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“ A man should look for what is, and not for what he
thinks should be.”

Albert Einstein

“ Chance is a word void of sense; nothing can exist without
a cause.”

Voltaire
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Abstract

In the recent years, the security community has observed a paradigm shift in the nature
of attack phenomena in the Internet. Many security experts have acknowledged the fact
that the cyber-crime scene is becoming increasingly organized and more consolidated. As
organized crime has always gone where money could be made, cyber-criminals have, not
surprisingly, developed an underground economy by which they are able to monetize all
sort of malicious activities, like identity theft, fraud, spam, phishing, extortion, etc. Most
of those illegal activities are presumably enabled by creating large groups of compromised
machines (also called botnets) that are remotely controlled and coordinated by criminal
organizations.

Even though there are some plausible indicators about the origins, causes, and conse-
quences of these new malicious activities, very few claims can be backed up by scientific
evidence. In particular, many questions remain regarding the attribution of the attacks
and the organization of cybercrime. The main reason is that no global threat analysis
framework exists to rigorously investigate emerging attacks using different data sources
and different viewpoints. Up to now, much emphasis has been put on the development of
data collection infrastructures, such that detailed information could be gathered on various
aspects of Internet threats. However, current analysis techniques remain rather immature,
and do not allow us to discover or extract new relevant knowledge about those coordinated
attack phenomena.

The main contribution of this thesis consists in developing an analytical method to sys-
tematically address this complex problem related to attack attribution in cyberspace. Our
approach is based on a novel combination of a graph-based clustering technique with a data
aggregation method inspired by multi-criteria decision analysis (MCDA). More specifically,
we show that it is possible to analyze large-scale attack phenomena from different view-
points, revealing meaningful patterns with respect to various attack features. Secondly, we
show how to systematically combine all those viewpoints such that the behavioral proper-
ties of attack phenomena are appropriately modeled in the aggregation process.

Consequently, our global threat analysis method can attribute (apparently) different
security events to a common root cause or phenomenon, based on the combination of all
available evidence. Perhaps even more importantly, our attack attribution technique can
also enable a precise analysis of the modus operandi of the attackers. This can help an
analyst to get better insights into how cybercriminals operate in the real-world, but also
which strategies they are using.

Finally, thanks to its generic aspect, we are able to apply the very same approach to a
broad range of security data sets without any fundamental modification. An experimental
validation on two completely different data sets (i.e., honeypot traces and rogue antivirus
websites) demonstrates the applicability and the effectiveness of our attack attribution
method.
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Résumé

Ces dernières années, les experts en sécurité ont observé un changement radical dans la
nature des phénomènes d’attaque sur Internet. La plupart des experts ont d’ailleurs re-
connu le fait que le phénomène global de cybercriminalité est devenu de plus en plus
organisé et consolidé. Il est bien connu que le crime organisé s’est toujours développé là où
d’importants profits financiers peuvent être réalisés, c’est pourquoi il n’est pas surprenant
qu’une nouvelle économie “underground” se soit développée par laquelle les cybercriminels
peuvent monétiser toutes sortes d’activités malveillantes, telles que le vol d’identité, la
fraude, le spam, l’hameçonnage, l’extorsion, etc. La plupart de ces activités illégales sem-
blent être facilitées par la création de véritables armées de machines compromises (appelées
“botnets”) qui sont contrôlées à distance et coordonnées par des organisations criminelles.

Même s’il existe des indices probables indiquant les origines, les causes et les con-
séquences de ces nouvelles activités malveillantes, assez peu d’affirmations peuvent être
réellement soutenues et démontrées par des preuves scientifiques. En particulier, pas mal
de questions subsistent concernant l’attribution des attaques et l’organisation de la cy-
bercriminalité. Ceci est principalement dû au fait qu’il n’existe pas d’outil d’analyse de
menace globale qui permet d’investiguer des phénomènes d’attaque en utilisant différentes
sources de données et différents points de vue. Jusqu’à présent, beaucoup d’efforts ont été
consacrés au développement d’infrastructures de collecte de données, de sorte que des infor-
mations précises et détaillées puissent être rassemblées à propos des menaces sur Internet.
Par contre, les techniques d’analyse actuelles restent, quant à elles, plutôt immatures et ne
permettent pas d’extraire des connaissances nouvelles et pertinentes sur ces phénomènes
d’attaque coordonnés.

La contribution principale de ce travail est le développement d’une méthode analytique
permettant d’aborder de manière systématique le problème de l’attribution d’attaque dans
le cyber-espace. Le caractère innovant de l’approche choisie consiste à combiner une tech-
nique de regroupement basée sur les graphes, avec une méthode de fusion de données in-
spirée par le domaine de l’analyse décisionnelle multicritères (MCDA). Plus spécifiquement,
nous démontrons d’abord qu’il est possible d’analyser des phénomènes d’attaque distribués
à grande échelle à partir de différents points de vue révélant des motifs de corrélation in-
téressants par rapport à des caractéristiques d’attaque diverses. Ensuite, nous démontrons
comment combiner systématiquement tous ces points de vue de sorte que les propriétés
comportementales des phénomènes étudiés soient modélisées de manière adéquate dans le
processus d’agrégation de données.

Grâce à la combinaison appropriée de tous les indices disponibles, cette méthode globale
d’analyse de menace peut non seulement attribuer des événements semblant différents
à première vue, à une même cause d’origine ou à un même phénomène, mais l’aspect
sans doute le plus intéressant est qu’elle facilite aussi l’analyse des modes opératoires des
attaquants. Par conséquent, ceci permet à un analyste d’avoir une meilleure vue globale
sur les stratégies réellement utilisées par les cybercriminels.

Finalement, grâce à son aspect générique, la méthode peut aisément être appliquée à
un large éventail de données, sans que cela ne nécessite de changement fondamental. Une
validation expérimentale sur deux ensembles de données complètement différents (i.e., des
traces d’attaque collectées par des honeypots et des sites web distribuant de faux logiciels
antivirus) démontre l’applicabilité et l’efficacité de notre méthode d’attribution d’attaque.
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Chapter 1

Introduction

“ The Internet is the first thing that
humanity has built that humanity doesn’t understand,

the largest experiment in anarchy that we have ever had.”
– Eric Schmidt

Understanding the existing and emerging threats on the Internet should help us to
effectively protect the Internet economy, our information systems and the net citizens.
This assertion may look blindingly obvious to many people. However, things are less
evident when looking more closely at the problem. Among security experts, there is at
least one thing on which everybody agrees: combating cyber-crime becomes harder and
harder [137, 33, 127]. Recent threat reports published by major security companies have
also acknowledged the fact that the cyber-crime scene is becoming increasingly more or-
ganized, and more consolidated [157, 158, 72, 94].

There is obviously more at stake than just technical challenges, hacking fame, or digital
vandalism. Money is at stake. In the last years, it has been often reported that cyber-
criminals were building and maintaining an underground economy, which can offer the
commoditization of activities, such as the sale of 0-day exploits or new malware, the sale
of compromised hosts, spamming and phishing resources, the sale of stolen credentials,
etc [54, 158]. In most cases, these illegal and profitable activities are enabled by gaining
control over botnets [11, 34, 126, 10] comprising thousands or even millions of machines,
with many of those computers belonging to innocent home users. The worldwide spam
problem is also largely due to those groups of compromised computers under the control
of cyber criminal organizations. According to the 2009 Annual Security Report of Mes-
sageLabs [94], the annual average spam rate was 87.7% of all intercepted messages (an
increase of 6.5% w.r.t. 2008), with 83.4% of this spam volume that originated only from
botnets. As analyzed by SecureWorks [151], in 2008 the top botnets were collectively able
of sending over 100 billion spams per day. Today, this figure has further increased to 107
billion spams per day [94].

Perhaps even more worrying, the analysis of recent “cyber conflicts”, such as the pre-
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sumed cases related to Estonia and Georgia [3, 37, 41], have led experts to the conclusion
that botnets can be easily turned into digital weapons. Botnets can be used by cybercrimi-
nals (or dissidents) to attack the network resources of a country by performing Distributed
Denial-of Service (DDoS) attacks against critical web services (e.g., DNS servers, network
routers, government or financial websites, etc), which can lead to substantial economical
or financial loss. A deep understanding of the long-term behavior of those new armies, and
their evolution, is thus a vital requirement to combat effectively those latent threats [168].

Recently, we have also observed the monetization of another type of illegal activi-
ties through the propagation and distribution of rogue anti-virus software. Using social
engineering, but also some highly-sophisticated techniques (such as the exploitation of
client-side vulnerabilities or compromising legitimate web sites), cyber-crooks are able to
distribute rogue AV programs, thanks to which they generate a substantial profit [159,
112, 36]. The business model of those miscreants is presumed to be an affiliate-based
structure, with per-installation prices for affiliate distributors. The volume of profits
generated for those cyber-criminals is impressive: earnings of as much as $332,000 a
month were reported in affiliate commissions alone, as observed on the distribution website
TrafficConverter.biz [77, 159].

Open questions in security

Since 2003, there seems to be a shift in the nature of attacks in the Internet, from server-
side to client-side attacks and from fast spreading worms to profit-oriented activities like
identity theft, fraud, spam, phishing, online gambling, extortion. Most of those illegal
activities are supported by several large botnets controlled by criminal organizations. All
the facts and figures presented in public threat reports are certainly valuable and help to
shed some light on those cyber-criminal phenomena, but a lot of unknowns remain.

Current analysis techniques do not allow us to automatically discover new relevant
knowledge about attack phenomena, certainly not from a strategic viewpoint. Today,
there is still a gap of knowledge between what we believe to be happening, and what we
can actually observe and prove scientifically. Even if there are some plausible indicators
about the origins, causes, and consequences of these new malicious activities, very few
claims can be backed up by scientific evidence. The main reason is that no global threat
analysis framework exists to rigorously investigate emerging attacks using different data
sources, and different viewpoints.

Consequently, many open issues remain. Who is behind the current attacks, i.e., how
many organized communities are responsible for them? Where do they originate? How
many organizations control the botnets? What are the emerging strategies used in cyber-
crime? Which “rogue networks” [152] are used as bullet-proof hosting (e.g., RBN1, Atrivo
a.k.a. Intercage, McColo, or 3FN, and maybe some others), but more importantly, how do
they evolve over time ? Are botnets able to coordinate their actions?

As another example, we observe a growing number of malware of various types spread-
ing all over the Internet, sometimes at a very high pace. For instance, companies like
VirusTotal and Symantec receive hundreds of thousands of seemingly unique malware

1The Russian Business Network (RBN) is a multi-faceted cybercrime organization, which is notorious
for its hosting of illegal and dubious businesses such as phishing, spam, child pornography and malware
distribution http://www.bizeul.org/files/RBN_study.pdf.
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samples per week. Figuring out which groups of malware samples are likely due to the
same criminal organization, or could be linked to the same root phenomenon, is a daunting
task for which no real solution has been found yet. To succeed, defenders need to have
at their disposal efficient techniques that prioritize for them the malware they should first
look at, depending on their likely impact. They must have tools and techniques to support
them characterizing the threats and producing countermeasures in an automated way, as
much as possible. The answers to such questions are extremely important, as they help
decision makers to invest in the appropriate security measures. Without such knowledge,
security decisions tend to be stabs in the dark.

Attack attribution

All previously described issues are related to a common security problem often referred
to as “attack attribution”. The main contribution of this thesis consists in developing an
analytical method in order to systematically address the problem of attack attribution,
i.e., how to attribute (apparently) different attacks to a common root cause, based on the
combination of all available evidence.

By root cause, we do not refer to the identification of a given machine that has launched
one specific, isolated attack. Instead, we are interested in having a better idea of the various
individuals, groups or communities (of machines) that are responsible for large-scale attack
phenomena. A method for attack attribution must also enable a precise analysis of the
modus operandi of the attackers. As a result, it will also help an analyst to get better
insights into how cybercriminals operate in the real-world, and the strategies they are
using.

Note that the ultimate goal of this work is not to offer names of individuals to law
enforcement agencies. The goal is, instead, to provide models of the acting entities that
we are facing. Through generalization, these models can help in understanding the threats
that every person or organization who connects to the Internet currently faces.

Finally, a last important requirement is the generic aspect of the method. We must be
able to apply the very same approach to a broad range of security data sets, and thus the
method should not be tailored to fit the needs of one specific data set only.

1.1 Problem statement

We have outlined here above some very important open issues in security, and the need for
developing a systematic approach to facilitate the attack attribution process. This leads
us to define the following problem statement.

Can we effectively address the problem of attack attribution in the cyber-space
by means of a systematic, analytical approach?

Conceptually speaking, this problem comes down to mining a very specific dataset,
made of attack traces that are presumably representative of the various phenomena under
scrutiny. To address the problem, we have thus focused on clustering and classification
techniques applied to attack events, which are enriched with metada and contextual infor-
mation. By grouping them based upon a series of common elements, we hope to be able to
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derive semantically rich models but also to effectively associate new phenomena to previous
ones. We will use all sort of metadata related to the attacks in order to group, as much
as possible and in a meaningful way, the observed phenomena. Examples of information
that could possibly help such an analysis are the origins of the attack, their timing, their
spreading strategy, their coding style, their behavior, etc. These various characteristics
will be also referred to as attack features.

In our approach, we hypothesize that coherent data sets (e.g., honeynet data, malware
repositories, web crawlers) are available for the observation and analysis of these attack
phenomena. Another reasonable assumption is that the high degree of coordination in-
herent to cybercriminal organizations should be reflected by various types of correlation
patterns between different attack events. Those correlations are usually hidden in large se-
curity data sets, which justifies the use of data mining and knowledge discovery algorithms.
Consequently, we formulate the following hypotheses:

• Hypothesis 1 (H1): attack phenomena can be observed through different sensors
distributed in the cyber-space. The design and diversity of those sensors allow to
collect observations whose features are representative and sufficiently discriminant
for the phenomena under study.

• Hypothesis 2 (H2): at any given point in time on which it can be observed, an
attack phenomenon should exhibit at least a number of features k (with k > 1) that are
correlated with precedent or subsequent observations of this very same phenomenon.

From the problem statement and considering the hypotheses here above, we derive two
specific research questions:

• Research question 1 (RQ1): how can we analyze attack phenomena from separate
viewpoints, revealing different correlation patterns?

• Research question 2 (RQ2): how can we systematically combine all viewpoints
such that the behavioral properties of attack phenomena are appropriately modeled in
the aggregation process?

In particular, research question RQ1 deals with the knowledge discovery process within
security data sets, with the purpose of creating separate viewpoints with respect to mean-
ingful attack features, whereas RQ2 deals with the fusion of all viewpoints, by combining
the extracted correlations in a systematic and effective way. Moreover, we will show in
Chapter 4 that RQ2 can be further divided into two sub-problems: (1) a problem related
to the dynamic aspect of attack phenomena, i.e., the fact that certain attack features of a
given phenomenon may evolve between two points in time on which we observe them; and
(2) the problem of uncertainty which is inherently associated to any real-world phenomenon
and to imperfect measurements.

1.2 Research methodology

A careful review of the relevant literature revealed the insufficiencies of existing analysis
techniques for addressing the problem stated here above. This enabled us to establish an
appropriate research methodology.
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First, we have considered different data mining approaches, in particular unsupervised
clustering techniques, in order to find meaningful patterns in a security data set [165]. Vari-
ous types of statistical distances were evaluated such that the extracted patterns were truly
reflecting meaningful correlations. Several experiments on network attack traces validated
the soundness of our graph-based clustering approach. The results were quantitatively
evaluated by means of cluster validity indices. We performed also a qualitative evaluation
using different cluster visualization techniques (such as dimensionality reduction), which
enabled us to assess the meaningfulness of the approach [39].

To address the aggregation problem, different data fusion and automated classification
techniques were considered, e.g., clusters intersections (based on Formal Concept Analy-
sis [166]), ensemble learning, artificial neural networks (ANN), Bayesian inference system,
decision trees, Support Vector Machines (SVM), combinatorial optimization (Simulated
Annealing and Hill Climbing), among others. Their capability and appropriateness for
combining different security viewpoints was evaluated. However, the unsupervised aspect
of the attack attribution problem led us to reject machine learning techniques whose effec-
tiveness highly depends upon representative training data sets. Considering the intrinsic
fuzzy aspect of real-world phenomena, fuzzy inference systems (Mamdani, Sugeno) were
then evaluated, by which fuzzy rules could be elaborated to model arbitrary combinations
of features among attack events [167, 168].

Consequently, we have further investigated different aggregation functions used in
multi-criteria decision analysis (MCDA) as a way to combine multiple edge-weighted sim-
ilarity graphs, with the purpose of finding connected components in the aggregated graph.
The resulting clusters were evaluated quantitatively using the graph compactness index
(on a per-feature basis), and qualitatively by visually assessing the correlations by means
of multidimensional graphs.

Finally, the overall method was validated experimentally on two security data sets
representing completely different attack phenomena [40, 36, 159].

1.3 Structure of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we review the relevant
literature and we compare our multi-criteria approach with other analysis techniques cur-
rently used in different domains related to threat monitoring, security data mining, and
multi-criteria decision analysis.

Chapter 3 attempts to answer research question RQ1, by presenting a graph-based
knowledge discovery technique that can be applied to security data sets in order to extract
meaningful correlation patterns with respect to different attack features. In Chapter 4, we
attempt to answer research question RQ2. In particular, we show how we can effectively
combine or aggregate different attack features using a method based on multi-criteria
decision analysis (MCDA).

Chapters 5 and 6 present in detail our experimental validation on two different security
data sets. In Chapter 5, we have applied our method to a set of real-world attack traces
collected by worldwide distributed honeypots during more than two years. An in-depth
analysis of the experimental results is also provided to demonstrate the kind of insights
we obtain into the behaviors of large-scale coordinated phenomena which have been called
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Misbehaving Clouds. In Chapter 6, we present another experimental validation performed
on a specific security data set made of rogue Anti-Virus web sites. By attributing rogue
web sites to a common root cause, we show how our technique offers a unique perspective
on how rogue AV campaigns and their server-side components are effectively organized,
created and managed by cyber-criminal organizations responsible for them.

Finally, Chapter 7 concludes the thesis by presenting the answers to the research ques-
tions and to the problem statement. This final Chapter gives also some interesting per-
spectives on future research for improving our approach.



21

Chapter 2

Background and Related Work

“ The art and science of data fusion is directly applicable
in cyberspace for intrusion and attack detection.”

– Tim Bass [12]

As introduced previously, the main contribution of this thesis consists in developing
a generic analysis method applicable to a broad range of security data sets, in order to
systematically address the problem of attack attribution, or how to attribute different
attacks to a common root cause. This method must not only help an analyst to determine
the root causes of attack phenomena in the cyber space, but also emphasize the modus
operandi of attackers.

As a matter of fact, our research methodology lies at the crossroads of several research
areas, which are briefly reviewed in this Chapter. We start by introducing the concept of
attack attribution, as we refer to in this dissertation. Then, we review different research
domains that are relevant to our discussion.: (i) the monitoring of malicious activities in
the Internet; (ii) investigative and security data mining; and (iii) multi criteria decision
analysis (MCDA), in particular in the security field.

2.1 Foreword

There is apparently no universally agreed definition for “attack attribution” in the cy-
ber domain. If one looks at a general definition of the term to attribute in a dictionary,
he will find something similar to: “explain by indicating a cause”1, or “regard something
as being caused by (someone or something)”2. However, most previous work related in
cyber-security use the term “attribution” as a synonym for traceback, which consists in “de-
termining the identity or location of an attacker or an attacker’s intermediary” [186]. In the
context of a cyber-attack, the obtained identity can refer to a person’s name, an account,
an alias, or similar information associated with a person, a computer or an organisation.

1Definition given by Merriam-Webster. http://www.merriam-webster.com/dictionary/attribute
2Definition given by the New Oxford American Dictionary.
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The location may include physical (geographic) location, or any virtual address such as
an IP address. In other words, IP traceback is a process that begins with the defending
computer and tries to recursively step backwards in the attack path toward the attacker
so as to identify her, and to subsequently enable appropriate protection measures. The
rationales for developing such attribution techniques lie in the untrusting nature of the
IP protocol, in which the source IP address is not authenticated and can thus be easily
falsified. For this reason, most existing approaches dealing with IP traceback have been
tailored toward (D)DoS attack detection, or eventually to some specific cases of targeted
attacks performed by a human attacker who uses stepping stones or intermediaries in order
to hide her true identity.

Some typical methods used for IP traceback include packet marking techniques ([135,
147, 15]), maintaining information on routers situated on the path between the attacker
and the defender [146], packet watermarking techniques [179], and reconfiguring network
paths during an attack (e.g., controlled link flooding [22]). An extensive survey of attack
attribution techniques used in the context of IP traceback is available in [186].

In this work, we refer to “attack attribution” as something quite different from what is
described here above, both in terms of techniques and objectives. Although tracing back
to an ordinary, isolated hacker is an important issue, we are primarily concerned by larger
scale attacks that could be mounted by criminal organizations, dissident groups, rogue
corporations, and profit-oriented underground organizations.

We aim at developing an effective and systematic method that can help security analysts
to determine the root cause of global attack phenomena (which usually involve a large
amount of sources or events), and to easily derive their modus operandi. These phenomena
can be observed through many different means (e.g., honeypots, IDS’s, sandboxes, web
crawlers, malware collecting systems, etc). Typical examples of attack phenomena that
we want to identify and characterize can go from malware families that propagate in the
Internet via code injection attacks, to zombie armies controlled by underground groups
and targeting machines in the IP space, or even to rogue networks hosting large amounts
of malicious websites deployed by cyber-crooks to propagate fake security software.

Attack phenomena are often largely distributed in the Internet, and their lifetime can
vary from a few days to several months. They typically involve a considerable amount of
features interacting sometimes in a non-obvious way, which makes them inherently complex
to identify. Due to their changing nature, the attribution of distinct events to the same
root cause can be a challenging task, as several attack features may evolve over time (e.g.,
geographical or network origins, targeted IP space, type of exploit or malware, etc).

As noted by Tim Bass in [12] , “Next-generation cyberspace intrusion detection (ID)
systems will require the fusion of data from myriad heterogeneous distributed network
sensors to effectively create cyberspace situational awareness [...] Multisensor data fu-
sion is a multifaceted engineering approach requiring the integration of numerous diverse
disciplines such as statistics, artificial intelligence, signal processing, pattern recognition,
cognitive theory, detection theory, and decision theory. The art and science of data fusion
is directly applicable in cyberspace for intrusion and attack detection”.

Not surprisingly, our methods are at the crossroads of several active research domains.
More specifically, we have categorized previous works that are relevant for this state-of-
the-art as follows:
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(i) general techniques used for analyzing malicious activities on the Internet, with an
emphasis on methods that aim to improve the “cyber situational awareness” (Cyber-
SA);

(ii) investigative and security data mining, i.e., knowledge discovery and data mining
(KDD) techniques that are specifically tailored to problems related to computer
security or intelligence analysis;

(iii) problems related to multi criteria decision analysis (MCDA), and multisensor data
fusion.

In the next Sections, we give an overview of some key contributions in each research
area. We also compare our approach with current analysis techniques used in each domain.

2.2 On the analysis of malicious activities

The experimental study of attacks on the Internet is a very active research domain. In the
recent years, it has quite naturally gained a lot of attention, due to a substantial increase
in cyber-criminal activities. To get a better understanding of the emerging threats that
are targeting the Internet or people using it, we need to collect sound measurements about
the ongoing attack phenomena observed worldwide on the net.

Broadly speaking, there are four classes of techniques used to monitor malicious network
activities in the Internet: (i) honeypots; (ii) Internet telescopes and darknets; (iii) IDS and
firewall logs sharing; and (iv) malware collection initiatives.

We give a brief overview of each of them here after. Note that we are primarily con-
cerned by the data analysis perspective of each approach, rather than how we can build
those various security data sets. Indeed, it is out of the scope of this dissertation to de-
scribe the technical details of each type of sensor. This information can be found in several
previous works, such as in [187, 82, 117, 120], which provide extensive technical surveys of
projects aiming at developing and deploying sensors to collect specific data on malicious
activities.

2.2.1 Analysis of honeypot traffic

To observe malicious activities, a first approach consists in deploying so-called honeypots at
several places in the Internet in order to collect unsolicited traffic. A classical definition of
a honeypot was given by Lance Spitzner, which states that “a honeypot is an information
system resource whose value lies in unauthorized or illicit use of that resource” [149].
Informally, honeypots are vulnerable computers intentionally set up as traps to observe
attackers on the Internet. Honeypots have normally no production value and hence should
not see any legitimate traffic or activity. Whatever they capture can then be considered
as malicious, or at least suspicious. A commonly-used approach to categorize honeypots
is by considering their level of interactivity:

• honeypots performing simple service emulation are categorized as low-interaction
honeypots, such as Honeyd [110], Honeytrap [183], Nepenthes [5] or Billy Goat [128];
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• honeypots can offer more advanced emulation and are then called medium-interaction
honeypots. A good example is ScriptGen [84], which implements a novel service
emulation combined with an automated protocol learning approach (see also [82]);

• and finally, honeypots can also run real services (i.e., high-interaction honeypots),
like Argos [119] or Honeywall developed by The Honeynet Project [162].

In most cases, honeypots are configured to listen to some unused (or “dark”) IP ad-
dresses, and they wait passively for attackers to probe them. In this case, we talk about
server honeypots. A contrario, client-side honeypots follow a different approach. Instead of
waiting to be attacked, they are actively searching the Internet for other types of attacks
that are usually linked to web threats hosted on malicious or compromised web servers, and
targeting different vulnerabilities in client applications such as Internet browsers. Some
examples of client-side honeypots (also called honeyclients) are HoneyC (a low interac-
tion client honeypot [139]), Capture (a high interaction client honeypot solution, see [24]),
Strider HoneyMonkeys [180], and Shelia [129], which can also emulate an e-mail client by
examining e-mail attachments. More recently, Nazario has developed PhoneyC [107], a
new virtual client honeypot solution (completely written in Python). PhoneyC is able to
remove the obfuscation from many malicious pages, and can emulate specific vulnerabilities
to pinpoint the attack vector.

In the recent years, honeypots have thus proved being valuable means for gathering
and analyzing information about cyber-attacks. By extension, a network of interconnected
honeypots has been termed “honeynet”, and different projects take advantage of honeypot
sensors to deploy large-scale, sometimes even complex infrastructures for collecting vast
amounts of data regarding global malicious activities in the Internet. An example of such
distributed architectures is the Leurré.com Project [86], a worldwide distributed honeypot
deployment based on a modified version of Honeyd. In 2008, this project was improved
and extended by the SGNET deployment [83, 85], which is based on a distributed set of
ScriptGen sensors. Other well-known examples of distributed architectures are (among
others) NoAH [108], Collapsar [73], Potemkin [178], ARAKIS [26] and Honeytank [176],
which were extensively reviewed in other previous works such as those mentioned previ-
ously.

In the first experimental validation of this dissertation, we have used a particular data
set made of attack traces collected for almost two years by a distributed set of honeypots
(deployed by the Leurré.com Project). However, quite differently from all previous analyses
of honeypot traffic, our approach leverages multiple attack features by relying on a multi-
criteria aggregation process that can model the behavior of attack phenomena with little
prior knowledge. Moreover, some key features used in our analysis include external or
contextual information such as the spatial distributions (in terms of originating countries
and IP subnets) of malicious sources involved in attack events observed by the honeypots.
As we show in the experimental results, some unique insights can be obtained into the
behavioral characteristics of large-scale phenomena (which we have called Misbehaving
Clouds), and these could not have been found previously using more classical analysis
techniques.

