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Abstract—Cyber attacks have become a major factor in the world
today and their effect can be devastating. Protecting corporate
and government networks has become an increasingly difficult
challenge, when new persistent malware infections can remain
undetected for long periods of time. In this paper, we introduce
the Multi-agent ranking framework (MARK), a novel approach
to Advanced Persistent Threat detection through the use of
behavioral-analysis and pattern recognition. Such behavior-based
mechanisms for discovering and eliminating new sophisticated
threats are lacking in current detection systems, but research
in this domain is gaining more importance and traction. Our
goal is to take a more on-hands approach in the detection by
actively hunting for the threats instead of passively waiting for
events and alerts to signal abnormal behavior. We devise a
framework that can be easily deployed as a stand-alone multi-
agent system or to compliment many Security Information and
Event Management systems. The MARK framework incorporates
known and new beyond state-of-the-art detection techniques, in
addition to facilitating incorporation of new data sources and
detection agent modules through plug-ins. Throughout our testing
and evaluation, impressive true detection rates and acceptable
false positive rates were obtained, which proves the usefulness of
the framework.

Keywords–anomaly-based analysis; command & control chan-
nel; advanced persistent threat; aggregation.

I. INTRODUCTION

Corporate, government and military networks have often
been prime targets for malicious actors and the current security
solutions have proven not to be sufficient any longer. In recent
years, these types of attacks have become more frequent and
more sophisticated; using zero-day vulnerabilities and social
engineering the attackers can set a foothold in a network and
work unnoticed for long periods of time. A recent example
of a cyber-attack on a major scale is the attack orchestrated
on computer systems from Ukraine to the United States in
2017 [1]. The attack hijacked a tax accountant package widely
used in Ukraine and distributed the malware via its update
mechanism, targeting the supply-chain, a common Advanced
Persistent Threat (APT) attack technique.

Currently major networks are protected via Security In-
formation and Event Management (SIEM) systems, collecting
log events and alerts and then correlating them; Splunk [2]
or IBM QRadar [3] are some prominent examples of such
systems. Useful as they may be, these detection solutions often
focus on the initial attack and less on the possible persistency
of a threat as they lack understanding of (1) the complex

behavior of Advanced Persistent Threats (APT) and (2) the
precision needed to correlate prolonged malicious activity that
may take place over multiple hosts over prolonged periods of
time. Our paper introduces the MARK framework, with the
goal to detect APTs once they have established a foothold in
a network. Contrary to the majority of currently established
Intrusion Detection Systems (IDS) and their use of signature-
based detection, focused on passive detection through the
correlation of events and alerts, our system takes a more active
approach by automating the data-driven threat hunting process.
This type of detection approach has become more and more
relevant, a lot of new research has been invested in new threat
hunting methods [4]. The MARK framework accomplishes this
by analysing data from multiple sources and searching for
abnormal or suspicious behavior, through pattern recognition.

Rest of the paper is arranged as follows: Section II
describes the design and methodology used for the imple-
mentation of the MARK framework. The detection agents
that are used for the analysis are presented together with
the aggregation and scoring system set in place. Section III
presents the different steps in the evaluation of our framework
and the results produced. Finally we conclude in Section IV
and offer possible future avenues to advance our framework
in Section V.

II. THE MULTI-AGENT RANKING FRAMEWORK

A. Goal
The MARK framework uses multiple agents to detect

possible APTs, using behavioral analysis instead of the com-
mon knowledge-based approach, focused on signature analysis.
Research into the subject of creating a modular behavior-based
analysis has been conducted, such as the one proposed by [5]
and [6]. In our project we combine domain knowledge with
information collected from multiple agents about the behavior
of possible threats and apply fuzzy logic to determine the
possibility of malicious intent. We designed the framework
as a multi-agent system that can be deployed on a centralized
server, collecting raw data from multiple sources and correlat-
ing the findings.

