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Abstract—In this paper, we compare the efficiency of two binary
classifiers. The first one uses the Weighted Ordered Weighted
Averaging (WOWA) aggregation function whose coefficients are
learned thanks to a genetic algorithm. The second is based
on an artificial neural network trained by a backpropagation
algorithm. They are trained to be used in a multi-criteria decision
system. These kind of multi-criteria system are more and more
common in the cyber-defence field. In this work, we compare
the performance of these two classifiers by using two criteria:
Area Under the Curve of a Receiver Operating Characteristics
(ROC) curve and the Area Under the Curve of a Precision-
Recall (P-R) curve. This second criterion is more adapted for
imbalanced dataset what is often the case in the cyber-security
field. We perform a complete parameter study of these classifiers
to optimize their performance. The dataset used for this work is
a pool of Hypertext Preprocessor (PHP) files analyzed by a multi-
agent PHP webshell detector. We obtain different good results,
especially for neural networks and highlights the advantage of the
genetic algorithm method that allows a physical interpretation of
the result.

Keywords–Machine learning; neural network; aggregation
functions; webshell.

I. INTRODUCTION

In the machine learning field, these last years, one method
appears to be better than other ones: neural network, and par-
ticularly deep learning. The principle of this kind of algorithm
is known for a long time, but the usage increased these last
years for two main reasons: new neural network structures
were discovered, and the hardware is now powerful enough to
produce good results in an acceptable time.

Sometimes, without a good analysis, a neural network is
used to solve a problem. But in some cases, it is not the best
choice for autonomous learning. It is sometimes interesting to
compare the performance of different learning algorithms to
solve a problem.

In this paper, we focus on a specific task: the training
of two classifiers whose objective is to distinguish if a PHP
file, previously analyzed, is a webshell or a harmless PHP
file. These two classifiers are: (i) an aggregation function
in which the parameters are learned by a genetic algorithm
and (ii) a neural network trained by the backpropagation
algorithm. These classifiers are chosen instead of others (e.g.,
decision tree, Support Vector Machines (SVM)...) to compare
the performance of a classifier structure very used in practice
and an classifier using an aggregation function that is not
widely known.

In order to be classified, the PHP files were analyzed by
a PHP multi-agent detector composed of 5 different modules.
Each agent produces a score between 0 and 1 that is used as
inputs for the two classifiers.

We performed a parametric study on both of the classifiers
to determine the set of parameters that produces the best result.
The dataset used for this work contains 23,415 PHP files where
1,833 [1] are actual PHP webshells.

Rest of the paper is arranged as follow: Section II explains
which aggregation function is used for the classification and
describes the structure of the genetic algorithm that learns
parameters. Section III describes the structure of a neural
network, and more specifically the neural network uses in this
work. In Section IV, we present our comparison methodology
and the results obtained. We conclude and we talk about some
way to continue this work in Section V.

II. WOWA AGGREGATION FUNCTION AND GENETIC
ALGORITHM STRUCTURE

A. WOWA operator

The WOWA operator, WOWA for Weighted Ordered
Weighted Averaging, is an aggregation function introduced by
Viçen Torra in 1996[2]. This operator generalizes the Weighted
Mean (WM) and the Ordered Weighted Averaging (OWA) and
allows to merge a set of numerical data in a single result. To
aggregate numerical data, WOWA uses two weighting vectors:
one for the weighted mean (w) and the other for the OWA
operator (p). The weighted mean, weights data in agreement
with their sources and OWA gives importance to the data
according to their scores.

WOWA combines the advantages of Weighted Mean and
OWA operator. In the other hand, WOWA is more complex
because it requires two parameters for each data source.

WOWA = f(a1, a2, ...an, w1, w2, ...wn, p1, p2, ...pn) (1)

where

• ai are data sources

• wi are WM weights

• pi are OWA weights

This operator allows good accurate results and can be tuned
with more parameters than usual aggregation functions. De-
spite this, this operator is only rarely used in practice.



Learning aggregation operator weights from training
dataset is an optimization problem[3]. The optimization algo-
rithm minimizes (or maximizes) a cost function to try to find
the global minimum (or maximum) of the solution surface.
According to the literature, the algorithm selected to optimize
the different weights of the aggregation function is a genetic
algorithm[4].

