New Folder
[& Policies and Profiles

@ Auto Deploy

Export System Logs
> Assign License
Tags & Custom Attributes »
Add Permission...
Alarms -

Update Manager >

91

After giving it a name, we add our previously installed ESX to it.

vm vSphere Client

[Q ACTIONS v
New Datacenter X E @ 8 2 [Datacenter
v [192.168.1.240 Summary Monitor Configure Permissior
> [Datacenter
[Actions - Datacenter 0
Name Datacenter .
] Add Host. e 2
Location: (7 192.168.1.240 % New Cluster. C
Q
New Folder »
Distributed Switch »
“ 15 New Virtual Machine
13 Deploy OVF Template
It is given the IP and the root password.
Add Host
1 Name and locati Name and location
2 Connection settings Enter the name or IP address of the host to add to vCenter Server
3 Host summary
4 Assign license Host name or IP address: 192.168.1.18
5 Lockdown mode .
Location: [l Datacenter
6 VM location
7 Ready to complete
Add Host
+ 1 Name and location Connection settings
2 Connection settings Enter the host connection details
3 Host summary
4 Assign license User name: root sl
5 Lockdown mode -
Password:
6 VM location
7 Ready to complete
Add Host
+ 1 Name and location Host summary
+ 2 Connection settings Review the summary for the host
3 Host summary
4 Assign license Name 192.168.1.18
5 Lockdown mode
Vendor ASUS
6 VM location
7 Ready to complete Model All Series
Version VMware ESXi 6.7.0 build-15160138
Virtual Machines VMware vCenter Server Appliance

92

In the case of a paid license, it is at this stage that it is indicated.

Add Host

+ 1Name and location Assign license

+ 2 Connection settings Assign an existing or a new license to this host

+ 3 Host summary

4 Assign license

5 Lockdown mode

License v License Key ¥ Product

6 VM location 0 © cvaluation License - =

7 Ready to complete

Assignment Validation for Evaluation License

The license expires in 60 days.

v Usage Capacity

We must then define the lockdown mode. A summary table is below. In our case, we will

choose the disabled mode.

Add Host

+ 1Name and location Lockdown mode

+ 2 Connection settings Specify whether to enable lockdown mode on the host

+ 3 Host summary
+ 4 Assign license

5 Lockdown mo

6 VM location

console or an authorized centralized management application

7 Ready to complete settings

Disabled

) Normal

The host is accessible only through the local censole or vCenter Server.

Strict

The host is accessible only through vCenter Server. The Direct Console Ul service is stopped

Lockdown Mode Behavior

Service. Normal Mode Normal Lockdown Mode

vSphere Web Services Al users, based on permissions vCenter (vpxuser)

APl Exception users, based on permissions
vCloud Director (vslauser. if available)

CIM Providers Users with administrator privileges on the host vCenter (vpxuser)

Exception users, based on permissions.

vCloud Director (vslauser, if available)

Direct Console Ui Users with administrator privileges on the host. and users in the DCUL Access

Users defined in the | Access advanced

(ocun advanced option option
Exception users with administrator privileges on
the host

ESXi Shell Users with administrator privileges on the host Users defined in the DCULAccess advanced

(if enabled) option
EXCeption users with agministrator privileges on
the host

SSH Users with administrator privileges on the host Users defined in the DCULACcess advanced

(if enabled) option
Exception users with administrator privileges on
the host

when enabled, lockdown mode prevents remote users from logging directly into this host. The host will only be accessible through local

If you are unsure what to de, leave lockdown mode disabled. You can configure lockdown mode later by editing Security Profile in host

Strict Lockdown Mode

vCenter (vpxuser)
Exception users, based on permissions
vCloud Director (vslauser, if available)

vCenter (vpxuser)
Exception users, based on permissions.
vCloud Director (vslauser, it available)

DCUI service is stopped

Users defined in the DCULAccess advanced
option

Exception users with administrator privileges on
the host

Users defined in the DCULAccess advanced
aption

Exception users with administrator privileges on
the host

Add Host

+ 1 Name and location Ready to complete

+ 2 Connection settings Click Finish to add the host

+ 3 Host summary

+ 4 Assign license Name 192168118

« & Lockdown mode Location [Datacenter i
Version VMware ESXi 6.7.0 build-15160138

¥ 6 VM location License Evaluation License

7 Ready to complete Networks VM Network

Datastores datastorel
Lockdown mode Disabled
VM location Datacenter

We can see that the host has been successfully added to the Datacenter.

vm vSphere Client Menu s

[g8 9 Datacenter | actions~

v 5] 192.168.1.240 summary Monitor Configure Permissions
v [Datacenter
> [192168118 Hosts: 0
Virtual Machines: 0
Clusters: 0
Networks: 0
Datastores: 0

94

Access
We are now going to configure the access.

vm vSphere Client

B @ 8 g

v (51921681240
v [i Datacenter
v [192168118
B VMware vCenter §

In the case of an existing Active Directory, this is where it should be joined:

Menu v

vm vSphere Client

Menu v

@ Home ctrl + alt + home
& Shortcuts ctrl + alt +1
[J Hosts and Clusters ctrl + alt + 2
]

WMs and Templates ctrl + alt + 3

] Storage ctrl + alt + 4

& Networking ct alt + 5

[content Libraries ct

[F4 Global Inventory Lists ctrl + alt +

@ Policies and Profiles
ZA Auto Deploy
<|> Developer Center

[#®) vRealize Operations

@ Administration

A Update Manager

(] Tasks
Og Events

& Tags & Custom Attributes

Administration

+ Access Control Configuration

Roles Policies Identity Sources

JOIN AD

Global Permissions

- Licensing
Licenses
Node
~ Solutions
Client Plug-ins © v 1921681240

vCenter Server Extensio.
The node didn't join an

~ Deployment

System Configuration

Customer Experience Im
~ Support

Upload File to Service R
- Certificates

Certificate Management
- Single Sign On

Users and Groups

Configuration

Active Directory Domain

Login Message

Join Active Directory Domain

Domain

QOrganization Unit (optional)

Username

Password

‘ (@ Reboot the node to apply changes

CANCEL

95

Statistics
We configure the different settings for collecting statistics from the vCenter Server.

wm vSphere Client

5] @ 8 @ 192.168.1.240
Monitor Permissions Datacenters Hosts & Clusters VMs Networks Linked vCenter ons Updates
T Datscenter
] w2168118 Center Server Settings
B vMwar s
Statistics Estmated
Database Max connections
Runtime settings
User directory Timeout
Mail
SNMP receivers
ports
Timeout settings
Logaing options Log levet: into
SSLsettings
Edit vCenter general settings X
Statistics
Enter settings for collecting vCenter Server statistics.
Database
Runtime settings Enabled Interval Duration Save For Statistics Level
User directory 5 minutes v 1day v Level 4 v
sal 30 minutes v 1 week v Level 4 "
SNMP receivers
2 hours - 1 month v Level 3 v
Ports
1day v 1year v Level 2 v
Timeout settings [— [— [—
Logging settings Database size
Based on the current vCenter Server inventory size, the vCenter Server database can be estimated. Enter the expected number of
SSL settings hosts and virtual machines in the inventory to calculate an estim
Physical hosts 3 Estimated space required 37.37GB
Virtual machines 500

The full table of the different levels of statistics can be found below:

Statistics Levels
Level Metrics Best Practice

Level
1

+ Cluster Services (VMware Distributed Resource Scheduler) — all metrics Use for long-term performance monitoring when device statistics are not required

+ CPU - cpuentitiement, totalmhz, usage (average), usagemhz Level 1is the default Collection Level for all Collection Intervals.
« Disk - capacity, maxTotalLatency, provisioned, unshared, usage (average), used

« Memory - consumed, mementitiement, overhead, swapinRate, swapoutRate.
swapused, totalmb, usage (average), vmmemctl (balloon)

* Network - usage (average), IPv6
* System - heartbeat, uptime

« Virtual Machine Operations - numChangeD$, numChangeHost, numChangeHostDS

Use for long-term performance monitoring when device statistics are not required but you want

* Level 1 metrics to monitor more than the basic statistics.

« CPU - idle, reservedCapacity

Disk - All metrics, excluding numberRead and numberwrite.

* Memory - All metrics, excluding memused and maximum and minimum rollup
values.

Virtual Machine Operations - All metrics

Use for short-term performance monitoring after encountering problems or when device

evel
3 statistics are required
Metrics for all counters, excluding minimum and maximum rollup values.

Level 1 and Level 2 metrics

Because of the large quantity of troubleshooting data retrieved and recorded, use level 3 for

+ Device metrics the shortest time period (Day or Week collection interval).

Level All metrics supported by the vCenter Server, including minimum and maximum rollup Use for short-term performance monitoring after encountering problems or when device
4 values statistics are required

Because of the large quantity of troubleshooting data retrieved and recorded, use level 4 for

the shortest amount of time.

96

Edit vCenter general settings

Statistics
Database
Runtime settings
User directory
Mail

SNMP receivers
Ports

Timeout settings
Logging settings

SSL settings

Database

Enter database settings. Use tasks and events retention settings to limit the growth of the database.

Maximum connections 50 |
Task cleanup [@]

Task retention (days) 30
Event cleanup [o]

Event retention (days) 30

Monitor vCenter database consumption and disk partition in Appliance Management Ul

& Increasing the events retention to more than 30 days will result in significant increase of vCenter database size and could
shutdown the vCenter Server. Please ensure that you enlarge the vCenter database accordingly:

@ To apply changes, restart vCenter Server manually.

97

Administrative settings
Here are some tweaks to make administration easier.

We go to the “storage” tab.

vm vSphere Client Menu w
% Shortcuts Home

7 192.168.1.240 v
Hosts and Clusters

7 VMs and Templates

CPU

& Networking
[Content Libraries 1

[F Global Inventory Lists
[Policies and Profiles

Here is the local ESXi storage. For easier administration, we rename “datastorel” by default
to “ESXi_Hostname LLOCAL”

vm vSphere Client Menu v

I] D £l datastorel ACTIONS v

v [192168.1.240 Summary Menitor Configure Permissions Files Hosts VMs
v [l Datacenter
= Tune: FS 6
[=) datastorel — e
(& Actions - datastoret filvmfs/volumes/Sedafcbc-d5616880-3fdd-40167eaeBae2/

5 New Virtual Machine.

(& Browse Files

£ Register vM..

