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Abstract—Intrusion Detection Systems (IDS) are now an essential
element when it comes to securing computers and networks.
Despite the huge research efforts done in the field, handling
sources’ reliability remains an open issue. To address this
problem, this paper proposes a novel contextual discounting
method based on sources’ reliability and their distinguishing
ability between normal and abnormal behavior. Dempster-Shafer
theory, a general framework for reasoning under uncertainty, is
used to construct an evidential classifier. The NSL-KDD dataset,
a significantly revised and improved version of the existing KDD-
CUP’99 dataset, provides the basis for assessing the performance
of our new detection approach. While giving comparable results
on the KDDTest+ dataset, our approach outperformed some other
state-of-the-art methods on the KDDTest-21 dataset which is more
challenging.

Keywords—Intrusion detection; machine learning; evidence the-
ory; contextual discounting.

I. INTRODUCTION

As computer network usage grows rapidly along with the
significant increase in the number of applications running
on it, the importance of network security is increasing. As
dedicated tools designed to identify anomalies and attacks on
the network, Intrusion Detection Systems (IDS) are becoming
more valuable. Detection techniques based on anomalies and
misuse have long been the principal subject of research in the
field of intrusion detection [1].

Misuse-based IDSs operate quite similarly to most antivirus
systems. Maintaining a signature database that could identify
specific types of attacks and checking all incoming traffic
against these signatures. Overall, this approach performs well,
although it does not work properly when dealing with new
attacks, or those that were specifically crafted to mismatch
existing signatures.

On the other hand, anomaly-based IDSs operate generally
on a baseline of normal activities and network traffic. This
allows them to assess the current state of network traffic against
this baseline so that abnormal patterns can be identified. While
such an approach could be quite effective in detecting new
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attacks or those that have been intentionally crafted to evade
IDSs, it can also result in a higher number of false positives
compared to misuse-based IDSs.

Dempster-Shafer Theory (DST), also known as evidence
theory [2] is one of the most versatile mathematical frame-
works, extending Bayesian theory by (i) providing each source
with the ability to integrate information at various scales of
detail, thus addressing uncertainty; and (ii) offering a robust
decision-making tool to make a consensus-based decision. This
theory was later widely applied in several domains [3][4][5].
Regardless of this popularity, mass function generation and
source reliability estimation remain an ongoing challenge.

Probabilistic frameworks for mass generation take advan-
tage of the extensive research literature of the traditional
probabilistic classifiers. These approaches usually represent
the information associated with each attribute through Prob-
ability Density Functions (PDF), typically Gaussian [6][7].
Such densities are then transformed into beliefs that can
subsequently be merged to form a joint decision. One can
attribute masses to the compound hypotheses by subtracting
the mass values related to the simple hypotheses involved [6]
or by mixing the distributions associated with these hypotheses
[7]. It should be noted that for most applications, Gaussian
densities have been widely assumed due to their simplicity.
Nevertheless, in the case where this assumption fails, the
decision-making performance may be influenced considerably.
More sophisticated approaches can be used to surmount this
limitation by transforming data attributes into an equivalent
normal space [8].

This paper offers a more effective way to overcome this
disadvantage by constructing PDFs that are better suited to
the original data histograms instead of projecting them into a
new Gaussian-like space. On a more explicit level, a kernel
smoothing estimation [9] is used on the training data to derive
an approximate PDF for each data attribute and each simple
hypothesis. These PDFs may be of any shape. Notably, they
might be non-Gaussian. During the classification phase, a given
datum is associated with a set of masses that are generated in



an elaborated way from the aforementioned densities. Using
the proposed contextual discounting method, mass functions
are then weakened differently depending on the ability of each
source to discriminate between classes. Mass functions of the
different sources are then merged to have a consensual mass
function using a suitable fusion rule. A final decision is then
deduced using the so-called pignistic transform” [10].

The rest of this paper is organized as follows: Section II
recalls the theoretical tools used in the proposed approach.
Section III describes the NSL-KDD dataset. A description
of Boosted PR-DS architecture is introduced in Section IV.
Section V discusses the experimental results by comparing
them with those of some previous studies using the NSL-KDD
dataset. Final remarks and further suggestions for improvement
are given in Section VI.