Finally, the previous work that is the closest to ours is due to Pouget in [120], where
the author proposed a clique-based clustering approach to analyze correlations found in
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honeypot traffic. Our work has extended but also largely improved this approach. In
particular, we note the following improvements:

• a first notable difference concerns the data input to the correlation method. Pouget
has applied a clique-based clustering to so-called attack fingerprints which represent
long-lasting activities (usually, more than a year), whereas we propose to use attack
events or relevant activity, which are defined on shorter periods of time (typically, a
few days only). Such attack events provide a much finer granularity in the modeling
of attack behaviors, and by consequent, a correlative analysis of those events gives
far better results in terms of global phenomena.

• to perform the graph-based clustering, Pouget suggested the use of the dominant
set framework developed in [116], and he acknowledged the importance of further
investigating this approach. In Chapter 3, we justify the choice of this graph-based
clustering approach by an objective comparison with other classical clustering meth-
ods (such as K-Means or Hierarchical Clustering).

• Pouget proposed the use of fairly simple distances to compute clusters (e.g., Euclidean
distance, peak-picking). However, those distances proved experimentally to perform
quite poorly w.r.t certain attack features for which statistical distributions must be
compared. Instead, we propose to use statistical distances (such as Kullback-Leibler,
Jensen-Shannon or Bhattacharyya), which are more appropriate for comparing dis-
tributions, as validated by our experiments.

• finally, Pouget proposed to combine multiple attack features by computing the in-
tersections between clusters (or cliques as used in his work). While this approach
has given interesting preliminary results, we show in Chapter 4 that this method
does not hold in general for more complex phenomena. The reasons for this failure
are twofold: (i) the problem of uncertainty, which is due to the fuzziness of attack
phenomena; and (ii) the dynamicity problem, which is due to the evolving nature of
real-world phenomena. We propose an elegant solution to both problems in Chapter
4.

Another significant difference with [120] (but also with all previous approaches) is the
generic aspect of our method, i.e., it is not specifically tailored to honeypot traffic. We
propose a formal and general solution to the attack attribution problem, such that it can
be applied to any security data set without requiring any fundamental modification. This
generic aspect is demonstrated in the last Chapter, in which we present the results of
an experimental validation performed on a security data set made of rogue AV web sites
provided by Symantec through the WOMBAT Project3.

2.2.2 Analysis of darknet traffic

Darknets are large portions of unused IP subnets (or “dark subnets”) that are used to mon-
itor all unsolicited traffic directed to them. Several well-known projects operate darknets,
such as CAIDA [23], the Internet Motion Sensor [6], or the Team Cymru darknet [164].

3WOMBAT: Worldwide Observatory of Malicious Behaviors and Attack Threats - http://www.
wombat-project.eu.
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However, we observe that darknets have been primarily used to analyze specific global
phenomena that are essentially related to worm propagation ([141, 150, 100, 102]), or dis-
tributed denial-of-service (DDoS) attacks (using backscatter traffic [101]). Our approach is
quite different, both in terms of techniques and objectives. Indeed, we do not only focus on
a specific class of phenomenon (such as Internet worms), and by consequent our approach
is not designed for the analysis of these phenomena only.

Still, other previous works have tried to analyze at a more global level the traffic col-
lected by means of darknets. For example, Pang et al. [114] have tried to characterize
the incessant, nonproductive network traffic (which they termed Internet background radi-
ation) that can be monitored on unused IP subnets when deploying network telescopes or
more active responders such as honeypots. They analyzed temporal patterns and corre-
lated activity within this unsolicited traffic, and they found that probes from worms and
autorooters heavily dominate. More recently, similar research has been performed by Chen
et al. [30]. While all these previous works provide meaningful results and have much con-
tributed in making advances in malicious traffic analysis, the traffic correlation performed
by the authors relies on common statistical techniques. Indeed, they basically break down
the components of background radiation by protocol, by application and sometimes also by
specific exploit, and then apply some statistics across each component. Whereas we apply
more elaborated techniques on honeynet traffic, such as graph clustering based on statisti-
cal distances, combined with multicriteria analysis in order to elevate the abstraction level,
and to improve the insights into the behavior of global phenomena.

2.2.3 Analysis of IDS and firewall logs

Another class of techniques for gathering information about computer attacks aims at
collecting and sharing firewall or IDS logs collected from a very large number of hetero-
geneous sources, sometimes even from home users. The most well-known project of this
kind is probably D-Shield [45]. In [195], the authors studied the global characteristics and
prevalence of Internet intrusions by systematically analyzing a set of firewall logs collected
from a wide perspective. However, their study is a very general analysis that focused on
the issues of volume, distribution (e.g., spatial and temporal), categorization and preva-
lence of intrusions. Their analysis is thus limited to basic statistics built around the IDS
logs (e.g., distributions of ports, sources, targets, top sources, most prevalent threats, etc).
Moreover, their analysis is limited to a 4-month observation period, whereas our experi-
mental validation uses a 2-year honeynet trace. Still, it is worth noting that our results
seem to be consistent with this previous analysis. In particular, they found that a very
small collection of sources are responsible for a significant fraction of intrusion attempts in
any given month, and their on/off patterns exhibit cliques of correlated behavior, which is
quite similar to one aspect of the experimental results given in Chapter 5.

More recently, the open source community project EmergingThreats [47] (formally
called Bleeding Snort) was created for sharing IDS logs. The purpose of this project is
to provide some support to the Intrusion Detection community by producing a fast mov-
ing and diverse Snort Signature set and firewall rules (available for free). The objectives
of this project are thus completely different from ours. However, we argue that analyzing
such data set with our multi-criteria approach could yield very interesting results in terms
of global phenomena (e.g., identifying which groups of intrusions seem to be linked to the
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same root cause).

2.2.4 Analysis of large malware repositories

Another interesting and useful way of observing malicious activities in the Internet consists
in collecting malware into large repositories. There are essentially two approaches for doing
this:

• certain honeypot deployments take advantage of different techniques to collect new
malware samples, such as SGNET [83], Mwcollect Alliance [104], Offensive Com-
puting [111] or the Shadowserver Foundation [163]. Those deployments are usu-
ally maintained on a voluntary basis. However, there are also some commercially-
supported initiatives with similar objectives, like Symantec DeepSight Services [35]
(which goes far beyond malware analysis only), Support-Intelligence [155], Norman
Sandbox [109], or Sunbelt CWSandbox [154], among others.

• other projects work instead on a community basis, i.e., unknown binaries may be
uploaded by everyone who managed to catch a new suspicious binary file, and those
samples are shared within the community. The samples are then further analyzed
using anti-virus engines (such as VirusTotal [177]) or a sandbox (like Anubis [2]).

Besides the complexity in coordinating data collection efforts, the raw data collected
by this kind of projects is overwhelming. For instance, companies like VirusTotal and
Symantec receive hundreds of thousands of seemingly unique malware samples per week.
A manual analysis of all these malware would be outrageously expensive. As a result,
prioritization, grouping and automated pre-analysis of such data is needed. This is even
more important today for community-based projects (such as VirusTotal) where a huge
amount of new samples submitted on a daily basis are either false positives, or replicates
of the same polymorphic malware family. For those reasons, finding which groups of
malware samples are likely due to the same criminal organization, or could be linked to
the same root phenomenon, is a daunting task for which no real solution has been found yet.
Malware analysts need thus efficient warning and classification systems that can analyze
and prioritize for them the malware they should first look at, depending on their likely
impact. They must also have automated techniques to support them characterizing the
threats and producing countermeasures in an automated way, as much as possible.

Recently, different techniques have been developed in order to enrich the collected code
with metadata that might reveal insights into the origin of the code and the intentions of
those that created, released or used it. By taking advantage of this metadata (e.g., specific
code patterns, code behavior, code structure, etc) as well as some contextual information
(e.g., the context in which the code sample was collected), we believe that a multi-criteria
decision analysis method such as the one we propose in this dissertation could be of great
help to malware analysts in order to achieve the goals mentioned here above.

2.2.5 Research on botnet tracking

Another more specific but quite active research area is related to botnet detection and
botnet analysis [126, 10], or botnet mitigation [34, 79]. For example, BotMiner [64] is a
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general botnet detection framework that is independent of botnet C&C protocol and struc-
ture, and it requires no a priori knowledge of botnets. The authors developed a prototype
system that is based on: i) a two-steps clustering (based on X-Means) of C&C communica-
tion and activity flows of bots, so as to detect similarity patterns; and ii) the combination
of both types of patterns by means of cross-correlation. While complementary in certain
aspects, our research is also very different as we do not focus exclusively on the problem
of detecting phenomena such as botnets, neither on directly disrupting them. Instead, we
aim at understanding the high-level modus operandi of global attack phenomena (be they
botnets or something else), e.g.: which “communities of machines” are involved in certain
types of activities, on which (rogue) networks they are hosted, can we observe different
botnets coordinating their efforts, etc. However, we acknowledge the utmost importance
of those botnet-related works, since they can provide us additional domain knowledge that
is necessary to model this type of phenomenon in our global analysis method.

2.2.6 Cyber SA

This review would be incomplete without mentioning the active research carried out in
Cyber Situational Awareness (or Cyber-SA). Situational awareness is a military term re-
ferring to “the degree of consistency between one’s perception of their situation and the
reality”. Extending this principle to the network security field, Yegneswaran et al. [196]
envision a “network situational awareness” as analysts with accurate, terse summaries of
attack traffic, organized to highlight the most prominent facets thanks to novel visual-
ization techniques. In particular, a network SA environment should enable an analyst to
quickly assess high-level information such as:

• the cause of an attack (e.g., a new worm, a botnet, or a misconfiguration), even when
this attack has no known signature,

• whether the attacker specifically targeted the victim network, and

• if this attack event matches one seen in the past.

An important requirement of a network SA environment is thus its capability to provide
high-level, meaningful representations that can help analysts to identify abnormal patterns,
and get a better understanding of the possible root causes of attack phenomena occurring
on their networks.

We acknowledge the seminal work of Yegneswaran and colleagues in this field, such as
in [196] where they explore ways to integrate honeypot data into daily network security
monitoring, with the purpose of effectively classifying and summarizing the data to provide
ongoing situational awareness on Internet threats. However, their approach aims at provid-
ing tactical information, usable for the day-to-day operations, whereas we are interested in
strategic information that reveal long term trends and the modus operandi of the attackers.
Closer to our research, Li et al. have described in [198] a framework for automating the
analysis of large-scale botnet probing events and worm outbreaks using different statistical
techniques applied to aggregated traffic flows. They also design schemes to extrapolate the
global properties of the observed scanning events (e.g., total population and target scope)
as inferred from the limited local view of a honeynet.
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Then, a first compilation of scientific approaches for Cyber-SA has recently been pub-
lished in [145], in which a multidisciplinary group of leading researchers (from cyber se-
curity, cognitive science, and decision science areas) try to establish the state of the art
in Cyber-SA and to set the course for future research. The goal of this pioneering book
is to explore ways to elevate the situation awareness in the Cyber domain. We have con-
tributed to [145] with a chapter on Macroscopic Cyber Situational Awareness, in which we
present an extensive data collection infrastructure and illustrate the usefulness of applying
a multidimensional analysis to the attack events detected by honeypots.

Finally, another interesting project is Cyber-Threat Analytics (Cyber-TA), founded
by SRI International [38]. Cyber-TA is an initiative that gathers several reputed security
researchers. This project maintains a malware data set that is built upon the logging capa-
bilities of BotHunter [65]. According to the project description, it aims at accelerating the
ability of organizations to defend against Internet-scale threats by delivering technology
that will enable the next-generation of privacy-preserving digital threat analysis centers.
Cyber-TA researchers argue that these analysis centers must be fully automatic, scalable
to alert volumes and data sources that characterize attack phenomena across millions of
IP addresses, and give higher fidelity in their ability to recognize attack commonalities,
prioritize, and isolate the most critical threats. However, very few information is avail-
able on the public website of the project about which scientific techniques could enable
organisations to achieve such goals or to elevate their cyber situation awareness.

2.2.7 Preliminary conclusions

Data collection infrastructures for monitoring malicious activities are now widely deployed
and technically mature. Unfortunately, we note that current analysis techniques remain
immature or aim at solving particular problems. Furthermore, most analyses are performed
on a reactive basis, motivated by a specific attack phenomenon that has already occurred.

We are pursuing a fundamentally different goal than the one classical response teams
are after. Their responsibility is to address in near real time newly observed events by, e.g,
creating new antivirus signatures, investigating the spread of a new botnet, etc. This is
what can be referred to as a tactical approach to the fight against Internet crimes. This
work deals with the strategic battle instead, i.e., the observation of the modus operandi of
the attackers and their strategies on a long-term basis. Both are, of course, complementary
but involve different time scales. Tactical battles are won, or lost, in terms of minutes or
hours whereas strategic approaches involve days, weeks or months.

Another pitfall of current analysis techniques is the limited use of contextual information
and collective intelligence, probably by lack of effective analysis techniques to combine
different viewpoints. In particular, we observe that every project is able to collect different
key aspects related attack phenomena. However, these are usually only a few pieces of
the overall puzzle, but in the end, we have thus an incomplete picture of cyber-criminal
activities.

In summary, we note that most approaches for analyzing malicious activities are tai-
lored to solving specific issues, by means of a particular data set, in a reactive manner.
Current techniques do not allow us to automatically discover new relevant knowledge about
attack phenomena from a strategic viewpoint. Furthermore, the shifting paradigm of In-
ternet attacks has apparently created a gap of knowledge between what we believe to be
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happening, and what we can actually observe and prove scientifically. Even if rumors and
stories circulate within the security community about the origins, causes, and consequences
of these new malicious activities, very few claims can be backed up by scientific evidence.
More specifically, several issues remain open, e.g.:

(i) the attack attribution problem, i.e.: which group of attacks, malware samples, rogue
domains,. . . are attributed to the same large-scale phenomenon? Who is behind the
current attacks, and where do they originate? Perhaps more importantly, how can
we link attack events that may look different to a common root cause?

(ii) the organization of cybercrime: how many organizations control the botnets? What
are the new strategies used in cyber-crime? Which “rogue networks” are used as
bullet-proof hosting, and how do they evolve over time?

(iii) other specific questions, such as: what is the spreading pattern over time? Are
botnets able to coordinate their actions? How do attack phenomena evolve over
time?

Developing a systematic analysis method that could provide some answers to such
questions is thus extremely important, as it will not only help analysts to get better insights
into how cybercriminals operate in the real-world, but it will also help decision-makers to
invest in the appropriate countermeasures. Unfortunately, current analysis techniques can
only provide partial answers to those questions. The multicriteria analytical approach
proposed in this dissertation is meant to make advances toward filling this gap.

2.3 Investigative data mining

In this Section, we review some research efforts in a field referred to as investigative data
mining, in which specific data mining techniques are tailored to fit the needs of investigative
tasks.

2.3.1 Security data mining

In the last decenny, a considerable effort has been devoted to applying data mining tech-
niques to problems related to computer security. However, a great deal of those efforts
has been exclusively focused on the improvement of intrusion detection systems (IDS) via
data mining techniques, rather than on the discovery of new fundamental insights into the
nature of attacks or their underlying root causes [9]. Furthermore, only a subset of com-
mon data mining techniques (e.g., association rules, frequent episode rules or classification
algorithms) have been applied to intrusion detection, either on raw network data (such as
ADAM [7], MADAM ID [80, 81] and MINDS [48]), or on intrusion alerts streams [44, 75].
A comprehensive survey of Data Mining (DM) techniques applied to Intrusion Detection
(ID) can be found in [8, 21].

We note that all previous approaches aim at improving alert classification or intrusion
detection capabilities, or at constructing better detection models thanks to the automatic
generation of new rules (e.g., using some inductive rule generation mechanism). Our work
is very different in many aspects. First, we take advantage of data sets that contain only
malicious activities, so the objectives of mining this kind of data set are quite different.
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Secondly, we use a graph-based, unsupervised data mining technique to discover unknown
attack patterns performed by groups or communities of attackers. Finally, our objective
does not consist in generating new detection signatures to protect a single network, but
instead to understand the root causes of large-scale attack phenomena, and get insights
into their long-term behavior, i.e.: how long do they stay active, what is their average size,
their spatial distribution, and how do they evolve over time with respect to their origins,
or the type of activities performed.

2.3.2 Crime data mining

There are many similarities between the tasks performed by analysts in computer security
and in crime investigations or in law-enforcement domains. As a result, several researchers
have explored the possibilities of DM techniques to assist law-enforcement professionals.
In [92], McCue provides real-world examples showing how data mining has identified crime
trends and helped crime investigators in refining their analysis and decisions. Previous to
that work, Jesus Mena has described and illustrated the usefulness of data mining as an
investigative tool by showing how link analysis, text mining, neural networks and other
machine learning techniques can be applied to security and crime detection [93]. More
recently, Westphal provides additional examples of real-world applications in the field of
crime data mining, such as border protection, money laundering, financial crimes or fraud
analytics, and elaborates also on the advantages of using information-sharing protocols
and systems in combination with those analytical methods [184].

We observe, however, that most previous work in the crime data mining field has pri-
marily focused on “off-the-shelf” software implementing traditional data mining techniques
(such as clustering, classification based on neural networks and Kohonen maps, or link
analysis). Although very useful, those techniques are generally not appropriate for mod-
eling complex behaviors of attack phenomena that we aim to identify. Still, Chen et al.
have conducted some active research in crime data mining in the context of the COPLINK
project [28], using text mining, neural networks and Social Network Analysis (SNA) on
different case studies. In our graph-based approach, we can see some similarity with those
link analysis methods used in crime data mining. However, there are also many differences:
for instance, how relationships are created in classical link analysis tools is quite straight-
forward (usually, using the output of simple comparisons between basic features), whereas
we use an aggregation function to combine multiple correlation patterns found in different
graphs in order to identify more complex relationships. Furthermore, our approach can be
applied to many different types of feature vectors, even to statistical distributions.

Finally, there are also some obvious relationships between our graph-based clustering
technique and Social Network Analysis (SNA), which has been recognized as an appropri-
ate methodology to uncover previously unknown structural patterns from social or criminal
networks. SNA heavily relies on the usage of network graphs and link analysis as key tech-
niques to analyze social communities and networks. Different metrics are used to emphasize
the characteristics of a social group and its members, such as centrality, betweenness, close-
ness, structural cohesion of actors, clustering coefficient, etc ([138, 182]). In this context,
analysis of n-cliques, n-clans, k-plexes, or more generally “connected components”, can re-
veal interesting subgroups within a network or a community that are strongly connected
in the graph representation, i.e., network members sharing many common traits. Probably
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for those reasons, SNA has been ranked in the top 5 intelligence analysis methods by K.
Wheaton4 [185].

Some of our techniques are admittedly inspired by SNA, namely the clique-based clus-
tering of attackers. However, we use a novel, efficient clique algorithm based on dominant
sets, and our attribution method can combine multiple graphs (reflecting multidimen-
sional features) into a combined graph by using a multicriteria aggregation function, which
enables us to model more complex relationships among coalitions of features (e.g., an in-
terdependency between two or more features). As far as we know, this kind of processing
is not yet available in traditional SNA techniques.

2.4 Multicriteria decision analysis in security

In this work, we have formalized the attack attribution problem as an application of multi
criteria decision analysis (MCDA), in which the criteria of concern are given by the links
(or similarity) values computed during the graph-based clustering (which is performed
iteratively for each attack feature). That is, we use the distance values between two
events as degrees of evidence (or fuzzy measures) to decide whether they are likely due to
the same root phenomenon. As such, it can be considered as a classical multi-attribute
decision making problem where a decision has to be chosen based on several criteria.
A combined output is evaluated based on different attributes (or features), which are
expressed numerically and can even be obtained as the output of a fuzzy system (e.g., to
model vagueness or uncertainty of a given attribute). It is worth noting that MCDA has
also been ranked in the top 5 intelligence analysis methods by K. Wheaton [185].

In our formalization, we need, thus, to define an appropriate function that can model
a decision scheme matching as closely as possible the phenomena under study. In many
MCDA methods, the aggregation process is a sort of averaging function, like a simple
weighted means. Some well-known examples of such methods include Simple Additive
Weighting, Weighted Product Method, and the Analytical Hierarchy Process [197], or an
Ordered Weighted Average (OWA) [192], and Choquet or Sugeno integrals [63, 62, 17, 173].

ELECTRE, TOPSIS and PROMETHEE are three other well-known outranking meth-
ods that are based on a similar averaging process [51]. These techniques aim at selecting
or ranking different alternatives by averaging multiple criteria weighted by coefficients.
Similarly to ELECTRE, we also combine multiple criteria using a relational approach.
However, we further extend this approach by showing how to include more complex aggre-
gation functions, such that interactions among coalitions of criteria (or attack features) can
be modeled effectively. Despite their great flexibility in combining features or evidences,
we note that rather few previous works have used MCDA approaches to address security-
related problems.

Still, in [27] the authors consider the problem of discovering anomalies in a large-
scale network based on the data fusion of heterogeneous monitors. The authors evaluate
the usability of two different approaches for multisensor data fusion: one based on the
Dempster-Shafer Theory of Evidence and one based on Principal Component Analysis.

4Kristan J. Wheaton is assistant professor of intelligence studies at Mercyhurst College. http://www.
sourcesandmethods.blogspot.com/
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The Dempster-Shafer theory is a mathematical theory of evidence based on belief functions
and plausible reasoning [140]. It allows one to combine evidence from different sources and
to obtain a certain degree of belief (represented by a belief function) that takes into account
all the available evidence. It can be seen as a generalization of Bayesian inference where
probability distributions are replaced by belief functions. When used as method for sensor
fusion, different degrees of belief are combined using Dempster’s rule which can be viewed
as a generalization of the special case of Bayes theorem where events are independent.
In our attribution method, we prefer using aggregation functions as described previously,
for the greater flexibility they offer in defining how we want to model interactions among
criteria (e.g., a positive or negative synergy between a pair of criteria). Moreover, in
Dempster-Shafer all criteria are considered as independent of each other, which is usually
not the case with features used in attack attribution. Interestingly, it has been showed
that there is a direct connection between fuzzy measures used in MCDA, and belief or
plausability functions used in Dempster-Shafer theory ([63, 181]).

2.5 Summary

As showed in this Chapter, collecting data related to different types of Internet threats has
become a relatively common task for security researchers. However, analytical methods for
effectively analyzing those vast amounts of data are still very immature. Deciding which
samples or which attack patterns should be investigated first is still a challenging task
today for security practitioners.

Another fundamental issue with the analysis of those security data sets is that very
few methods enable analysts to identify and characterize global attack phenomena in a
systematic and reliable way (e.g., based on multiple features used as decision criteria).
Furthermore, we observed that no analytical means have been developed yet to emphasize
the modus operandi of attackers, or to help finding the root causes of attack phenomena.
In other words, there is a lack of rigorous and scientific methodologies that could allow
analysts to easily discover new relevant knowledge about attack processes on the Internet.

For those reasons, we need new techniques for classifying, clustering and correlating
the gathered information in order to guide and help the analysis process of the most
important threats. To address those important problems, this dissertation will deal with
the development of a new generic analysis method which is able to combine different data
sources and viewpoints. The ultimate goal of this method is: (i) to help an analyst to
identify and to determine the root causes of cyber attack phenomena, and (ii) to produce
a precise analysis of the modus operandi of the attackers, by revealing patterns that may
result from the grouping of apparently different attacks.
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Chapter 3

Graph-based Knowledge Discovery in
Security Datasets

“The combination of some data and an aching desire
for an answer does not ensure that a reasonable answer

can be extracted from a given body of data.”
– John W. Tukey

This Chapter introduces a generic, multi-criteria analysis method that is designed to
address in a systematic way the attack attribution problem. We start by providing an
overview of the proposed method, which is made of three principal components: (i) se-
lection of attack features from a security data set; (ii) graph based clustering, which aims
at discovering meaningful relations among patterns extracted from the data set; and (iii)
multi-criteria decision analysis (MCDA), which takes advantage of previous steps to com-
bine different graphs using an appropriate aggregation function.

The two first components, as well as the underlying rationales, are then described and
illustrated in this Chapter. The third component (multi-criteria analysis) will be discussed
in Chapter 4.

3.1 Introduction

A method for attack attribution should enable us to systematically discover, extract and
combine patterns from a security dataset, according to a set of relevant features, and with
limited knowledge on the phenomena being studied. By applying this method to security
datasets (e.g., attack events, threats data set, network traces, IDS alerts, etc), our hope
is to identify attack phenomena occuring at a larger scale, but also to help the analyst in
their quest for discovering their root cause.

Our approach relies on a novel combination of graph-based clustering with a multi-
criteria aggregation process. As illustrated in Fig. 3.1, the design of the method is based
on three main components:
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1. Attack feature selection: we determine which relevant attack features we want
to include in the overall analysis, and we characterize each object of the data set
according to this set of extracted features F = {Fk}, k = 1, . . . , n (e.g., by creating
feature vectors for each object);

2. Graph-based clustering: an undirected edge-weighted graph is created regarding
every feature Fk, based on an appropriate distance for measuring pairwise similarities.
Then, strongly connected components can easily be identified within each graph, so
as to reveal relationships among objects that share common patterns w.r.t. a given
feature;

3. Multi-criteria aggregation: in this information fusion process, we combine differ-
ent graphs of attack features using an aggregation function that models the expected
behavior of the phenomena under study.

!"#$%&"'
(")"*+,-'

.%)+/*&0$"&0#'
122&"2#+,-'

3"*%&0$4'
5#$#'3"$'

6,780-"5'
2&#9:';<'

!,&'"#*:'!='

;&#9:'
6)%3$"&0-2'
;&#9:'

6)%3$"&0-2'

>!=?' >;=?'

6:#9$"&'@' 6:#9$"&'A'

Figure 3.1: Overview of the attack attribution method proposed. {Fk} refers to the set of features F
selected from a security dataset, and {Gk} refers to the set of corresponding edge-weighted graphs resulting
from the clustering component. Finally, the multi-criteria component (described in Chapter 4) combines
all Gk, k = 1, . . . , n, so as to produce a combined node-link graph, which can support the root cause
analysis thanks to a multi-dimensional graph visualization.

The approach is mostly unsupervised, i.e., it does not rely on a preliminary training
phase to classify objects or events to larger scale phenomena. Instead, we have only a data
set of unlabeled observations, and we need to learn what patterns w.r.t. each feature Fk

are present in the data set. Then, these patterns have to be combined in a meaningful way,
so as to emphasize the underlying phenomenon that may have caused the observations.

In this Chapter, we extensively describe the two first components (i.e., feature selection
and graph-based clustering), whereas the multi-criteria aggregation will be discussed in the
next Chapter. More precisely, we will focus on a novel graph-based clustering approach
and how we can take advantage of it in the context of attack attribution. Each important
step of the two first components will be illustrated by means of a real-world data set made
of attack events collected in the Internet. We further validate the choice of our graph-
based clustering approach by applying different objective evaluation methods. Finally, we
also demonstrate the meaningfulness of the approach by comparing our clustering results
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against two other approaches that are commonly used in clustering, namely Hierarchical
clustering and K-Means.