& Refresh Capacity Information

B8 Increase Datastore Capacity...
Maintenance Mode >

Category Description
Move To

Rename

2

E8 Unmount Datastore..

Rename datastorel X

Enter the new name: ESXi_local

98

VMware Appliance Management
To set the time zone, we go to : https://[IP-VCENTER]:5480/login

VCenter Server Appliance

& 2

vm Appliance Management

Summary

Monitor

Access

Networking

Firewall

Time

Services

Update

syslog

Backup

Center Server Appliance

¢ > @

vm Appliance Management

Summary

Monitor

Access

Netwerking

Firewall

Time

Services

VMware Appliance
Management

administrator@vsphere.local

C {Y A Notsecure

1} A Notsecure

X+

192.168.1.240:

Mon 02-17-2020 10:14 PM CET

Hostname:
Type
Product
Version:

Build number

Health Status

Overall Health © Good (Last checked F
10:14:07 PM)

cPU

Memory

Database

Storage @ Good

Swap @ Good

X +

192.168.1.240:

Mon 02-17-2020 10:13 PM CET

Time zone

Time zone

Time synchronization
Mode
Time servers

Current appliance time

@ English

photon-machine

vCenter Server with an embedded Platform Services Controller

VMware vCenter Server Appliance
6.7.0.42000
15132721

Single Sign-On

Domain

Status

English

NTP

ntp.belnet.be @

Men 02-17-2020 1013 PM CET

Actions

vsphere local

Running

- @ g8

Administrat

SPHERE.LOCAL

EDIT

Appendix B

Requests documentation

This section will present the queries that were used when implementing the cyber range
with the ESXi hypervisor.

The basis of these queries come from the template package available on the VMware
website.

We will find for each request the three different frameworks proposed by Postman (cURL,
HTTP Request2 and pecl http). For the requests whose answers were relevant, they have
also been included.

B.1 Authentication

B.1.1 Login

Login to the specified vCenter and retrieve a session.
The base64 in the code the the base 64 encoding of the "username:password”.
{IP__ ADDRESS} is the IP of the vCenter.

PHP - cURL
1| <?php
2| $curl = curl_init ();
3| curl _setopt_array($curl, array(
4| CURLOPT _URL => "https://{IP_ADDRESS}/rest /com/vmware/cis/session”,
5| CURLOPT_RETURNTRANSFER => true,
6/ CURLOPT_ENCODING => 77,

99

10
11
12
13

14
15
16
17
18

= O OO ULk W+

—_ =

13
14
15
16
17
18
19
20
21
22

23| }

24
25
26

OO 0T U W~

100

CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1 1,
CURLOPT _CUSTOMREQUEST => "POST”,
CURLOPT_HTTPHEADER => array (
?Authorization: Basic YWRtaW5pc3RyYXRvckB2c3BoZXJILmxvY2FsOIRpZ3JvdTAwNy4

)
)
$response = curl exec($curl);
curl close($curl);
echo $responses;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest /com/vmware/cis/session');
$request->setMethod (HT'TP_ Request2 : : METHOD_POST) ;
$request->setConfig(array (

"follow redirects' => TRUE

)
$request->setHeader (array (
"Authorization' => 'Basic YWRaW5pc3RyYXRvckB2c¢3BoZXJILmxvY2FsOIRpZ3
JvdTAwNy4="
)
$request->setBody ('");
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2 Exception $e) {
echo '"Error: ' . $e->getMessage();
}

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest /com/vmware/cis /session');
$request->setRequestMethod ("POST") ;
$body = new http\Message\Body;
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (
"Authorization' => 'Basic YWRtaW5pc3RyYXRvckB2c3BoZXJILmxvY2FsOIRpZ3
JvdTAwNy4="

11
12
13
14

© 00O UL WN -

10

12
13

));

$client ->enqueue ($request)->send () ;
$response = $client ->getResponse ()
echo $response->getBody () ;

’

101

Responses
200 OK
{
?value”: ”"31e7b314dba8d0e9c03351e9e7247d04”
}
401 Unauthorized
{
"type”: "com.vmware.vapi.std.errors.unauthenticated”,
7value”: {
"messages”: [
{
Cargs”: [],
?default message”: ”Authentication required.”,
7id”: 7com.vmware. vapi.endpoint.method.authentication.
required”

© 00O UL WN -

DO DD DD = = = = e e e
N OOk W —O

© 00O ULk WN

DO DD RO DD = = = = e e e
WN OO0 IDDU =W —O

24

[\
at

102

B.1.2 Logout

Logout of the specified vCenter

PHP - cURL

<?php

$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest /com/vmware/cis/session”,
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => "7,
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1 1,
CURLOPT CUSTOMREQUEST => "DELETE” ,
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl exec($curl);

curl close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2() ;
$request->setUrl("https://{IP_ADDRESS}/rest /com/vmware/cis /session');
$request->setMethod (HTTP_ Request2 : : METHOD_DELETIE) ;
$request->setConfig(array (

"follow redirects' => TRUE
) ;
$request->setHeader (array (

"Cookie' => 'vmware-api-session -id={session -id}"'
) ;
$request->setBody ('');
try {

$response = $request->send();

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2 Exception $e) {
echo '"Error: ' . $e->getMessage();
}

© 00O ULk W+

[O S o
= wWwN —=O

103

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest /com/vmware/cis /session');
$request->setRequestMethod ('DELETE") ;
$body = new http\Message\Body;
$request->setBody ($body) ;
$request->setOptions (array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

104

B.1.3 Session information

Get current session info, check if we are still logged or not.

PHP - cURL
<?php
$curl = curl_init ();

curl_setopt_array (Scurl, array(
CURLOPT_URL => "https://{IP_ADDRESS}/rest /com/vmware/cis/session?~action=
get”,
7| CURLOPT_RETURNTRANSFER => true,
8| CURLOPT_ENCODING => 77|
9| CURLOPT MAXREDIRS => 10,
10| CURLOPT TIMEOUT => 0,
11| CURLOPT FOLLOWLOCATION => true,
12| CURLOPT_HTTP_VERSION => CURL_HTTP_ VERSION 1 1,
13| CURLOPT CUSTOMREQUEST => "POST”,
14| CURLOPT HTTPHEADER => array (
15 ”Cookie: vmware-api-session -id={session -id}”
16|),
170));
18
19| $response = curl__exec($curl);
20
21| curl__close ($curl);
22| echo $response;

S U WO N =

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl (' https://{IP_ADDRESS}/rest /com/vmware/cis/session?~action=
get');
$request->setMethod (HTTP_ Request2 : : METHOD_ POST) ;
$request->setConfig(array (
"follow_ redirects' => TRUE
));
$request->setHeader (array (
10 'Cookie' => 'vmware-api-session -id={session -id}"
1))
12| try {
13 $response = $request->send();
14| if (Sresponse->getStatus() == 200) {
15 echo $response->getBody () ;
16| 1}
17 else {
18 echo 'Unexpected HTTP status: ' . Sresponse->getStatus() . ' '
19 $response->getReasonPhrase () ;
201 }
21|}
22| catch (HTTP_Request2 Exception $e) {
23| echo '"Error: ' . $e->getMessage();

W N =

© 00 O Ut

105

24/}

=W N =

© 00 O Ot

10
11
12

© 00O ULk Wi+

— e
W —O

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP_ ADDRESS}/rest /com/vmware/cis/session?~
action=get');

$request->setRequestMethod ("POST") ;
$request->setOptions(array ());
$request->setHeaders (array (

"Cookie' => 'vmware-api-session -id={session -id}"'
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Responses
Response if session is active

11200 OK

2/ {

3 7value”: {

4 7created _time”: 72020-04-13T11:39:40.936%Z",

5 7last__accessed__time”: 72020-04-13T11:43:12.4617Z",
6 Puser”: "root@localos”

7 I

8|}

Response if the session is not active anymore

401 Unauthorized
{
"type”: "com.vmware.vapi.std.errors.unauthenticated”,
"value”: {
“"messages”: |
{
?default_message”: ”This method requires authentication.”,
”7id”: ”vapi.method.authentication.required”
} }
}
}

© 00 ~J O ULk W N

[I R e el el = Tl e e Y
N = OO0 Uik W —O

© 00O ULk W+

— =
N = O

13
14
15
16
17
18
19
20
21

106

B.2 Information

B.2.1 Host

List all the hosts available with details such as its id, name, connection and power state.

PHP - cURL
<?php
$curl = curl_init ();

curl_setopt_array ($Scurl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter/host”,
CURLOPT_RETURNTRANSFER => true,
CURLOPT ENCODING => "7,
CURLOPT_MAXREDIRS => 10,
CURLOPT _TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GET” |
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl_exec($curl);

curl_close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest/vcenter/host');
$request->setMethod (HTTP_ Request?2 : :METHOD_GET) ;
$request->setConfig (array (
"follow redirects' => TRUE
)
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"’
)
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}
else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}
}

107

catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();

}

PHP - pecl http

O 00O Ui Wk~

[et
o= O

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter/host");
$request->setRequestMethod ('GET") ;
$request->setOptions (array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

— O OO0 Ut W~

—_ =

Response
200 OK
{
Pvalue”: |
{
"host”: "host-287,
"name”: 7192.168.1.187,
"connection_ state”: "CONNECIED” ,
"power__state”: "POWERED ON”
}

© 00O ULk W+

DO DD R = = = = e e
N = OO0 Ui WwN—O

© 00O ULk WN -

DO DD R = = = = e e e
N = OO0 Uik WN—O

23

[N
=

108

B.2.2 Datastore

List all the datastore available with details such as its id, name, type, free space and
total capacity.