II. RELATED BACKGROUND

We succinctly outline some fundamentals of Dempster-
Shafer theory, Parzen-Rosenblatt density estimation and con-
textual discounting.

A. Dempster-Shafer theory

Suppose that Q = {wy, ...,wk }, and P(Q) = {41,..., Ao}
is its power set, where ) = 2K A defined mass function
M ranging from P(Q) to [0,1] is named a “basic belief
assignment” (bba) if M(0) =0 and 3 4 pq) M(A) = 1. A
bba M therefore defines a “plausibility” function P! ranging
from P(Q2) to [0,1] by PI(A) = > ,np.oM(B), and a
“credibility” function Cr ranging from P(2) to [0,1] by
Cr(A) = > 5ca M(B). In addition, the two functions men-
tioned above are bound by PI(A) 4+ Cr(A°¢) = 1. Moreover,
a probability function p could be regarded as a particular case
wherein Pl = Cr = p.

In case where two bbas M7 and M5 denote two elements of
evidence, we can combine them together using the “Dempster-
Shafer fusion” (DS fusion), which results in M = M; ® M,
that is defined by:

M(4) = (M6 M)(A) Y
BiNBs=A

My (B1)M2(Bs) (1)

Lastly, through Smets’ technique[10], an evidential bba
M can be converted into a probabilistic one, whereby every
belief mass M (A) is evenly distributed over all elements of A,
resulting in the so-called “pignistic probability”, Bet , given
by:

M(A)
— 2
] 2

Bet(w;) = Z

Wi €EACQ

where |A| is the number of elements of ) in A.

It is worth mentioning that there are various evidential
fusion rules in the literature that deal differently with the issue
of conflicting sources [11][12][13].

B. Parzen-Rosenblatt density estimation

As a statistical tool, the Parzen-Rosenblatt window tech-
nique [14][15], otherwise known as kernel density estimation,
is a way to smooth data by making population inferences based
on a finite sample. This technique can be perceived as a non-
parametric method to construct the PDF f, of an unknown

form, linked to a random variable X. Suppose (z1, 2, ...,ZN)
an example of the realizations of such a random variable. The
challenge is to estimate the f values at multiple points of
interest. The smoothing of the kernel can then be seen as a
generalization of the histogram smoothing where a window,
of a predetermined shape, centered at every point is utilized
to approximate the value of density at the given point. This is
done by using the following estimator:

A 1 N Tr—x;
fn(@) = NhZK< 3 ) 3
=1

where K (-) is the kernel - a zero-mean non-negative function
that integrates to one - and ~ > 0 is a smoothing parameter
known as “kernel width”. Furthermore, it is possible to use
a variety of kernel functions like Uniform (Box), Gaussian
(Normal), Triangle, Epanechnikov [16], Quartic (Biweight),
Tricube [17], Triweight, Logistic, Quadratic [18], and others.

C. Discounting methods

Such methods can be used to estimate the weakening
coefficients assigned to a source in order to correct its decision.
These adjustments differ depending on whether it is a classic
or contextual weakening.

1) Classical discounting: The weakening of mass functions
makes it possible to model sources’ reliability by introducing
a coefficient o® where for each source s we have:

{m’s (4) = a*.m*(A)

_ VA €22 A#Q
m#(Q) = (1 —a®) + a*>.m(Q)

“

a® is the weakening coefficient of the s*" source. Among the
classical weakening methods, we find [19] and [5].

2) Contextual discounting: The idea behind the contextual
weakening is that the reliability of a source can vary depending
on the truth of the object to be recognized (the context). For
example, a sensor responsible for recognizing flying targets
may be more or less able to discern certain types of aircraft.
The method we propose belongs to this category and is
described below.