3.2 Attack Feature Selection

In many data mining procedures, one of the very first steps consists in selecting some key
characteristics from the data set, i.e., salient features that may reveal interesting patterns.
As described by [70], typical clustering activities involve the following steps:

(i) feature selection and/or extraction;

(ii) definition of an appropriate distance for measuring similarities between pairs of fea-
ture vectors;

(iii) applying a grouping algorithm;

(iv) data abstraction (if needed), to provide a compact representation of each cluster;

(iv) assessment of the clusters quality and coherence (also optional), e.g., by means of
validity indices.

In this Section, we turn our attention to step (i), which is implemented in the first com-
ponent of our attribution method. Subsequent steps will be further detailed in Section 3.3.

Feature selection is the process of identifying, within the raw data set, the most effective
subset of characteristics to use in clustering. The selection of these features may optionally
be completed by a feature extraction process, i.e., one or more transformations of the input
to produce features that are more suited to subsequent processing. Pattern representation
refers to the number of categories, classes, or variables available for each feature to be used
by the clustering algorithm.

More formally, we have thus a data set D composed of m objects, which are usually
defined as security events. We define a feature set F made of n different features Fk,
k = 1, . . . , n, that can be extracted for each event ei from D (i = 1, . . . ,m).

Let us denote by x(k)
i

the feature vector extracted for the event ei w.r.t. feature Fk. In
fact, x(k)

i
∈ Rd is a d -dimensional vector of real values, i.e.:

x(k)
i

= {x(k)
i,1 , . . . , x(k)

i,d
}

where d is the dimension of the vector and is a function of the feature Fk.
Finally, we can group all feature vectors defined w.r.t. a given feature into a data

set Xk = {x(k)
1 , . . . ,x(k)

m }. In many data mining books, it is customary to use a matrix
notation to represent a set of feature vectors Xk, i.e.:

Xk =





x(k)
1,1 x(k)

1,2 · · · x(k)
1,d

x(k)
2,1

. . . ...
... . . . ...

x(k)
m,1 · · · · · · x(k)

m,d
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where the ith row represents the feature vector x(k)
i

extracted for the event ei of D,
obtained for the kth feature Fk.

Summarizing, our problem space is made of three main dimensions: m is the number
of security events, n is the number of attack features, and d is the dimension of the feature
vector (the latter is variable and is a function of each considered feature Fk).

Illustrative example on an attack data set.

Let us consider an example of feature vector x(k)
i

for a given attack feature Fk. For this
purpose, let’s assume we are able to collect data about computer attacks in the Internet.
Moreover, we consider that these attacks manifest themselves under the form of attack
events1, which involve a group of malicious sources (or computers) that seem to coordinate
their actions. If we are able to observe those events, we can also record their origins, and
as a result, we can define an attack feature Fk that represents the spatial distribution of
those attacking machines, for example in terms of originating countries. By convenience,
we will denote this feature as Fgeo.

So, this will lead to the creation of a feature vector x(geo)
i

for each event ei, and every
element of the vector will hold the number of observations that correspond to a given
country (i.e., the number of attackers coming from that specific country). Hence, this set
of possible (or observable) countries will define the total number of categories, which sets
also the dimensionality d of the feature vectors.

In the Internet, we can observe attacks coming from almost every possible country. As
a result, for each event ei we create a feature vector x(geo)

i
made of d = 229 positions corre-

sponding to all countries (ordered alphabetically) where potential attackers may apparently
reside. In other words,

x(geo)
i

= {x(geo)
i,1 , . . . , x(geo)

i,229}

Fig. 3.2 gives an example of such a feature vector for a given attack event (with i=128),
which has been observed by a sensor located in France in October 2006. The top attacking
countries of this event are: US (x(geo)

128,215 = 51), CN (x(geo)
128,47 = 10), CA and DE (8 observa-

tions each). Another standard representation for this type of feature vector would be under
the form of relative frequencies, e.g.: US(35%),CN(7%),DE(5%),CA(5%), others(47%).

On selecting attack features

The geographical origin of attackers is obviously only one possible feature that may be
useful in a global root cause analysis. A strong advantage of our approach consists in
combining in an effective manner multiple attack features according to a multi-criteria
analysis process. In attack attribution, there is unfortunately no theoretical guideline
supporting the selection of features to include in a cluster analysis. This choice highly
depends on each specific situation, so it is up to the analyst to define carefully those
feature vectors, based on facts and conjectures about the phenomena that have created
the observations of the data set. In many cases, the features are quantitative (i.e., made of
numerical values, defined either on a continuous or discrete domain), like in the example
given here above. However, nothing forbids us from using also qualitative features in the

1A more complete and formal definition of such an attack event will be given in Chapter 5 when we
will apply this method to a set of network attack traces.
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Figure 3.2: Illustrative example of a feature vector for an attack feature defined as Fgeo. The vector
represents the spatial distribution of attacking machines for a given attack event (e128) observed by a
sensor located in France in October 2006, i.e., it is a representation of x(geo)

128 .

clustering process, like ordinal values (e.g., a ranking, or subjective characteristics like
“suspicious”, “benign”, “malicious”, etc) or unordered values (e.g., a set of email addresses).

3.3 Clustering analysis

3.3.1 Introduction

Cluster analysis and EDA.

Cluster analysis aims at finding natural groupings from a data set. It is essentially an
approach relying on exploratory data analysis (EDA), in contrast with confirmatory data
analysis where the analyst is mostly concerned with statistical hypothesis testing, model es-
timation or classification problems (John Tukey [174]). Regarding this exploratory aspect,
clustering refers to a process of unsupervised classification by which unlabeled patterns are
grouped into clusters based on a measure of similarity. As a result, all patterns found in a
“valid” cluster should be more similar to each other than they are to patterns of another
cluster. The goal of clustering consists in discovering interesting and meaningful patterns
from a data set, without any prior knowledge on the phenomena being studied. In the
realm of attack attribution, this can be helpful to understand the underlying phenomena
that may have created the observations or the measurements. It is also useful to provide
a data abstraction level, since every cluster can then be described by a cluster prototype
that is representative of the attack patterns being grouped in that cluster.

There exists a plethora of clustering algorithms, which can be roughly categorized as
either partitional or hierarchical. Partitional techniques aim at finding the most effective
partition of the data set by optimizing a clustering criterion (e.g., minimizing the sum of
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Figure 3.3: A general taxonomy of classical clustering approaches.

squared distances within each cluster). Hierarchical clustering methods produce a nested
series of partitions (i.e., a hierarchical tree-like structure) in which the decision to merge
objects or clusters at each level is performed based on a similarity criterion and a linkage
method (e.g., the smallest or largest distance between objects).

Partitional techniques usually require the user to specify a predetermined number of
clusters ahead of time, which can be seen as a drawback of these techniques (even though
some additional techniques may help to evaluate the approximate number of clusters within
a data set). On the other hand, optimization techniques normally require only the data as
input, and not all interpoint distances as in hierarchical methods, which is an advantage
when dealing with very large data sets. Note that graph-based clustering methods usually
require all interpoint distances, even though they are usually considered as partitional
techniques.

In both categories, we can further distinguish different strategies, based on how each
clustering algorithm works to group data objects. In Fig. 3.3, we give a rough classification
of classical approaches used in clustering, based on the taxonomy given by Jain et al. [71].

Note that there are also other cross-cutting aspects that can further characterize cluster-
ing algorithms, such as: i) agglomerative vs divisive clustering; ii) hard vs fuzzy clustering
(where in fuzzy clustering, you may have overlapping clusters, and thus each object has a
degree of membership to each cluster); iii) deterministic vs stochastic clustering; and iv)
incremental vs non-incremental clustering [49, 76, 160, 70].

The intrinsic problem of clustering.

Since clustering is mostly a data-driven process, it can be hard sometimes to define what
really constitutes a cluster, as underlined by several authors (e.g., [71, 91, 160]). Indeed,
most clustering techniques rely on several input parameters which can largely influence
the results. Furthermore, some algorithms assume some sort of structure for the clusters
(e.g., spherical, elliptical, etc). Thus, if they are given a certain data set, most clustering
algorithms will find clusters, regardless of whether they are really present in the data or
not.

To illustrate this problem, let’s consider a real data set in Fig. 3.4 where two clustering
results were obtained by two different algorithms (using a graph-based algorithm in (a),
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and using K-Means clustering in (b)), with the same number of clusters set as input to both
algorithms. The different clusters are represented by a combination of a marker type and
a color. As we can observe, there are significant differences between the groupings. Some
clusters are overlapping with others, and certain points are (apparently) misclassified; but
more importantly, how can we know which result makes more sense than the other when
there is no clear underlying structure? Actually, by considering only the visual evaluation
of both plots, it can be quite difficult to decide. Finally, another important issue relates
to the estimation of the “correct” number of clusters hidden in the data set.
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(a) Graph-based clustering (b) K-Means clustering

Figure 3.4: Some clusters obtained on a real data set of attack events, with two different clustering
algorithms: (a) a graph-based clustering, and (b) K-Means. The different clusters are represented by a
combination of a marker type and a color. In both cases, the number of desired clusters was set to 20 (not
all clusters are depicted here).

On the choice of a clustering approach.

As suggested here above, we observe that clustering real data sets can be a difficult task,
and thus different clustering methods will probably yield different results. For this reason,
our attribution method is not necessarily limited to only one clustering algorithm. However,
we have a preference for a novel graph-theoretical approach called dominant sets, and we
already motivate this choice with the following reasons:

• the simplicity to formulate the problem, i.e., by representing the graph by its edge-
weighted adjacency matrix (or proximity matrix);

• the graph-based approach does not require a number of clusters as input;

• to identify clusters in a graph, we can rely on a novel clique-based algorithm that can
naturally extract the most significant groups in the first stages of the algorithm (as
detailed hereafter);

• finding cliques in a graph can be formulated as a straightforward continuous opti-
mization technique by relying on dominant sets. This is interesting since it can be
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coded in a few lines of any high-level programming language, and it could be easily
implemented in a parallel network, if scalability becomes an issue;

• as it will become clear in the multi-criteria analysis (in Chapter 4), different graphs
(obtained for different attack features) can be easily combined using different types of
aggregation functions (e.g., averaging functions, fuzzy integrals, etc) that enable us
to model the phenomena under scrutiny, even when those phenomena have dynamic
behaviors.

Thus, regarding this clustering component, we argue that the only requirement in this
attribution method is to use a pairwise clustering technique where all interpoint distances
are calculated ahead of time. We are aware of the fact that this approach can be computa-
tionally intensive for very large data sets, especially regarding the memory requirements.
However, we argue that the computation of those pairwise similarities can be easily paral-
lelized since all computations are independent of each other. Many database systems can
even provide support for storing and indexing structures like proximity matrices.

On the other hand, as it will become clear in Chapter 4, combining multiple features
using special aggregation functions can help to circumvent the intrinsic drawbacks of any
clustering procedure (i.e., the difficulty to obtain groups that truly reflect the real under-
lying phenomena). That is, with this approach, we hope to reinforce the linkage of data
objects (e.g., security events) that are related to the same root phenomenon, and at the
same time, to break unfortunate linkage between unrelated objects which could be grouped
by accident, as an artefact of the clustering algorithm used to explore the data set.

3.3.2 Similarity measures

Before turning to the clustering process by itself, we need to briefly discuss the issue of
defining similarity measures. As stated previously, most clustering algorithms rely on
certain metrics or distances to group objects into clusters. A similarity measure is a
function that indicates how alike objects are to each other. However, it is quite common to
calculate instead the dissimilarity between two patterns (which is just the opposite) using
a distance metric defined on the feature space. Clearly, the choice of a distance metric is
fundamental, since it has an impact on the properties of the final clusters, such as their
size, quality, and consistency. Therefore, we review hereafter some important distance
functions with their advantages and limitations. This enables us to have sound rationales
later when we have to choose an appropriate distance function for a given attack feature
Fk.

Some classical distances.

Probably one of the most commonly used distance measures is the Euclidean distance. For
a pair of feature vectors2 xi, xj defined w.r.t. the same feature Fk, the Euclidean distance

2For the sake of clarity, we will omit the index (k), used to refer to a given feature Fk, since this
dimension is not needed at this point of the discussion. In other words, we write xi, xj , instead of x(k)

i ,
x(k)

j , respectively.
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can be calculated with:

d2(xi,xj) = (
�

d

k=1(xi,k − xk,j)2)
1
2

= �xi − xj�2

(3.1)

which is in fact a special case of the Minkowski metric (with p = 2):

dp(xi,xj) = (
�

d

k=1 |xi,k − xk,j |
p)

1
p

= �xi − xj�p

(3.2)

As observed in [88], Minkowski metrics work well when the data set contains compact
or isolated clusters, but the drawback of these metrics is their sensitivity to the scale of the
features. This problem can be alleviated with the normalization of the vectors. However,
Euclidean distances suffer from other drawbacks, e.g., they can be completely inappropri-
ate with high-dimensional data. This problem is known as the curse of dimensionality (the
term was first coined by Richard Bellman in 1957 [18]), which is caused by the exponential
increase in volume associated with adding extra dimensions to a mathematical space. In
fact, several previous works have showed that in high-dimensional space, the concept of
proximity, distance or nearest neighbor may not even be qualitatively meaningful when
relying on commonly used metrics such as Lk norms, especially in data mining applica-
tions [1].

Another common similarity measure that can be used with real-valued vectors is the
sample correlation between observations treated as sequences of values:

dcorr(xi,xj) =
(xi − x)T (xj − x)�

(xi − x)T (xi − x)
�

(xj − x)T (xj − x)
(3.3)

where x represents (xi + xj)/2.
The sample correlation (also called the Pearson coefficient) reflects the strength of the

linear dependence between two real-valued vectors, which can also be viewed as a similarity
degree between the “shapes” of the vectors. It is thus directly linked to the covariance of
the vectors. A correlation value of 1 implies a perfect linear relationship between the two
vectors (as xi increases, xj increases proportionally). A closely related similarity measure
is the cosine similarity obtained by computing the cosine of the angle formed by the two
vectors, which is commonly used for clustering document data in text mining [160].

The interpretation of a correlation coefficient depends on the context and purposes;
however, a value between 0.5 and 1 is usually considered as an indication of a strong
dependence between observations.

Dissimilarity measures for probability distributions.

When we have to deal with observations that are in the form of probability distributions
(e.g., histograms), like in the illustration given in Fig. 3.2, then statistical distances seem
more appropriate to measure pairwise distances. One such technique (which is commonly
used in information theory) is the Kullback-Leibler divergence ([78]). Let xi and xj be
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for instance two feature vectors that represent two probability distributions over a discrete
space X, then the K-L divergence of xj from xi is defined as:

DKL(xi||xj) =
d�

k=1

xi(k) log
xi(k)
xj(k)

which is also called the information divergence (or relative entropy). Because DKL is
not considered as a true metric, it is usually better to use instead the Jensen-Shannon
divergence ([87]), defined as:

DJS(xi,xj) =
DKL(xi||x̄) + DKL(xj ||x̄)

2
(3.4)

where x̄ = (xi+xj)/2. In other words, the Jensen-Shannon divergence is the average of the
KL-divergences to the average distribution. To be a true metric, the JS divergence must
also satisfy the triangular inequality, which is not true for all cases of (xi,xj). Nevertheless,
it can be demonstrated that the square root of the Jensen-Shannon divergence is a true
metric ([55]).

An alternative metric for measuring the similarity of two discrete probability distribu-
tions is the Bhattacharyya distance ([19]), which is mostly used by the signal processing
community. It gives an approximate measurement of the amount of overlap between two
frequency vectors. For two probability distributions xi and xj over the same domain X,
it is defined as:

DBC(xi,xj) = −ln(BC(xi,xj)) (3.5)

where

BC(xi,xj) =
d�

k=1

�
xi(k)xj(k)

While DBC does not satisfy the triangle inequality, the Hellinger distance
√

1−BC does
obey the triangle inequality, and can thus be used as metric in a clustering algorithm.

Yet other statistical metrics have been recently developed for measuring dissimilarities
between probability distributions in a consistent manner, for instance the Earth Mover’s
Distance (EMD) [132], which derives from the Wasserstein metric [133]. The EMD pro-
vides also a measurement of the distance between two distributions over some region D.
Informally, if the distributions are interpreted as two different ways of piling up a certain
amount of dirt over the region D, the EMD is the minimum cost of turning one pile into
the other (where the cost is assumed to be the amount of dirt moved times the distance
by which it is moved).

Transforming distances to similarities.

To transform pairwise distances dij to similarity weights sij , we can use different mapping
functions. Some of the most commonly used functions are:

sij =






1− dij

c− dij , for some constant c
(1 + dij)−1
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However, previous studies found that the similarity, or the confusion frequency, between
stimuli decay exponentially with some power of the perceptual measure distance ([143]).
So, it is also customary to use the following functional form to do this transformation:

sij = exp(
−dij

2

σ2
) (3.6)

where σ is a positive real number which affects the decreasing rate of s. In Chapter
5, we propose an empirical method for determining appropriate ranges of values for σ
according to the statistical properties of the data set being analyzed, and the expected
output similarities.

Several authors have extensively studied problems related to proximity measures, and
how to choose them in a consistent manner based on the clustering problem and the features
at hand (see for instance [49, 13, 74]). To underline the importance of such a choice, we
illustrate the application of the presented distances on some feature vectors obtained from
an attack data set.

Illustrative example.

Let us consider again the same example introduced in Section 3.2 (feature selection), i.e.,
a data set made of computer attacks observed in the Internet, which manifest themselves
under the form of attack events that comprise groups of malicious sources targeting in a
coordinated fashion other machines. Again, we can record for each source its geographical
origin, which leads to the creation of spatial distributions for each observed event of the data
set. What we are interested in, is to find a way to measure how similar those distributions
are with each other, in order to infer which attack events may originate from the very same
geographical areas (which could eventually mean that those events are due to the same
attack phenomenon).

So, let us consider four different events, for which we provide in Table 3.1 the geograph-
ical distribution (i.e., the feature vectors for Fgeo). These distributions are illustrated in
Fig 3.5, where we represent the relative frequencies only for the countries mostly involved
in the attacks, i.e., those lying in the upper quantile.

Table 3.1: Geographical distributions of four different events from an attack data set.

Feat. vector Geo. distribution
x1 CA(25%), CN(22%), US(15%), IT(7%), FR(6%), others(25%)
x2 CN(28%), CA(23%), US(13%), IT(3%), FR(6%), others(27%)
x3 CN(48%), CA(12%), US(9%), FR(5%), IT(2%), others(25%)
x4 US(20%), FR(15%), CA(13%), TW(11%), IT(9%), JP(6%), others(26%)

Intuitively, from the shapes of the distributions and the relative frequencies given in
Table 3.1, we observe that x1 and x2 are highly similar, x1 is somehow correlated to x3 (but
there are several differences between the two), and x1 and x4 should be dissociated from
each other because there are too many significant differences. In Table 3.2 we have com-
puted the similarities using the Euclidean distance, Jensen-Shannon (JS), Bhattacharyya
(BC), and the sample correlation. The distances were mapped to similarities using equa-
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Figure 3.5: The geographical distributions of four different events. The Y-axis represents the relative
proportion of attackers coming from each respective country given on X.

Table 3.2: Pairwise similarities for the distributions given in Table 3.1.

Eucl. Corr. JS BC χ2

(x1,x2) 0.85 0.97 0.88 0.72 1
(x1,x3) 0.34 0.23 0.62 0.56 0.62
(x1,x4) 0.16 0.01 0.14 0.28 0.04

tion 3.3.2, and with appropriate values for σ that were derived from the properties of the
data set.

To validate our intuition about the relationships among those distributions, we have
also calculated the p-value obtained with a χ2 statistical test, which is one of the most com-
monly used methods for determining whether two underlying one-dimensional probability
distributions differ in a significant way. The test of χ2 confirms the strong dependence be-
tween (x1,x2,x3), and reveals a (statistically) significant difference with x4 (since a p-value
lower than 0.05 means that we can safely reject the hypothesis of a dependency between
two distributions). As a result, we observe that certain distance metrics perform better
than others. More precisely, the Euclidean distance and the sample correlation tend to
underestimate the degree of similarity for (x1,x3), whereas Bhattacharyya overestimates
the relation for (x1,x4). In this example, Jensen-Shannon seems to provide the best metric
for measuring similarities between statistical distributions present in our data sets. This
was confirmed by extensive experiments with large amounts of data as well as with other
types of distributions from our data sets.
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3.3.3 Graph-based clustering

3.3.3.1 Problem formalization

We can now turn to the description of the clustering component of our method, which
implements a pairwise clustering technique. We formulate the problem using a graph-based
approach that is inspired by the approach developed by Pouget in [120]. However, we have
further extended and largely improved this graph-based approach (cf. the explanation on
the positioning of this work in Chapter 2, page 25).

For each attack feature Fk, we build an edge-weighted graph Gk in which the vertices
(or nodes) are mapped to the feature vectors x(k)

i
, and the edges (or links) reflect the

similarity between data objects regarding the considered feature. As customary, we can
represent the undirected edge-weighted graph (with no self-loops) obtained for a given
feature Fk by

Gk = (Vk, Ek, ωk)

where






Vk = {x(k)
1 ,x(k)

2 , . . . ,x(k)
m } is the vertex set

Ek ⊆ Vk × Vk is the edge set (i.e., relations among vertices)
ωk : Ek → �+ is a positive weight function

In practice, we can represent each graph Gk with its corresponding weighted adjacency
matrix (or dissimilarity matrix), which is the m×m symmetric matrix Ak(i, j) defined as:

Ak(i, j) =
�

ωk(i, j), ∀(i, j) ∈ Ek

0, otherwise.

Note that the weight function ωk(i, j) must be defined with a similarity metric that is
appropriate to the nature of the feature vector under consideration, as we have explained
in Section 3.3.2.

In general, graph-theoretic clustering algorithms consist of searching for certain com-
binatorial structures in the similarity graph, such as a minimum spanning tree ([199]) or a
minimum cut ([144, 190]). Among these methods, a classic approach to clustering reduces
to a search for complete subgraphs, which is also known as the “complete-link” algorithm.
Indeed, the maximal complete subgraph, also called a (maximal) clique, was considered
the strictest definition of a cluster in [4] and [125].

The concept of a maximal clique was originally defined on unweighted graphs; how-
ever, it has been recently generalized to the edge-weighted case by Pavan et al. [116] who
proposed a new framework for pairwise clustering based on dominant sets. The formal
properties of dominant sets make them reasonable candidates for a new formal definition
of a cluster in the context of edge-weighted graphs. Furthermore, Pavan et al. [116] estab-
lished a correspondence between dominant sets and the extrema of a continuous quadratic
form over the standard simplex. This means that we can find dominant sets (or clusters)
using straightforward continuous optimization techniques such as replicator equations, a
class of dynamical systems arising in evolutionary game theory. Such systems are interest-
ing since they can be coded in a few lines of any high-level programming language.

In the next paragraphs, we formally define the notion of dominant set, as used in
graph-theoretical clustering. Then, we present the dominant set algorithm introduced by
Pavan et al. [116]. Finally, we apply the dominant set framework on a real data set of
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attack events to illustrate the use of this technique in the context of our attack attribution
method.

3.3.3.2 Graph-theoretical definition of a cluster

Informally, a cluster should satisfy two fundamental conditions: (a) it should have high
internal homogeneity; (b) there should be high inhomogeneity between the objects of the
cluster and those outside. Going back to our edge-weighted graph representation, these
conditions are equivalent to saying that the weights on the edges within a cluster should
be large, whereas those on the edges connecting the cluster nodes to the external ones
should be small. To quantify these notions, let us consider a graph G = (V,E, ω) for a
given feature Fk, and its corresponding similarity matrix A = (aij). For convenience, and
without loss of generality, we can safely ignore for now the index k referring to the feature,
since following notions are valid for any characteristic of the data set used as clustering
feature.

Let S ⊆ V be a non-empty subset of vertices and i ∈ V be a certain vertex. The
average weighted degree of i w.r.t. S is defined as:

awdegS(i) =
1
|S|

�

j∈S

aij

Observe that awdeg{i}(i) = 0 for any i ∈ V . Furthermore, if j �∈ S we define:

φS(i, j) = aij − awdegS(i)

Note that φ{i}(i, j) = aij , for all i, j ∈ V . Intuitively, φS(i, j) measures the similarity
between nodes j and i, with respect to the average similarity between node i and its
neighbors in S. Note that φS(i, j) can be either positive, negative or null.

We are now able to formalize the notion of induction of node-weights, which is expressed
by the following recursive definition.

Definition 3.1. (Node-weights induction [116]) Let S ⊆ V be a non-empty subset of
vertices and i ∈ S. The weight of i w.r.t. S is

wS(i) =

�
1, if |S| = 1�

j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise.

Additionally, the total weight of S is defined as:

W(S) =
�

i∈S

wS(i)

Note that w{i,j}(i) = w{i,j}(j) = aij , for all i, j ∈ V (i �= j). It is also worth noting
that wS(i) is calculated simply as a function of the weights on the edges of the subgraph
induced by S. That is, wS(i) gives us a measure of the overall similarity between vertex i
and the vertices of S \ {i} w.r.t. the overall similarity among the vertices in S \ {i}.
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We are now in the position of formally defining the concept of cluster (or dominant
set) in an edge-weighted graph.

Definition 3.2. (Dominant set) [116] A non-empty subset of vertices S ⊆ V such that
W(T ) > 0 for any non-empty T ⊆ S, is said to be dominant if:

1. wS(i) > 0, for all i ∈ S, and

2. wS∪{i}(i) < 0, for all i �∈ S.

The two conditions here above correspond to the two main properties of a cluster:
condition (1) implies that a dominant set should have high internal homogeneity, whereas
(2) imposes the external inhomogeneity.

3.3.3.3 Clustering using dominant sets

Considering definition 3.2, the clustering algorithm introduced by Pavan et al. consists
basically of iteratively finding a dominant set in an edge-weighted graph, and then removing
it from the graph until all vertices have been clustered (complete partitioning), or as soon
as a given stopping criterion is met, which could give eventually an incomplete partition as
output. Some examples of constraints we can set as stopping criterion are: (i) a minimum
threshold for the remaining nodes within the graph; (ii) a lower threshold (absolute or
relative) on the sum of all remaining edge-weights. Thus, let Worigin =

�
aij be the sum

of all weights in the original graph, then the procedure could stop when the sum of all
remaining edge-weights is less than (0.01 ·Worigin). The clustering algorithm is described
in the pseudo-code given in algorithm 3.1. As one can see, the cornerstone of this algorithm
is the procedure DOMINANT_SET, which remains to be defined.

In [116] it was proved that there is a tight correspondence between the problem of
finding dominant sets in an edge-weighted graph (i.e., finding maximum weighted cliques)
and the problem of finding the extrema of a (continuous) quadratic form over the stan-
dard simplex. Computationally, this allows us to find dominant sets (i.e., clusters) using
straightforward continuous optimization techniques such as replicator equations, a class of
dynamical systems arising in evolutionary game theory. Note that these systems are also
intimately related to Hopfield neural networks ([69]).