PHP - cURL
<7?php
$curl = curl__init ();
curl_setopt_array ($curl, array(
CURLOPT URL => "https://{IP_ADDRESS}/rest/vcenter/datastore”,
CURLOPT_RETURNTRANSFER => true ,
CURLOPT_ENCODING => "7 |
CURLOPT_MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true
CURLOPT_HTTP VERSION => CURL _HTTP VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GEI” |
CURLOPT HTTPHEADER => array (
?Cookie: vmware-api-session -id={session -id}”
)
)
$response = curl_exec($curl);
curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl('https://{IP_ADDRESS}/rest/vcenter/datastore');
$request->setMethod (HTTP_ Request2 : :METHOD GET) ;
$request->setConfig (array (

"follow redirects' => TRUE
)
$request->setHeader (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
))s
try {

$response = $request->send();

if ($response->getStatus() = 200) {

echo $response->getBody () ;
}

else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;
}
}
catch (HTTP_Request2__Exception $e) {
echo '"Error: ' . $e->getMessage();
}

O© 00O Uk Wi+

—
o= o

© 00O ULk WN

109

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter/datastore');
$request->setRequestMethod ('GET") ;
$request->setOptions (array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

Response
200 OK
{
Pvalue”: |
{
"datastore”: ”datastore-297,
"name”: "ESXi_local”,
” type ” : 77V1\/[P‘S77 R
"free_ space”: 678754779136,
capacity”: 992137445376
}

© 00O ULk WN -

DO DD DD = = = = e e
N OO W —O

© 00O ULk WN

DO DD DD = = = = e e e
N OO WD —=O

23

[N
=

110

B.2.3 Folder

List all the folders present with details such as its id, name, and type.

PHP - cURL

<?php

$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter/folder”,
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL _HTTP VERSION 1 1,
CURLOPT CUSTOMREQUEST => "GET”,
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl_exec($curl);

curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest/vcenter/folder');
$request->setMethod (HTTP_ Request?2 : :METHOD_GET) ;
$request->setConfig (array (

"follow redirects' => TRUE
) ;
$request->setHeader (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
));
try {

$response = $request->send () ;

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2__Exception $e) {
echo "Error: ' . $e->getMessage();
}

© 00O ULk W+

—
N = O

© 00~ Uk WN

DO RO RO DD DD DD = = = = = s e
R WP OO0 Uk WN —O

PHP - pecl http

111

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP _ADDRESS}/rest /vcenter/folder');
$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}"
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Response
200 OK
{
“value”: |
{
"folder”: "group-s24”,
"name”: "datastore”,
"type”: "DATASTORE”
’
{
"folder”: ”group-v22”,
"name”: "vm”
"type”: "VIRTUAL MACHINE”
IS
{
"folder”: ”group-v32”,
"name”: "Test”,
"type”: "VIRTUAL MACHINE”
IS
{
"folder”: ”group-v61”,
"name”: ”Discovered virtual machine”,
"type”: "VIRTUAL MACHINE”
}

© 00O ULk WN -

DO DD DD = = = = e e
N OO W —O

© 00O ULk WN

DO DD DD = = = = e e e
N OO WD —=O

23

[N
=

112

B.2.4 Network

List all the networks available and their IDs, name and type.

PHP - cURL

<?php

$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT_URL => "https://{IP_ADDRESS}/rest/vcenter/network”,
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL _HTTP VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GET” |
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl_exec($curl);

curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest/vcenter/network');
$request->setMethod (HTTP_ Request?2 : :METHOD_GET) ;
$request->setConfig (array (

"follow redirects' => TRUE
) ;
$request->setHeader (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
));
try {

$response = $request->send () ;

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2__Exception $e) {
echo "Error: ' . $e->getMessage();
}

© 00O ULk W+

—
N = O

© 00~ Uk WN

DO RO RO DD DD DD = = = = = s e
R WP OO0 Uk WN —O

PHP - pecl http

113

<?php
$client = new http\Client;
$request = new http\Client\Request;

$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter/network');

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}"
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse ()
echo $response->getBody () ;

b

Response
200 OK
{
“value”: |
{
"name”: ”Management Network”,
"type”: "STANDARD PORTGROUP” ,
"network”: "network-917
’
{
"name”: "VM Network” ,
"type”: "STANDARD PORTGROUP” ,
"network”: ”network-30”
s
{
"name”: ”DSwitch 1-VM Network” ,
"type”: 7"DISTRIBUTED PORTGROUP” ,
"network”: ”dvportgroup-90”
}
{
"name”: ”"DSwitch 1-Management Network”,
"type”: "DISTRIBUTED PORTGROUP” |
"network”: ”dvportgroup -88”
}

© 00O Ui Wk

© 00O ULk WN -

DO DD DO DD = = = = e e e
WN OO0 Ui W —O

24

B.2.5 version

Get the API version of the vCenter.

114

PHP - cURL
<?php
$curl = curl_init ();
curl_setopt_array (Scurl, array(
CURLOPT_URL => "https://{IP_ADDRESS}/rest/appliance/system/version”,
CURLOPT_RETURNTRANSFER => true ,
CURLOPT ENCODING —> ",
CURLOPT_MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true ,
CURLOPT_HTTP_VERSION => CURL_HTTP_ VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GEI” |
CURLOPT_HTTPHEADER => array (
?Content - Type: application/json”,
?Cookie: vmware-api-session -id={session -id}”
)
)
$response = curl_exec($curl);
curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl (' https://{IP_ADDRESS}/rest /appliance/system/version');
$request->setMethod (HTTP_ Request2 : :METHOD GET) ;
$request->setConfig (array (

"follow redirects' => TRUE
)
$request->setHeader (array (

"Content-Type' => '"application/json',

'Cookie' => 'vmware-api-session -id={session -id}"
));
try {

$response = $request->send();

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . Sresponse->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();

115

25|}

=W N =

© 00 O Ot

10
11
12
13

© 00O ULk WN -

10

12

PHP - pecl http

<?php

$client = new http\Client;

$request = new http\Client\Request;
$request->setRequestUrl("https://{IP_ ADDRESS}/rest /appliance/system/version")

b

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Content-Type' => 'application/json"',

'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse ()
echo $response->getBody () ;

’

Response
200 OK
{
"value”: {
"summary”: ”Patch for VMware vCenter Server Appliance 6.7.07,
7install _time”: 72020-02-17T20:55:32 UTC”,
"product”: "VMware vCenter Server Appliance”,
"build”: 7151327217,
"releasedate”: ”December 5, 2019”7,

"type”: ”vCenter Server with an embedded Platform Services Controller
”

)

“version”: 76.7.0.42000”

© 00O ULk WN -

DO RO DD = = = = e e e
N OO WD —=O

© 00O ULk WN -

— =
N = O

13
14
15
16
17
18
19

116

B.3 Virtual machine

B.3.1 Get the list of VMs

This request will get the list of VMs with their details such as their name, ID, amount
of RAM and CPU and the state of it.

PHP - cURL
<7?php
$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT_URL => "https://{IP_ADDRESS}/rest/vcenter/vm”,
CURLOPT_RETURNTRANSFER => true,
CURLOPT ENCODING => "7,
CURLOPT MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1_1,
CURLOPT_CUSTOMREQUEST => "GET"”,
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl_exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<7?php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest/vcenter /vin');
$request->setMethod (HT'TP_ Request?2 : :METHOD_GET) ;
$request->setConfig (array (

"follow_ redirects' => TRUE
)
$request->setHeader (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
)
try {

$response = $request->send () ;

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

20
21
22
23
24

© 00O UL WN -

— =
N = O

© 00O ULk W+

117

}
}
catch (HTTP_Request2 Exception $e) {
echo "Error: ' . Se->getMessage();
}

PHP - pecl http

<7?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP_ADDRESS}/rest /vcenter /vin');
$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}"'
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Response
200 OK
{
"value”: |
{
"memory_size. MiB”: 4096 ,
vm”: Pvmn-1027,
"name”: ”DebianTest”
"power__state”: "POWERED_OFF” ,
cpu_count”: 2
Iz
{
"memory_size. MiB”: 10240,
"vmm”: 7vm-317,
"name”: ”"VMware vCenter Server Appliance”,
"power__state”: "POWERED ON” |
"cpu__count”: 2
}

© 00O Ui Wk

118

B.3.2 Deploy a VM

This will create a DebianTest VM with 4GB of RAM, 2CPUs, a network interface, and
the ISO attached to it.

For the parts like "datastore”, "host”, ”folder”, etc. they needed previous requests in
order to have the correct "ID” (see .

The complete list of guest OS can be found by following this link El

JSON file
{
"spec”: {
"name”: ”DebianTest”,

"guest_ OS”: "DEBIAN 10 647,
"placement”: {

7datastore”: ”datastore-297,
"host”: "host-28",
"folder”: ”group-v61”

}

"memory”: {

Vsize_ MiB”: 4096,
"hot__add__enabled”: true

}

“floppies”: [],

Zepu”: {
"hot__remove__enabled”: true,
Pcount”: 2,
”"cores__per_socket”: 2,

"hot add enabled”: true

}s

7cdroms”: |
{

"type”: 7IDE”,
7start__connected”: true,
"backing”: {
7iso_file”: ”[ESXi_ local] ISOs/debian-10.3.0-amd64-netinst.iso”,
"type”: ”ISO_FILE”
}
}

I,

7disks”: |
{

"new vmdk”: {
"name”: ”DebianTest”
"capacity”: 17179869184
}
}

I,

"boot__devices”: |
{

"type”: "CDROM”
}

I

"https://vdc-download.vimware.com /vimwh-repository /dcr-public/1cd28284-3b72-4885-9¢31-d1c6d9e26686

71ef7304-a6c9-43b3-a3cd-868b2c¢236¢81 /doc/operations/com/vmware /vcenter /vim.create-operation.
html

https://vdc-download.vmware.com/vmwb-repository/dcr-public/1cd28284-3b72-4885-9e31-d1c6d9e26686/71ef7304-a6c9-43b3-a3cd-868b2c236c81/doc/operations/com/vmware/vcenter/vm.create-operation.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/1cd28284-3b72-4885-9e31-d1c6d9e26686/71ef7304-a6c9-43b3-a3cd-868b2c236c81/doc/operations/com/vmware/vcenter/vm.create-operation.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/1cd28284-3b72-4885-9e31-d1c6d9e26686/71ef7304-a6c9-43b3-a3cd-868b2c236c81/doc/operations/com/vmware/vcenter/vm.create-operation.html

44
45
46
47
48
49
50
51
52
93
54
95
96
57
58
99

61
62
63
64
65

O© 00O UL Wi+

119

"boot”: {
"type”: "DISK”,
delay”: 1,
"retry__delay”: 1,
"retry”: true
I
“nics”: |
{
"type”: "E1000E”,
"pci_slot_number”: 0,
"mac_ type”: "AUTOMATIC” ,
"wake__on_lan__enabled”: true,
"start__connected”: true,
7allow__guest_control”: true,
"backing”: {
"type”: "DISTRIBUTED PORTGROUP” ,
"network”: ”dvportgroup-90”
}
}
]
}
}
PHP - cURL
<?php
$curl = curl__init ();
curl_setopt_array (Scurl, array(
CURLOPT _URL => "https://{IP_ADDRESS} /rest/vcenter/vmn”,
CURLOPT _RETURNTRANSFER => true,
CURLOPT_ENCODING => 77 |
CURLOPT MAXREDIRS => 10,

CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true

)

CURLOPT HTTP VERSION => CURL HTTP VERSION 1 1,
CURLOPT CUSTOMREQUEST => "POST” ,
CURLOPT_POSTFIELDS =>"{\r\n \”spec\”: {\r\n \”name\”: \”DebianTest\”,\r
\n \”guest_OS\”: \”DEBIAN 10_64\7,\r\n \”placement\”: {\r\n
\”datastore\”: \”datastore-29\”,\r\n \"host\”: \”host-28\7" \r\
n \”folder\”: \”group-v61\”\r\n o A\r\n \”memory\”: {\r\n

\”size_ MiB\”: 4096,\
FAr\n \"floppies\”: ||
hot_remove_enabled\”: true
cores_ per_socket\”: 2 ,\r\n

r\n \"hot_add__enabled\”: true\r\n

Arin o \epu\ (\rin V7

A r\n \7count\”: 2,\r\n \”
\"hot_add_enabled\”: true\r\n }A\r\n

\7cdroms\”: [\r\n {\r\n \7type\”: \"IDE\”,\r\n
\”start__connected\”: true,\r\n \”backing\”: {\r\n \”
iso_file\”: \”[ESXi_local] ISOs/debian-10.3.0-amd64-netinst.iso\”,\r\n

\"type\”: \”ISO_FILE\”\r\n H\r\n Hri\n],\r\n

\7disks\”: [\r\n {\r\n \"new_vmdk\”: {\r\n \”
name\”: \”DebianTest\”,\r\n \7capacity\”7: 17179869184\ r\n

Nr\n H\r\n],\r\n \”boot__devices\”: [\r\n {\r\n

\7type\”: \"CDROM\”\r\n H\r\n]\ r\n \”boot\”: {\r\n

\"type\”: \"DISK\”,\r\n

\"delay\”: 1,\r\n \"retry delay\”:

1,\r\n \"retry\”: true\r\n 1, \r\n \7nics\”: [\r\n

{\r\n \"type\”: \”E1000E\”,\r\n \”pci_slot_number\”: 0,\r
\n \"mac_type\”: \”AUTOMATIC\” \r\n \”wake on_lan_enabled
\7: true,\r\n \”start__connected\”: true,\r\n \”

15
16
17
18
19
20
21
22
23
24
25

© 00O UL W+

WWWWWWWWWWNNNNNNNDNNDNDDN ==
OO0 IDDUERE WNHFHEOOOITDUERE WNFRE OO UURE WN—O

e
= O

120

allow__guest__control\”: true,\r\n \”backing\”: {\r\n \”
type\”: \”DISTRIBUTED PORTGROUP\” \r\n \"network\”: \”
dvportgroup-90\”\r\n \r\n Hri\n J\r\n F\r\n}\r\n”,
CURLOPT_HTTPHEADER => array (
?Content - Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”
)
));

$response = curl exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_Request2() ;
$request->setUrl("https://{IP _ADDRESS}/rest/vcenter /vm');
$request->setMethod (HTTP_Request2 : : METHOD_POST) ;
$request->setConfig(array (
"follow redirects' => TRUE
));
$request->setHeader (array (
'Content-Type' => '"application/json"',

'Content -Type' => 'text/plain"',

'Cookie' => 'vmware-api-session -id={session -id}"'
)
$request->setBody (' {

\n 7spec”: {

\n "name”: ”"DebianTest”,

\n 7guest_ OS”: ”"DEBIAN_10_ 647,
\n "placement 7: {

\n "datastore”: ”datastore-297,
\n "host”: "host-28",

\n "folder”: ”group-v61”
w1

\n “memory 7: {

\n "size. MiB”: 4096,

\n "hot add enabled”: true
\n I

\n "floppies”: [],

\n epu”: {

\n "hot__remove__enabled”: true,
\n 7count 7: 2,

\n ”"cores_ per_socket”: 2,

\n "hot add enabled”: true
w1

\n 7cdroms”: |

W

\n "type”: 7"IDE”,

\n 7start__connected”: true,
\n "backing ”7: {

\n 7iso_file”: 7[ESXi_ local] ISOs/debian-10.3.0-amd64-netinst.iso
\n "type”: 7ISO_FILE”

\n }

421 \n }

43| \n],

44| \n "disks 7: |

45| \n {

46| \n "new__vmdk”: {

471 \n "name”: ”DebianTest”,

48] \n “capacity”: 17179869184

49| \n }

50| \n }

51| \n |,

52| \n "boot__devices”: |

53| \n {

54| \n "type”: "CDROM”

55| \n }

56| \n |,

57| \n "boot ”: {

58| \n "type”: "DISK”,

59| \n 7delay ”: 1,

60| \n "retry delay”: 1,

61| \n "retry ”: true

62| \n 1,

63| \n “nics”: |

64| \n {

65| \n "type”: "E1000E”,

66| \n "pci__slot__number”: 0,

67| \n "mac_type”: "AUTOMATIC” ,

68| \n "wake__on__lan_enabled”: true,

69| \n "start__connected”: true,

70| \n 7allow__guest_control”: true,

71| \n "backing 7: {

72| \n "type”: "DISTRIBUTED_PORTGROUP” |
73| \n "network”: ”dvportgroup-90”

74| \n }

75| \n }

76| \n]

77 \n }

78| \n}

91\n");

80| try {

81 $response = $request->send () ;

82 if ($response->getStatus() = 200) {

83 echo $response->getBody () ;

84] }

85| else {

86 echo 'Unexpected HITP status: ' . $response->getStatus() . '
87 $response->getReasonPhrase () ;

88| }

891}
90| catch (HTTP_Request2__Exception $e) {
91 echo '"Error: ' . $e->getMessage();
92|}

121

PHP - pecl http

<?php

$client = new http)\Client;

$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter /vin');
$request->setRequestMethod ("POST") ;

U W N =

122

$body = new http\Message\Body;
$body->append ('{

"type”: "DISTRIBUTED PORTGROUP”,

7spec”: {
"name”: "DebianTest”,
7guest_ OS”: "DEBIAN_10 647,
"placement 7: {
"datastore”: ”datastore-297,
"host”: "host-287,
"folder”: ”group-v61”
I
“memory ": {
Vsize_ MiB”: 4096,
"hot__add__enabled”: true
¥
"floppies”: [],
epu”: {
"hot__remove__enabled”: true,
"count 7 2,
”cores__per_socket”: 2,
"hot add enabled”: true
Iz
7cdroms”: |
{
"type”: 7IDE”,
"start__connected”: true,
"backing 7: {
7iso_ file”: 7[ESXi_local] ISOs/debian-10.3.0-amd64-netinst.iso”,
"type”: 7ISO_FILE”
}
}
e
7disks ”7: |
{
"new__vmdk”: {
"name”: ”DebianTest”,
7capacity ”: 17179869184
}
}
],
"boot__devices”: |
{
"type”: "CDROM”
}
I,
"boot 7 {
"type”: "DISK”,
7delay ”: 1,
"retry__delay”: 1,
"retry”: true
I
"nics i |
{
"type”: "E1000E”,
"pci__slot_number”: 0,
"mac_ type”: "AUTOMATIC” ,
"wake__on_lan__enabled”: true,
"start__connected”: true,
7allow__guest__control”: true,
"backing 7: {

66
67
68
69
70
71
72

74
75
76
(s

79
80
81
82

=N =

"network”: ”dvportgroup-90”

$request->setBody ($body) ;
$request->setOptions (array ());
$request->setHeaders (array (
"Content -Type' => 'application/json',
'Content-Type' => 'text/plain',
'Cookie' => 'vmware-api-session -id={session -id}'
)
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

123

Response

200 OK
{

}

?value”: "vm-1217

— O OO0 Utk Wi+

— =

S U WO N —

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

124

B.3.3 Deploy a VM

Deploy a virtual machine from an OVF file. It needs a JSON file detailing where the
VM will be stored.

JSON file
{
”deployment_spec”: {
7accept_all _EULA”: true,
?default__datastore_id”: "datastore-14"
}s
"target”: {
7folder_id”: ”group-v7”,
“host__id”: "host-107,
"resource__pool_id”: "resgroup-9”
}
}
PHP - cURL
<?php
$curl = curl__init ();

curl_setopt_array ($Scurl, array(
CURLOPT_URL => "https://{IP_ADDRESS}/rest /com/vmware/vcenter /ovf/library -
item/id:{ovf_library item_id}?~action=deploy”,
CURLOPT _RETURNTRANSFER => true,
CURLOPT_ENCODING => 77|
CURLOPT_MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT _FOLLOWLOCATION => true ,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
CURLOPT_CUSTOMREQUEST => "POST” ,

CURLOPT POSTFIELDS =>”{\r\n \”deployment_spec\”: {\r\n \”
accept_all EULA\”: true,\r\n \"default__datastore_id\”: \”
datastore -29\”\r\n o\ r\n \"target\”: {\r\n \”folder__id\”:

\"group-v7\”,\r\n \”host_id\”: \"host-28\",\r\n \”

resource_pool id\”: \"resgroup-9\”\r\n Nr\n}”,
CURLOPT_HTTPHEADER => array (
?Content -Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”
)
));

$response = curl exec($curl);

curl_close($curl);
echo $response;

PHP - HTTP Request2

=W N =

© 00 O Ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37

125

<?php
require_once 'HITTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest /com/vmware/vcenter /ovf/library -
item/id:{ovf_ library item_ id}?~action=deploy");
$request->setMethod (HTTP_ Request2 : : METHOD_ POST) ;
$request->setConfig(array (
"follow redirects' => TRUE
)
$request->setHeader (array (
"Content-Type' => '"application/json',
'Content-Type' => 'text/plain"',
'Cookie' => 'vmware-api-session -id={session -id}'
));
$request->setBody (' {
\n ”deployment__spec”: {
\n 7accept_all EULA”: true,
\n 7default datastore id”: ”"datastore-29”
o
\n "target 7: {
\n "folder__id”: ”group-v77,
\n "host__id”: "host-28",
\n "resource__pool_id”: ”resgroup-9”
o}
\nj');
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}
}
catch (HTTP_Request2__Exception $e) {
echo "Error: ' . $e->getMessage();
}

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP__ADDRESS}/rest /com/vmware/vcenter /ovf/
library -item/id:{ovf_library_item_id}?~action=deploy"');
$request->setRequestMethod ("POST") ;
$body = new http\Message\Body;
$body->append (' {
”deployment__spec”: {
7accept_all EULA”: true,

7default datastore id”: "datastore-29”
I
"target 7: {
"folder__id”: ”group-v77”,
"host_id”: ”host-28",
"resource__pool_id”: ”resgroup-9”

17
18
19
20
21
22
23
24
25
26
27

=W N -

5
$request->setBody ($body) ;
$request->setOptions (array ());
$request->setHeaders (array (
"Content -Type' => 'application/json',
'Content-Type' => 'text/plain',
'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

126

Response

200 OK
{

}

?value”: "vm-126"

© 00O ULk WN -

DO DD DD = = = = e e
N OO W —O

© 00O ULk WN

DO DD DD = = = = e e e
N OO WD —=O

23

[N
=

127

B.3.4 Delete a VM

Delete a VM by specifying its id (ex: vm-123).