Weakening using F-score: In this method, we evaluate
the ability of each attribute (source) to classify elements be-
longing to different hypotheses -simple or composite-. This is
done by considering each attribute separately to classify a new
element. Using a cross-validation process, a confusion matrix
is obtained. From this matrix, the “F-score” performance is
calculated for all the hypotheses. These measures will be used
as weakening coefficients and the equation 5 is applied to
weaken the mass function of each source s.

m'® (A) = afm® (A) A e {29/Q}
&)
m' (Q) = m* () + (1—aj)m®(A)
Ae{29/Q}

o is the weakening coefficient of hypothesis A for the

sth source.



III. NSL-KDD DATASET DESCRIPTION

In addition to the fact that attack patterns are constantly
evolving and changing, the challenge in building a robust
Network Intrusion Detection System (NIDS) is that a real-
time pattern of network data consisting of both intrusions
and normal traffic is out of reach. This is why many recent
works are still using the NSL-KDD dataset to evaluate the
performance of their approaches [20][21].

One of the most frequently used datasets for intrusion
detection tests is the NSL-KDD dataset which was released
in 2009 [22]. In addition to addressing efficiently redundant
records’ issue in the KDDCUP’99 dataset, NSL-KDD is de-
signed by reducing the number of records in the training and
test sets in a sophisticated manner to prevent the classifier from
biasing towards frequent records.

There are three datasets within NSL-KDD. One for training
which is KDDTrain+ and two for testing with an increasing
difficulty respectively KDDTest+ and KDDTest-21, all of
which having normal records as well as four distinct types
of attack records, as shown in Table I. KDDTest-21 which is a
subset of the KDDTest+ is designed to be a more challenging
dataset by removing the often correctly classified records. For
more details about how KDDTest-21 was conceived, the reader
may refer to [22].

TABLE I. DIFFERENT CLASSES OF THE NSL-KDD DATASET.

Normal Dos Probe R2L U2R
KDDTrain+ 67343 45927 11656 995 52
KDDTest+ 9711 7458 2421 2754 200
KDDTest-21 2152 4342 2402 2754 200

Each record has 41 attributes and a class label as well.
These attributes are divided into basic features, content fea-
tures, and traffic features. Attacks in the dataset are grouped
into four categories based on their characteristics: DoS (denial
of service attacks), Probe (Probing attacks), R2L (root-to-local
attacks) and U2R (user-to-root attacks). Some specific types of
attacks are included in the test set but are not included in the
training set. This makes it possible to provide a more realistic
testing ground.

IV. BOOSTED PR-DS

This section describes the theoretical basis of the proposed
intrusion detection scheme called Boosted Parzen-Rosenblatt
Dempster-Shafer (Boosted PR-DS). To do this, suppose we
have a sample of N pre-tagged multiattribute data (71, ..., Zn)
where each datum Z,, = (X,,Y,) with X,, € Q =
{wi,...,wr} being the tag, and V,, = (V,},...,V,F) € R”
being the P-attribute observation. The challenge is then to
determine the tag of any new observation Y.

As shown in Figure 1, we begin by briefly outlining the
training process carried out on the pre-tagged data sample
(Z1, ..., Zn). Next, we illustrate the way our approach assigns
a new observation Y,/ to one of the K classes (tags).

A. Training phase

Consider the pre-tagged multi-attribute data above
(Z1, ..., Zn). Under our Boosted PR-DS scheme, the training
phase involves two steps. The first is model adjustment which
consists of determining the optimal kernel and fusion rule for

Model adjustment

Density estimation

Training phase

Generation of mass functions

Contextual discounting

Fusion of mass functions

( Classification phase >

Decision making

Figure 1. Proposed Boosted PR-DS framework

the data along with the computing of weakening coefficients
for each hypothesis. The second step is density estimation
where the previously chosen kernel is used to estimate the
Probability Density Functions (PDF) of each class for all
attributes.

1) Model adjustment: In the first step, while changing
kernels and fusion rules, basic PR-DS is used in a cross-
validation process on the training data. The kernel and fusion
rule giving the highest accuracy are then selected. To compute
the weakening coefficients, we propose to use the F-score
measures obtained from classifying each attribute (taken alone)
as explained in paragraph Section II-C2.