Algorithm 3.1 Dominant sets Clustering
Input: weighted graph G = (V,E,ω)
Output: a partition P (eventually incomplete)
P = ∅
while STOPPING_CRITERION(G) do

S ← DOMINANT_SET (G)
P ← P ∪ {S}
V ← V \ S

return P

As a result, we can find dominant sets by simply making a particular temporal expres-
sion converge. More precisely, consider the following dynamical system represented with
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its discrete time equation, where Ak is the adjacency matrix of an edge-weighted graph
Gk:

xi(t + 1) = xi(t) ·
(Ak x(t))i

x(t)T Ak x(t)
(3.7)

with i = 1, . . . ,m. Starting from an arbitrary initial state, this dynamical system will
eventually be attracted by the nearest asymptotically stable point. Thus, the procedure
DOMINANT_SET simply involves the simulation of the system given in equation 3.7.
The solution to this dynamical system is a stable point, called a characteristic vector xS ,
which satisfies the conditions of definition 3.2, and thus corresponds to a dominant set (as
it has been proved in [115]).

Finally, the assignment of weights to all graph edges gives us a natural measure of the
overall similarity of a dominant set. Given a dominant set S ⊆ V , we measure its overall
cohesiveness with:

Coh(S) =
�

i∈S
awdegS(i)wS(i)

W(S)
(3.8)

Observe that max(Coh(S)) equals 1− 1
|S| , and thus the maximal cohesiveness of a dominant

set S tends to 1 only for very large clusters. For small clusters, max(Coh(S)) approaches
0.5 (which is achieved for a dominant set of 2 vertices).

3.3.3.4 A short example.

To illustrate the concepts defined here above, let us consider the weighted graph given in
Fig. 3.6, which comprises twelve vertices (m = 12). As one can see, there are two main
groups of nodes that are weakly interconnected by the edge (8, 9). All edges represented
with dashed lines have smaller weights (i.e., less than 0.2), while edges in solid lines have
weights between 0.5 and 1. By applying algorithm 3.1, we find iteratively three dominant
sets (DM), which are given in Table 3.3, along with their characteristics. Interestingly,
the algorithm first finds DM1={2, 3, 4, 5, 6}, thus it focuses on the largest DM with a high
cohesiveness (i.e., the most significant group). Then, even though DM2 has slightly larger
values for the cohesiveness and the total weight, this cluster is found at the second iteration
because it contains less members.

Finally, the algorithm recovers the last group {1, 7, 8}. That is, it can separate this set
of nodes from those of DM1, even if there are many “weak relations” among members of the
two clusters (e.g., edges with weight values between 0.05 and 0.20). Note that we didn’t
specify any predetermined number of clusters, and that all nodes have been naturally (and
correctly) clustered, even with a standard stopping criterion on the remaining weights.

Table 3.3: Characteristics of the dominant sets extracted from the graph in Fig. 3.6.

Vertices Cohesiveness (Coh(S)) Total weights (W(S)) awdegS(i)
DM1 {2, 3, 4, 5, 6} 0.70 2.52 {0.64, 0.73, 0.72, 0.72, 0.65}
DM2 {9, 10, 11, 12} 0.75 4 {0.75, 0.75, 0.75, 0.75}
DM3 {1, 7, 8} 0.52 1.88 {0.53, 0.54, 0.51}
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Figure 3.6: An example of edge-weighted graph in which 3 dominant sets are found iteratively by the
algorithm : (1) {2, 3, 4, 5, 6}; (2) {9, 10, 11, 12}; (3) {1, 7, 8}.

3.3.3.5 Illustration on a real data set.

To further illustrate the use of dominant sets clustering in the context of our attack at-
tribution method, we have applied the DM framework on a real-world data set made of
computer attacks. As introduced earlier in Sections 3.2 and 3.3.2, we have observed ma-
licious sources attacking different sensors in the Internet, and we have recorded for each
source its geographical location. Certain sources seem to coordinate their actions, so it
leads to the observation of so-called attack events on the sensors, which are limited in time
and comprise malicious sources attacking in a coordinated fashion.

For this illustration, we consider 351 attack events (i.e., m = 351) observed in a time
period spanning from September 2006 until June 2008, and for which we have computed
their respective feature vector to produce xgeo

i
= {x(geo)

i,1 , . . . , x(geo)
i,229}, for i = 1, . . . , 351.

Now, we want to discover whether this data set contains some meaningful clusters of
events that do share very strong similarities with respect to their spatial distributions,
which could help the analyst to figure out if those events could eventually be linked to a
same phenomenon. For this purpose, we just need to build the edge-weighted graph by
using an appropriate similarity metric (e.g., Jensen-Shannon in this case), and then to feed
the adjacency matrix of the graph to algorithm 3.1.

Fig 3.7 (a) shows a 2D mapping of the data set, where we have used a non-linear
dimensionality reduction technique called t-Distributed Stochastic Neighbor Embedding (or
t-SNE [175]) to embed the high-dimensional feature vectors into a 2-dimensional plot. The
aim of dimensionality reduction is to preserve as much of the significant structure of the
high-dimensional data as possible in the low-dimensional map. That is, we can verify that
two nearby data points have highly similar feature vectors, whereas two distant points
should have nothing in common in their respective distributions. This can be helpful
to visualize a high-dimensional data set, but also to assess the consistency of clustering
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results. So, it is important to keep in mind that each data point on such 2D representations
is mapped to a d-dimensional feature vector, like a geographical distribution in this case.
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Figure 3.7: Clustering results obtained by applying dominant sets on a real data set made of geograph-
ical distributions of machines involved in computer attacks in the Internet. The different clusters are
represented by a combination of a marker type and a color.

Dimensionality reduction techniques transform a data set X of dimensionality d into a
new data set Y of dimensionality d∗, with d∗ � d, while retaining the underlying structure
of the data set X as much as possible. t-SNE is a non-linear technique that comes from a
variation of Stochastic Neighbour Embedding [68]; however, it produces significantly better
visualizations than other multidimensional scaling techniques (such as Sammon mapping,
Isomaps or Laplacian Eigenmaps) by reducing the tendency to crowd points together in
the centre of the map [175].

Fig. 3.7 (b) shows the results of dominant sets clustering on the very same data set,
where we used a stopping criterion of 0.01. 39 clusters were obtained, and those clusters
account for 279 events (80% of the data set), which means that the output of this clustering
is an uncomplete partition. That is, the unclustered nodes (depicted by black dots on Fig.
3.7 (b)) have an unsufficient number of meaningful relations (or edges) to be included in
the largest and most significant clusters found so far.
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Table 3.4: Centroïds of different clusters depicted in Fig. 3.7 (b).

DM centroïds (average distributions)
DM22 HU(13%), PL(17%), FR(10%), BR(8%)
DM24 PL(39%), DE(19%), ES(6%)
DM30 TW(42%), CN(13%), ES(6%)
DM37 TW(14%), KR(42%), CN(17%)
DM1 CN(56%), CA(8%), US(8%)
DM4 CA(17%), CN(29%), US(15%), FR(7%)
DM15 CN(38%), US(16%), FR(12%)
DM23 CN(54%)
DM32 CN(75%)

Assuming that the analyst wants all feature vectors to be clustered (complete partition-
ing), then we can easily adapt the clustering algorithm so as to assign each unclustered
vector to the closest group. This result is illustrated in Fig 3.7 (c); however, we must be
aware of the fact that certain vectors may then be misclassified, i.e., they are assigned to
clusters in which they do not share strong similarities with the other members.

Another interesting observation is that the dominant sets clustering is able to extract
the most significant and informative groups in the early stages of the clustering. That is, if
the analyst sets a higher threshold as stopping criterion (e.g., 0.05), then he gets obviously
less clusters; however, those clusters are the same as the first ones found with a lower
threshold. This is illustrated in Fig 3.7 (d), where we can see the 22 clusters obtained with
a stopping criterion of 0.05. As we can see, those 22 clusters are exactly the same as the
first 22 clusters obtained with a stopping criterion of 0.01. The dominant sets 23 to 39
have thus been absorbed by the previous ones, for example: DM28 has been absorbed by
DM2 and DM5, DM34 has been absorbed by DM13, DM27 by DM4, etc.

Finally, from a semantic viewpoint, we note that dominant sets reflect very strong
relationships among their respective members. Even with a data set having a quite complex
underlying structure (as the 2D mapping seems to suggest), the DM algorithm is able
to separate groups of attack events that have some commonalities in their geographical
distributions, but have also some (statistically) significant differences which are worth
being underlined and showed to the analyst. To illustrate this point, Table 3.4 provides
the centroïds of different clusters depicted in Fig 3.7 (b). As one can see, there are some
notable differences even between adjacent clusters, such as DM22 vs DM24, DM30 vs
DM37, or among DM 1, 4, 15, 23 and 32. As we demonstrate in the next Section, this
kind of results is difficult to achieve with more classical clustering techniques.

3.4 Evaluation of clustering results

In the previous Section, we have intuitively showed that clustering by dominant sets pro-
vides naturally meaningful and informative groups, even when applied on a real data set
characterized by a complex structure. However, it is important to assess these results by
means of more objective criteria, so as to validate the soundness of this clustering tech-
nique. There are mainly two approaches to perform this validation. An external assessment
compares the recovered structure to an a priori structure, which is not feasible in this case,
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since we do not have any prior information on the true labels of the data points. On
the other hand, we can perform an internal evaluation of the clusters validity to confirm
that the obtained results cannot reasonably have occurred as an artefact of the clustering
algorithm.

In this Section, we will first apply two different techniques that try to estimate the
“correct” number of groups, which is mostly useful for clustering techniques that require
this number as input, but it can also be used to verify if the number of clusters found by a
given technique is consistent with this estimation. Then, we define and apply three different
internal validity indices on the partitioning results obtained in previous Section. Finally,
based on those objective indices, we compare those previous results against those obtained
with two other commonly used clustering approaches, namely Hierarchical Clustering and
K-Means.

3.4.1 Estimating the optimal number of clusters

We consider again our test data set introduced in previous Sections, but we are now
turning our attention to the estimation of the optimal number of clusters. The dominant
sets clustering provided us 39 (meaningful) clusters; however, how can we cross-validate
this result?

Upper tail rule.

First, we can apply a technique developed by Mojena in [99], which uses a hierarchy of
partitions to estimate the number of clusters. In Hierarchical Clustering (HC), we rely also
on a pre-calculated proximity matrix (just like in graph-based clustering), but the cluster-
ing process consists of a sequence of steps where data objects and clusters are iteratively
merged according to some optimality criterion (i.e., an agglomerative process). The linkage
method can be done in different ways, e.g.: (i) based on the smallest distance between ob-
jects (single linkage, a.k.a. nearest neighbor), (ii) based on the largest distance (complete
linkage, a.k.a. furthest neighbor), or (iii) based on the average distance from all points in
one cluster to all points in another cluster. The result of HC is a nested set of partitions
(i.e., a hierarchy), on which the analyst still has to define an appropriate fusion level that
provides the final set of clusters (see [49] for more information on this clustering technique).

Mojena [99] proposed a method known as the upper tail rule as a way of determining
the appropriate number of groups in hierarchical clustering. It is based on the relative
sizes of the different fusion levels in the hierarchy. Basically, the Mojena rule consists in
plotting the standardized fusion levels as a function of the desired number of clusters. To
calculate those standardized fusion levels, we can use the following equation [91]:

(αj+1 − α)
σα

(3.9)

where αj+1 is the fusion level corresponding to a set of m− (j + 1) clusters, i.e., α0 is the
fusion level for m clusters (recall that m is the number of objects in the data set), and
thus αm−1 is the fusion level corresponding to 1 cluster only. Then, α is the average of the
j previous fusion levels, and σα is the standard deviation of the j previous levels.
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So, we have applied this technique on our test data set introduced in Section 3.3.3. The
Mojena plot for the three common linkage methods (single, complete and average linkage)
is represented in Fig. 3.8. Normally, an elbow in the curve should indicate a reasonable
estimate of the number of clusters. As one can see, the single linkage method indicates
that there should be at least 5 clusters. However, single linkage suffers from the “chaining
effect”. This can affect the results by forming elongated clusters in which objects are only
weakly connected by some sort of chain between a minority of data points.

Looking at the results of complete and average linkage methods, we can conclude that
there should be at least 5 to 10 clusters in the data set according to this evaluation.
However, there are no clear break in those curves, and the standardized fusion levels
become almost flat only after 40 or 50 clusters. In conclusion, the Mojena method is not
very precise on this data set and it provides here only a rough estimation of the number
of clusters, which lies apparently between 5 and 50 according to this technique.
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Figure 3.8: Mojena plot of the standardized fusion levels in hierarchical clustering, for three different
linkage methods. An elbow in the curves indicates a good candidate for the estimation of the number of
clusters.

Gap statistic.

Tibshirani et al. have proposed a method called the “Gap statistic” for estimating the
number of clusters in a data set [169]. This technique can be applied to the output of any
clustering algorithm. The idea is to compare the change in within-cluster dispersion to
that expected under an appropriate null distribution used as reference.

Let us assume we have obtained k clusters C1, . . . , Ck as output of a given clustering
method, and the rth cluster has Nr members. Then, we calculate the sum of all pairwise
distances for that cluster Cr with:

Dr =
�

i,j ∈Cr

dij
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We define now Wk as

Wk =
k�

r=1

1
2Nr

Dr (3.10)

When the distance used is the squared Euclidean distance, then Wk represents the
pooled within-cluster sum of squares around the cluster means.

The idea of the gap statistic is to compare the values of the within-cluster dispersions
log(Wk), k = 1, . . . ,K, with the expected values under a reference null distribution (which
should give a priori only 1 cluster). Basically, the gap statistic procedure involves the
simulation of B data sets according to a null distribution (e.g., a uniform distribution),
and the clustering method is applied to each of them. The same dispersion index log(W ∗

k
)

can then be calculated for each simulated data set. The gap statistic is calculated using
the following equation:

Gap(k) =
1
B

�

b

log(W ∗
k,b

)− log(Wk) (3.11)

The estimation of the optimal number of clusters is then the value of k for which the
observed value log(Wk) falls the farthest below the expected value log(W ∗

k
) obtained under

a null distribution. That is, our estimate k̂ is in fact the value maximizing Gap(k).
Note that Tibshirani et al. suggest two strategies to generate the reference null distri-

bution [169]: (i) a uniform distribution over the range of observed values for each variable
of the data set (i.e., we generate d one-dimensional column-vectors with values that are
uniformly distributed over the range xj,min and xj,max for each column j of the data X);
(ii) a uniform distribution over a box aligned with the principal components of the data.

In Fig. 3.9 we have represented the Gap statistic as a function of the number of clusters
by using the dominant sets algorithm on the same data set of attack events used previously
in this Chapter. Again, we used Jensen-Shannon as distance metric. The stopping criterion
of algorithm 3.1 corresponding to the desired number of clusters is indicated on the second
x-axis on top of the plot.

As we can see on the graph, the maximum value of Gap(k) is reached at 59 clusters,
which is consistent with the results obtained before. However, it seems that a stopping
criterion of 0.01 gives meaningful results in terms of clusters. In fact, decreasing even more
the stopping criterion simply generates a large number of small clusters (of size 2 or 3),
while providing only small increments on the gap statistic values (which are not really
significant).

Observe also that there is a series of local optima in the ranges between 15 − 21 and
25 − 29 clusters, which could also be considered as reasonable estimates in this case. In
fact, the simulations performed in [169] suggest that the Gap statistic is good at identifying
well-separated clusters. When data points are not well separated, it was showed that
the Gap method becomes as inaccurate as the proportion of overlapping points, which is
probably the reason why this method is not really able to provide a clear estimation for
this data set. However, since the data is very different from a null distribution, it gives us
a reasonable estimate of the range of values for the number of clusters present in the data,
and it allows us to calibrate the stopping criterion of the dominant sets algorithm. We
observe that the gap estimate is consistent with the results obtained by using dominant
sets, which demonstrates the meaningfulness of this graph-based approach when applied
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Figure 3.9: Gap statistic in function of the number of clusters in dominant sets clustering. The corre-
sponding value of the stopping criterion is indicated on the second x-axis on top of the plot.

to this example of real-world data set.

3.4.2 Cluster validity indices

We will conclude the evaluation of our clustering results by using some objective indices.
Various cluster validity indices have been proposed in the past to assess the quality and
the consistency of clustering results ([67]). In graph clustering, most indices are based
on the comparison of intra-cluster connectivity (i.e., the compactness of clusters) and the
inter-cluster variability (i.e., the separability between clusters). Boutin and Hascoët [20]
provide a good review of validity indices that are especially appropriate for assessing graph
clustered structures.

In this Section, we define some validity indices that are, in our opinion, well-suited
for evaluating the quality of our dominant sets, but also the results obtained via other
clustering methods. More precisely, we will use three different validity indices:

• the Graph compactness, which indicates how compact the clusters are;

• the Davies-Bouldin index, which evaluates the inter versus intra-cluster connectivity;

• the Silhouette index, which is linked to the characteristics of nodes’ neighborhood.

Graph compactness

The graph compactness Cp is a validity index that is very easy to calculate, and which can
be helpful to evaluate graph clustering. Cp is mainly based on the characteristics of graphs
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connectivity. That is, for any cluster Ck, we can calculate a normalized compactness index,
as proposed in [20]:

Cpk =
�

Nk−1
i=1

�
Nk
j=i+1 ω(i, j)

Nk(Nk − 1)/2
(3.12)

where ω(i, j) is the positive weight function reflecting node similarities in the graph, and
Nk is the number of members within cluster k. Since Cpk only depends upon similarity
values and the composition of the clusters, it can be used to evaluate any other clustering
method.

We can also define a mean compactness index Cp for a partition made of K clusters,
which takes into account the individual compactness values of the clusters, but also their
respective sizes:

Cp =
�

K

k=1 CpkNk�
K

j=1 Nj

(3.13)

Davies-Bouldin index

Davies and Bouldin have proposed an index to evaluate the quality of a graph partition
that aims at comparing the inter and intra-cluster connectivity. It is defined as [42]:

DB =
1
K

K�

i=1

maxj �=i(
diam(Ci) + diam(Cj)

d(Ci, Cj)
)

where K is the number of clusters in the partition to be evaluated, diam(Ci) is the diameter
of cluster Ci, and d(Ci, Cj) is the inter-cluster distance between Ci and Cj (e.g., the average
distance between two nodes, with one in each cluster, or the distance between clusters
centroïds). Small values of DB correspond to compact clusters. Note that Davies-Bouldin
index is more robust than Dunn’s index, and can be used for the evaluation of any clustering
method (not only graph-based).

Silhouette index

The silhouette index is different from the two other indices defined here above, since it
is based on node’s neighborhood (rather than on a global compactness index). Let us
consider a node (i.e., a point of the data set) xi that belongs to cluster Cj . Suppose that
the closest cluster to node xi (according to the average distance) is denoted by Ch. The
silhouette index is defined by ([131, 76]):

silh(xi) =
d(xi, Ch)− d(xi, Cj)

max(d(xi, Cj), d(xi, Ch))

Observe that −1 ≤ silh(xi) ≤ 1. Data points with large silhouettes are well clustered,
whereas those with small values are likely to be scattered between clusters. Points with
negative silhouette values are not well-clustered. Rousseeuw proposed to plot clusters
silhouettes on a chart as a graphical aid to estimate the number of clusters in the data [131].
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Figure 3.10: Visualization of clustering results obtained with (a) Hierarchical Clustering and (b) K-
Means, applied to the same data set of Fig. 3.7. The different clusters are represented by a combination
of a marker type and a color.

For a given cluster Cj we compute its average silhouette Sj as follows:

Sj =
1

Nj

�

i∈Cj

silh(xi)

Then, similarly to [20], we define a global (average) silhouette index that takes into
account the respective sizes of the clusters:

GS =
�

K

j=1 NjSj

�
K

j=1 Nj

=
1
m

m�

i=1

silh(xi)

Kaufman and Rousseeuw have argued that an average silhouette index of about 0.5 indi-
cates a reasonable partition of the data.

3.4.3 Objective evaluation and comparison with other approaches

To conclude our clustering evaluation, and to demonstrate how well the dominant sets
algorithm performs compared to other approaches, we have applied the Hierarchical clus-
tering (HC) and K-Means methods to the very same data set as the one used previously in
Sections 3.3 and 3.2. Remember that the feature vectors represent geographical distribu-
tions of machines involved in computer attack events in the Internet. The same distance
metric has been used for all clustering methods, i.e., Jensen-Shannon divergence (using
equation 3.4).

Fig. 3.10 shows the clustering results using HC (a) and K-Means (b) respectively (with
20 clusters as input). These results can be visually compared with those obtained using
dominant sets in Fig. 3.7. An in-depth analysis of those results, along with the clusters
centroïds, reveals there is a large number of points that are not well clustered in the case
of HC and K-Means clustering, compared to the results obtained with dominant sets (even
though the distance metric used was the same).
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Figure 3.11: Compactness values by cluster (in blue) and clusters size (in magenta). (a) Dominant
sets clustering (b) Hierarchical clustering (c) K-Means clustering.

Table 3.5: Objective evaluation of clustering results using different validity indices.

Clust.method Nr clusters Cp DB GS
(�) (�) (�)

DM1 - incomplete 39 0.73 0.99 0.46
DM2 - complete 39 0.54 1.77 0.32

HC1 - complete link 39 0.50 1.30 0.41
HC2 - complete link 20 0.39 1.49 0.41

K-Means (KM1) 39 0.74 2.15 0.33
K-Means (KM2) 20 0.66 1.91 0.39

To perform a more objective evaluation, we have applied the three validity indices
defined here above to each clustering method. The values of those indices are given in
Table 3.5. Interestingly, the dominant sets approach seems to outperform the two other
clustering techniques, even when the number of clusters is set to the same number (i.e.,
K = 39). To further confirm this result, we have represented in Fig. 3.11 the individual
compactness values (by cluster) for each clustering method, along with the clusters sizes.
As one can see, this chart clearly demonstrates two things: (i) the compactness values
are on average higher for clusters found by dominant sets and K-Means clustering, than
with Hierarchical clustering (with complete linkage); and (ii) the dominant sets clustering
technique seems to focus on the most significant (and probably most informative) clusters,
as the first clusters found by this technique are also the largest ones with, at the same
time, very high compactness values. Furthermore, assuming the analyst could figure out
that about 39 clusters was a reasonable estimate (e.g., using the Gap statistic), then we
observe that the result given by K-Means (with 39 clusters as input) performs quite well
with respect to the clusters compactness. However, the two other indices (Davies-Bouldin
and the global silhouette) are clearly in favor of dominant sets, which again confirms the
meaningfulness of this graph-based approach.

3.5 Summary

In this Chapter, we have presented the two first components of our attack attribution
method, i.e.: attack feature selection and graph-based clustering. Those steps implement a
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novel graph-based clustering approach that rely on dominant sets, which can help security
analysts to discover knowledge by identifying groups of highly similar patterns with respect
to any attack feature selected from a security data set. In particular, we have demonstrated
how to apply the dominant sets approach so as to get meaningful results. Finally, we
have also emphasized the strong advantages of this approach compared to more classical
clustering methods, such as Hierarchical clustering and K-Means.

However, the results of this Chapter also suggest that clustering real-world data sets is
not trivial. In fact, the partitioning results of security data sets look often rather “fuzzy”
regarding certain groups of patterns. Even with an effective clustering technique, it can
be challenging for an analyst to identify the “correct” number of clusters, or the most
appropriate partitioning of the data set.

In many cases, applying a clustering technique to a single attack feature is not sufficient
for identifying attack phenomena, or to figure out what can be their root causes. Obviously,
it is easy for an analyst to apply iteratively the very same clustering method w.r.t. each
attack characteristic that can potentially bring an interesting viewpoint on the phenomena.
However, how to combine clustering results in a meaningful way is still an open issue. For
example, which set of features is the most appropriate one to identify a given phenomenon?
Furthermore, observe that the characteristics of certain phenomena may evolve over time.
Hence, the analyst can obtain several clusters, representing patterns observed at different
moments; but at this point, he has no means to merge them and identify the ones that
relate to the same phenomenon.

In the next Chapter, we will show how to systematically combine different attack
features, so as to identify global attack phenomena in a meaningful and effective way.
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Chapter 4

Attack Attribution using
Multi-criteria Decision Analysis

“The purpose of models is not to fit the data but to sharpen the questions”.
– Samuel Karlin

In the previous Chapter, we showed how cluster analysis, more precisely a graph-based
clustering approach based on dominant sets, can reveal interesting patterns within an
attack data set, which may help security analysts in investigating root causes of attack
phenomena.

Intuitively, we can easily imagine that combining multiple attack features in a sys-
tematic way should further improve the identification process of attack phenomena and,
perhaps more importantly, give insights into their dynamic behavior and their root causes.
In this Chapter, we show that it is possible to use a multi-criteria decision approach to
support the attack attribution process and to emphasize the modus operandi of attackers.
As a result, the last component of our method takes advantage of different aggregation
techniques inpired by multi-criteria decision analysis (MCDA), such that multiple attack
features can be effectively combined without requiring a lot of a priori knowledge.

4.1 Introduction

4.1.1 Underlying motivation

Previously, we have seen that a graph-based clustering technique (based on dominant
sets) can be a useful and effective technique to extract informative patterns from a set of
observations. By repeating this process for different attack features, we can obtain one
set of clusters w.r.t. each attack feature, and every set of clusters can thus provide an
interesting viewpoint on the phenomena under study.

However, similarly to criminal forensics, a security analyst often needs to synthesize
different pieces of evidence in order to investigate the root causes of attack phenomena.
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This can be a tedious, lengthy and informal process mostly relying on the analysts expertise.
A somehow naïve approach of doing this aggregation of features consists in computing the
intersections among all clusters obtained for each feature separately. Even though it could
work for fairly simple cases, we observe that this approach does not hold for many attack
phenomena we have analyzed in reality. There are two main issues explaining this:

(i) the uncertainty problem, which can be seen as the result of the fuzzy aspect of real-
world phenomena.

(ii) the dynamicity problem, which is due to the evolutive nature of real-world phenomena.

Let us illustrate those issues with two simple examples that we have observed in real-world
data sets. Consider for instance Fig. 4.1 (a) where a set of 7 attack events have been
clustered w.r.t. 2 different attack features F1, F2. In fact, the 7 events are due to the same
root phenomenon, and ideally, we should have obtained only 1 cluster for each feature.
However, in this case, the events have been separated into two “nearby” clusters, where
the members of one cluster are somehow loosely connected to the members of the other
cluster (e.g., pairwise similarities between events of different clusters could be around 0.5).
This scenario is realistic, because real-world measurements are rarely “black” or “white”,
and thus real phenomena are often characterized by fuzzy patterns. In other words, any
real-world measurement is impregnated by a certain amount of uncertainty, which often
influences clustering results in an undesirable way. Furthermore, because patterns are most
likely different for F1 and F2, chances are high that the composition of the two clusters, for
F1 and F2 respectively, will also be different. Consequently, when the analyst computes
the intersection among all clusters, the 7 events are split into 4 smaller groups, instead of
one only. When the number of features and the number of observations of the data set
increase, one can easily imagine that this can lead to a combinatorial explosion. In the
worst case, the total number of groups could achieve

�
n

i
|Pi|, where Pi is the partition

obtained for the attack feature i, and there are n features. So, even if larger phenomena
could still emerge from clusters intersections, we note that we get also a large number of
small, meaningless clusters, and thus we lose a lot of semantics.