Our framework is developed with the goal to be deployed
as a stand-alone detection system, or complement currently
available off-the-shelf SIEM systems, working in parallel with
other detection tools, providing exponential benefits over an
extended period of time. The implementation and integration
of the MARK framework are shown in Figure 1.



The solid red arrow represents how the malicious actor can
set-up the instructions which should be relayed to the infected
machine inside the compromised network via a Command
& Control (CnC) channel, represented by the dashed red
arrow. This channel can be used by a malicious actor to
send commands to the infected machine and receive responses,
for example network reconnaissance information or exfiltrated
data. In the majority of protected networks, the outbound traffic
is restricted to only layer 7 channels, such as HTTP(S), SMTP
or DNS. This means that any CnC channel must pass through
the proxy choke point, denoted in blue. This is an important
reason why our system focuses primarily on analysis of HTTP
and SMTP proxy logs, as those are the most likely means
to detect the CnC channel communication with the malicious
server. The MARK framework continuously collects data from
the proxy, alongside netflow data and end-point data, shown
in green. All this information is fed to the MARK framework,
analyzed, aggregated and then, using visualisation techniques,
displayed to the domain expert for analysis. For a more in-
depth look at how the system is developed, the code for the
MARK framework is available at [7]. The agents, described

Figure 1. MARK framework diagram

in Section II-B, work independently from each other and their
results are aggregated and a ranking of the possible threats is
created, as shown in Section II-C. Our goal is to observe the
behavior of the different clients in the monitored network and
based on a list of characteristics, the framework will decide the
degree of suspiciousness a given connection has. The MARK
framework is not intended to classify by itself what is a threat
and what is benign, but to combine the detection system with
the knowledge of a domain expert in analysing and filtering the
results to come to these conclusions. This is enabled through:

• new agents can be configured for different precision
through parameterization and new ones can be added
as plug-ins

• using ”detection through visualization” implementing
Visual Analytics techniques [8]

• a whitelisting option is present so the analyst can
eliminate known harmless domains that may have
been flagged as false positives

B. Agents
The MARK framework is designed to be data agnostic;

different data sources can be added with minimal difficulty, and
the analysis capabilities can be extended, via a plug-in system,
with new detection techniques. In our current implementation
we have multiple detection agents for analysis of HTTP logs
and SMTP data. These agents are not meant to run on the
client machines, but act as independent modules, that focus
on specific behavioral characteristics of an APT. Through the
analysis of these different characteristics, the agent’s findings
are aggregated so significant patterns can be discovered. Each
agent can also be adapted through the use of parameters,
specific for each detection technique. The characteristics that
we focus on are the following:
• number of unique domains per IP and visa versa
• frequency and periodicity of the connection
• geo-positioning of connection’s server
• upload size and POST count
• ”lonely” single connections and time anomalies that

signify abnormal behavior
• unreachable server connections

C. Scoring and Aggregation
In the area of intrusion detection, aggregation can be

applied for a number of reasons. A first motivation can be
to obtain a condensed view of the outputs from a number
of IDS sensors located at different positions in the network
[9]. Another motivation can be to reduce the false alarm
rate by modeling attacks and correlating observed events with
known attack scenarios or intrusion objectives [10]. In our
APT detection system however, potential evidence about a
single event needs to be accumulated, evidence that is produced
by a number of independent agents, each verifying some a
priori defined hypothesis. Such a malware behavior hypothesis
expresses a specific part of the domain knowledge of a human
network security expert, who will typically use vague natural
language terms when expressing his knowledge. For that
reason the knowledge is represented in the form of fuzzy sets
and fuzzy expert system rules. The fuzzy set is defined as a
pair (U,m) with membership function:

m : U → [0, 1] (1)

For each evidence score produced, the suspiciousness of the
evidence x is defined by:

0 < m(x) < 1 (2)

In order to combine the fuzzy evidence, produced by the
different agents, we use the Ordered Weighted Averaging
(OWA) operator, introduced by Yager [11], that has been used
successfully for a number of evidence aggregation problems
in the area of network security [12]. The OWA operator is
defined by the function:

F (a1, ..., an) =

n∑
j=1

wjbj (3)

for a collection of weights W = [w1, ..., wn] and where bj is
the largest jth of the scores an.