PHP - cURL

<?php

$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter/vin/{VM ID}” |
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL _HTTP VERSION 1 1,
CURLOPT CUSTOMREQUEST => "DELETE” ,
CURLOPT_HTTPHEADER => array (

”Cookie: vmware-api-session -id={session -id}”

)

));

$response = curl_exec($curl);

curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://192.168.1.240/rest /vcenter /vm/{VM_ID}");
$request->setMethod (HT'TP_Request2 : :METHOD_DELETE) ;
$request->setConfig (array (

"follow__redirects' => TRUE
)
$request->setHeader (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
)
try {

$response = $request->send () ;

if ($response->getStatus() = 200) {

echo $response->getBody () ;

else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2__Exception $e) {
echo "Error: ' . $e->getMessage();
}

© 00O ULk W+

== =
W= O

Q0 ~J O Ui W

11
12

0O UL Wk

10
11
12
13

PHP - pecl http

128

<7?php
$client = new http\Client;
$request = new http\Client\Request;

$request->setRequestUrl("https://{IP_ ADDRESS}/rest /vcenter /vm/{VM ID}");

$request->setRequestMethod ('DELETE") ;
$body = new http\Message\Body;
$request->setBody ($body) ;
$request->setOptions (array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse ()
echo $response->getBody () ;

)

Responses
200 OK
400 Bad Request
{

"type”: "com.vmware.vapi.std.errors.not_allowed_in_ current_ state”,

"value”: {

"messages”: |
{

Targs”: (],

7default__message”: "The attempted operation cannot be
performed in the current state (Powered on).”,

”7id”: ”vmsg.InvalidPowerState .summary”

}
I
}
}
404 Not Found
{
"type”: “com.vmware.vapi.std.errors.not_found”,
Pvalue”: {
"messages”: |
{

Targs”: [],

”?default _message”: "The object 'vim.VirtualMachine:vm-122"
has already been deleted or has not been completely
created”,

”7id”: ”vmsg.ManagedObjectNotFound .summary”

O T WO N =

10
11
12
13
14
15
16
17
18
19
20
21
22

=W N =

© 0~ O Ot

10
11
12
13
14
15
16
17
18
19
20

129

B.3.5 Search a VM with its name

Retrieve the information such as the amount of RAM, the ID, the power state or the
number of processors of one specific VM. The request needs the VM name (ex: ”De-
bianTest”).

PHP - cURL
<?php
$curl = curl__init ();
curl_setopt_array ($curl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter /vm? filter .names.1={
VM NAME} ",
CURLOPT RETURNTRANSFER => true,
CURLOPT _ENCODING => 77,
CURLOPT_MAXREDIRS => 10,
CURLOPT _TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1_1,
CURLOPT_CUSTOMREQUEST => "GET” |
CURLOPT_HTTPHEADER => array (
”Cookie: vmware-api-session -id={session -id}”
)
));
$response = curl_exec($curl);
curl close($curl);

echo $response;

PHP - HTTP Request2

<7php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest /vcenter /vm? filter .names.1={
VM NAME} ') ;
$request->setMethod (HTTP_ Request2 : :METHOD GET) ;
$request->setConfig(array (
"follow redirects' => TRUE
));
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"’
));
try {
$response = $request->send () ;
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}

130

}

catch (HTTP_Request2__Exception $e) {
echo '"Error: ' . $e->getMessage();

}

PHP - pecl http

=W N =

© 00 3O Ut

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter /vm? filter .names.1
={VM_NAME} ") ;

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}
) ;
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Response

= O OO Uk W+

—_ =

{

“value”: |

{

"memory_size_ MiB”: 4096,

"vim”: "vm-1027

"name”: ”DebianTest”,
"power__state”: "POWERED_OFF” ,
“cpu_count”: 2

© 00O ULk W+

DO DD R = = = e e e
N OO0 Uik WN—O

© 00O ULk W+~

—
N = O

13
14
15
16
17
18
19
20
21

131

B.3.6 State of the VM

B.3.6.1 Get the state of the VM

Retrieve the state of the VM. The request needs the VM ID (ex: vm-122).

PHP - cURL
<?php
$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT URL => "https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/power”,
CURLOPT_RETURNTRANSFER => true,
CURLOPT_ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_ VERSION => CURL HTTP VERSION 1 1,
CURLOPT CUSTOMREQUEST => "GET”,
CURLOPT_HTTPHEADER => array (

?Cookie: vmware-api-session -id={session -id}”

)

)

$response = curl_exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl('https://{IP_ADDRESS}/rest /vcenter /vm/{VM ID}/power");
$request->setMethod (HTTP_ Request2 : :METHOD GET) ;
$request->setConfig (array (
"follow redirects' => TRUE
)
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"’
)
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}
else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;
}
}

22
23
24

=W N~

© 00~ O Ut

10

12
13
14

~N O U W N

132

catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();

}

PHP - pecl http

<?php

$client = new http\Client;

$request = new http\Client\Request;

$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vin/{VM ID}/power")

$request->setRequestMethod ('POST") ;
$body = new http\Message\Body;
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Response
200 OK
{
"value”: {
7clean__power_ off”: true,
7state”: "POWERED OFE”
}
}

B.3.6.2 Change the state of the VM

Change the state of a VM by specifying an ACTION:

o Power off: stop
e Power on: start
e Suspend: suspend

e Reset: reset

PHP - cURL

O UL WO DN =

10
11
12
13
14
15
16
17
18
19
20
21
22

ISR Ol

O 00~ O Ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23

133

<7?php
$curl = curl init();
curl_setopt_array ($curl, array(
CURLOPT URL => "https://{IP_ADDRESS}/rest /vcenter /vim/{VM ID}/power/{ACTION}
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT _HTTP_ VERSION => CURL_HTTP VERSION 1 1,
CURLOPT CUSTOMREQUEST => "POST”,
CURLOPT_HTTPHEADER => array (
”Cookie: vmware-api-session -id={session -id}”
)
));
$response = curl_exec($curl);
curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl('https://{IP_ADDRESS}/rest/vcenter /vim/{VM _ID}/power/{ACTION}
")
$request->setMethod (HTTP_ Request2 : : METHOD_ POST) ;
$request->setConfig (array (
"follow redirects' => TRUE
)
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}'
)
try {
$response = $request->send () ;
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}
}
catch (HTTP_Request2 Exception $e) {
echo '"Error: ' . $e->getMessage();
}

PHP - pecl http

1| <?php
2| $client = new http\Client;

B~ W

O 00~ O Ut

10
11
12
13
14

© 00O ULk WN

—= =
wWN =O

14
15
16
17
18

134

$request = new http\Client\Request;
$request->setRequestUrl("https://{IP_ADDRESS}/rest /vcenter /vm/{VM ID}/power/{
ACTION} ") ;
$request->setRequestMethod ("POST") ;
$body = new http\Message\Body;
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (
'Cookie' => 'vmware-api-session -id={session -id}"'
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

’

Responses
200 OK
400 Bad Request
{
Ptype”: "com.vmware.vapi.std.errors.already_in_ desired_state”,
7value”: {
"messages”: [
{
Targs”: (]
7default message”: ”Virtual machine is already powered on.”,
”7id”: 7com.vmware. api.vcenter.vm.power.already_powered_on”
I
{
vargs”: [,
?default_message”: "The attempted operation cannot be
performed in the current state (Powered on).”,
7id”: 7vmsg.InvalidPowerState .summary”

© 00O ULk W+

DO DD R = = = e e e
N OO0 Uik WN—O

=W N =

© 00 O Ut

10
11
12
13
14
15
16
17
18
19
20

135

B.3.7 CPU

B.3.7.1 Get CPU counts

Retrieve the amount of CPU counts of a VM by specifying its ID (ex: vm-123).

PHP - cURL
<?php
$curl = curl init();

curl_setopt_array ($curl, array(

CURLOPT URL => ” https://{IP_ADDRESS}/rest/vcenter /vn/{VM ID}/hardware/cpu”,
CURLOPT_RETURNTRANSFER => true

CURLOPT _ENCODING => "7,

CURLOPT MAXREDIRS => 10,

CURLOPT TIMEOUT => 0,

CURLOPT_FOLLOWLOCATION => true

CURLOPT_HTTP_ VERSION => CURL _HTTP VERSION 1 1,

CURLOPT_CUSTOMREQUEST => "GET”,

CURLOPT_HTTPHEADER => array (

"Cookie: vmware-api-session -id={session -id}”

)
)

$response = curl_exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl (' https://{IP_ADDRESS}/rest/vcenter /vm/{VM_ID}/hardware/cpu’
)
$request->setMethod (HT'TP_ Request2 : :METHOD_GET) ;
$request->setConfig(array (
"follow redirects' => TRUE
) ;
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"’
));
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}
else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

}

136

}

catch (HTTP_Request2__Exception $e) {
echo "Error: ' . $e->getMessage();

}

PHP - pecl http

=W N =

O 00~ O Ut

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest/vcenter /vm/{VM ID}/
hardware/cpu');

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders(array

'Cookie' => 'vmware-api-session -id={session -id}"’
)
$client ->enqueue($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

O© 00O ULk W+

Response
200 OK
{
Pvalue”: {
"hot__remove__enabled”: false ,
7count”: 2,
"hot__add__enabled”: false ,
”cores__per_socket”: 2
}
}

B.3.7.2 Change CPU counts

Change the amount of CPU counts of a specific VM using its id (ex: vm-123).