Another issue arises with the naïve approach of intersecting clusters, namely the dy-
namicity problem. Consider now Fig. 4.1 (b) where a set of 8 events have been clustered
w.r.t. 2 different features F1, F2. All events are still due to the same phenomenon. But this
time, the clustering algorithm has correctly split the events into three separate clusters for
feature F1, due to the fact that the phenomenon has been observed at three different in-
stants, and its behavior has evolved regarding F1. Those three clusters are definitively not
linked to each other, as F1 is only relevant at the different points in time on which we have
observed the phenomenon. However, it is quite common to observe another attack feature
for which the same phenomenon has a constant behavior, i.e., all events are grouped in the
same cluster. By intersecting both dimensions, the analyst still gets 3 separate clusters
instead of one only, which complicates again the identification of the global phenomenon.
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(b) Illustration of the dynamicity problem, which is due to the evolutive nature of real-world phenomena.

Figure 4.1: The two main issues in combining clusters obtained for different attack features.

4.1.2 The MCDA approach

As demonstrated in previous section, we need thus a more flexible way of combining at-
tack features. Actually, the problem looks very similar to typical situations handled in
multi-criteria decision analysis (MCDA), also called in the literature Multi-Attribute Util-
ity Theory (MAUT). In a classical MCDA problem, a decision-maker evaluates a set of al-
ternatives w.r.t. different criteria, and a global score is then calculated for each alternative
using a well-defined aggregation method that models the preferences of the decision-maker
or a set of constraints.

Generally speaking, the alternatives are evaluated w.r.t different attributes (or features)
that are expressed with numerical values representing a degree of preference, or a degree
of membership1. The two most common aggregation methods used in MAUT are the
weighted arithmetic and geometric means.

1Of course, some attributes may sometimes be expressed using ordinal or qualitative values. Then, a
commonly-used approach consists in converting ordinal values to a numerical scale using utility functions.
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Another classical application relates to the group decision making problem, where n
experts express their evaluations on one (or more) alternatives. The goal is then to combine
all experts’ preferences into a single score (like in many sports competitions, where the
criteria are scores given by different judges). The most commonly used technique for
combining experts’ scores is the weighted arithmetic mean, since experts may be assigned
different weights according to their standing.

Some other typical examples involving an aggregation process can be found in fuzzy
logic and rule-based systems. In this case, the inference engine is made of fuzzy rules in
which the rule antecedents model attributes that are subject to vagueness or uncertainty.
The aim is to evaluate the “firing strength” of each fuzzy rule using logical connectives,
and then to combine all rules’ output into a single, crisp value that can be used to make
a decision.

4.1.3 Combining edge-weighted graphs using MCDA

The last component of our attribution method aggregates all edge-weighted graphs ob-
tained previously via the clustering component. We consider that each edge within a
graph (reflecting a similarity between two nodes) provides a degree of evidence of the re-
lation between a given pair of events of the security data set. We adopt thus a relational
multi-criteria approach, where all alternatives (i.e., security events) are compared two by
two. The aim of this aggregation is to determine, for each pair of events, how likely it
is that those events are linked to the same root phenomenon, given the set of relations
obtained by assessing different attack features.

Considering the two problems described in the previous paragraph, there are at least
two important requirements regarding the aggregation method:

(1) two security events should have a high global score (i.e., be linked to the same
phenomenon) when a sufficient number of attack features are correlated to a certain
degree. Note that we do not need especially all features to be satisfied (as a result
of the dynamicity of phenomena);

(2) conversely, the overall score reflecting the relation between two events should be
minimized when the individual relations are so low that they could equally have
occurred by chance;

It is also worth mentioning that we propose two different options for the input of this
aggregation step:

- option 1: Serial combination: in each edge-weighted graph (one per attack feature),
we keep only all edges of the nodes that have been clustered using the dominant sets,
as described in previous Chapter. Since dominant sets reflect strongly connected
groups, we keep thus only the most relevant relations among security events w.r.t.
every attack feature, and those subsets of relations are then used as input to the
aggregation component to produce a set of phenomena (see Fig. 4.2 (a)).

- option 2: Parallel processing : we reuse the complete edge-weighted graphs as input
to the aggregation component (i.e., also the links from or to unclustered events). The
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Figure 4.2: Illustration of the two possible options in combining edge-weighted graphs and per-feature
clustering results. (a) Serial combination, where the per-feature clustering results have a direct impact
on the input of the multi-criteria aggregation component. (b) Parallel processing, where all edges of
each edge-weighted graph is reused as input to the multi-criteria aggregation, and per-feature clustering
results are only exploited in the visualization step.

output of both components (per-feature clustering and aggregation components) are
then combined in the visualization of the resulting phenomena (see Fig. 4.2 (b)).

Actually, both options have advantages and drawbacks: option 1 will most likely pro-
vide cleaner results (in terms of final clusters), but it is possible to loose some semantics
due to the fact that certain interesting nodes (or edges) may be excluded, as an artefact of
the clustering algorithm. Similarly, option 2 will most likely provide more detailed results
and can help to recover certain events excluded by the per-feature clustering step, but some
irrelevant events could be included by accident into final clusters, disturbing the interpre-
tation of those results. However, for most experiments performed in the next chapters, we
have used option 2 (parallel processing), which still offers the more complete picture and
helps to circumvent artefacts introduced by clustering algorithms.

The output of the multi-criteria component is thus a combined graph in which edges
reflect aggregated scores among security events. All nodes that are still linked to others
are very likely due to the same root cause, because of the requirements enounced here
above. As final step, we just need to present the strongly connected components of the
combined graph to the analyst. By visualizing those connected components using several
attack features, the analyst gets immediately an overall picture of all important relations
among events that are supposedly belonging to the same phenomenon. Maybe even more
importantly, we get also insights into how those relations have eventually evolved (e.g.,
when subgraphs corresponding to different clusters co-exist within the same component of
the combined graph).

In summary, Fig.4.3 illustrates graphically the general idea underlying this attack at-
tribution method. Finally, we note some other important requirements of this method:

- the flexibility to include additional attack features when needed, so as to further
improve the root cause analysis;
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Figure 4.3: An overview of the general idea underlying our attack attribution method, in which multiple
graphs are aggregated into a combined graph using a multi-criteria decision approach, so as to emphasize
phenomena made of events linked by complex relationships.

- the unsupervised aspect of this classification, and because of this, there is a need to
include some domain knowledge in a flexible way;

- the precise set of relevant features does not need to be specified in advance, and
different combinations of features can apply to different subgroups of events.

As we demonstrate in the rest of this Chapter, MCDA aggregation techniques can
satisfy all those requirements.

4.2 Formalizing the problem

4.2.1 Aggregation function

Aggregation functions are used in many prototypical situations where we have several
criteria of concern, with respect to which we assess different options. The objective consists
in calculating a combined score for each option (or alternative), and this combined output
forms then a basis from which decisions can be made. More formally, an aggregation
function can be defined as follows.

Definition 4.1. (Aggregation function [17]) An aggregation function is formally de-
fined as a function of n arguments (n > 1) that maps the (n-dimensional) unit cube onto
the unit interval: faggr : [0, 1]n −→ [0, 1], with the following properties:

(i) faggr(0, 0, . . . , 0� �� �
n-times

) = 0 and faggr(1, 1, . . . , 1� �� �
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies faggr(x1, . . . , xn) ≤ faggr(y1, . . . , yn)

All unit intervals [0, 1] are considered here to be continuous, i.e., a variable defined on
this unit interval may take any real value between the lower and upper bounds.



4.2. Formalizing the problem 69

!"#$%&'(

!)#$%&'(

!*#$%&'(

!*#$%&'(+(,-../#!$&'%(,0/(1-23(#$%&'(

4"(!(5"#6"%7"%8"'(

4)(!(5)#6)%7)%8)'(

!$&+(9!)#$%&'%(:%(!"#$%&';(

<1/=,1->?/1(@1$.3>1A(./-B3C( !../1.->1A(./-B3(

D(D(D(

Figure 4.4: Illustration of the aggregation process performed on n edge-weighted graphs (represented by
their respective proximity matrix), which leads to the construction of combined graph G∗ that takes into
account all attack features according to the semantics of faggr, the aggregation function.

In our multi-criteria attribution method, we have n different attack features Fk, whose
indices can be put into a set N = {1, 2, . . . , n}. For each Fk, recall that we have built an
edge-weighted graph Gk = (Vk, Ek, ωk), represented by its corresponding similarity matrix
Ak(i, j) = ωk(i, j), with ωk defined as an appropriate distance function.

Thus, for each pair of events (i, j) of the security data set D, a vector of criteria
zij ∈ [0, 1]n can be constructed from the similarity matrices, such that:

zij = [A1(i, j), A2(i, j), . . . , An(i, j)] (4.1)

Informally, our approach consists in combining these n values of each criteria vector
zij which reflects the set of all relationships between a pair of security events. This results
in the creation of an aggregated graph G∗ =

�
Gk.

A rather simplistic approach consists in combining the criteria using a simple arithmetic
mean, eventually with different weights assigned to each criteria (i.e., a weighted mean).
However, this does not allow us to model more complex relationships, such as “most of”,
or “at least two” criteria to be satisfied in the overall aggregation function, without having
to know which set of criteria is more relevant for a given pair of objects. So, we need
an aggregation method in which the optimal combination of criteria (and the associated
weights) is not predetermined in a static way. This multicriteria aggregation is extensively
studied in Sections 4.3 and 4.4.

4.2.2 Building a combined graph G∗.

As illustrated in Fig.4.4, the multicriteria aggregation leads finally to the construction of
a combined graph G∗, represented by its adjacency matrix A∗, which can be obtained
through following operation:

A∗(i, j) = faggr(zij), ∀(i, j) ∈ D (4.2)

Finally, we can extract the strongly connected components from G∗ in order to identify
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all subgraphs in which any two vertices are connected to each other by a certain path:

P = components(A∗)
= {P1, P2, . . . , Pm}

which gives us our final set of connected subgraphs P, where Px ⊆ G∗, and ∀(i, j) ∈
Px : faggr(zij) ≥ ε, with ε ∈ ]0, 1].

Actually, this turns out to be again a graph clustering problem very similar to the
per-feature clustering problem described in Chapter 3. As a result, the set of subgraphs P
could be obtained by applying the very same dominant sets algorithm given in Section 3.3.

However, it is important to emphasize the fact that searching for dominant sets in the
combined graph may be too restrictive in certain cases. While looking for fully connected
subgraphs (i.e., dominant sets) provides very coherent groups in the case of a single attack
feature, it can also become a limitation when several features are combined into a single
graph. The reason is pretty simple: intuitively, real-world phenomena are dynamic by
nature, which means that attack events can be linked by different combinations of features,
and thus attack events observed at instant t0 can have very different characteristics from
those of the last observed events.

As a consequence of this evolving behavior, clusters in the combined graph G∗ can
present elongated shapes in which attack events are linked in a sort of chaining structure.
While this “chaining effect” is usually not desirable in single feature clustering, it becomes
really useful in the case of our combined graph G∗ resulting from the aggregation of multiple
features.

To illustrate this point, let us consider Fig.4.5 where a combined graph representing
pairwise relations within a set of 297 attack events has been mapped on a 2-dimensional
plot. From the multicriteria analysis, it turns out that those events have been attributed to
5 distinct phenomena only. Fig.4.5 (a) shows the result of applying a connected components
algorithm to this data set. Via such a method, we are able to recover the 5 clusters
corresponding to the behavior of the 5 phenomena, as expected. Observe the elongated
shapes of clusters 1, 2 and 3.

In Fig.4.5 (b), we see now the result of applying dominant sets to the very same data
set. As we can see, this algorithm is not able to recover the chaining structures of dynamic
phenomena. For example, the very large and elongated structure of cluster 2 is split into
a dozen smaller clusters. Similarly, the previous clusters 1 and 3 have been split into two
and three different clusters, respectively.

This illustrates the eventual need for another graph clustering method to identify sub-
graphs in the combined graph G∗. We propose to extract connected components in order
to be able to recover chained structures. However, a single linkage algorithm will most
probably give similar results. There exist several well-known algorithms to extract con-
nected components from a graph (e.g., depth-first search, breadth-first search, etc). We
use here the Dulmage-Mendelsohn decomposition of A∗, which is a lightweight and efficient
operation on matrices [43].

As we will show in the two next chapters with the help of real-world applications, each
subgraph Px represents quite likely a unique attack phenomenon. This can greatly help
the analyst to figure out what are the root causes of the observed events. By analyzing
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Figure 4.5: Illustration of the “chaining effect” for 5 real-world phenomena found in the combined graph
G∗, which results from the dynamic behavior of those phenomena. (a) A graph clustering method based
on connected components is able to recover the elongated structures of the 5 phenomena, as expected. (b)
An algorithm focusing on fully connected components (such as dominant sets) is not designed to identify
such kind of chaining structures. As a result, certain phenomena are split into several smaller clusters,
which can make the root cause analysis harder for the analyst.

and visualizing those resulting phenomena through the clustering results of their individ-
ual features, we get immediately a global picture of all important relationships among
observations, and hence we get also a better insight into the behavior of the underlying
phenomenon.

Finally, it is also important to note that we must define a decision threshold ε, which
is applied to A∗ in order to eliminate combined edges that result from an unfortunate
linkage between events having some weak correlation for a number of features (which
means they would otherwise end up in the same subgraph while not related to the same
root phenomenon). A reasonable default value for this threshold is obviously k/n, with k
the minimal number of required criteria to decide keeping a link between two events.

As we show in Chapters 5 and 6, it is necessary (and relatively easy) to perform a
sensitivity analysis on ε, in order to derive appropriate values for this threshold, and thus
to obtain meaningful components.

4.2.3 Choice of an aggregation function

It is quite evident that the choice of the aggregation function faggr used to combine attack
features is fundamental, as this function will model the behavior of the phenomenon under
study. In other words, this choice must be guided by the semantics that the analyst wants
to give to the aggregation procedure, and this procedure must provide appropriate means
to model the characteristics of the attack phenomena under scrutiny.
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Aggregation functions can be divided into following main classes:

• averaging aggregation functions, where the aggregated value of a vector of criteria z
is bounded by

min(z) ≤ faggr(z) ≤ max(z)

• conjunctive aggregation functions, where the resulting value is bounded by

faggr(z) ≤ min(z) = min(z1, z2, . . . , zn)

• disjunctive aggregation functions, where the resulting value is bounded by

faggr(z) ≥ max(z) = max(z1, z2, . . . , zn)

• mixed aggregation functions, where the faggr(z) exhibits different types of behavior
on different parts of the domain.

In this Chapter, we provide an extensive study of two families of averaging functions,
namely Ordered Weighted Averaging functions and the family of Choquet integrals, and we
show how to take advantage of them to address attack attribution problems. This choice is
motivated by the domain knowledge we have acquired by observing and analyzing attack
phenomena in the Internet. Indeed, until today we haven’t observed any phenomenon
with a pure conjunctive (resp. disjunctive) behavior, i.e., a phenomenon in which the
global score obtained from the combination of attack features was below (resp. above) all
individual scores given for the attack features separately.

4.3 Ordered Weighted Averaging (OWA) functions

OWA functions are a family of averaging functions that basically rely on two main char-
acteristics: (i) a weighting vector (like in a classical weighted mean), and (ii) sorting the
inputs (usually in descending order), hence the name of Ordered Weighted Averaging. This
reordering of the components of the input vector z introduces a non-linerarity in the ag-
gregation function. However, it allows the decision-maker to design slightly more complex
modeling schemes when dealing with data fusion tasks.

This Section introduces two different OWA functions that can be helpful in the context
of our attack attribution method. The application of these operators and their semantics
are illustrated with a basic example on attack events. Finally, we briefly discuss the problem
of how to determine appropriate values for the weighting vector.

4.3.1 Classical OWA function

In [192], a new type of averaging operator called Ordered Weighted Averaging (OWA) was
introduced. The OWA operator allows one to include certain relationships among criteria,
such as “most of” or “at least” k criteria (out of n) to be satisfied in the overall aggregation
process. OWA differs from a classical weighted means in that the weights are not associated
with particular inputs, but rather with their magnitude. As a result, OWA can emphasize
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the largest, smallest or mid-range values. It has become very popular in the research
community working on fuzzy sets.

Definition 4.2. (OWA) [192, 17] For a given weighting vector w, wi ≥ 0,
�

wi = 1,
the OWA aggregation function is defined by:

OWAw(z) =
n�

i=1

wiz(i) =< w, z� > (4.3)

where we use the notation z� to represent the vector obtained from z by arranging its
components in decreasing order: z(1) ≥ z(2) ≥ . . . ≥ z(n).

It is easy to see that for any weighting vector w, the result of OWA lies between
the classical and and or operators, which are in fact the two extreme cases when w =
(0, 0, . . . , 1) (then OWAw(z) = min(z)) or when z = (1, 0, . . . , 0) (then OWAw(z) =
max(z)). Another special case is when all weights wi = 1

n
, which results in the classical

arithmetic mean.
Having defined the OWA operator, we can easily apply it to all vectors of criteria zij .

That is, referring to equation 4.2, the proximity matrix A∗ of the combined graph G∗ is
simply obtained by executing the following operation:

A∗(i, j) = OWAw(zij), ∀(i, j) ∈ D (4.4)

We have implemented the OWA operator in a MATLAB� function using the vectorized
approach. Assuming that we have m security events and n attack features, this vectorized
approach allows the OWA operator to be applied to m2 elements of n similarity matrices
at once. The only limitation of this approach is the amount of memory that is needed (on a
single computer) to store the n matrices, certainly when the number of events m becomes
large. This said, we could easily perform experiments on data sets comprising up to 10,000
events, using 8 attack features concurrently. Note also that this type of computation is
quite easy to parallelize, should scalability become an operational issue.

Obviously, the problem of defining the weights wi to be used in OWA still remains.
Yager suggests two possible approaches: (i) either to use some learning mechanism, with
sample data and a regression model (e.g., fitting weights by using training data and min-
imizing the least-square residual error), or (ii) to give some semantics, or meaning to the
wi’s by asking a decision-maker or an expert to provide directly those values, based on
domain knowledge. In many attack attribution cases, we have to rely on the latter, since
the process is mostly unsupervised, and thus we have no training samples for the phe-
nomena we aim to identify. We further discuss the problem of defining OWA weights in
Section 4.3.4.

4.3.2 Weighted OWA (WOWA)

Weighted averaging functions, such as OWA or the weighted mean, can be quite convenient
aggregation functions when we deal with data fusion tasks, in which criteria of interest are
expressed with numerical values (usually, in [0, 1]n). However, the weights used in weighted
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mean (WM) and the ones defined for the OWA operator play very different roles. The WM
takes into account the reliability of each information source (or each expert), whereas the
weights used in OWA reflect the importance of the values, regardless of their source.

Torra proposed in [171] a generalization of both WM and OWA, called Weighted OWA
(WOWA). This aggregation function combines the advantages of both types of averaging
functions by allowing the user to quantify the reliability of the information sources with
a vector p (as the weighted mean does), and at the same time, to weight the values in
relation to their relative position with a second vector w (as the OWA operator).

The rationale underlying the WOWA function becomes clear in certain intelligent sys-
tems in which you have different sensors having a certain reliability (which is known, thus
we have the weights p), and where the measurements of those sensors have to be somehow
prioritized, irrespective of their reliability. Think, for example, of an automated brak-
ing system which assists the driver in a vehicle. In this case, the reliability of the sensors
should probably be taken into account (since less reliable sensors may fail or give erroneous
measurements); however, the distance measurements to the nearest obstacles may be even
more important in certain situations, regardless of which sensors provide the inputs. A
WOWA function provides exactly this kind of combination.

In the rest of this section, we start by formally defining the WOWA aggregation func-
tion, which can replace the OWA operator in equation 4.4. Then, we illustrate its useful-
ness in the context of the attack attribution method, and how it performs compared to the
classical WM or OWA.

Definition 4.3. (Weighted OWA [171]) Let w,p be two weighting vectors with wi, pi ≥

0,
�

wi = 1,
�

pi = 1. The Weighted OWA aggregation function is defined by:

WOWAw,p(z) =
n�

i=1

uiz(i), (4.5)

where z(i) is the ith largest component of z and the weights ui are defined as

ui = G




�

j∈Hi

pj



−G




�

j∈Hi−1

pj





where the set Hi = {j|zj ≥ zi} is the set of indices of i largest elements of z, and G is a
monotone non-decreasing function that interpolates the points (i/n,

�
j≤i

wj) together with
the point (0, 0). Moreover, G is required to have the two following properties:

1. G(i/n) =
�

j≤i
wj, i = 0, . . . , n;

2. G is linear if the points (i/n,
�

j≤i
wj) lie on a straight line.

In fact, the WOWA operator can be seen as an OWA function with the weights
ui, which are obtained by combining both vectors w,p using a generating function G.
The mathematical properties of the WOWA operator have been studied and described
in [170, 171]. Among others, it has been showed that the weighting vector u satisfies
ui ≥ 0, and

�
ui = 1. It is also worth noting that if all wi = 1

n
, then it turns out that



4.3. Ordered Weighted Averaging (OWA) functions 75

WOWAw,p(z) = Mp(z), the weighted arithmetic mean. Similarly, when all pi = 1
n
, then

WOWAw,p(z) = OWAw(z).

Obviously, the weights u also depend on the choice of the interpolation function G,
also called W ∗ in [172]. As suggested by different authors, this function can be chosen as
a linear spline that interpolates the points (i/n,

�
j≤i

wj), or it can be also a monotone
quadratic spline as was suggested in [171, 16], as long as the function satisfies the properties
stated here above (i.e., the straight line condition). In the experiments performed in this
dissertation, we have used the interpolation method described in [172], by wrapping the
Java implementation of the author in MATLAB� functions.

Again, the WOWA operator can be applied to all vectors of criteria zij obtained from
n weighted graphs, so as to build a combined graph represented by its proximity matrix
A∗. Thus, in equation 4.4, the OWA can simply be replaced by the WOWA function, i.e.:

A∗(i, j) = WOWAw,p(zij), ∀(i, j) ∈ D (4.6)

Clearly, the advantage of using the WOWA operator (instead of OWA) comes from
the additional vector of weights p, which provides more flexibility in the decision-making
process by quantifying the reliability of each feature (or at least, the way we can measure
it).

4.3.3 OWA functions: an illustrative example on attack events.

Let us illustrate the use of OWA functions in the context of our attack attribution method.
Like in Chapter 3, suppose we are dealing with a data set made of computer attacks
observed in the Internet thanks to a set of distributed sensors. The attack phenomena
manifest themselves under the form of numerous attack events, which comprise groups of
malicious sources targeting in a coordinated fashion other machines. However, such attack
events are almost continuously observed in the Internet every day, and thus it is very
hard for an analyst to distinguish which events should belong to the same phenomenon.
Moreover, identifying groups of events having apparently the same root cause is of great
interest for the analyst who can directly focus on the most interesting (or dangerous)
phenomena (i.e., “triage” process).

(1) Analysis of attack features

For the sake of illustration, imagine that we can extract four different attack features
(characterizing every attack event):

- Fgeo, which represents the spatial distribution of the attackers in terms of originating
countries, as a result of mapping IP addresses to the countries they have been assigned
to;

- Fsub, which represents the distribution of IP networks of the attackers (e.g., IP ad-
dresses grouped by their Class A-subnet);

- Ftime, which represents the temporal distribution of attacking sources (i.e., a time
series representing a number of sources grouped by day, or by hour, etc);
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- Fact, which represents the type of attack activity performed by attackers (e.g., the
targeted ports, the type of exploit, etc).

Clearly, the two first features are not independent of each other, since there is a direct
mapping between IP networks and geographical countries where local ISP’s are usually
responsible for the management of well-defined IP blocks attributed according to a certain
logic. In other words, Fgeo and Fsub can be viewed as two different ways of measuring the
same concept (the origins of the attackers). Consequently, the two features are somehow
redundant and two events having the same distributions of origins will most likely exhibit
high similarities for both features, although not necessarily with the same amplitude. How-
ever, the analyst may consider Fsub as a more reliable measurement than Fgeo for following
reasons: (i) due to varying country sizes and significant differences in economic situations,
the degree of connectivity is very different from country to country; thus, measuring attack-
ers coming from countries such as US, CA, DE or CN is a priori much more likely to occur
than for other countries; and (ii) the databases that map IP addresses to geographical loca-
tion are usually difficult to maintain up to date, so this can be an additional source of error.

Regarding Ftime, this feature will measure the temporal degree of coordination between
groups of attackers that belong to different attack events. As a result, we can consider
that this feature provides a more reliable measurement of the likelihood that two events
could be due to the same phenomenon. Note that this attack characteristic is naturally
obtained by the correlation method used to identify such attack events (see [117] for more
details). However, Ftime by itself is not sufficient to link two events, since different botnets
or worms can perfectly target the same sensors in the very same interval of time, with
roughly the same daily pattern.

Finally, Fact represents the activities of the attackers, for example in terms of targeted
TCP/UDP ports. Even though two events targeting exactly the same ports might be due
to the same root cause, this feature is again not sufficient by itself, considering the fact
that certain TCP or UDP ports are much more likely to be exploited than other unusual
ports (for which no vulnerabilities have been found in potential services running on those
ports). However, the reliability of this measurement is considered as just normal, i.e., the
same as for Fsub.

Summarizing, after this preliminary analysis of the attack features under consideration,
the analyst is able to express the following preference relationships:

Fgeo ≺ Fsub ∼ Fact ≺ Ftime

(2) Multi-criteria analysis: definition of weighting vectors

Following the multi-criteria relational approach described in sections 4.1 and 4.2, we can
build an edge-weighted graph for each Fk by computing all pairwise similarities among
attack events (as described in previous Chapter). We are now interested in modeling the
most appropriate way of combining all those similarities into a single value, from which a
decision to keep a link (or not) between a pair of events can be made. It is thus important
that the aggregation method can fulfill specific constraints that reflect the preferences of
the analyst regarding the behavior of the phenomena he wants to identify.
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For the purpose of this illustration, we consider that the analyst wants to model the
following behavioral constraints, based on his domain knowledge:

(i) two attack events are most likely linked to the same root phenomenon (and hence,
have a high combined score) when at least two different attack features are cor-
related (recall that Fgeo and Fsub are two redundant features, and should ideally
account for only one global feature in the aggregation process).

(ii) attack phenomena can have a dynamic aspect, so the analyst does not know in
advance which combination of features (among (2n) possibilities) is relevant to link
two events.

(iii) only one attack feature is not sufficient to link two events to the same phenomenon,
as this could be due to chance only (e.g., due to large or popular countries, or IP
networks that are largely infested by zombie computers, or some types of activities
that are much more often observed than others, etc);

(iv) as described here above, certain attack features are more reliable than others for
determining how likely it is that two events are linked to the same root cause.