B. Genetic Algorithm structure

A Genetic Algorithm is an evolutive process that maintains
a population of chromosomes (potential solutions). Each chro-
mosome is composed of several characteristics called ”genes”.
In this work, a ”gene” is a single weight and a ”chromosome”
is an element composed of two weight vectors (w and p). The
weight vectors contain several ”genes” whose the sum is equal
to 1.

The algorithm has five main steps represented in Figure 1.

Figure 1. Structure of a Genetic Algorithm

• Initial population generation: a set of potential
solutions is randomly generated. All ”genes” (weights)
are random values between 0 and 1. Then, the weights
vectors are normalized.

• Fitness score evaluation: all population elements are
evaluated by a fitness function.

• Selection: according to their fitness score, some ele-
ments are selected to be used in the next generation
t+ 1.

• Crossover: the selected elements from the previous
generation are combined two-by-two to generate new
chromosomes for the current generation. These new
elements keep some characteristics from their parents.

• Mutation: each element in the new population has a
probability to be mutated. Concretely, a random gene
is selected and replaced by another random value. The
mutation is very important to avoid converging too fast
to a local minimum. The mutation allows to ”jump”
to another location in the space of solutions and can
discover better results.

This process is repeated until it reaches a termination
condition. That can be a sufficient accuracy, a slow
convergence since some generations or a fixed number of
generation. A complete description of these steps is available
in [5].

III. NEURAL NETWORK STRUCTURE AND
BACKPROPAGATION ALGORITHM

An artificial neural network is a computing system inspired
by the biological neural networks that constitute animal brains.
An Artificial Neural Network is based on a collection of con-
nected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. Each connection, like
the synapses in a biological brain, can transmit a signal to other
neurons. An artificial neuron receives a signal, processes it and
can transmit the result to other neurons connected to it. Figure
2 represents the structure of an Artificial Neural Network. It
contains three neurons as inputs, five in the hidden layer and
two for the output.

Figure 2. Structure of an Artificial Neural Network

Except for the input layer, a neuron receives several signals
(usually real numbers) from the previous layer. These signals
are weighted by coefficients and added. Then, the neuron
produces an output signal following an activation function
that it transmits to the next layer. Figure 3 represents the
functioning of an artificial neuron.

Figure 3. Representation of the functioning of an artificial neuron

In a mathematical point of view, a neuron works following:

y = φ(
∑

(x1ω1 + x2ω2 + ...+ xnωn + b)) (2)

A deep neural network is an artificial neural network with
several hidden layers and is very efficient for image recognition
or voice recognition there are some big datasets with a lot of
features as input (pixels, etc.).



In our problem, it is very difficult to find real PHP
webshells and we have only five inputs for each analyzed file.
A classical neural network is more suitable for this kind of
classification. Our neural network is made of three layers: a
five neurons input layer (for the five agents in the webshell
detector), a hidden layer and a two neurons output layer
(webshell or harmless file).

The job of the algorithm is to find a set of internal
parameters (edge’s weight and bias) that perform well against
some performance measure. It is the cost function. The process
is iterative, the convergence occurs over multiple discrete steps
that improved internal parameters.

Each step involves using the model with the current set
of internal parameters to make predictions on some samples,
comparing the predictions to the real expected outcomes,
calculating the error, and using the error to update the internal
model parameters. This update procedure is the backpropaga-
tion (backward propagation) algorithm.

Backpropagation aims to minimize the cost function by
modifying the network’s weights. The level of adjustment is
determined by the gradients of the cost function with respect
to those parameters[6]. We do not describe the mathematical
principle of the backpropagation algorithm, it is relatively
complex and it is not the purpose of this work.

IV. PARAMETRIC STUDY AND EVALUATION

A parametric study has been performed on the classifiers in
order to optimize their performances before comparison. The
training dataset used for this work is composed of 23,415 PHP
files and contains 1,833 PHP webshells [1].