O U WO DN

— O © 00

—_ =

PHP - cURL
<7?php
$curl = curl init();

curl setopt_array($curl, array(
CURLOPT URL => ” https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/cpu”

CURLOPT RETURNTRANSFER => true
CURLOPT_ENCODING => 77,
CURLOPT MAXREDIRS => 10,
CURLOPT _TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,

12
13
14

15
16
17
18
19
20
21
22
23
24
25

N

© 00 O Ot

10
11
12
13
14

15
16
17
18
19
20
21
22
23

25
26
27

B> W N =

137

CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1_1,

CURLOPT_CUSTOMREQUEST => "PATCH” ,

CURLOPT POSTFIELDS =>"{\n \”spec\”: {\n \7count\”: 2,\n \”
hot__remove_enabled\”: false ,\n \"cores__per_socket\”: 1,\n \”
hot_add_enabled\”: false\n }\n}”,

CURLOPT_HTTPHEADER => array (

”Content - Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”

)

)

$response = curl_exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<?php

require_once 'HTTP/Request2.php';

$request = new HTTP_ Request2 () ;

$request->setUrl ("' https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/cpu'

)
$request->setMethod ('PATCH") ;
$request->setConfig (array (
"follow redirects' => TRUE
));
$request->setHeader (array (
"Content-Type' => "application/json',
'Content-Type' => 'text/plain',
'Cookie' => 'vmware-api-session -id={session -id}'
)
$request->setBody ("'{\n 7spec”: {\n 7count”: 2,\n "hot__remove__enabled ”:
false ,\n "cores__per_socket”: 1,\n "hot__add__enabled”: false\n }\n}
")
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;

else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}

catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();
}

PHP - pecl http

<?php

$client = new http)\Client;

$request = new http\Client\Request;

$request->setRequestUrl (" https://{IP _ADDRESS}/rest/vcenter/vm/{VM ID}/
hardware/cpu');

O 00~ O Ut

10

12
13
14
15
16
17
18
19
20
21
22
23
24

$request->setRequestMethod ("PATCH') ;
$body = new http\Message\Body;
$body->append (' {
7spec”: {
7count ”: 2
"hot__remove__enabled ”: false ,
”"cores__per_socket”: 1,
"hot__add__enabled”: false
}
s

$request->setBody ($body) ;
$request->setOptions(array());
$request->setHeaders (array (

"Content-Type' => 'application/json',
'Content-Type' => 'text/plain"',
'Cookie' => 'vmware-api-session -id={session -id}"’

)5

$client ->enqueue ($request)->send () ;
$response = $client->getResponse();

echo $response->getBody () ;

138

O U WO DN =

10
11
12
13
14
15
16
17
18
19
20
21
22

ISR Ol

O 00~ O Ut

10
11
12
13
14
15
16
17
18
19

139

B.3.8 Memory

B.3.8.1 Get the memory amount

Retrieve the amount of memory of a VM by specifying its ID (ex: vm-123).

PHP - cURL
<?php
$curl = curl init();
curl_setopt_array ($curl, array(
CURLOPT URL => ” https://{IP_ADDRESS}/rest/vcenter /vim/{VM ID}/hardware/
memory” ,
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => "7,
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1 1,
CURLOPT CUSTOMREQUEST => "GET”,
CURLOPT_HTTPHEADER => array (
”Cookie: vmware-api-session -id={session -id}”
)
));
$response = curl_exec($curl);
curl_close($curl);

echo $response;

PHP - HTTP Request2

<?php
require__once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl (' https://{IP_ADDRESS}/rest/vcenter /vin/{VM ID}/hardware/
memory) ;
$request->setMethod (HTTP_ Request2 : :METHOD_GET) ;
$request->setConfig (array (
"follow redirects' => TRUE
) ;
$request->setHeader (array (
"Cookie' => 'vmware-api-session -id={session-id}"'
));
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HITP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;

20
21
22
23
24

=W N =

© 00~ O Ut

10
11
12

~N O U W N

S U WO N =

}
}
catch (HTTP_Request2__Exception $e) {
echo '"Error: ' . $e->getMessage()
}

140

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vm/{VM ID}/
hardware /memory') ;

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}"'
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse();
echo $response->getBody () ;

Response
200 OK
{
"value”: {
"size_ MiB”: 4096,
"hot add enabled”: true
}
}

B.3.8.2 Change the memory amount

Change the amount of memory count of a specific VM using its id (ex: vm-123).

PHP - cURL
<?php
$curl = curl_init();

curl_setopt_array (Scurl, array(
CURLOPT _URL => ” https://{IP_ADDRESS}/rest/vcenter /vin/{VM ID}/hardware/
memory” ,
CURLOPT _RETURNTRANSFER => true,
CURLOPT ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1_1,

13
14
15
16
17
18
19
20
21
22
23
24
25

=W N =

© 00 O Ot

10

CURLOPT_CUSTOMREQUEST => "PATCH” ,
CURLOPT POSTFIELDS =>"{\n \”spec\”: {\n \”size_ MiB\”: 2048\n }\n}”,
CURLOPT_HTTPHEADER => array (
”Content - Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”
)
));
$response = curl_exec($curl);
curl close($curl);

echo $response;

141

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl (' https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/
memory ') ;
$request->setMethod ('PATCH") ;
$request->setConfig (array (
"follow redirects' => TRUE
));
$request->setHeader (array (
"Content-Type' => "application/json',

11 'Content -Type' => 'text/plain’',

12 'Cookie' => 'vmware-api-session -id={session -id}'

131));

14| $request->setBody ('{\n 7spec”: {\n "size. MiB7: 2048\n }\n}');
15| try {

16| $response = $request->send();

17 if ($response->getStatus() = 200) {

18 echo $response->getBody () ;

19

20| else {

21 echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
22 $response->getReasonPhrase () ;

23]}

24|}

25| catch (HTTP_Request2__Exception $e) {

26| echo 'Error: ' . $e->getMessage();

27|}

=W N =

© 00~ O Ut

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vm/{VM ID}/
hardware /memory') ;
$request->setRequestMethod ('PATCH') ;
$body = new http\Message\Body;
$body->append ('{
Vspec”: {
7size_ MiB”: 2048

10
11
12
13
14
15
16
17
18
19
20
21

}
)
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (
"Content-Type' => "application/json',
'Content-Type' => 'text/plain',
"Cookie' => 'vmware-api-session -id={session -id}"
)
$client ->enqueue($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

142

O U WO DN =

10
11
12
13
14
15
16
17
18
19
20
21
22

ISR Ol

O 00~ O Ut

10

12
13
14
15
16
17
18
19

143

B.3.9 Network

B.3.9.1 Get network information

Retrieve all the IDs of network cards attached to a VM by specifying its ID (ex: vm-123).

PHP - cURL
<?php
$curl = curl init();
curl_setopt_array ($curl, array(
CURLOPT URL => ” https://{IP_ADDRESS}/rest/vcenter /vim/{VM ID}/hardware/
ethernet”,
CURLOPT RETURNTRANSFER => true,
CURLOPT ENCODING => "7,
CURLOPT MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT FOLLOWLOCATION => true,
CURLOPT _HTTP_ VERSION => CURL_HTTP VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GET” |
CURLOPT_HTTPHEADER => array (
”Cookie: vmware-api-session -id={session -id}”
)
));
$response = curl_exec($curl);
curl close($curl);

echo $response;

PHP - HTTP Request2

<?php
require__once 'HITP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl (https: //{IP ADDRESS}/rest /vcenter /vin/{VM ID}/hardware/
ethernet ');
$request->setMethod (HTTP_ Request2 : :METHOD_GET) ;
$request->setConfig (array (
"follow redirects' => TRUE
));
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"'
));
iy
$response = $request->send () ;
if ($response->getStatus() == 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

20
21
22
23
24

ISR R

© 00 ~J O Ut

10
11
12

© 00 O Uik Wk -

= e e
O Ul W~ O

144

}
}

catch (HTTP_Request2 Exception $e) {
echo '"Error: ' . $e->getMessage();

}

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP_ADDRESS}/rest /vcenter /vm/{VM_ID}/
hardware/ethernet');

$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (

'Cookie' => 'vmware-api-session -id={session -id}"’
)
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Response
200 OK
{
Pvalue”: |
{
"nic”: 74000”
I
{
"nic”: 740017
I
{
"nic”: 740027
b
{
"nic”: 74003”
}
]
}

B.3.9.2 Get network details

Retrieve the details of a specific NIC ID (retrieved in the request before) of a VM by
specifying its ID (ex: vm-123).

PHP - cURL

1| <?php

O U W N

10
11
12
13
14
15
16
17
18
19
20
21
22

=W N =

© 00 O Ut

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

DN =

$curl = curl_init ();

curl_setopt__array (Scurl, array(
CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/
ethernet /{NIC_ID}”,
CURLOPT_RETURNTRANSFER => true,
CURLOPT_ENCODING => 77|
CURLOPT MAXREDIRS => 10,
CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "GET” |
CURLOPT_HTTPHEADER => array (
”Cookie: vmware-api-session -id={session -id}”
)
)

$response = curl_exec($curl);

curl close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HTTP/Request2.php';
$request = new HTTP_ Request2 () ;
$request->setUrl("https://{IP_ADDRESS}/rest /vcenter /vm/{VM ID}/hardware/
ethernet /{NIC_ID}');
$request->setMethod (HT'TP_ Request2 : :METHOD_GET) ;
$request->setConfig(array (
"follow redirects' => TRUE
) ;
$request->setHeader (array (
'Cookie' => 'vmware-api-session -id={session -id}"’
));
try {
$response = $request->send () ;
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}

else {
echo 'Unexpected HTTP status: ' . S$response->getStatus() . ' '
$response->getReasonPhrase () ;
}
}
catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();
}

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;

W

© 00 O Ut

10

12

~N O U W N

10
11
12
13
14
15
16
17
18
19
20

O UL WO N

© 00

146

$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vm/{VM ID}/
hardware/ethernet /{NIC ID}");
$request->setRequestMethod ('GET") ;
$request->setOptions(array ());
$request->setHeaders (array (
"Cookie' => 'vmware-api-session -id={session -id}'
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