Intuitively, it is easy to see that a simple arithmetic mean can not model those require-
ments. However, using OWA functions, we can try to model those requirements in a more
effective way. For example, let us define the two following weighting vectors:

w = [0.1, 0.3, 0.4, 0.2] and p = [0.15, 0.25, 0.35, 0.25]

In fact, the requirements (i) to (iii) are translated into the values of vector w which is
to be used in an OWA function. With those values for w, the importance of the highest
score will be lessened by w [1] = 0.1, and thus we need at least two high scores in order
to get a combined value above a predetermined high threshold ε (e.g., above 0.5).

The last requirement (i.e., the reliability of the sources) can then be expressed by vector
p, which can be used either in a weighted mean, or in a WOWA aggregation function in
conjunction with w.

(3) OWA evaluation

To illustrate how those OWA functions perform compared to classical means, let us consider
some typical relations that can possibly link attack events (which are inspired by real-world
cases we have observed).

Fig. 4.6 represents a set of events observed at different points in time. The events
{e0, e1, e2, e3} are due to a same phenomenon, which is characterized by a set of relations
that are summarized in Table 4.1 on page 79 (in columns Fk). Here is the interpretation
of those relations:

- in row number 1, (e0, e1) is a case where the events differ by only one feature (Fact),
while the three other features are perfectly correlated.

- for (e1, e2) in row number 2, the attack events are highly correlated by Ftime and
Fact, but the origins of the attackers have somehow evolved between the two (note
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Figure 4.6: A set of events observed at different points in time, and where {e0, e1, e2, e3} are assumed
to be due to a same phenomenon. The two other events {e4, e5} are not linked to the same root cause,
however, they interfere with the previous ones. That is, the relations represented by dashed lines should
be lessened by the aggregation method, whereas those in solid lines must be reinforced.

the lower similarity values for Fgeo and Fsub). At the extreme, we could have a similar
case (row number 3) where (e1, e2)� = [0.1, 0.1, 0.8, 0.8], i.e., Ftime and Fact are still
strongly correlated but the origins of the phenomenon have changed even more.

- looking at (e2, e3) in row number 4, we can see that they have Fgeo, Fsub, Ftime as
common features, but the activities of the attackers have changed between the two
events. At the extreme (row number 5), we could have a similar case (e2, e3)� where
Fgeo has a lower similarity value, because measuring this feature is less reliable.
However, in both cases the analyst wants the events to be attributed to the same
root cause since Fgeo and Fsub are substitutable features.

The combined scores of all those cases (rows 1 to 5) are thus required to be reinforced
(i.e., maximized) by the aggregation function.

Then, we can also observe two events e4, e5 that are weakly correlated with the other
events. However, those weak relations are only due to chance and can be seen as interfer-
ences. More precisely, we interprete those interfering relations among events as follows:

- in row number 6, because they both originate from popular countries, e1 and e4

are weakly correlated w.r.t. Fgeo and Fsub. Sadly enough, the other two features
present also a low similarity score, which gives an average score just below 0.5. At
the extreme (row number 7), we could have a similar case where Fgeo and Fsub are
strongly correlated (by chance), but the other features are not. This is an interesting
case where the average value is greater than 0.5, but the analyst still wants
those events to be separated because there is only one correlated dimension (i.e.,
the origins), which is not sufficient to deduce that the root cause is the same. Hence,
the aggregated value for this case must be minimized, i.e., as far as possible below
the average value 0.5.

- regarding (e3, e4) in row number 8, those events are strongly correlated by Fact only,
which is merely due to the fact that certain types of attack are more often observed
than others. Unluckily, the other features present again some weak correlation, giving
an overall average similarity of 0.5.
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Table 4.1: Overview of some typical relations for a set of events where {e0, e1, e2, e3} belong to a same
root phenomenon, whereas the other events {e4, e5} do not but interfere with the previous ones. The
columns Fk refer to the similarity scores (i.e., the components zi of each vector of criteria z) regarding
each attack feature, and the last 4 columns give the aggregated score obtained with different averaging
functions. Rows 1-5 illustrate cases where the global score must be reinforced (i.e., above 0.5), whereas
rows 6-9 illustrate cases that must be minimized (i.e., global score under 0.5). Fgeo and Fsub are two
redundant features.

Row nr Event pairs Fgeo Fsub Ftime Fact M Mp OWAw WOWAw,p
1 (e0, e1) 1 1 1 0 0.75 0.75 0.80 0.80
2 (e1, e2) 0.4 0.2 1 1 0.65 0.71 0.66 0.74
3 (e1, e2)� 0.1 0.1 0.8 0.8 0.45 0.52 0.45 0.54
4 (e2, e3) 0.9 0.7 1 0 0.65 0.66 0.67 0.68
5 (e2, e3)� 0.1 0.9 1 0 0.50 0.59 0.49 0.61
6 (e1, e4) 0.9 0.3 0.2 0.3 0.45 0.43 0.36 0.33
7 (e1, e4)� 0.9 0.9 0.2 0.3 0.58 0.51 0.58 0.47
8 (e3, e4) 0.45 0.45 0.1 1 0.50 0.47 0.43 0.40
9 (e3, e5) 1 1 0 0 0.50 0.40 0.50 0.33

- in row number 9, we see a typical case where only the two redundant features Fgeo and
Fsub are perfectly correlated; however, the average score of 0.5 must be lessened since
those features should be considered as referring to the same aspect of the attacks.

As a result, the aggregation function must be able to lessen those side effects by minimiz-
ing the global score for those pairs of events (rows 6 to 9).

(4) Discussion of the results

In Table 4.1, we can observe the global scores of all vectors of criteria for the cases described
previously, as calculated with the arithmetic mean (M), the weighted mean (Mp), the
Ordered Weighted Average (OWAw) and the Weighted OWA (WOWAw,p), using the
weighting vectors w,p defined on page 77. In light of the requirements (at least 2 different
features), the analyst could be tempted to take as decision threshold ε a value around 0.5,
which is the average for 2 (out of 4) high similarity values.

However, observe that many “difficult” cases have a global score that situates around
this value. It is interesting to note that the choosen OWA operator can help to reduce the
influence of the highest similarity score, but due to the fact that the analyst is unable to
decide which highest feature must be given a lower (resp. higher) importance, the OWA
operator will fail in certain cases. That is, in rows 3 and 5, we see that eliminating the
impact of the highest criterion is too restrictive, whereas in cases indicated by rows 7 and
9, removing the influence of the highest score is not sufficient!

Not surprisingly, the WOWA operator provides here some improvement over the OWA
operator. Thanks to the second vector of weights p, which reflects the reliability of the
attack features, the analyst can model his requirements in a more effective way. For
example, we see that for the case in row number 3, this operator can help to increase the
combined score from the average of 0.45 up to 0.54. Similarly, looking at the result for
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the case in row 7, the WOWA operator can help to reduce an unwanted high score (with
an average of 0.58) down to 0.47.

In conclusion, by using OWA aggregation functions, we can observe from the examples
given in Table 4.1 that (i) more complex behaviors are modeled in a more effective way; (ii)
OWA operators can help to emphasize the gap between some desired and unwanted cases
of events linkage that can occur due to uncertainty or dynamicity issues; and (iii) in the
presence of interactions between features (like a redundancy or a synergy), the analyst
still needs more flexible means to model the aggregation of features, such as the ability
to model the influence of certain coalitions of features. As we demonstrate in Section 4.4,
this issue can be solved by using a Choquet integral defined w.r.t. a fuzzy measure.

4.3.4 Strategies to determine weights in OWA.

As illustrated previously, the most natural way of defining the weighting vector in OWA
consists in giving semantics to individual weights based on domain knowledge, e.g., by
asking an expert to provide directly those values. However, there are some other strategies
that can help the decision-maker when knowledge about the phenomena is absent or quite
limited.

A first approach consists to set some constraints on certain characteristics of averaging
functions, such as the weights dispersion and the orness (or degree of disjunction) of
the function. Another approach is to use optimization methods to fit weights to some
empirical data, assuming we know what is the desirable output that corresponds to every
input sample (i.e., an approach based on supervised learning). We briefly discuss both
approaches in this section.

Orness and Dispersion.

Informally, the orness (also called the degree of disjunction, or the attitudinal character)
measures how far a given averaging function is from the max function, which is the weakest
disjunctive function. For any given averaging function faggr, its degree of orness is defined
by ([53, 134]):

orness(faggr) =

�
[0,1]n faggr(x)dx−

�
[0,1]n min(x)dx

�
[0,1]n max(x)dx−

�
[0,1]n min(x)dx

(4.7)

Given this definition, it is clear that orness(max) = 1 and orness(min) = 0, whereas
orness(faggr) ∈ [0, 1] for any other function. In the specific case of the OWA function, it
turns out that the above definition translates into the following simple equation ([192]):

orness(OWAw) =
n�

i=1

wi

n− i

n− 1
(4.8)

Another useful interpretation of the orness relates to the degree of compensation of an
averaging function, i.e., the degree of orness measures to what extent a “bad” score (i.e.,
a small value) for one of the inputs influences the output ([173]). Observe also that the
orness of the arithmetic mean (M) and the weighted mean (Mw) is always equal to 1

2
(regardless of the weighting vector w used for Mw).
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Next, another important numerical characteristic of an averaging function is the weights
dispersion, also called the entropy. Basically, this quantity measures the degree to which
all the information (i.e., all inputs zi) is used in the aggregation process. For any given
weighting vector w, we can quantify its dispersion (or entropy) by using

Disp(w) = −
n�

i=1

wi log wi (4.9)

with the usual convention that 0 · log 0 = 0. The maximal dispersion is equal to log n,
which is achieved at wi = 1

n
for all weights (i.e., arithmetic mean). The minimal dispersion

is equal to 0, which is achieved for wi = 0, i �= k, and wk = 1 (i.e., the order statistic).

Example of orness and entropy.
Turning back to previous illustration of section 4.3.3, it is easy to calculate those indices
for the chosen OWA vector w = [0.1, 0.3, 0.4, 0.2], i.e.:

Disp(w) = 1.28 and orness(OWAw) = 0.46

The value of the weights dispersion indicates that all inputs are well taken into account
in the aggregation, since the maximum entropy in this case is equal to log 4 = 1.38, and
the value obtained, 1.28, is close to that maximum dispersion. On the other hand, the
orness value confirms that this OWAw function compensates slightly more than a simple
arithmetic mean (i.e., bad scores have a greater influence on the final output). This can
be derived from the orness value 0.43 which is smaller than 0.5, the orness value for the
arithmetic mean.

Maximum entropy and minimum variance.

Fullér and Majlender proposed two methods for choosing OWA weights that are based on
various measures of weights dispersion (or entropy) [56].

In the first approach, the idea is to determine, for a given n and orness measure α, a
vector of weights wi that maximizes the dispersion Disp(w) as given by equation 4.9. This
can be formulated as the following optimization problem:

min
n�

i=1

wi log wi (4.10)

such that






n�

i=1

wi

n− i

n− 1
= α

n�

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

The solution to this problem is given in [56] and is called Maximum Entropy OWA
(MEOWA). Using the method of Lagrange multipliers, the authors could find analytical
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expressions for the determination of the weights wi under the conditions stated here above2.
Although we haven’t used this MEOWA operator, it is worth noting that it can help the
analyst to perform a preliminary analysis on an unknown data set when the domain knowl-
edge is rather limited (since the only parameter one needs to specify is the orness value α,
which reflects the degree of compensation of the aggregation function).

Fullér and Majlender proposed also in [57] to optimize another popular characteristic
of weighting vector, namely the weights variance, which is defined by

D2(w) =
1
n

n�

i=1

(wi −M(w))2 =
1
n

n�

i=1

w2
i −

1
n2

(4.11)

where M(w) is the arithmetic mean of w. Here, the idea is to minimize D2(w) according
to a given orness value. The solution to this problem is called Minimum Variance OWA
(MVOWA). Since adding a constant value to an objective function does not change the
minimizer, the problem reduces to the following optimization:

min
n�

i=1

w2
i (4.12)

such that






n�

i=1

wi

n− i

n− 1
= α

n�

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

The optimal solution to this problem can be found in [57] where analytical expressions
have been calculated for the weights wi under the above requirements. Note that for α = 1

2 ,
the optimal solution is always wi = 1

n
, i = 1, . . . , n.

Fitting weights to empirical data.

Until now, we have described an attack attribution method that is essentially unsupervised,
and thus the only information the analyst could rely on to define aggregation parameters
(i.e., weights) was basically his general domain knowledge about attack phenomena. How-
ever, it is reasonable to expect that, after a while, certain phenomena discovered by this
unsupervised approach can be further validated by new observations. Consequently, some
empirical data could be gathered on those specific phenomena. For example, assuming
a researcher discovers a new type of botnet and he is able to track the behavior of bots
belonging to that botnet, then one could possibly collect measurements (like geographical
location of bots, their IP subnets, their activities, etc) on some events attributed to the
botnet, and compute similarities with some other events that are knowingly not part of
the same phenomenon.

Hence, given a set of training samples (zk, yk), k = 1, . . . ,K, we can now examine the
problem of finding (or adjusting) OWA weights that best fit the empirical data. The goal is
to find a weighting vector that minimizes the differences between the predicted (OWA(zk))

2A different (yet equivalent) representation of the same solution was given in [25]
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and observed (yk) values, under a given optimization scheme.

This can be formulated as an optimization problem, e.g., by using a least squares or
least absolute deviation criterion. In the first case, we need then to solve the following
problem:

min
K�

k=1

�
n�

i=1

wiz(i)k − yk

�2

(4.13)

s.t.
n�

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

whereas the optimization under a least absolute deviation criterion is formulated as:

min
K�

k=1

����
n�

i=1

wiz(i)k − yk

���� (4.14)

s.t.
n�

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

This problem of fitting OWA weights to empirical data was studied by several authors
([52, 191], among others). It is worth noting that a common feature of all methods is to
eliminate the nonlinearity due to the reordering of the input vector z. For this reason, the
optimization problems are formulated using an auxiliary data set where all input vectors
have been reordered, i.e.: z(1)k ≥ z(2)k ≥ . . . ≥ z(n)k, for every pair (zk, yk) of the training
data set. Note also that it is generally assumed K � n, otherwise multiple optimal
solutions exist (due to rank deficiency). Some additional requirements can be incorporated
in the optimization problem, such as the desired value of orness(OWA) = α ∈ [0, 1].

The optimization problems 4.13 and 4.14 can be solved using either linear or quadratic
programming techniques, depending on the optimization criterion. Beliakov et al. provide
in [17] a more detailed discussion on how to formulate and solve those problems using
numerical analysis methods. Unfortunately, in the context of this dissertation we couldn’t
gather any “good” training data set to further validate this weights fitting approach. So,
we leave the experimental validation of this supervised approach as future work.

4.3.5 A final note on OWA functions.

We observe that the family of OWA functions has been further studied and generalized
by other authors. Many other types of OWA functions have been developed, such as the
Ordered Weighted Geometric function (OWG), the Neat OWA, the Generalized OWA, or
OWA functions based on power functions (similar to weighted power means). Similarly,
yet other methods have been developed to determine optimal OWA weights, for example
methods based on weight generating functions (e.g., Regular Increasing Monotone, or RIM
quantifiers, such as in [193, 194]).

Note that our method is not per se limited to the use of the OWA functions herein
presented. However, in this Section we have clearly demonstrated how certain OWA aggre-
gation functions can help a security analyst, in a simple yet effective manner, to combine
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evidences and make a decision on the attribution of security events to a common root cause.
We hope it will inspire other researchers to explore the utility of other multi-criteria meth-
ods and aggregation functions in the realm of attack attribution).

4.4 On the use of Choquet integral

4.4.1 Introduction

Until now, we have showed how certain types of aggregation functions, such as OWA, can
help to combine attack features which are represented by pairwise relations between at-
tack events. However, in many multi-criteria problems, and by consequent also in attack
attribution problems, it happens quite often that certain criteria are not completely inde-
pendent. For example, certain combinations of criteria may show some sort of synergy (or
complementarity), whereas other subsets of criteria could have globally less importance
due to the presence of redundancy (or substitutability) among them.

Fuzzy integrals are a large family of aggregation functions that can provide effective
means for modeling this kind of behavior in MCDA problems. Broadly speaking, there are
two main families of functions:

- the Choquet integral, which is used for the aggregation of criteria defined on cardinal
scales. That is, the scores of the criteria are expressed by real numbers reflecting a
degree of satisfaction, a preference, or a degree of membership.

- the Sugeno integral, which can be viewed as the ordinal version of Choquet, i.e., the
scores of the evaluation criteria are expressed on a finite ordinal (or qualitative) scale,
and thus the Sugeno integral involves a combination of min-max logical operations
on a fuzzy measure.

In this Section, we will only consider the use of Choquet integral for combining attack
features, since most criteria we are dealing with are defined on cardinal scales (usually,
on [0, 1]). When the analyst is confronted with multi-criteria problems where criteria are
defined on both ordinal and cardinal scales, a commonly used approach consists in trying
to turn the ordinal problem into a cardinal one, or to get cardinal information from the
ordinal one, for example by counting the number of times an alternative is better or worse
than the other ones on a given criterion. When all criteria are ordinal ones, then obviously,
the Sugeno integral provides more appropriate means to aggregate them.

Recall that our attack attribution methodology is based on a relational approach where
the goal is to combine a set of pairwise relations reflecting similarities among attack events
w.r.t different attack features, so as to build a combined graph that takes into account
all features (see Section 4.2). This combined graph can then serve to identify groups of
events linked to the same root phenomenon. The purpose of this Section is to demonstrate
how the Choquet integral may be used to perform this aggregation of features in a more
effective way. We will also show that a Choquet integral offers a much greater flexibility
in modeling interactions among features.

The rest of this Section is organized as follows: first, we introduce the concept of fuzzy
measure. Then, we formally define the Choquet integral and we introduce a few essential
concepts that are associated to it. Next, we illustrate the use of Choquet integral on a set
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of attack events. Finally, we examine the problem of how to determine the coefficients of
a fuzzy measure.

4.4.2 Fuzzy measures

Fuzzy integrals, such as Choquet or Sugeno integrals, are defined with respect to so-called
fuzzy measures. Given a set of objects N (e.g., criteria, features), a fuzzy measure is simply
a set function used to define, in some sense, the importance (or strength) of any subset
belonging to the power set of N . It is worth noting that fuzzy measures are not necessarily
additive (i.e., the measure of a given set is not necessarily equal to the sum of its subsets).
This property of additivity has been somehow relaxed on fuzzy measures by requiring only
the monotonicity of the measure.

More formally, a fuzzy measure (alternatively called a capacity in the literature) is
defined by

Definition 4.4. (Fuzzy measure or Capacity) Let N = {1, 2, . . . , n} be the index set
of n criteria. A capacity [31] or fuzzy measure [153] is a set function v : 2N → [0, 1] which
is monotonic (i.e., v(A) ≤ v(B) whenever A ⊂ B) and satisfies v(∅) = 0. The measure is
normalized if in addition v(N ) = 1.

In multi-criteria decision making, a fuzzy measure is thus a set of 2n real values where
each value can be viewed as the degree of importance of a combination of criteria (also
called a coalition, in particular in game theory). In other words, from definition 4.4, any
subset A ⊆ N can be considered as a coalition of criteria, and thus v(A) reflects the
importance of this coalition with a given weight. Note that when new elements are added
to a given coalition, it can not decrease its weight (due to the monotonicity condition).

A basic example of a fuzzy measure is

v(A) =
|A|

n
, (4.15)

for any subset A ⊆ N , and where |A| denotes the number of elements in A.

Two mathematical properties of fuzzy measures are particularly of interest. First,
a fuzzy measure is additive if for all disjoint subsets A,B ⊆ N , we have v(A ∪ B) =
v(A)+v(B). That is, when a fuzzy measure is additive, it suffices to define the n coefficients
v({1}), . . . , v({n}) to define the fuzzy measure entirely. Note that in the general case, one
needs to define the 2n − 2 coefficients corresponding to the 2n subsets of N , except v(∅)
and v(N ).

Secondly, a fuzzy measure is symmetric if the value v(A) depends only on the cardi-
nality of the set A, i.e., for any subsets A,B ⊆ N , |A| = |B| implies v(A) = v(B). The
example given by equation 4.15 here above is an example of a fuzzy measure which is
both additive and symmetric. Note that this type of measure is usually too restrictive in
the modeling of a multi-criteria aggregation (in fact, the integral of such fuzzy measures
coincides with the arithmetic mean).
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A fuzzy measure can also be transformed into an alternative representation, called
the Möbius representation, which can be helpful in expressing various concepts or quan-
tities related to aggregation functions. For example, we will see in section 4.4.4 that it
is convenient to express certain interaction indices in a more compact form. The Möbius
representation of a fuzzy measure can be obtained with the Möbius transform.

Definition 4.5. (Möbius transform) [130] The Möbius transform of a fuzzy measure
v, denoted by Mv, is a set function defined for every A ⊆ N as:

Mv(A) =
�

B⊆A
(−1)|A\B|v(B)

The fuzzy measure v can be recovered using the inverse of a Möbius transform, called
Zeta transform:

v(A) =
�

B⊆A
Mv(B), ∀A ⊆ N

In addition,
Mv(∅) = 0 and

�

A⊆N
Mv(A) = 1.

Example of fuzzy measure.

A convenient way of representing fuzzy measures consists to use a lattice form (i.e., a Hasse
diagram) of the inclusion relation defined on the set of subsets of N ([17]). For example,
for n = 3, we can represent the 2n elements of a fuzzy measure v as:

v({1, 2, 3})
v({1, 2}) v({1, 3}) v({2, 3})
v({1}) v({2}) v({3})

v(∅)

Let v be a fuzzy measure given by

1
0.9 0.5 0.3
0.5 0 0.3

0

Then, its Möbius transform Mv is given by

0.1
0.4 -0.3 0
0.5 0 0.3

0
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For example,

Mv({1, 2}) = (−1) · v({1}) + (−1) · v({2}) + (−1)2 · v({1, 2})
= −0.5− 0 + 0.9 = 0.4

Observe that the sum of all values in the Möbius representation is equal to 1, and the
values of v and Mv coincide on singletons.

4.4.3 Choquet integral

In this section, we present the Choquet integral, which is defined with respect to a fuzzy
measure.

Definition 4.6. (Choquet integral) [31] The (discrete) Choquet integral of an input
vector z with respect to a fuzzy measure (or capacity) v is given by

Cv(z) =
n�

i=1

z(i)

�
v({j|zj ≥ z(i)})− v({j|zj ≥ z(i+1)})

�
(4.16)

where z(1) ≤ z(2) ≤ . . . ≤ z(n), i.e., z(i) is the ith largest component of the input vector z.

By rearranging the terms of the sum here above, the Choquet integral can alternatively
be written as ([17]):

Cv(z) =
n�

i=1

�
z(i) − z(i−1)

�
v(Hi) (4.17)

where Hi = {(i), . . . , (n)} is the subset of indices of the n− i + 1 largest components of z,
and z(0) = 0 by convention.

For example, let n = 3 and z2 ≤ z1 ≤ z3. Then, using equation 4.16, we have

Cv(z1, z2, z3) = z2 [v({2, 1, 3})− v({1, 3})] + z1 [v({1, 3})− v({3})] + z3v({3})

Special cases.

It is worth mentioning that the class of Choquet integrals generalizes averaging functions,
such as those discussed previously. In fact, it turns out that weighted means and OWA
functions are just special cases of Choquet integrals with respect to additive and symmet-
ric fuzzy measures respectively. More precisely, when a fuzzy measure v is additive, the
Choquet integral reduces to a weighted arithmetic mean:

Cv(z) =
n�

i=1

v({i}) zi

When a fuzzy measure v is symmetric, the Choquet integral reduces to an OWA function
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as introduced in Section 4.3, with weights given by

Cv(z) =
n�

i=1

(vn−i+1 − vn−i) z�(i)

with vi := v(A), such that |A| = i.

Similarly, it can be showed that the WOWA operator is also a special case of Choquet
integral [173]. Finally, the Choquet integral with respect to a symmetric additive fuzzy
measure (as the example 4.15) coincides with the arithmetic mean.

Orness and Entropy.

The general concept of orness defined by equation 4.7 can be calculated in the case of the
Choquet integral thanks to following formula [89]:

orness(Cv) =
1

n− 1

�

A⊆N

n− |A|

|A|+ 1
Mv(A) (4.18)

where Mv(A) is the Möbius representation of A. Quite obviously, this quantity can also
be expressed in terms of the fuzzy measure v. The signification of this index is the same
as the one given in section 4.3.4 for the OWA aggregation function.

Then, similarly to the important concept of weights dispersion defined for OWA func-
tions in equation 4.9, the entropy of a fuzzy measure v with respect to the Choquet integral
has been defined in [90] as follows:

H(v) =
�

i∈N

�

A⊆N\i

(n− |A|− 1)!
n!

h(v(A ∪ {i})− v(A)) (4.19)

with h(t) = −t log t, if t > 0 and h(0) = 0. This definition coincides with the previous one
given for OWA functions when v is symmetric. Again, the maximal value of H is log n and
is achieved for an additive symmetric fuzzy measure (such as the one given in the example
4.15). The minimal value 0 is achieved for a Boolean fuzzy measure.

Some other mathematical properties of Choquet integrals have been extensively studied
by several MCDA experts; however, we limit our discussion to those mathematical concepts
that are really essential to understand the integration of such techniques into our attack
attribution methodology. We refer the interested reader to [63, 173, 17] for a more detailed
discussion of mathematical aspects.

Note also that Beliakov et al. discuss in [17] the computational aspects of various
aggregation functions and fuzzy integrals, i.e., how those concepts can be represented and
implemented in a programming language. For the purpose of the experiments carried out
in this dissertation, the Choquet integral, and all related concepts described in the text,
have been implemented under the form of MATLAB� functions.
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4.4.4 Interaction indices among criteria

The flexibility of the Choquet integral comes also with a certain complexity, which is
mainly due to the fact that a fuzzy measure v must be defined by 2n values. As a result,
the behavior of the decision-making process does not always appear as clearly when looking
at all values of v. Moreover, in multi-criteria problems, it is often the case that certain
criteria are not independent, i.e., there is some interaction (positive or negative) among the
criteria. For example, two criteria may point essentially to the same concept, and hence
should be considered as redundant in the aggregation. Therefore, it is interesting to define
some indices to measure the importance of a given criterion, or the interactions among
criteria.

To do this, we can use the Shapley value, which measures the importance of a criterion i
in all possible coalitions. It was first proposed by Shapley [142] in the context of cooperative
game theory.

Definition 4.7. (Shapley value [142]) The Shapley index of a criterion i ∈ N w.r.t. a
fuzzy measure v is given by

φ(i) =
�

A⊆N\i

(n− |A|− 1)!|A|!
n!

[v(A ∪ {i})− v({A})]

The Shapley value is the vector φ(v) = (φ(1), . . . ,φ(n)).

The Shapley value can be interpreted as the average contribution of each criterion alone
in all possible coalitions. With the help of the Möbius transform, the Shapley index can
be expressed in a more compact form, which can be also more convenient to calculate:

φ(i) =
�

B| i∈B

1
|B|

Mv(B)

Another important measure is the interaction index, introduced by Murofushi and
Soneda [103], which quantifies the way two criteria i, j interact in all possible coalitions.
As mentioned before, a certain criterion may be irrelevant when considered alone, but its
importance regarding the overall decision value may sharply rise when taken in conjunction
with other criteria.