At the end of the aggregation, a ranked list of possible
threats is compiled, where false positives are ranked lower and
the true positives are elevated.



III. EVALUATION THROUGH SIMULATED SCENARIOS

To determine the detection capabilities of the MARK
framework, three scenarios were developed and simulated log
files were generated to be analyzed by the system. This section
discusses how we simulate scenarios using real world data and
documented APTs, that are modeled and injected into the real
world log files. The flow of the aggregation and evaluation is
shown in Figure 2.

Figure 2. MARK evaluation diagram

A. Scenario configuration file
We test and validate the MARK framework through the use

of simulated scenarios and each scenario is defined through a
configuration file with the following parameters:

• predetermined duration of the scenario
• predetermined number of clients and respective IPs
• real world data used to generate the logs to be ana-

lyzed
• set number of attacks, which have:

◦ predetermined victim (internal IP that is con-
sidered infected)

◦ type of attack
◦ characteristics of the attack

When each scenario is generated, a ”ground truth” file is also
created that holds information about the attacks that have been
injected. This ”ground truth” file is used during the evaluation
to determine if the attacks have been successfully detected and
placed high in the ranked list.

1) Dataset used: Recent real world log files, provided by
various agencies, are used to simulate our scenarios and keep
them as close as possible to real world situations. Each log
file, originally in JSON proxy format, consists of all the HTTP
connections from a single day. The proxy logs are transformed
from JSON format to SQUID format, but other formats can
easily be supported by the framework. The specifications of the
real world datasets used for evaluation, are shown in ”Table I”.
The scenario configuration file is read to determine the start

TABLE I. REAL WORLD DATASET SPECIFICATIONS

Original Format real world proxy logs
Transformed Format Squid logs
Number of Log Files 106

Size 336.3 GB

date, end date and the IP addresses of the network. A mapping
is done between the real world IP addresses from the proxy
logs and the IP addresses to be used in the scenario.

2) Whitelisting: While running the scenarios, whitelisting
is used to remove known no-threat servers from the results.
This is done for two reasons:

1) Known servers such as facebook/google/etc. have
services that constantly send requests to their servers
in a periodic manner, which can cause false detection
(ex. facebook groups, google analytics, windows live)

2) Known adwares have similar behaviors to APTs,
where periodic connection is established to the ad-
server, which can also be regarded as a false positive
detection.

For the preliminary analysis we use two whitelists:

• Whitelist.txt - holds a regex of known non-threat
domains which have produced an evidence. After
analysis they have been considered harmless

• 1Hosts Pro Domains.txt - a compilation of 217.530
known adware domains [13]

B. Simulated Scenarios
A number of attacks are simulated and injected in the

real world log files to act as our simulated network activity.
These logs serve to simulate the background traffic that occurs
daily in any given network and is used by malicious actors to
obfuscate their actions. The injected attacks range from basic
periodic attacks to high complexity real world APTs such as
the Trojan Nap APT [14], the Regin APT [15] and Careto
APT [16]. These APTs are used as baseline and modified
to generate synthetic APTs with variable behavior through
parameterization, where a variable density of attacks is defined
for each scenario. In such a manner the framework’s detection
capabilities can be tested with varying degrees of difficulty.

For the sake of brevity we will showcase the characteristics
of one of the scenarios used.

1) Scenario 1: The first scenario consists of multiple hosts
inside a network that have been infected and a static, periodic
CnC channel has been established between them and an outside
server.

2) Scenario 2: The second scenario uses state models that
simulate real world APTs, with high density through the use
of outbound connections with high periodicity.