PHP - cURL
{
7value”: {
7start__connected”: true,
”pci_slot_number”: 0,
"backing”: {
7connection__cookie”: 677560597,
?distributed switch uuid”: 7”50 07 e6 b7 98 b5 ff 60-4c a7 96 06 4
4 32 bd 517,
"distributed__port”: 7207,
"type”: "DISTRIBUTED_ PORTGROUP” |
"network”: ”dvportgroup-90”
I
"mac__address”: 700:50:56:87:3e:78",
"mac_ type”: ”ASSIGNED”,
“7allow__guest__control”: true,
"wake__on_lan__enabled”: true,
7label”: ”"Network adapter 17,
"state”: "NOT_CONNECTED” ,
"type”: "E1000E”
}
}

B.3.9.3 Add network card

Add an ethernet card to a VM by specifying its ID (ex: vim-123). We need to specify
the type and the network id (can be found in [B.2.4)

PHP - cURL
<7php
$curl = curl init();

curl_setopt_array ($curl, array(
CURLOPT URL => ” https://{IP_ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/
ethernet”,
CURLOPT RETURNTRANSFER => true,
CURLOPT _ENCODING => "7,
CURLOPT MAXREDIRS => 10,

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

=W N

O 00~ O Ut

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

147

CURLOPT TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_ VERSION => CURL _HTTP VERSION 1 1,
CURLOPT_CUSTOMREQUEST => "POST” ,
CURLOPT_POSTFIELDS =>"{\r\n \"spec\”: {\r\n \"type\”: \”E1000\”,\
r\n \”start__connected\”: true,\r\n \”backing\”: {\r\n
\"type\”: \"{NEITWORK TYPE}\”,6\r\n \"network\”: \"{
NETWORK_ID}\ 7\ r\n \r\n Nr\n}”,
CURLOPT_HTTPHEADER => array (
”Content -Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”
)
)
$response = curl_exec($curl);
curl close($curl);

echo $response;

PHP - HTTP Request2

<?php
require__once 'HITP/Request2.php';
$request = new HTTP_ Request2() ;
$request->setUrl('https://{IP _ADDRESS}/rest/vcenter /vm/{VM ID}/hardware/
ethernet');
$request->setMethod (HTTP_ Request2 : : METHOD_POST) ;
$request->setConfig(array (
"follow redirects' => TRUE
) ;
$request->setHeader (array (
"Content-Type' => '"application/json',
'Content -Type' => 'text/plain',
'Cookie' => 'vmware-api-session -id={session -id}"'
)5
$request->setBody (' {
\n "spec”: {
\n "type”: "E10007,
\n "start__connected”: true,
\n "backing 7: {
\n "type”: ”{NEIWORK TYPE}”
\n "network ”: 7{NETWORK_ID}”
\n }
W)
)
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}
else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}

}
catch (HTTP_Request2__Exception $e) {

echo "Error: ' . $e->getMessage();

}

=0 DN =

=W N =

148

PHP - pecl http

<?php
$client = new http)\Client;
$request = new http\Client\Request;

$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vm/{VM ID}/

hardware/ethernet');
$request->setRequestMethod ('POST") ;
$body = new http\Message\Body;
$body->append ('{

77Spec ',",: {
"type”: "E10007,
”start_connected”: true,

"backing 7: {
"type”: "{NEITWORK TYPE}”,
"network 7: 7{NEITWORK_ ID}”

}
5
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (
"Content -Type' => 'application/json',
'Content-Type' => 'text/plain"',
'Cookie' => 'vmware-api-session -id={session -id}"’
));
$client ->enqueue ($request)->send () ;
$response = $client->getResponse();
echo $response->getBody () ;

Response

200 OK
{

}

?value”: 740037

B.3.9.4 Change network card

Change the ethernet card attached to a specific VM ID (ex: vm-123).

By default, if a VM only have one network card, the NIC ID will be 4000. We need to

specify the type and the network id (can be found in [B.2.4)).

PHP - cURL
<7?php
$curl = curl_init ();

15
16
17
18
19
20
21
22
23

25

=N =

O 00~ O Ot

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

149

curl_setopt_array ($Scurl, array(

CURLOPT _URL => "https://{IP_ADDRESS}/rest/vcenter /vim/{VM _ID}/hardware/
ethernet /{NIC ID}”,

CURLOPT_RETURNTRANSFER => true,

CURLOPT_ENCODING => "7 |

CURLOPT_MAXREDIRS => 10,

CURLOPT_TIMEOUT => 0,

CURLOPT FOLLOWLOCATION => true ,

CURLOPT _HTTP VERSION => CURL HTTP VERSION 1 1,

CURLOPT_CUSTOMREQUEST => "PATCH” ,

CURLOPT _POSTFIELDS =>"{\r\n \"spec\”: {\r\n \”backing\”: {\r\n
\7type\”: \"{NEIWORK TYPE}\” \r\n \"network\”: \”7{
NETWORK_ID}\”\ r\n H\r\n Nr\n}”,

CURLOPT_HTTPHEADER => array (
?Content -Type: application/json”,
”Content - Type: text/plain”,
”Cookie: vmware-api-session -id={session -id}”
)
))s

$response = curl_exec($curl);

curl_close($curl);
echo $response;

PHP - HTTP Request2

<?php
require_once 'HITP/Request2.php';
$request = new HTTP_Request2 () ;
$request->setUrl('https://{IP_ADDRESS}/rest /vcenter /vm/{VM _ID}/hardware/
ethernet /{NIC ID}"');
$request->setMethod ("PATCH") ;
$request->setConfig (array (
"follow redirects' => TRUE
) ;
$request->setHeader (array (
"Content-Type' => '"application/json',
'Content-Type' => 'text/plain',
"Cookie' => 'vmware-api-session -id={session -id}"'
));
$request->setBody ('{
\n "spec”: {
\n "backing 7: {
\n "type”: ”{NEIWORK TYPE}”
\n "network ”: 7{NETWORK_ ID}”
\n }
W}
\n}");
try {
$response = $request->send();
if ($response->getStatus() = 200) {
echo $response->getBody () ;
}
else {
echo 'Unexpected HITP status: ' . $response->getStatus() . ' '
$response->getReasonPhrase () ;

}
}

32
33
34

150

catch (HTTP_Request2 Exception $e) {
echo "Error: ' . $e->getMessage();

}

PHP - pecl http

<?php
$client = new http\Client;
$request = new http\Client\Request;
$request->setRequestUrl("https://{IP ADDRESS}/rest /vcenter /vm/{VM ID}/
hardware/ethernet /{NIC_ID}");
$request->setRequestMethod ('"PATCH') ;
$body = new http\Message\Body;
$body->append ('{
7spec”: {
"backing 7: {
“type”: ”{NETWORK TYPE}”,
"network ”: 7{NETWORK_ID}”

}
1)
$request->setBody ($body) ;
$request->setOptions(array ());
$request->setHeaders (array (
"Content-Type' => '"application/json',
'Content-Type' => 'text/plain’',
'Cookie' => 'vmware-api-session -id={session -id}"’
));
$client ->enqueue ($request)->send () ;
$response = $client ->getResponse () ;
echo $response->getBody () ;

Appendix C

Diagrams

151

Figure C.1: PHP diagram before any modifications (with methods included)

Bibliography

1]

[10]

[11]

European Defence Agency. Common staff target for military cooperation on cyber
ranges in the european union, last visited on July 19, 2020. https://www.eda.
europa.eu/docs/default-source/procurement /annex-a---cyber-ranges-cst.pdf.

Sarfraz Ahmed. Dependency injection in php, last visited on July 24, 2020. https:
/ /codeinphp.github.io/post /dependency-injection-in-php /.

Airbus. Cyberrange, last visited on July 19, 2020. https://airbus-cyber-security.
com/products-and-services/prevent /cyberrange/.

Airbus. Cyberrange - integration and simulation platform of it/ot systems, last
visited on July 19, 2020. https://airbus-cyber-security.com/wp-content/uploads/
2018/03/CyberRange_Brochure 0907__EN-1.pdf.

Palo Alto. Cyber defense training center and exercises, last visited
on August 1, 2020. https://www.paloaltonetworks.com /solutions/initiatives/
cyberrange-overview.

Radhwan Y. Ameen and Asmaa Y. Hamo. Survey of server virtualization. CoRR,
abs/1304.3557, 2013.

Samdare B. When do we need interfaces in php?, last visited on July 24, 2020.
https: / /www.geeksforgeeks.org/when-do-we-need-interfaces-in-php/.

Stephen J. Bigelow. What’s the difference between type 1 and type 2 hypervisors?,
last visited on Augustus 8, 2019. |https://searchservervirtualization.techtarget.
com/feature/ Whats-the-difference-between-Type-1-and- Type-2-hypervisors.

Jeff Daniels. Server virtualization architecture and implementation. XRDS,
16(1):8-12, September 2009.

T. Debatty and W. Mees. Building a cyber range for training cyberdefense situation
awareness. In 2019 International Conference on Military Communications and
Information Systems (ICMCIS), pages 1-6, 2019.

Joshua Eckroth, Kim Chen, Heyley Gatewood, and Brandon Belna. Alpaca: Build-
ing dynamic cyber ranges with procedurally-generated vulnerability lattices. In
Proceedings of the 2019 ACM Southeast Conference, ACM SE 19, page 7885, New
York, NY, USA, 2019. Association for Computing Machinery.

153

https://www.eda.europa.eu/docs/default-source/procurement/annex-a---cyber-ranges-cst.pdf
https://www.eda.europa.eu/docs/default-source/procurement/annex-a---cyber-ranges-cst.pdf
https://codeinphp.github.io/post/dependency-injection-in-php/
https://codeinphp.github.io/post/dependency-injection-in-php/
https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
https://airbus-cyber-security.com/wp-content/uploads/2018/03/CyberRange_Brochure_0907_EN-1.pdf
https://airbus-cyber-security.com/wp-content/uploads/2018/03/CyberRange_Brochure_0907_EN-1.pdf
https://www.paloaltonetworks.com/solutions/initiatives/cyberrange-overview
https://www.paloaltonetworks.com/solutions/initiatives/cyberrange-overview
https://www.geeksforgeeks.org/when-do-we-need-interfaces-in-php/
https://searchservervirtualization.techtarget.com/feature/Whats-the-difference-between-Type-1-and-Type-2-hypervisors
https://searchservervirtualization.techtarget.com/feature/Whats-the-difference-between-Type-1-and-Type-2-hypervisors

[12]

[13]

154

European Cyber Security Organisation (ECSO). Understanding cyber ranges:
From hype to reality, last visited on July 18, 2020. |https://ecs-org.eu/
press-releases/understanding-cyber-ranges-from-hype-to-reality.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. In Oscar M. Nierstrasz, editor,
ECOOP’ 93 — Object-Oriented Programming, pages 406431, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

Waldemar Graniszewski and Adam Arciszewski. Performance analysis of selected
hypervisors (virtual machine monitors - vinms). International Journal of Electronics
and Telecommunications, 62, 08 2016.