Definition 4.8. (Interaction index [103]) The interaction index between two criteria
i, j ∈ N w.r.t. a fuzzy measure v is given by

Iij =
�

A⊆N\{i,j}

(n− |A|− 2)!|A|!
(n− 1)!

[v(A ∪ i, j)− v(A ∪ i)− v(A ∪ j) + v(A)]

When Iij < 0, we can say that criteria i, j are linked by a negative synergy (redundancy,
or substitutability). Inversely, a positive interaction Iij > 0 depicts a positive synergy (or
complementarity) between criteria i, j ([58, 59]). When Iij = 0, we say that criteria i, j
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are independent, because the degree of satisfaction due to their combination is equivalent
to the sum of the individual contributions of both criteria (i.e., it reflects a null synergy).

This definition of Iij due to Murofushi and Soneda holds for a pair of criteria only, but
it was extended by Grabisch et al. [63] for any coalition A (and not just pairs) of criteria:

I(A) =
�

B⊆N\A

(n− |B|− |A|)!|B|!
(n− |A|+ 1)!

�

C⊆A
(−1)|A\C|v(B ∪ C) (4.20)

which again can be expressed in a more compact form using the Möbius transform:

I(A) =
�

B|A⊆B

1
|B|− |A|+ 1

Mv(B) (4.21)

Clearly, I(A) coincides with Iij for A = {i, j}, and coincides with φ(i) for A = {i}. As
we show in the next section, those interaction indices present a special interest when the
analyst must deal with the problem of defining fuzzy measures.

4.4.5 Illustration on attack events

(1) Definition of a fuzzy measure

Let us consider again the example data set made of attack events described in Section
4.3.3. Recall that we have 4 different criteria which are mapped to the selected attack
features Fgeo, Fsub, Ftime, Fact.

To use a Choquet integral as aggregation function, the analyst needs to define a fuzzy
measure v that models the requirements w.r.t. the behaviors of attack phenomena. As
usual, the 2n elements of v can be represented under a lattice form, which is of the following
form when n=4:

v({1, 2, 3, 4})
v({1, 2, 3}) v({1, 2, 4}) v({1, 3, 4}) v({2, 3, 4})

v({1, 2}) v({1, 3}) v({1, 4}) v({2, 3}) v({2, 4}) v({3, 4})
v({1}) v({2}) v({3}) v({4})

v(∅)

To define the numerical values for each coalition of a fuzzy measure v, we have to
consider the requirements imposed by the domain knowledge (as described previously in
Section 4.3.3). For the values of the singletons v({i}), i = 1, . . . , 4, we can start for example
from the values of the weighting vector p = [0.15, 0.25, 0.35, 0.25], as defined previously
for the WOWA operator. Recall that those values quantify the degree of reliability of each
attack feature.

Next, for each coalition of criteria, we define the corresponding value of the fuzzy
measure by considering the positive, negative or null effect of the interactions among all
possible subsets of the coalition. In this case, we just need to reduce the value for each
coalition of criteria involving a combination of the two redundant features Fgeo, Fsub (i.e.,
{1, 2}, {1, 2, 3} and {1, 2, 4}).



4.4. On the use of Choquet integral 91

This leads us to define following fuzzy measure v:

1
0.75 0.65 0.85 0.95

0.25 0.60 0.50 0.70 0.60 0.70
0.15 0.25 0.35 0.25

0

(2) Evaluation of the Choquet integral on attack events

We are now in the position of calculating the Choquet integral Cv w.r.t. the fuzzy measure
v defined here above. We consider again the same set of attack events as described in the
previous illustration in Section 4.3.3.

Table 4.2: Aggregated scores obtained with Choquet integral applied to the same set of event pairs and
criteria vectors as in 4.3.3 . The Choquet integral can help to further emphasize the gap between the
desired and unwanted cases, thanks to its greater flexibility in modeling behaviors or preferences.

Row nr Event pairs Fgeo Fsub Ftime Fact M WOWAw,p Cv

1 (e0, e1) 1 1 1 0 0.75 0.80 0.75
2 (e1, e2) 0.4 0.2 1 1 0.65 0.74 0.79
3 (e1, e2)� 0.1 0.1 0.8 0.8 0.45 0.54 0.59
4 (e2, e3) 0.9 0.7 1 0 0.65 0.68 0.69
5 (e2, e3)� 0.1 0.9 1 0 0.50 0.61 0.67
6 (e1, e4) 0.9 0.3 0.2 0.3 0.45 0.33 0.36
7 (e1, e4)� 0.9 0.9 0.2 0.3 0.58 0.47 0.41
8 (e3, e4) 0.45 0.45 0.1 1 0.50 0.40 0.46
9 (e3, e5) 1 1 0 0 0.50 0.33 0.25

The results are given in Table 4.2 where we can compare the performance of Cv with
the classical mean M and the WOWA operator (that has provided the best results until
now). We observe that the Choquet integral outperforms any other aggregation function,
which comes obviously from its greater flexibility in modeling more complex interactions
(such as a synergy or a redundancy between two features). For example, on the cases given
in rows 3 and 5 in Table 4.2, the Choquet integral helps to increase the global score of those
cases (up to 0.59 and 0.67 respectively), despite the fact that the average value is equal
or even less than 0.5. Similarly, on the cases given in rows 7 and 9, we can observe that the
Choquet integral is able to lessen the undesired effect of the redundant features, so that
the global score is minimized (down to 0.41 and 0.25 respectively) although the average
value is equal or even greater than 0.5. Thanks to this flexibility, the Choquet integral
can thus model more closely the requirements of the analyst regarding the behaviors of
phenomena.

Finally, applying formula’s 4.18 and 4.19, we find that the orness of this fuzzy measure
v is equal to 0.55 while its entropy is equal to 1.25, which means that all inputs are well
taken into account during the aggregation.



92 4. Attack Attribution using Multi-criteria Decision Analysis

(3) Computing interaction indices

The concepts of interaction index defined in Section 4.4.4 can be illustrated by applying
the definitions of φ(v) and I(A) to the fuzzy measure v of previous example.

For I(A), we obtain the following results :

0.15
-0.125 -0.125 0.025 0.025

-0.15 0.025 0.025 0.025 0.025 -0.05
0.11 0.21 0.39 0.29

0.52

As expected, the fuzzy measure has negative interaction indices for all coalitions
involving the combination of the redundant features {1, 2}, which reflects the negative
synergy between those criteria.

Finally, we can calculate the Shapley values for each attack feature:

φ(v) = [0.1125, 0.2125, 0.3875, 0.2875]

which illustrates also the equivalence of φ(i) with I(A) for each A = {i}. This Shapley
value shows that the second feature (Fsub) and the fourth feature (Fact) have on average
approximately the same contribution to the global score, whereas Ftime and Fgeo have
globally the largest and smallest influence respectively. This is clearly consistent with the
requirements of the analyst described previously in Section 4.3.3.

4.4.6 Determination of fuzzy measures

The flexibility of the Choquet integral has also a major drawback, which is related to
its exponential complexity (remember that 2n − 2 real values must be defined in a fuzzy
measure). Another related consequence is the difficulty to interprete those values (certainly
when n �), and thus to analyze the behaviour of the aggregation model. To deal with
those issues, several particular families of measures have been proposed.

λ-fuzzy measures

Sugeno [153] has first proposed a simplified submodel based on λ-fuzzy measures as a
way of reducing the complexity of a fuzzy measure3. The idea is to define the values
of the fuzzy measure v only for individual criteria, and then to solve a linear system to
determine all other values for the coalitions, based on some constraints imposing a sub- or
superadditivity on the fuzzy measure.

Definition 4.9. (λ-fuzzy measure [153]) Given a parameter λ ∈ ]−1,∞[, a λ-fuzzy
measure is a fuzzy measure v that, for all disjoint sets A,B ⊆ N , satisfies

v(A ∪ B) = v(A) + v(B) + λv(A)v(B)

3For this reason, λ-fuzzy measures are also called Sugeno measures.
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Under these conditions, all values v(A) can be immediately calculated from the n
independent values v({i}), i = 1, . . . , n, by using the following formula

v(
m�

i=1

{i}) =
1
λ

�
m�

i=1

(1 + λv({i}))− 1

�
, λ �= 0 (4.22)

where the coefficient λ is determined from the boundary condition v(N ) = 1, and
involves solving following equation on (−1, 0) or (0,∞)

λ + 1 =
n�

i=1

(1 + λv({i})) (4.23)

A λ-fuzzy measure is either sub- or superadditive, when −1 < λ ≤ 0 or λ ≥ 0 respec-
tively. Note that a λ-fuzzy measure is an example of a distorted probability measure [106].

k-additive fuzzy measures

To decrease the exponential complexity of fuzzy measures, Grabisch proposed another
submodel called k-order additive fuzzy measures, or shorter k-additive fuzzy measures [60].
The idea is to construct a fuzzy measure where the interaction among criteria is limited to
groups of size k (or less). For example, in a 2-additive fuzzy measure, we can only model
pairwise interactions among criteria, but no interactions in groups of 3 or more. In fact,
all values of the fuzzy measure for groups of size larger than k are determined by various
linear constraints.

k-additive fuzzy measures provide a good trade-off between complexity and flexibility
of the model. Instead of 2n − 2 values, they require only

�
k

i=1(
n

i
) values to be defined.

1-additive fuzzy measures are just ordinary additive measures (for which only n values
are needed), but they are usually too restrictive for an accurate representation of complex
problems4. In practice, 2-additivity seems to be the best compromise between low com-
plexity and richness of the model [60]. In this case, only n(n + 1)/2 values need to be
defined.

Definition 4.10. (k-additive fuzzy measure [60]) A fuzzy measure v is said to be
k-additive (1 ≤ k ≤ n) if its Möbius transform verifies

Mv(A) = 0

for any subset A with more than k elements, |A| > k, and there exists a subset B with k
elements such that Mv(B) �= 0.

A fundamental property of k-additive fuzzy measures is
�

I(A) = 0, for everyA ⊆ N such that |A| > k

I(A) = Mv(A), for everyA ⊆ N such that |A| = k

4Recall that the Choquet integral w.r.t. 1-additive fuzzy measures is a weighted arithmetic mean.
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Note there are a few other methods that have been developed for building models with
reduced complexity, such as p-symmetric fuzzy measures [98] or k-tolerant and k-intolerant
fuzzy measures [89]. However, we will limit our discussion to the two aforementioned
methods, and we illustrate their application in the context of attack events here after.

Reducing the complexity of a fuzzy measure: a practical example.

Let us illustrate the use of the two methods explained here above to construct new sub-
models with the help of fuzzy measures of reduced complexity.

First, to define a λ-fuzzy measure vλ, we just need to define vλ(A) for every individual
criterion A = {i} according to the global behavior we want to give to the measure. That
is, if the analyst wants a subadditive (resp. superadditive) measure, then he has to define
the values for the singletons such that

�
n

i=1 vλ({i}) > 1 (respectively
�

n

i=1 vλ({i}) < 1).
The second characteristic that can influence the definition of the fuzzy measure vλ is the
relative ratio between each pair of criteria.

Turning back to our illustration on attack events, we need thus to define a subadditive
fuzzy measure, due to the presence of the two redundant features Fgeo, Fsub. Intuitively,
starting from the values of weighting vector p = [0.15, 0.25, 0.35, 0.25], we have to increase
the relative importance of criterion {3} (and eventually also {4}), while decreasing the
relative importance of the two redundant criteria {1, 2}. For example, this can lead to
the definition of following values for the singletons: {0.10, 0.20, 0.50, 0.25} (there exist
obviously many other possibilities).

Then, we can solve the linear system given by 4.22 using those n independent values,
and λ can be determined from equation 4.23, which gives us λ = −0.14. The solution to
this linear system gives immediately all values of the new fuzzy measure vλ, which is then
defined by:

1
0.78 0.54 0.82 0.91

0.29 0.59 0.35 0.69 0.44 0.73
0.10 0.20 0.50 0.25

0

This λ-fuzzy measure can now be used to calculate the Choquet integral on the set of
attack events introduced previously in the illustrations. The results are given in Table 4.3.
As one can see, the results given by Cvλ are in most cases as good (or even better) as the
ones given by previous fuzzy measure v we had defined manually.

A second approach to reduce the complexity of a fuzzy measure is to use a k-additive
measure. Suppose we want to define a 2-additive fuzzy measure called v2. A 2-additive
measure is apparently a good trade-off between complexity of the model (in terms of the
number of values to determine) and its effectiveness. To do this, we can simply define the
interaction indices I2(A) of v2, for all combinations of 2 criteria or less. In other words,
for all A ⊆ N such that |A| > 2, it suffices to set the values of I2(A) = 0 (by definition of
a 2-additive measure).
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Based on our domain knowledge about the considered attack features, let us define
following interaction indices I2(A) for this new fuzzy measure v2 (note the strong negative
index for the interaction between the two redundant features, and a weak synergy for all
other 2-coalitions):

0
0 0 0 0

-0.20 0.05 0.05 0.05 0.05 0
0.10 0.20 0.40 0.30

0.50

It is then possible to convert I2(A) to its corresponding fuzzy measure v2 (which will
be by definition 2-additive). To do this transformation I2(A)→ v2(S), we just need to use
the conversion formula given by Grabisch in [61]:

v(S) =
�

A⊂N
β|A||S∩A|I(A)

where β is a quantity related to the Bernouilli numbers Bk, and is given by

βl

k
=

k�

j=0

�
k

j

�
Bl−j , k, l = 0, 1, 2, . . .

The resulting 2-additive fuzzy measure v2 obtained using this method is defined by the
following values

1
0.65 0.55 0.85 0.95

0.20 0.55 0.45 0.65 0.55 0.60
0.15 0.25 0.35 0.25

0

The results of the Choquet integral w.r.t. v2 (given in Table 4.3) demonstrate clearly
that the 2-additive measure v2 is at least as performant as the manually defined measure
v (or even better in many cases). For example, Cv2 helps to emphasize the gap between
desired and unwanted cases of events linkage, such as in rows 3,5 and 7,9 respectively.
However, the analyst needs to define far less coefficients (only

�2
i=1(

4
i
), instead of (24− 2)

values). We can easily imagine how convenient 2-additive measures can be when n �.
Moreover, we observe also that v2 is at least as good as the λ-fuzzy measure vλ. Although
convenient, it is worth noting that λ-fuzzy measures are merely distorted probabilities, and
it was showed that it can become too restrictive in certain MCDA problems [61].

Fitting fuzzy measures to empirical data

A last approach for determining fuzzy measures consists obviously in fitting values to
empirical data. Similarly to the problem described in section 4.3.4, and assuming we
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Table 4.3: Aggregated scores for the same set of event pairs and criteria vectors as in 4.3.3. Here, the
values of Choquet integrals were calculated w.r.t. fuzzy measures with a reduced complexity, namely: (i)
vλ, obtained using a subadditive λ-fuzzy measure (with λ = −0.14), and (ii) v2 obtained by defining a
2-additive fuzzy measure.

Row nr Event pairs Fgeo Fsub Ftime Fact M Cv Cvλ Cv2

1 (e0, e1) 1 1 1 0 0.75 0.75 0.78 0.65
2 (e1, e2) 0.4 0.2 1 1 0.65 0.79 0.80 0.73
3 (e1, e2)� 0.1 0.1 0.8 0.8 0.45 0.59 0.61 0.52
4 (e2, e3) 0.9 0.7 1 0 0.65 0.69 0.62 0.60
5 (e2, e3)� 0.1 0.9 1 0 0.50 0.67 0.68 0.62
6 (e1, e4) 0.9 0.3 0.2 0.3 0.45 0.36 0.32 0.34
7 (e1, e4)� 0.9 0.9 0.2 0.3 0.58 0.41 0.43 0.38
8 (e3, e4) 0.45 0.45 0.1 1 0.50 0.46 0.43 0.43
9 (e3, e5) 1 1 0 0 0.50 0.25 0.29 0.20

are able to observe some phenomenon and collect a set of training samples (zk, yk), k =
1, . . . ,K, then it is possible to determine a fuzzy measure that best fits the empirical data
according to some objective criterion.

Again, this can be formulated as an optimization problem. If we use a least squares
criterion to minimize the error, we need to solve the following problem:

min
K�

k=1

(Cv(z1k, . . . , znk)− yk)2 (4.24)

If we use a least absolute deviation criterion, the problem becomes

min
K�

k=1

|Cv(z1k, . . . , znk)− yk| (4.25)

From a mathematical viewpoint, these optimization problems are well-defined and can
be solved quite easily using either linear or quadratic programming techniques, depending
on the optimization criterion ([17]).

However, the problem of collecting meaningful training data remains. From a practical
viewpoint, it is not so evident to gather sound experimental measurements that can be used
as training data set, since we usually do not know the “ground truth” about the underlying
phenomena. Even if we could validate the final clusters and the interconnections between
them (corresponding to the behavior of certain phenomena obtained by our unsupervised
method), it is still difficult to define precisely the individual values to be used as links in
the different edge-weighted graphs. By lack of such training data set, we couldn’t validate
experimentally this supervised approach in the context of attack attribution, and thus we
leave the study of this option as future work.
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4.5 Summary

This Chapter has demonstrated how an intelligent combination of multiple attack features
can effectively help a security analyst in the process of identifying attack phenomena,
and perhaps more importantly, how it helps to model their dynamic behaviors. We have
formally presented different methods to aggregate attack features using a multi-criteria
decision analysis (MCDA) approach. In particular, we have extensively studied different
aggregation methods, from rather basic (yet effective) ones, such as OWA functions, to
more advanced methods like the Choquet integral. Our study has showed that a Choquet
integral provides a greater flexibility in modeling the behaviors of attack phenomena by
quantifying the influence of coalitions of criteria, e.g., a synergy or a redundancy between
two or more features. By means of practical examples, we have illustrated how those various
methods can be applied to a data set of security events, with the purpose of attributing
attacks to the same root cause based upon a series of common features that do not have
to be necessarily predetermined in a rigid manner.

In the next Chapter, we will apply this multi-criteria attribution method to an extensive
data set of network attack traces collected during more than 2 years in the Internet by
a set of distributed honeypot platforms. We illustrate the application of each step of the
method to this specific data set, and we describe in detail some experimental results to
demonstrate the kind of insights an analyst can obtain into the behaviors of malicious
sources involved in Internet-scale attack phenomena.
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Chapter 5

Application to Network Attack
Traces

“The true method of knowledge is experiment.”
– William Blake

This Chapter illustrates our attack attribution method with a first application on real-
world attack traces collected by worldwide distributed honeypots during more than two
years. As showed through the empirical results, the method could identify several large-
scale phenomena composed of IP sources that are linked to the same root cause, which
constitute a type of phenomenon that we have called Misbehaving Cloud.

We start by explaining how we have applied each step of the method to this specific
data set. Then, we provide an in-depth analysis of several instances of misbehaving clouds
to demonstrate the utility and meaningfulness of the approach, as well as the kind of
insights we can get into the behaviors of malicious sources involved in these clouds.

5.1 Introduction

5.1.1 Honeynet

For the experiments presented in this Chapter, we have used a data set that is made of real-
world attack traces. This unique data set has been collected on the Internet thanks to the
Leurré.com Project ([86, 85]), a globally distributed honeynet. As a reminder, a honeypot
is “a security resource whose value lies in being probed, attacked, or compromised” ([149]).
Honeypots have no production value and hence should not see any legitimate traffic or
network activity. Whatever they capture can thus be considered as malicious, or at least
suspicious. By extension, a network of interconnected honeypots has been termed a hon-
eynet.

The main objective of the Leurré.com project is to get a more realistic picture of certain
classes of threats occurring in the Internet, by collecting unbiased quantitative data over a
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long-term perspective. Since 2004, a set of identical, low-interaction honeypot platforms,
based on honeyd [123], has been deployed in different countries and on various academic
and industrial IP subnets. A platform runs three virtual honeypots, each one has its own
public IP address and they emulate different operating systems (two Windows and one
Linux machine) with various common services faking to be running on the machine (i.e.,
the ports 21, 23, 80, 137, 139, 445 are open on Windows honeypots, and ports 21, 22, 25, 80,
111, 514, 515 and 8080 are configured as open on Linux responders). The collected traffic,
including the payloads of the packets, is automatically stored into a central database. The
network traces are also enriched with contextual information (e.g., geographical location
of the attackers, ISP’s, domain names, P0f fingerprinting, etc).

More recently (in 2008), the second phase of the project was launched with the deploy-
ment of new honeypots with a higher degree of interaction. Those new sensors are based
on the ScriptGen technology ([84, 83]). Thanks to novel protocol learning algorithms,
ScriptGen honeypots are able to continue the network conversations with the attackers
(usually, self-spreading malwares or bots) up to the point where the code injection attack
is performed, which can lead in case of success to the execution of shellcode. Consequently,
ScriptGen sensors can also collect malicious binaries that attackers want to propagate in
an automated way. We refer the interested reader to [85, 122] for an in-depth presentation
of the data collection infrastructure1 .

5.1.2 Terminology

We start by introducing some important terms defined in the Leurré.com jargon, which
will be used throughout the experimental part of this Chapter:

1. Platform: A physical machine running three virtual honeypots, which emulate three
distinct machines thanks to honeyd ([123]). A platform is connected directly to the
Internet and collects tcpdump traces that are gathered on a daily basis in a centralized
database. Note that the term sensor is sometimes used interchangeably throughout
this chapter.

2. Source: an IP address that has sent at least one packet to, at least, one platform.
An IP address remains associated to a given Source as long as no more than 25
hours2 elapse between two packets sent by that IP. After such a delay, the IP will be
associated to a new source identifier if we observe it again.

3. Attack: refers to all packets exchanged between a malicious source and a platform.

4. Cluster: all the sources that execute the same attack against any of the platforms
constitute a so-called (attack) Cluster. In practice, such a cluster groups all malicious
sources that have left highly similar network traces on our platforms. How to identify
clusters and how those clusters look like are issues that have been explained in [121,
85].

1The Leurré.com dataset is publicly available for any researcher under the condition of a Non-Disclosure
Agreement that aims at protecting the privacy of the partners involved in the deployment of those honeypot
platforms.

2By grouping packets by originating sources instead of by IPs, we minimize the risk of mixing to-
gether the activities of two distinct physical machines (as a side effect of the dynamic address allocation
implemented by ISP’s).
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5.1.3 Experimental dataset

Machines used in the Leurré.com project are maintained by partners all over the world,
on a voluntary basis. Some of these platforms can thus become unavailable. For this
dissertation, we have selected a subset of 40 stable platforms from all platforms at our
disposal (i.e., machines that have not been down more than 10 times over the whole
period, and each of them has been up continuously for at least 100 days). The platforms
are located in 16 different countries and belong to 22 different class A-subnets.

Our analysis period spans from Sep 2006 until November 2008, i.e., 800 days of mon-
itoring. A total of 3,477,976 attacks have been observed by those platforms over this
observation period. We can represent the total number of attacks observed on a daily
basis as a time series denoted by TS = {TS(x)}, where x = 1, . . . , 800 represents the
observation day (see Fig. 5.1(a)). To refine the analysis, we can represent the number of
attacks observed on each platform. This leads to the definition of 40 distinct attack time
series denoted by TSpj where pj represents a platform identifier (see Fig. 5.1(b)).

We can go further in splitting our time series in order to represent which type of attack
was observed on which platform. So, we split each TSpj into as many time series as there
are attack clusters, as defined before. These newly obtained time series are represented
by TSci,pj∀ cluster ci and ∀ platform pj . That is, a given point TSci,pj (x) represents the
amount of sources attacking, on day x, the platform pj by means of the attack defined by
the cluster identifier ci. Note that we have a total of 395,712 time series TSci,pj .
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Figure 5.1: Illustration of (a) the global time series TS of the honeynet data set, with the total number
of attacking sources grouped by day; (b) some attack time series TSpj composing TS, as observed by 6
(out of 40) platforms individually. For the sake of clarity, only 400 days are represented on these graphs.

In [118], it has been shown that a large fraction of these time series barely vary in
amplitude on a daily basis. This continuous, low-intensity activity is also referred to as
the Internet background radiation [114]. In this experiment, we do not consider those flat
curves, and we instead focus on time series that show some significant variations over time
(for at least several days), indicating the existence of some ephemeral phenomenon. To
automatically identify these time series of interest, we have applied the method presented
in [118], which finally gives our experimental data set denoted by D that contains now
only 2,127 distinct time series of attacks. However, D still accounts for a total of 2,538,922



102 5. Application to Network Attack Traces

Figure 5.2: Visualization of malicious sources in the IPv4 space for an experimental data set collected
by 40 platforms of the Leurré.com Project from Sep 2006 until Nov 2008. Backscatter traffic and spoofed
IP sources have been filtered out in this map.

malicious sources, whose network activity has been grouped according to 320 different
types of attack clusters ci. Fig. 5.2 provides a visualization of all those malicious sources
under the form of an IP map showing the entire IPv4 space3.

Using a fractal mapping, each square in Fig. 5.2 represents a whole Class A-subnet
(i.e., a x/8 accounting for 224 addresses), and each red pixel represents a Class B-subnet
from which at least one malicious source has been observed by the honeypots. As we can
observe, the spatial distribution of attacking machines is highly uneven, and there seems to
be some IP networks that are largely infested with compromised machines. Almost every
region in the world is involved in the generation of this malicious traffic, although the
greatest part of the traffic seems to come obviously from European IP networks (RIPE),
North-American networks (ARIN) and Asian networks (APNIC). Observe also the largely
infected IP block 24.0.0.0, which is owned by a Canadian cable operator.

Note that, while illustrative, this type of global visualization does not provide any

3This type of layout was first proposed by Randall Munroe with a hand-drawn map of allocated Internet
address blocks published on http://www.xkcd.com/195/
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information about which phenomena (e.g., how many worms, botnets, spammers, etc)
could be responsible for all this unsolicited traffic. Moreover, we still have no insights into
the behaviors of those large-scale attack phenomena and how they evolve over time.

Dataset preprocessing: identification of attack events

In most data mining (DM) applications, there is a preliminary preprocessing step which
is needed to present the raw data set under a form that is more usable by the DM algo-
rithms. This is no different for honeypot attack traces. As a result, we have applied signal
processing techniques on our set of time series contained in D in order to identify so-called
attack events, which are defined at two different levels of aggregation:

Definition (µ-event): A micro attack event (or µ-event) is defined by a tuple (Tx1,x2 , TSci,pj )
where Tx1,x2 represents a limited period of time (typically a few days), starting on day x1

and finishing at x2, during which a significant attack activity is observed, and TSci,pj

represents the time series corresponding to cluster ci observed on the platform pj .

Definition (M-event): A set of micro attack events observed over the same period of
time, and during which the corresponding time series are strongly correlated is defined as
a macro attack event (or M-event).

In other words, a µ-event represents a given segment of a time series TSci,pj that
corresponds to an intense period of activity observed on a single platform pj , and where the
involved attacking sources have an activity profile defined by ci. When different µ-events
are coordinated in time and observed on different platforms, then we identify those events
as being part of the same M-event. Figure 5.3 illustrates this concept by representing two
different M-events composed of a certain number of µ-events that are correlated in the
same time interval.
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Figure 5.3: Illustration of two different M-events (a) an event made of 3 µ-events that are correlated on
2 different sensors, and are targeting 3 different ports (observed in April 2008); (b) an event composed of
6 µ-events that are correlated on 3 different sensors, and are targeting 4 different port sequences (observed
in January 2007.
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The identification of µ-events relies mostly on some well-known signal processing tech-
niques. The goal is to segment the time series into periods of interest. Such periods are
characterized by some intense period of activities isolated by periods of very stable or non
existent activities. Several techniques exist to detect abrupt changes in a signal [14]. For
this data set, the method used is the one that has been precisely presented in [117]. Then,
from the set of µ-events of interest, we identify all those that are strongly correlated over
the same period of time, which form thus a M-event. Here too, we used the results that
have been presented and discussed in [118, 117].