To evaluate the performance of our classifiers, we use the
k− fold cross-validation[7] method (k equals to 10 is known
to produce good results). It consists of separating the dataset in
k folds, performing the training part on k−1 folds and testing
on the last fold. This operation is repeated k times by changing
the fold used for the evaluation. All these k intermediate results
are meant to obtain a general result.

The number of PHP webshell in the dataset is small. With
a random fold generation, there is a high probability to obtain
very different repartitions. To avoid this issue, each fold is
generated with a fixed number of webshells.

The number of webshells in a fold is quite smaller than
the number of regular PHP files. To increase the penalty of
not detecting a webshell, we artificially increase the number
of webshells in the learning dataset. Concretely, we duplicate
several times each score related to a webshell.

A. Performance evaluation methodology
To evaluate the efficiency of a binary classifier, we used

two measurements: (i) the AUC of a ROC curve and (ii) the
AUC of P-R curve.

1) Roc curve: The ROC curve is a classical tool to evaluate
the performance of a binary classifier[8]. The ROC is a
graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. It is
created by plotting the true positive rate (true detection) against
the false positive rate (false alarm) as shown in Figure 4

The Area Under the Curve gives a score that allows us
to easily evaluate and compare the performance of several
classifiers. Closer to 1 the AUC is, better is the classifier.

Figure 4. Example of a ROC curve

The dotted blue line represents the behaviour of a random
classifier. If the ROC curve is under the curve, that means it
is less efficient than a random classification.

2) Precision-Recall curve: A Precision-Recall curve (P-
R curve) is, as the ROC curve, a graphical tool to evaluate
the efficiency of a binary classifier. It is created by plotting
the Recall (X-axis) against the Precision (Y-axis) as shown in
Figure 5. Concretely, the precision and the recall are computed
for several threshold values. This tool is more informative than
the ROC curve for imbalanced dataset [9][10]. Indeed, the P-R
curve focuses on the minority class, whereas the ROC curve
covers both classes.

Like for the ROC curve, it is very difficult to compare
visually different graphs, the AUC solves this issue and allows
us an easy comparison. In our dataset, the ratio webshell-
harmless file is smaller than 0.1. The evaluation of efficiency
by using a P-R curve is perfectly adapted in this situation.

Figure 5. Example of a Precision-Recall curve

The dotted blue line on the graph represents the behaviour
of a random classification. A P-R curve under this line is less
efficient than a random classifier. The value of this line is
y = Webshell

normal files



B. Genetic Algorithm parametric study
A genetic algorithm has several parameters that can be

tuned to optimize results. In our parametric study we tested
the following parameters:

• Population size: number of elements in each gen-
eration of the population. We varied this parameter
between 40 and 200 by step of 10.

• Crossover rate: percentage of the population kept to
set up the next generation. We varied this parameter
between 5 and 95 by step of 5.

• Mutation rate: probability that a gene is randomly
mutated. We varied this parameter between 5 and 95
by step of 5.

• Generation number: number of generations before
stopping the algorithm. The way the algorithm is
built, the best element of a generation is equal or
better than the best element of the previous generation.
Increasing the number of generation can only improve
the performance of the classifier, but the improvement
is not really significant for generation higher than 200.
We fixed the generation number parameter to 200.

• Fitness score evaluation: method used to determine
the fitness score of a chromosome. Two fitness criteria
are implemented in our algorithm: (i) the distance
criterion and (ii) the AUC criteria.

To determine the best parameters combination, we tested each
parameter independently of the others. It is an approximation.
Indeed, it is highly improbable the parameters are completely
non-correlated. However, the parametric study shows the im-
portance of the different parameters. We tested all the values
of population size, crossover rate and mutation rate with the
distance fitness score evaluation and the AUC fitness score
evaluation. For each parameter, we perform a 10-folds cross-
validation and kept the parameter values that produce the best
AUC ROC result and the best P-R AUC value.

a) Distance fitness score: For each chromosome in the
population, the WOWA function is computed on all examples
of the dataset. The obtained results are substracted to the
results given in the training dataset. All these differences are
added to obtain a total distance that is the fitness score of the
chromosome.

b) AUC fitness score: For each population element, the
WOWA function is also computed on all examples of the
dataset. Then, these results are used to obtain the ROC. The
AUC of this curve is the fitness score of the chromosome.