Red Hat. What is virtualization?, last visited on Augustus 9, 2019. https://www.
redhat.com/en/topics/virtualization /what-is-virtualization.

Kristijan Horvat. Dependency injection in practice, last visited on July 24, 2020.
https://www.mono.hr/pdf/Dependency-Injection-in-practice-CodeCAMP.pdf.

ixiacom. Cyber range: Improving network defense and security readiness, last vis-
ited on July 17, 2020. https://support.ixiacom.com/sites/default/files/resources/
whitepaper/915-6729-01-cyber-range.pdf.

Bhavya Karia. A quick intro to dependency injection: what it is, and when
to use it, last visited on August 3, 2020. https://www.freecodecamp.org/news/
a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it- 7578c84ta88f /.

P. Lavin. Object-Oriented PHP: Concepts, Techniques, and Code. No Starch Press
Series. No Starch Press, 2006.

Dominik Liebler and contributors. Designpatternsphp, last visited on July 21, 2020.
https:/ /readthedocs.org/projects/designpatternsphp /downloads/pdf/latest /.

Karissa Miller and Mahmoud Pegah. Virtualization: Virtually at the desktop. In
Proceedings of the 35th Annual ACM SIGUCCS Fall Conference, SIGUCCS 07,
pages 255-260, New York, NY, USA, 2007. ACM.

R. Morabito, J. Kjallman, and M. Komu. Hypervisors vs. lightweight virtualization:
A performance comparison. In 2015 IEEE International Conference on Cloud
Engineering, pages 386-393, 2015.

N. M. Mosharaf Kabir Chowdhury and R. Boutaba. Network virtualization: state
of the art and research challenges. IEEE Communications Magazine, 47(7):20-26,
July 2009.

Matthieu Napoli and contributors. Php di - documentation, last visited on July 24,
2020. https://php-di.org/doc/.

J. Nie. A study on the application cost of server virtualisation. In 2013 Ninth In-
ternational Conference on Computational Intelligence and Security, pages 807-811,
Dec 2013.

Jordi Boggiano Nils Adermann and many community contributions. A dependency
manager for php, last visited on July 29, 2020. https://getcomposer.org/.

https://ecs-org.eu/press-releases/understanding-cyber-ranges-from-hype-to-reality
https://ecs-org.eu/press-releases/understanding-cyber-ranges-from-hype-to-reality
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.mono.hr/pdf/Dependency-Injection-in-practice-CodeCAMP.pdf
https://support.ixiacom.com/sites/default/files/resources/whitepaper/915-6729-01-cyber-range.pdf
https://support.ixiacom.com/sites/default/files/resources/whitepaper/915-6729-01-cyber-range.pdf
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/
https://readthedocs.org/projects/designpatternsphp/downloads/pdf/latest/
https://php-di.org/doc/
https://getcomposer.org/

[27]

[28]

[29]

[30]

155

phoenixNAP. What is a hypervisor? types of hypervisors 1 & 2, last visited on
Augustus 8, 2019. https://phoenixnap.com/kb/what-is-hypervisor-type-1-2.

Michaux Pierre. Analyse et mise en place d’un simulateur et d’un hyperviseur inclu-
ant des scénarios d’entrainement destinés aux étudiants du master en cybersécurité,
last consulted on July 15, 2020.

HNS platform. Hns cyber range, last visited on July 19, 2020. https://www.
hns-platform.com /cyberrange /.

HNS platform. Hns online cyber range, last visited on July 19,
2020. https://www.hns-platform.com/wp-content /uploads/2018 /06 /plaquette__
2018 online EN BD 1.0.pdf.

Margaret Rouse. Data virtualization, last visited on Augustus 9, 2019. https:
/ /searchdatamanagement.techtarget.com /definition /data-virtualization.

Margaret Rouse. Desktop virtualization, last visited on Augustus 9, 2019. https:
/ /searchvirtualdesktop.techtarget.com/definition/desktop-virtualization.

Margaret Rouse. Network virtualization, last visited on Augustus 13, 2019. https:
/ /searchservervirtualization.techtarget.com/definition /network-virtualization.

Margaret Rouse. Server sprawl, last visited on Augustus 13, 2019. https:
/ /searchdatacenter.techtarget.com/definition /server-sprawl.

Margaret Rouse. Server virtualization, last visited on Augustus 9, 2019. https:
/ /searchservervirtualization.techtarget.com/definition/server-virtualization.

Alexander Shvets. Dive into design patterns, last visited on July 19, 2020.

Techopedia. Data virtualization, last visited on Augustus 9, 2019. https://www.
techopedia.com /definition /1007 /data-virtualization.

Techopedia. Desktop virtualization, last visited on Augustus 9, 2019. https://www.
techopedia.com/definition/601/desktop-virtualization.

Techopedia. Network virtualization, last visited on Augustus 13, 2019. https:
/ /www.techopedia.com/definition /655 /network-virtualization.

Techopedia. Operating system virtualization (os virtualization), last vis-
ited on Augustus 9, 2019. https: / /www.techopedia.com/definition /660/
operating-system-virtualization-os-virtualization

Techopedia. Server virtualization, last visited on Augustus 9, 2019. https://www.
techopedia.com/definition /688 /server-virtualization.

Techopedia. Virtualization, last visited on Augustus 7, 2019. https://www.
techopedia.com/definition/719/virtualization.

V. E. Urias, W. M. S. Stout, B. Van Leeuwen, and H. Lin. Cyber range infrastruc-
ture limitations and needs of tomorrow: A position paper. In 2018 International
Carnahan Conference on Security Technology (ICCST), pages 1-5.

https://phoenixnap.com/kb/what-is-hypervisor-type-1-2
https://www.hns-platform.com/cyberrange/
https://www.hns-platform.com/cyberrange/
https://www.hns-platform.com/wp-content/uploads/2018/06/plaquette_2018_online_EN_BD_1.0.pdf
https://www.hns-platform.com/wp-content/uploads/2018/06/plaquette_2018_online_EN_BD_1.0.pdf
https://searchdatamanagement.techtarget.com/definition/data-virtualization
https://searchdatamanagement.techtarget.com/definition/data-virtualization
https://searchvirtualdesktop.techtarget.com/definition/desktop-virtualization
https://searchvirtualdesktop.techtarget.com/definition/desktop-virtualization
https://searchservervirtualization.techtarget.com/definition/network-virtualization
https://searchservervirtualization.techtarget.com/definition/network-virtualization
https://searchdatacenter.techtarget.com/definition/server-sprawl
https://searchdatacenter.techtarget.com/definition/server-sprawl
https://searchservervirtualization.techtarget.com/definition/server-virtualization
https://searchservervirtualization.techtarget.com/definition/server-virtualization
https://www.techopedia.com/definition/1007/data-virtualization
https://www.techopedia.com/definition/1007/data-virtualization
https://www.techopedia.com/definition/601/desktop-virtualization
https://www.techopedia.com/definition/601/desktop-virtualization
https://www.techopedia.com/definition/655/network-virtualization
https://www.techopedia.com/definition/655/network-virtualization
https://www.techopedia.com/definition/660/operating-system-virtualization-os-virtualization
https://www.techopedia.com/definition/660/operating-system-virtualization-os-virtualization
https://www.techopedia.com/definition/688/server-virtualization
https://www.techopedia.com/definition/688/server-virtualization
https://www.techopedia.com/definition/719/virtualization
https://www.techopedia.com/definition/719/virtualization

156

[44] VMware. Server virtualization, last visited on Augustus 13, 2019. https://www.
vmware.com /topics/glossary /content /server-virtualization.

[45] VMWare. Virtualization, last visited on Augustus 9, 2019. https://www.vmware.
com/be/solutions/virtualization.html.

[46] Lars Vogel. Using dependency injection in java - introduction - tutorial, last vis-
ited on August 3, 2020. https://www.vogella.com/tutorials/Dependencylnjection/
article.html.

[47] H. Zhang, Y. Wang, X. Qiu, W. Li, and Q. Zhong. Network operation simulation
platform for network virtualization environment. In 2015 17th Asia-Pacific Network
Operations and Management Symposium (APNOMS), pages 400-403, Aug 2015.

https://www.vmware.com/topics/glossary/content/server-virtualization
https://www.vmware.com/topics/glossary/content/server-virtualization
https://www.vmware.com/be/solutions/virtualization.html
https://www.vmware.com/be/solutions/virtualization.html
https://www.vogella.com/tutorials/DependencyInjection/article.html
https://www.vogella.com/tutorials/DependencyInjection/article.html

	Introduction
	Objectives
	Structure
	Contributions

	State of the art
	Virtualization
	What is virtualization?
	Hypervisors
	Virtualization types

	Cyber Ranges
	What is a Cyber Range?
	Architecture
	Different suppliers

	Analysis of an existing system
	Mode of operation
	Composer for the libraries composer
	Command classes
	Tests on GitLab
	Identified problem

	Proposed solution
	Design patterns
	Interfaces
	Dependency injection
	What is DI?
	PHP example
	Java example

	Implementation
	Problem definition
	Code analysis
	Creation of the interface
	Environment variables
	Dependency injection
	Implementation with ESXi
	Why VMware ESXi?
	Installation and configuration
	How to interface with ESXi?
	Methods list
	ESXi class
	ESXiAdapter class
	PHP Diagram

	Problems encountered

	Conclusion
	Future works
	Appendices
	ESXi and VCenter installation and configuration
	Requests documentation
	Authentication
	Login
	Logout
	Session information

	Information
	Host
	Datastore
	Folder
	Network
	version

	Virtual machine
	Get the list of VMs
	Deploy a VM
	Deploy a VM
	Delete a VM
	Search a VM with its name
	State of the VM
	CPU
	Memory
	Network

	Diagrams