3) Scenario 3: In the third generated scenario, the du-
ration is doubled and a larger number of clients are used.
State models of real world APTs are used, but lower APT
density is defined through lower and varying periodicity. The
characteristics of Scenario 3 are shown in ”Table II” and the
generated scenario variations are shown in ”Table III”.

TABLE II. SCENARIO 3 SPECIFICATIONS

File Format text file
Logline Format Squid logs

Subnet 10.0.0.1 - 10.0.0.249
Number of Attacks 10

Average Running Time 90 hours



TABLE III. SCENARIO 3 GENERATED LOGFILES

Name Lines Unique Client-Server pairs
scenario3.1 2302306 97230
scenario3.2 2208271 91528
scenario3.3 2619919 93360
scenario3.4 2867952 98962
scenario3.5 2590393 96000
scenario3.6 2994435 106286
scenario3.7 2453249 89857
scenario3.8 2697416 102319

C. Iterative Evaluation
To evaluate our findings, each scenario is run multiple

times, where each time we run a different variant of the sce-
nario with different modeled attacks and varying parameters.
The evaluation happens in multiple:

1) review the results generated by the individual agents
2) evaluation of the precision of the OWA operator

weights
3) generate the Receiver Operand Characteristics (ROC)

and Area Under the Curve (AUC) for each scenario
variation using the produced ranked list

4) compute the amount of data a domain specialist has
to manually analyze to discover all true threats

1) Agent Evaluation: Each agent is responsible for a spe-
cific characteristic analysis and presents different paradigms.
We can evaluate the results generated by comparing them
to the already known behavior of the generated APTs and
further analyze other highly ranked connections that might
be of importance. To showcase how the different agents are
evaluated, the output of the Frequency Agent is presented.

Frequency Agent: As with other agents, a set of specific
parameters exists that can be adapted to fine-tune the detection
rate of the agent. The Frequency agent is defined through the
following parameters:

• time window of analysis, by default set to 24 hours
• sampling interval, set to 2 seconds
• minimum coverage by the peaks detected, modeled

using fuzzy logic parameters set to [0.1, 0.5, 0, 1]

• peak threshold, set to 1.3
• suspiciousness score, modeled using fuzzy logic pa-

rameters set to [1.3, 2, 0, 1]

First the periodicity is determined through the computation
of a Frequency Spectrum using a Fast Fourier Transformation
(FTT) and further removing unnecessary noise data as shown
in Figure 3. Through this type of visualization, it is clear that
a periodic frequency is present. Any peaks under the threshold
(blue line) are considered noise and disregarded. As with all
detection agents, the threshold selected is adapted manually for
the highest performance. A Time Sequence is also generated
as shown in Figure 4, to better visualise if a periodicity is
present. Comparing the results to the ”ground truth” can show
if adjustment of the parameters is needed for better precision.

2) Scatterplot Evaluation: By plotting the highest and the
second highest scores for each tuple client-server, using a
scatterplot, we can evaluate if the weights used in our OWA

Figure 3. Frequency Spectrum between (Client:Server) smoothing for
10.0.0.10 : cnc.apt.com

Figure 4. Frequency Time Sequence between (Client:Server) 10.0.0.10 :
cnc.apt.com

aggregation are precise or if they need to be adjusted. A scatter-
plot generated for one simulated scenarios is shown in Figure
5. The weights used for the evaluation are [0.2, 0.4, 0.3, 0.1],
where the highest produced score is assigned a lower score to
prevent agents that are more active and produce a large amount
of evidence to generate high quantities of false positives. The
true detection scores are all situated in the top right corner
of the graph, signifying that both the highest and the second
highest scores given by the detection agents were high. The
majority of false detection are placed on the bottom, as a score
for them has been generated only by one of the agents, where
the other one didn’t qualify them as suspicious.

The goal is to find a separation line and its slope in such
a way that all true detection is above the line and as many
possible false detection are situated under the line. To do that,
we first need to calculate the blue line and rotate it 90◦ to get
the function describing the black line and its slope. A number
of false positives will always be included above the separation



Figure 5. Example Scatterplot Scenario 2.6

line, but that number can be minimized.