1) Parametric study results: The first thing we note is the
AUC fitness score produces better scores than the other fitness
score for all values of all parameters. Intuitively it is logical.
This criterion tries to optimize the AUC of a ROC curve that
is also a performance criterion of the classifier.

Table I shows, for each parameter, the value that produces
the best ROC AUC and the result associated with it. All these
parameter values will be used in combination as a new model
in the next section.

Table II shows, for each parameter, the value that produces
the best P-R AUC and the result associated with it. All these
parameter values will be used in combination as a new model
in the next section.

TABLE I. Genetic algorithm parameter values that produce the best results
in the parametric study for the ROC criterion

Parameter name Parameter value ROC result
Population size 75 0.88114
Crossover rate 40 0.88117
Mutation rate 20 0.88125
Fitness function AUC 0.88125

TABLE II. Genetic algorithm parameter values that produce the best results
in the parametric study for the P-R criterion

Parameter name Parameter value P-R result
Population size 130 0.73502
Crossover rate 30 0.73612
Mutation rate 5 0.73401
Fitness function AUC 0.73612

C. Neural Network parametric study
As for the genetic algorithm, neural networks can be tuned

by modifying some parameters. It is a very difficult point to
design correctly a network with the right parameters. The set
of basic network parameters are called Hyperparameters. In
this work, we tuned the most common ones:

• Activation function: function used by neurons for
the activation. The activation function manages the
value of the neuron output. The signals of the previous
layer are weighted by the internal parameters, added
together and this result is used as input for the
activation function. In this work, we used the most
common activation functions: tanh, ReLu, sigmoid.
Figure 6 represents these three functions.

• Neurons number: number of neurons in the hidden
layer. Intuitively, we can guess that more neurons
are in the hidden layer, more accurate will be the
classification. In practice, it is more complicated. Too
many neurons can produce an overfitting phenomenon.
We varied the number of neurons between 5 and 50
for each activation function.

• Learning rate: parameter that controls how much the
model change in response to the estimated error each
time the model weights are updated. Choosing the
learning rate is challenging as a value too small may
result in a long training process that could get stuck,
whereas a value too large may result in learning a sub-
optimal set of weights too fast or an unstable training
process. We varied this parameter between 0.1 and
0.95 by step of 0.05, between 0.01 and 0.009 by step
of 0.01 and between 0.001 and 0.009 by step of 0.01
for each of the three activation functions.

• Batch size: size of the batch. During the training, the
dataset elements passed through the network one after
one. The batch size is the number of elements that
pass through the network before tuning the weights
of the network. We varied the batch size between
1000 and 2000 by step of 200 for each of the three
activation functions. It was not possible to use a batch
size smaller than 1000 in Google Colaboratory.

• Epoch number: number of time the entire dataset is
passed through the network. A high value of this pa-
rameter usually increases the efficiency of the learning
but also the time needed. We varied this parameter



between 100 and 350 by step of 50. As for the batch
size, it was not possible to use epochs number bigger
than 350 in Google Colaboratory

As explained in Section I, the learning of an Artificial Neural
Network is clearly faster with GPU. To train our model in
a reasonable time, we used the Jupyter Notebook on Google
Colaboratory platform. Unfortunately, this platform has some
time restriction and does not provide a sufficient infrastructure
and to test the whole range of parameters we wanted to test.

Figure 6. Equations and curves of activation functions

1) Parameters study results: As for the Genetic Algorithm
classifier and the fitness function, the activation function in the
neural network classifier that produces the best results for all
values of all parameters is the ReLu function. Table III and IV
show the values of the parameters that produce the best results
for the two evaluation criteria.

TABLE III. Neural network parameter values that produce the best results in
the parametric study for the ROC criterion

Parameter name Parameter value ROC result
Neurons number 38 0.93761
Learning rate 0.04 0.93979
Batch size 2000 0.92746
Epochs number 350 0.94989
Activation function ReLu 0.94989

Table III shows, for each parameter, the value that produces
the best ROC AUC and the result associated with it. All these
neural network parameter values will be used in combination
as a new model in the next section.