2) Density estimation: In this step, we use the kernel
chosen during the previous step to estimate densities using
the Parzen-Rossenblatt method as described in Section II-B
instead of considering that they follow a normal distribution
as in the classical case. We thus obtain, for each class wy, € )
and for each attribute p (1 < p < P), a Parzen-Rosenblatt
density f}.

Eventually, in addition to the estimated densities, the
trained model includes the weakening coefficients and the best-
fit fusion rule.

B. Classification phase

Given a new observation Y;,,, a mass function MP for each
attribute is constructed based on the estimated densities. The
proposed contextual discounting mechanism is then applied
using the previously calculated weakening coefficients. Subse-
quently, the weakened mass functions are combined to obtain
a consensual report M. The final decision is made using the
so-called Pignistic Transform. In what follows, we describe
these different steps.
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Figure 2. Performance of Boosted PR-DS and the other models on KDDTest+ and KDDTest-21.

1) Generation of mass function: In order to determine the
mass MP assigned to the attribute p, we will consider the rank
function ¢, which is defined from {1, .., K'} to  so that §, (k)

is the k—ranked element of €2 in terms of f7,i.e. fg’p(l) (Yh) <
fr @) <. < ffp(K)(Yf,). Then, MP? is determined as
follows:

M@)o f2 ) (VD)

MP (@5, (1) s Ws, () }) X F5, 0y (V) = J5 oy (V)
(6)

2) Contextual discounting: To fine-tune the ultimate mass
assigned to the p attribute, a weakening process based on
the proposed contextual discounting mechanism mentioned in
paragraph II-C2 is applied.

3) Fusion of mass functions: Mass Functions assigned to
different attributes are then merged into a single consensus
mass M = @5:1 MP using the fusion rule selected on the
training phase.

4) Decision making: The final decision is made based on
the Pignistic transformation of M:
5 M(A)
X, = arg max A; Al (7)
Wi

It is worth noting that the novelty of Boosted PR-DS with
respect to those using similar architectures is based on the
steps of model adjustment, generation of mass function, and
contextual discounting.

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed boosted PR-DS
method, experimental tests are conducted on the NSL-KDD
dataset containing two test sets of increasing difficulty, KD-
DTest+ and KDDTest-21 respectively, as described in Section
1.

A comparative analysis is made with regard to nine
methods: J48 decision tree learning [23], Naive Bayes
[24], NBTree[25], Random Forest [26], Random Tree [27],
Multi-layer Perceptron [28], Support Vector Machine (SVM)
[29], and Recurrent Neural Networks (RNN) [21], Parzen-
Rosenblatt Dempster-Shafer (PR-DS) [30].

While giving a comparable accuracy on the KDDTest+
dataset, Boosted PR-DS outperforms the other state-of-the-art
methods on the KDDTest-21 testing set as shown in Figure
2. This is mainly due to taking the estimated reliability into
account by using the contextual discounting mechanism along
with adjusting the model by selecting the most suitable kernel
and fusion rule for a given training dataset.

To demonstrate the effect of kernel selection, we assess our
approach on the KDDTest-21 dataset by changing the kernel
each time, while maintaining the other parameters. Figure 3
shows that three kernels at least are getting better results than
the Normal kernel which confirms the relevance of choosing
an adapted kernel to suitably constructing our densities instead
of using the normality assumption.
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Figure 3. Boosted PR-DS on the KDDTest-21 dataset using different kernels



VI. CONCLUSION AND FUTURE WORK

As a conclusion, we can consider Boosted PR-DS as

a combination of multiple classifiers where each attribute
(source) is a classifier. By using contextual discounting, one
may prioritize the decision of an individual classifier regarding
those classes in which its accuracy was high in the training
phase and be doubtful regarding those classes it did not classify
well. Furthermore, Boosted PR-DS choose a suitable fusion
rule to take advantage of each individual classifier’s knowledge
to achieve a consensus decision. Experimental results validate
the interest of this approach with respect to other state-of-the-
art intrusion detection models. As a possible future direction,
it would be interesting to consider handling conflicting sources
with a more sophisticated fusion rule.
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