3) Boxplot and ROC: To evaluate our ranked list and the
precision of our detection, we compute ROC and calculate the
AUC. The ROC is a graphical representation that illustrates
the diagnostic capabilities of a detection system. It is created
by plotting the true positive rate (true detection) against the
false positive rate (false alarm). The goal is to have a ROC
that climbs as fast as possible, which would signify that the
true positives are encountered earlier in the list, ideally at the
top of the ranked list.

The Area Under the Curve gives a score that allows us to
easily evaluate and compare the performance of the framework
across multiple scenarios. The closer to 1 the AUC is, the
better is the performance. All the calculated ROC and AUC for
Scenario 3, described in Section III-B3, are shown in Figure 6.
Sub-figure (a) shows the results when no whitelisting was used.
For comparison, in sub-figure (b) the results when whitelisting
has been applied to the generated ranked lists are shown. It is
important to note that the results become better as we embody
the role of the domain expert and analyze the entries of the
ranked list.

In the Boxplots presented in Figure 7, the distribution of
the AUC values calculated for our scenarios is presented. The
results show a high detection rate, though the results are not
tightly grouped. By applying whitelisting the resulting median
is higher and lower variation in results is present. This signifies
that our results become more homogeneous and even though in
each scenario and its variations the attacks were parameterized
differently, generally all attacks were ranked high and close
together.

4) Manual analysis of the generated data: The final step
is to consider the amount of entries a domain expert has to go
through manually, to be able to detect all possible infections.
As we see in the results presented in Table IV, with some
exceptions, 100% of all attacks have been ranked in the top 20.
This means that an analyst would need to analyze 20 entries,
to be sure to go through all possible attacks in these particular
scenarios. T his is highly important as our framework is
designed to work hand in hand with a real world domain expert

TABLE IV. SCENARIO 3 NUMBER OF ENTRIES TO ANALYZE FOR
100% TRUE DETECTION

# List PD score Scenario 3 variants
Entries 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

10 0.4 0.9 0.9 0.9 0.6 0.4 0.9 0.9
20 0.9 1.0 1.0 1.0 1.0 0.9 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

through the use of Visual Analytics and domain knowledge.
It is imperative to minimize the time spent by the analyst on
reviewing insignificant data and instead focus on information
that is of greater importance.

IV. CONCLUSION

Throughout the research and development of the MARK
framework, it became evident that the need for a robust system
for APT detection is apparent. The system we developed offers
a novel solution for the detection of attacks that typically offer
greater challenge to detect, because of their unique nature.

During the evaluation we discovered the importance of
setting the OWA operator weights correctly greatly benefices
the correct ranking of the threats. Furthermore, by judiciously
choosing the assigned weights, the amount of false positives
can be lowered drastically.

The efficiency of the framework is demonstrated via the
ROC and AUC computed for the different generated scenarios.
It can be observed that the AUC is close to 1, signifying that
all malicious connections have been discovered and placed at
the top of the ranking list. This also leads to better visibility for
the domain expert and significantly less time spent on analysis
of large amounts of data.

V. FUTURE WORK

There are multiple avenues that can be examined for the
future development of the MARK framework. First we will
research and implement new detection techniques such as the
use of graph theory for APT detection, as showcased in [17].

The aggregation of our evidences can be fine-tuned
by incorporating the Weighted Ordered Weighted Averaging
(WOWA) operator [18] and combine it with Machine Learning
algorithms to augment the multi-criteria decision system [19].
Using WOWA we are not limited to assigning weights to the
different scores produced by the agents, but also to the agents
themselves.

Different network infrastructures have different specifica-
tions. As a future work we intend to implement Machine
Learning algorithms and semi-supervised learning techniques
[20], that will help configure the parameters used by the dif-
ferent detection agents depending on the environment wherein
the MARK framework is deployed.
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