TABLE IV. Neural network parameter values that produce the best results in
the parametric study for the P-R criterion

Parameter name Parameter value P-R result
Neurons number 38 0.80854
Learning rate 0.05 0.81336
Batch size 2000 0.78883
Epochs number 350 0.83951
Activation function ReLu 0.83951

Table IV shows, for each parameter, the value that produces
the best P-R AUC and the result associated with it. All these

neural network parameter values will be used in combination
as a new model in the next section.

D. Comparison of the classifiers
For each classifier (genetic algorithm or neural network),

we selected the set of parameters that produces the best ROC
AUC and the best P-R AUC. With these four models, we ran
10 times a 10-folds cross-validation and we meant the results
to minimize the variance.

Table V shows the results for all the 4 classifiers with the
corespondent evaluation criterion.

TABLE V. Results of a 10-10-cross validation of the classifiers

Classifier ROC P-R
Genetic Algorithm 0.900598 0.745871
Neural Network 0.946812 0.812567

The parameter values of these four models are given in the
Tables I, II, III and IV in Section IV.

Figures 7, 8 and 9 represent some example curves obtained
during the 10-folds cross-validation.

Figure 7. Representation of a Precision-Recall curve for a Neural Network.
Parameters: Neurons Number: 46 - Learning Rate: 0.01 - Batch Size: 2000 -

Epochs Number: 100 - Activation Function: ReLu

V. CONCLUSIONS AND FUTURE WORKS

In this work, we show that a classification based on
an artificial neural network trained by the backpropagation
algorithm gives better results than a classification using an
aggregation function trained by a genetic algorithm.

The neural network is more efficient on the two per-
formance criteria used in this work: ROC AUC and P-R
AUC. Moreover, because of the restrictions applied to Google
Colaboratory, we were not able to test a significant amount of
values for the batch size and epochs number parameters. It is
logical to assume that the results would be even better with a
much larger number of epochs.

However, it is important to note that the training of a
neural network is very slow on CPUs. To obtain results in
a reasonable time, it is essential to equip yourself with GPU
which is expensive.



Figure 8. Representation of a Roc curve for a Genetic Algorithm.
Parameters: Population Size: 125 - Crossover Rate: 60 - Mutation Rate: 25 -

Fitness score: AUC

Figure 9. Representation of a Roc curve for a Neural Network. Parameters:
Neuron number : 40 - Learning Rate : 0.06 - Batch Size : 2000 - Epoch

number : 350 - Activation function : ReLu

We noted that for the genetic algorithm, the AUC criteria
produces always better results than the distance criteria. On
the neural network, we noted the activation function that gives
the best results, is always the ReLu function.

During our work, we noted that the parameters of the ge-
netic algorithm have only a very small influence on the result.
It may depend on the dataset used, however, a parametric study
seems to be much less important for the genetic algorithm than
to train a neural network.

Another important point is about the interpretation of the
internal parameters after the training. On an artificial neural
network, it is difficult to interpret the meaning of the network
parameters (weight, bias, ...). A neural networks is often used
as a ”black-box”. The trained aggregation function, on the
other hand, gives interesting information about the modules
that are aggregated. It highlights the modules with high im-
portance and, mostly, the less important. This could point out
that a module is inefficient and improve it in priority.

For example, a typical w weights vector obtained by the
genetic algorithm with the dataset used in this work is w =

[0.4407, 0.532, 0.0204, 0.0027, 0.0042]. We note easily that the
most important agent is the second one: the webshell signature
analyzer. On the other side, the least effective agent is the
obfuscation detector in the fourth position.

This work could be improved in several points. In the first
time, it should be interesting to perform a bigger parametric
study on the neural network classifier. We think it is possible
to increase the efficiency of the results obtained with a better
infrastructure to train the model.

It seems interesting to determine the correlation between
the different parameters of the algorithms. Indeed, we per-
formed our parametric study by tuning independently each
parameters. If we knew the correlations between the different
parameters, we would probably be able to determine a better
parameters combination.

The algorithms designed for these works are made to be
easily used in another project. It could be interesting to test
these classifiers on different types of data to determine if the
parameters are independent of the dataset or not.
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