Consequently, our data set D has been split into 2,454 µ-events, which have been
extracted automatically from 2,127 distinct time series of attacks. Table 5.1 provides an
overview of the characteristics of both datasets. Fig. 5.4 shows the cumulative distributions
of the duration ∆tµ (in days) and the size (in terms of number of sources) for the complete
set of µ-events contained in the data set. As we can see, most events are rather ephemeral
since 80% of them have a duration of 10 days or less. Regarding the volume of attacking
sources, about 90% of the µ-events comprise less than 300 sources. However, about 5% of
the events comprise more than 1,000 sources.

More detailed statistics on the traffic collected by Leurré.com platforms (such as distri-
butions of protocols, port sequences, traffic share, top attacking countries, most targeted
platforms, etc) have been published in [85] for the monitoring period spanning from 2004
until 2008.

Table 5.1: High-level characteristics of the honeynet data set D, which was preprocessed to provide 2,454
attack events. ci and pj refer to the attack cluster and the honeypot platform respectively (as defined on
page 100). ∆tµ refers to the mean duration of the µ-events (in days) and sizeµ represents their mean size
(in nr of sources).

Sources µ-events M-events ci pj ∆tµ sizeµ

2,538,922 2,454 691 320 40 13.4 226
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Figure 5.4: Cumulative distributions of (a) the duration ∆tµ (in days); and (b) the size; for the 2,454
µ-events contained in the honeynet data set (the x-axis is set to logarithmic scale).
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5.2 Selection of attack features

Following the very first step of our attribution method, we need to define some relevant
attack features that may reveal interesting patterns and bring meaningful evidence, so as
to attribute different events to the same root phenomenon. In this Section, we describe
the attack features we have considered as useful to analyze the global phenomena observed
by the sensors.

Note, however, that we do not pretend that these are the only ones to be used in
network (or threat) monitoring. Other features might certainly prove as relevant in the
future, and for this reason, as we have showed in the previous Chapters, our attribution
method offers a great flexibility regarding this selection of features, and it is built in such
a way that additional features can be easily included if necessary.

5.2.1 Spatial distributions of attackers

Some key features we have selected for this experimental validation deal with certain ex-
ternal characteristics of malicious sources, namely their spatial distributions in terms of
countries (denoted by Fgeo) and IP subnets (denoted by Fsub). Looking at these statisti-
cal characteristics may reveal attack activities having specific distributions of originating
countries or IP networks. The information provided by Fgeo can be important to identify,
for instance, botnets that are located in a limited number of countries. It is also a way to
confirm the existence, or not, of so-called safe harbors for cybercriminals or hackers.

The source IP network is a property that nicely complements the geolocation. Instead
of giving insight into possible geostrategic decisions made by the hackers, they can typically
reveal some strategies in the propagation model of the malwares. Moreover, distributions
of IP subnets can give a good indication of the spatial “uncleanliness” of certain networks,
i.e., the tendency for compromised hosts (e.g., zombie machines) to stay clustered within
unclean networks ([32]). Previous studies have also demonstrated that certain worms show
a clear bias in their propagation scheme, such as a tendency to scan machines of the same
(or nearby) network, in order to optimize their propagation [29].

So, for each µ-event, we create a feature vector representing either the distribution
of originating countries, or of IP addresses (grouped by their Class A-prefix, to limit
the vector’s size). An example of geographical distribution for Fgeo has been given in
Chapter 3 (on page 39). Regarding Fsub, we just have to create, for each µ-event, a vector
that represents the distribution of IP addresses grouped by Class A subnet (or grouped
by /8, which means grouped by the first byte of the IP address). An illustration of such
an IP subnet distribution for a given µ-event is showed in Fig. 5.5. Alternatively, the very
same feature vector can also be represented under the form of relative frequencies, e.g.:
222(17%), 221(10%), 60(9%), 121(7%), 58(5%), 218(4%), others(47%).

As previously explained in Chapter 4, the two features Fgeo and Fsub are not really
independent of each other, since there is a direct mapping between IP networks and geo-
graphical countries where local ISP’s are usually responsible for the management of well-
defined IP blocks that have been assigned to them. Thus, those two features can be viewed
as two different ways of measuring the same contextual characteristic (i.e., the origins of
the attackers). Consequently, the two features are somehow redundant and two events
having the same distributions of origins should exhibit high similarities for both features
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Figure 5.5: Illustrative example of feature vector for Fsub. The vector represents the IP subnet distribu-
tion of attacking machines for a given µ-event (e590) observed by a sensor located in Serbia in the period
Jan-Feb 2007, and involving a total of 2,364 IP sources.

(although not necessarily with the same amplitude). However, we will consider Fsub as a
more reliable measurement than Fgeo, for the very same reasons as those explained on page
75 (i.e., various country sizes and significant differences in network connectivity between
countries).

5.2.2 Temporal correlation on the sensors

Next, we have selected an attack feature, denoted by Ftime, that is related to the way mali-
cious sources are targeting the monitoring platforms. For this purpose, we take advantage
of the events identification technique described previously (see Fig.5.3 on page 103), which
comes from the signal processing method developed in [117]. In fact, botmasters can send
commands at a given time to a set of zombie machines to instruct them to scan (or attack)
one or several IP subnets, which creates time-correlated attack events on specific sensors
due to the coordination among those bots that belong to the same botnet.

This degree of coordination seems to be an important attack feature. Moreover, this
feature does not require the creation of a new feature vector because this information
can naturally be obtained from the result of the events identification technique, since (by
definition) M-events are composed of µ-events that are strongly correlated in time (see
Fig. 5.3 for some examples of temporal patterns). However, due to the very large number
of compromised machines in the Internet, Ftime is probably not sufficient by itself to link
two events to the same root phenomenon, as different botnets or worms can target the very
same sensors in the same interval of time (with roughly the same daily pattern). Regarding
the reliability of Ftime, this attack feature still provides a more reliable measurement of
the likelihood that two µ-events could be linked to the same phenomenon.
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5.2.3 Type of activity

Besides the origins and the temporal coordination on the targeted sensors, the type of
activity performed by the attackers seems also relevant. Indeed, bot software is often
crafted with a certain number of available exploits targeting a given set of TCP or UDP
ports. In other words, we might think of each bot having its own attack capability, which
means that a botmaster will normally issue scan or attack commands only for vulnerabilities
that he might exploit to expand his botnet (i.e., exploits that are implemented in the bot
source code).

As a consequence, it seems to make sense to take advantage of similarities between
sequences of ports that have been probed or attacked by malicious sources. Again, this
attack feature by itself is definitively not sufficient to attribute two attack events to the
same root cause, considering the fact that certain TCP or UDP ports are a priori more
likely to be targeted or exploited than other unusual ports (for which no vulnerabilities
have been found in potential services running on those ports). However, the “reliability”
of the measurement regarding this feature is considered as normal.

We create thus a new set of feature vectors that are related to the port sequences
targeted by malicious sources involved in µ-events, and we denote this new attack feature
by Fps. The information about which ports have been sequentially probed or exploited by
every source is directly provided by the low-level network classification performed in the
Leurré.com Project (which results in the creation of the so-called attack clusters ci defined
on page 100). This operation is done on a daily basis by means of automated scripts which
are used for collecting, classifying and inserting new attack traces into the central database.
Some examples of feature vectors for Fps are given in Table 5.2.

Table 5.2: Examples of feature vectors (i.e., port sequences) for some µ-events, as defined with respect
to Fps. In the components of the port sequences, each number refers to the targeted port and the letter
refers to the protocol (T = TCP, U = UDP, I = ICMP).

µ-event ci Port sequence
e185 155552 |1026U|1027U|1028U|1026U|1027U|1028U
e291 17470 |1026U
e214 34594 |5554T|9898T
e316 75851 |I|445T|139T|445T|139T|445T
e353 147436 |I|445T|80T
e394 17718 |I|445T
e488 175309 |2967T
e842 14647 |445T
e848 60231 |5900T
e1347 15715 |1433T

5.2.4 Common IP addresses

Finally, we have decided to compute, for each pair of µ-events, the ratio of common IP
addresses. We denote this attack feature by Fcip. We are aware of the fact that, as time
passes, certain zombie machines of a given botnet might be cured while others may get
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infected and join the botnet. Additionally, certain ISPs implement a quite dynamic policy
regarding the allocation of IP addresses to residential users, which means that bot-infected
machines can have different IP addresses when we observe them at different moments.

Nevertheless, considering the huge size of the IPv4 space, it is still reasonable to expect
that two attack events are likely to be linked to the same root phenomenon when those
events share a high percentage of IP addresses. Obviously, Fcip is not a new independent
feature, since it is probably related to Fgeo and Fsub, which introduces again a sort of re-
dundancy among those features. However, from our own experience in analyzing manually
many attack events collected by honeypots, we may consider that Fcip is even more reliable
than Fsub (i.e., because of the vastness of the IPv4 space, sharing a high percentage of IP
addresses is very unlikely to be due to chance only).

As feature vectors for Fcip, we could of course simply create, for each µ-event, the set
of distinct IP addresses of all attacking sources, and then use a set function to measure
the intersection between two sets. However, since certain events may comprise thousands
of IP addresses, it is more efficient to compute directly the ratio of common IP addresses
between all pairs of µ-events by running custom SQL queries on the Leurré.com database.

Summarizing, the complete set of attack features F that we consider for the experiments
is:

F = {Fgeo, Fsub, Ftime, Fps, Fcip}

where





Fgeo = geolocation, as a result of mapping IP addresses to countries;
Fsub = distribution of sources IP addresses (grouped by Class A-subnet);
Ftime = degree of temporal coordination on the targeted platforms;
Fps = port sequences probed or exploited by malicious sources;
Fcip = feature representing the ratio of common IP addresses among sources;

After a preliminary analysis of these attack features, we consider the following prefer-
ence relationships:

Fgeo ≺ Fsub ∼ Fps ≺ Ftime ∼ Fcip

where a ≺ b indicates a preference relationship of b over a, in terms of reliability of the
measurement provided by those features.

5.2.5 Other possible features

In this section, we suggest some additional features that could be used either in the cluster-
ing process, or as additional descriptive means to assist the root cause analysis. Examples
of such features may include:

• proximities in IP addresses, between attackers’ addresses and platform’s address (eg,
bias in the propagation vector)

• temporal patterns aggregated at different scales: hourly patterns, distributions by
days of the week, etc
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• other characteristics related to malicious sources: OS and hostnames (note: domain
names do not seem to bring something meaningful)

• distributions of ISP’s or ASN’s, although this is closely related to the IP blocks that
we have already used

• if we use medium-interaction honeypots (e.g., SGNET [83, 82]): we could add exploit
(ε, π), and malware (µ) information to the graph-based clustering.

We leave the exploration of those additional features and data sets as future work.

5.3 Graph-based clustering

We now turn to the application of the second component of our attribution technique, i.e.,
the graph-based clustering component. Recall that this clustering is applied iteratively to
every attack feature on the complete set of attack events. Since the dominant set framework
is based on a pairwise clustering approach, we need first to calculate all pairwise distances
with an appropriate metric for each feature.

In this Section, we start by describing which distances we have used, and how we have
transformed those distances into similarities. For certain types of distances (e.g., statistical
divergences), we also present a calibration procedure for doing this transformation in a
meaningful way. Finally, we present the experimental results obtained from applying the
graph-based clustering technique to our honeynet data set comprising 2,454 µ-events.

5.3.1 Distance metrics for measuring pattern proximities

In Section 5.2, we have seen that feature vectors created for Fgeo and Fsub are spatial
distributions. As described in Chapter 3, we need to use statistical distance functions to
compare such vectors in a meaningful way. In Section 3.3, we have also illustrated the use
of different metrics (or divergences), such as Kullback-Leibler, Jensen-Shannon and Bhat-
tacharyya. Drawn from our own experience, we have used here Jensen-Shannon for the
better results it has provided in comparing geographical and IP subnet distributions. How
to transform those divergences into similarity scores is described in the next subsection.

Measuring pairwise similarities for features representing sets of objects (like Fps and
Fcip) is more straightforward, since in those cases we can use simple distance metrics, such
as the Jaccard similarity coefficient. Let S1 and S2 be two sample sets, then the Jaccard
coefficent is defined as the size of the intersection divided by the size of the union of the
sample sets, i.e.:

s(i, j) =
|S1

�
S2|

|S1
�

S2|
(5.1)

For Fcip, we have used the Jaccard similarity coefficient to compute the ratio of com-
mon IP addresses between attack events.

For Fps, we have combined two different metrics. The first one is the Jaccard similarity
between the two sets of targeted ports. However, not only the sets of ports have a semantic
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meaning, but also the order (or the sequence) in which ports have been targeted. So, to
take this aspect into account, we have also computed the longest sequence match between
two targeted ports sequences. Then, we just take the average between the two metrics.

For example, let us consider the following two port sequences:

S1 = |I|445T
S2 = |I|445T|139T|445T|139T|445T

They are quite similar in terms of targeted ports, but for some reason the ports sequence
is much shorter for S1 (which can indicate a malware that has stopped attacking because
of a failed exploit). The Jaccard coefficient between S1 and S2 is 2/3; but the longest
match between the two sequences is only 2/6. So, the combined similarity is here equal to:

s(S1, S2) = 0.5 ·
2
3

+ 0.5 ·
2
6

= 0.5

Regarding Ftime, we use a simple weighted means to combine three scores when com-
paring a pair of µ-events:

(i) a score ∈ {0, 1} indicating whether two µ-events belong to the same M-event (which
means the events are coordinated in time);

(ii) a score ∈ {0, 1} given by the simple comparison of the platforms that have been tar-
geted by the two µ-events (1 = the events have been observed by the same platform);

(iii) a score ∈ {0, 1} given by the simple comparison of the IP subnets (Class A) that
have been targeted by the two µ-events (1 = the events have been observed in the
same Class A-subnet);

Obviously, the most important score is the first one (time correlation). Then, observing
two µ-events on the same platform or in the same subnet could mean something, but not
necessarily. It is only the combination of those different features that are, in our opinion,
really meaningful.

Based on our own experience, this leads us to define the following weighting vector to
combine the three scores described here above: [0.6, 0.2, 0.2]. As an illustration, let us
consider some typical examples:

- two time-correlated µ-events, observed on the same platform, yield a similarity of 1;

- two time-correlated µ-events, observed on different platforms but still in the same
subnet, yield a similarity of 0.8;

- two µ-events having no time correlation, but observed on the same platforms, yield
a similarity of 0.4.

Important remark

As a side note, one could wonder why we use such an ad-hoc combination, instead of using
three separate features (e.g., Ftime, Fplatform, FclassA) and let them aggregate using the
more general techniques described in the previous Chapter. The reason is that Fplatform

and FclassA represent, by themselves, very weak features of the attack events. When
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considered separately, those features have, in fact, no particular meaning. It is very usual
to observe different attack events (having nothing to do with one another) targeting the
very same platform at different points in time (Fplatform), and it is even more likely to see
this in the same Class A-subnet (FclassA).

Introducing many weak features has thus a negative impact on the aggregation process,
as the expected behavior becomes harder to model. For instance, in this case a large number
of attack events are likely correlated by Fplatform, FclassA, and most probably also by Fps

since certain ports, like the ports used for Windows network sharing, are commonly used
as a target. However, those three features together are not sufficiently discriminant to
identify phenomena reliably. Consequently, the analyst has to define an OWA aggregation
function that models a behavior where at least four attack features must be correlated.
However, such an aggregation will fail to identify phenomena characterized by only three
stronger features, such as Fgeo, Fsub and Ftime.

As a result, we observe that mixing many strong and weak features introduces a sort
of imbalance in the aggregation process, which makes it harder to model (perhaps unnec-
essarily). In this example, using a simple OWA operator is automatically forbidden, as it
is not flexible enough to model the interactions among several strong and weak features.
The analyst must then rely on more complex aggregation schemes, e.g. by using a Choquet
integral. However, we have seen that this kind of aggregation function comes also with
an exponential complexity related to the definition of the fuzzy measure composed of 2n

coefficients. Furthermore, they are computationally more expensive.
In conclusion, we observe that it is usually better, whenever possible, to define attack

features that are more representative of the phenomena under study. This enables us to use
simpler aggregation functions such as weighted means, OWA or Weighted OWA operators,
which are, generally speaking, more efficient to compute.

5.3.2 On mapping distances to similarities

When we rely on a distance function to measure a dissimilarity between pairs of events,
it is still necessary to transform those measures into similarities, so it can be used by the
clustering algorithm. Probably the most straightforward way to do this transformation is
actually to retrieve the distance d from the value 1 (or eventually another constant), i.e.:
s = 1− d.

However, this can only work when the distance function is linear on the considered
interval, e.g. [0, 1]. If we use statistical measures (e.g., statistical divergences, like for Fgeo

and Fsub), this is obviously not the case. Previous studies found that the similarity between
stimuli decay exponentially with some power of the perceptual measure distance ([143]).
Consequently, it is customary to use the following functional form to do this transformation:

sij = exp(
−dij

2

σ2
) (5.2)

where σ is a positive real number which affects the decreasing rate of s.
Obviously, the question on how to determine this quantity σ remains. In this Section,

we propose our own calibration procedure to determine some appropriate ranges of values
for σ, according to the properties of the data set and the expected behavior of the similarity
function.
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The idea of this calibration procedure is as follows. First, we consider an empirical
distribution F (x) as typical pattern of our data set (for example, the average of all dis-
tributions in the data set). If we generate from F (x) two random samples x1,x2 (using
a uniform random distribution over all possible categories of F (x)), and we measure the
pairwise distance between them (using the statistical divergence that we want to calibrate),
then this distance d should be as low as possible, since both samples come from the very
same distribution. Conversely, if we create two random samples x1,x2 from two different
distributions F1(x), F2(x) (which have to be chosen by the analyst), then the distance d
between those samples should be as high as possible.
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(a) Calibration test 1: determining σmin
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(b) Calibration test 2: determining σmax

Figure 5.6: Calibration procedure of a distance metric to be transformed into similarity measure. (a)
Statistical test with random samples generated from the same typical distribution; (b) Statistical test
with random samples generated from two slightly different distributions that the analyst still wants to
differentiate.

Fig. 5.6 illustrates the different steps of this calibration procedure. In the first test
(Fig. 5.6 (a)), we repeat a large number of times the measurement of the distance d between
two identical distributions randomly created from the same F (x). Then, we compute the
distribution of all distances, that we denote by D1(d). Similarly, in the second test (Fig. 5.6
(b)), we measure the distance between two different distributions (randomly created from
two empirical distributions considered as different), and we compute the distributions of
those distances that we denote by D2(d).

Based on D1(d), we can now determine a value for σmin. We consider the value of d
that lies in the upper quantile of D1, since those values are the most unfavorable ones to
the comparison of two identical distributions. For this “worst-case” value, we still require
that the similarity is above a given minimum value, typically above 0.5. Then, we can
determine σmin by transforming equation 5.2 to:
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σmin =

�
−d2

max

log(smin)
(5.3)

with dmax = quantile(D1, 0.95) and smin = 0.5 (and log(x) is the natural logarithm). In
other words, when σ ≥ σmin, the similarity value s ≥ smin for at least 95% of the cases.

Quite similarly, we can determine σmax using D2(d). We consider then the value of d
that lies in the lower quantile of D2, since those values are the most unfavorable ones to
the comparison of two different distributions. In this case, we impose that the similarity
is under a given maximum value, typically under 0.05. Then, we can determine σmax by
using the formula:

σmax =

�
−d2

min

log(smax)
(5.4)

with dmin = quantile(D2, 0.05) and smax = 0.05. In other words, when σ ≤ σmax, the
similarity value s ≤ smax for at least 95% of the cases.
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Figure 5.7: Cumulative distributions of the distances calculated using the two calibration procedures
depicted in Fig. 5.6. The solid arrow (in orange) indicates the distance value dmax corresponding to the
0.95 quantile of D1 (i.e., for identical sampled distributions), whereas the dashed arrow (in pink) indicates
the distance value dmin corresponding to the 0.05 quantile of D2 (i.e., for different distributions). The
indices diff (resp. eq) indicate that samples of different (resp. equal) sizes were generated for the tests.

We have performed this calibration procedure with Fgeo to calibrate the Jensen-Shannon
divergence. The results for D1 and D2 are given in Fig. 5.7. On this graph, the solid arrows
(in orange) show the distance value dmax corresponding to the 0.95 quantile of D1, which
is equal to 0.126 in this case. The dashed arrows (in pink) indicate the distance value dmin

corresponding to the 0.05 quantile of D2, equal to 0.347 in this case. Note that we have
repeated the very same procedure using samples of equal size, and of different sizes (this
is indicated by Di,eq and Di,diff respectively). However, the distributions of distances are
very similar in both cases.
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Based on those results, we can finally derive an appropriate range of values for σ (using
the equations given here above):

0.15 ≤ σ ≤ 0.18

5.3.3 Cluster analysis of attack events

Having defined all necessary distances and similarities, we are now in a position to perform
a cluster analysis of the set of attack events using the dominant sets technique. We start
by giving an overview of the clustering results for every feature (e.g., number of clusters,
average cluster size, and consistency of the results), followed by some detailed examples
showing the meaningfulness of the results and the kind of insights they can offer.

Results overview

Table 5.3 gives an overview of the clustering results for each feature. For Fgeo and Fsub,
the results are very similar, and about 50 to 60% of the events data set could be clustered.
The overall quality of the results seems to be fairly good, as the mean compactness of all
clusters (calculated using equation 3.13 defined in Chapter 3 on page 58) lies around 0.7.
Similar results were obtained for Fcip, but apparently the clusters are on average smaller
and they are in greater number obviously. Ftime and Fps seem to correlate attack events
even more, with approximatively 85 to 90% of the events being clustered w.r.t. those
features. However, there are very few clusters of port sequences (only 16), and these seem
to be pretty large. Note also the high compactness value for clusters obtained w.r.t. Fps.

Table 5.3: Overview of the graph-based clustering results for the honeynet data set.

Feature Nr clusters Nr µ-events size Cp

Fgeo 134 1,478 (60%) 11.0 0.69
Fsub 139 1,310 (53%) 9.4 0.69
Ftime 50 2,231 (91%) 44.6 0.47
Fps 16 2,103 (86%) 131.4 0.99
Fcip 247 1,508 (61%) 6.1 0.66

It is worth noting that the clustering results for Fps seem to indicate that grouping by
“port” only leads to global results that are definitively not representative of the individual
phenomena responsible for targeting those ports. However, we note that this is usually the
most commonly-used way of analyzing intrusions or attack traffic collected by IDS sensors
and darknets. Most projects collecting data over Internet intrusions and malicious traffic
(such as CAIDA [23], Team Cymru [164], ATLAS [164], IMS [6], DShield [45], and many
others) tend to group intrusions or attack events by port only. They can only provide basic
statistics over the way that ports are globally more or less targeted, and eventually the
overall temporal trends (e.g., an increase of ’x’ % of the traffic targeting port ’y’). Gener-
ally speaking, this is only useful for observing huge phenomena occurring at Internet-scale
(such as flash spreading worms).
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We have then further evaluated the validity of those results by representing, for each
feature, the compactness (Cp) of the first 50 clusters, and their respective sizes. This is
illustrated in Fig. 5.8, where we can clearly see the very high Cp values for Fps, but also the
typical behavior of the dominant sets algorithm that extracts the most significant groups
(i.e., the largest and most compact ones) in the first stages of the graph clustering. Note
that for Ftime, the clustering appears to be quite different than for the other features,
which can be due to the definition of the similarity metric that has only a limited range
of discrete values (i.e., {0, 0.2, 0.4, 0.6, 0.8, 1}). As a result, the optimization process of
the algorithm is forced into making harder decisions when grouping events. However, the
overall results are still satisfactory, as no cluster has a compactness value below 0.4.
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Figure 5.8: Compactness values of the clusters (in blue) and their respective sizes (in magenta).

Some detailed results

Let us consider some detailed results of clusters for every feature. For the sake of clarity
(and to avoid visual clutter in the graphical representations), we have only considered the
µ-events that are common to the first 50 clusters of each feature. It turns out that 422
µ-events were involved in this subset of clusters.

To visualize the clusters, we have created 2-dimensional maps for every feature using
the same dimensionality reduction technique as used before in Chapter 3, i.e., t-distributed
Stochastic Neighbor Embedding, or t-SNE [175]. In Fig. 5.9 (a), we see the clusters
obtained for Fgeo. On this map, each data point represents a geographical distribution of
a given µ-event, and the coloring refers to the cluster membership.

To illustrate the patterns found by the clustering, the centroïds of certain clusters are
indicated by arrows on the map. Interestingly, the analyst gets immediately a nice overview
of the underlying structure of the attack events (and the inter-relationships) as viewed
w.r.t. a given viewpoint, in this case the geographical origins. For example, we can
easily observe commonalities among patterns of nearby clusters (involving in most cases
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several popular or large countries, from which many attacks can be observed), and thus
we can also understand the logical structure behind the positioning of the clusters on the
map.

Similarly, the map in Fig. 5.9 (b) represents the distribution of IP subnets for the very
same set of 422 µ-events. Here too, we can observe some well-separated clusters of events,
for which the subnet patterns are rather unique and share apparently nothing in common
with other groups of events. Conversely, we observe also fuzzier patterns for certain groups
of events (probably related to attacks coming from largely infected IP subnets), forming
thus clusters that are close to each other, which illustrates again the fuzziness of real-world
attack phenomena.

Then, Fig. 5.9 (c) shows a map of events obtained for Ftime. We see that there are just
a few groups of different clusters, which are apparently clearly separated from each other.
On this map, we have indicated the patterns of certain events with the following scheme:

{M− event id}, {sensor id}, {targeted IP subnet}

In each group of well-separated clusters, we observe that all events are linked to the same
set of platforms or the same targeted subnet, and the µ-events belonging to the same cluster
(i.e., data point in the same color) are usually also involved in the very same M− event.

Finally, Fig. 5.9 (d) shows the 2D map obtained for clusters of port sequences (Fps).
For this map, we have intentionally stopped the t-SNE algorithm after a few iterations
only, so as to be able to distinguish the different data points and clusters. Otherwise,
all points belonging to the same cluster would end up being mapped to a single (x,y)
coordinate, due to the high similarities among them. For this reason, certain clusters of
ports sequences can still appear as somehow spread over a given area (like for 5900T and
ICMP, for example). Here too, we can see that µ-events with similar port sequences are
being mapped to nearby clusters, whereas events targeting completely different ports are
mapped to distant points.

As the clustering results suggest, each attack feature seems to bring an interesting
viewpoint on the attack phenomena that have been observed by the honeypots. Intuitively,
we can easily imagine how the combination of several viewpoints can further emphasize
those phenomena. For example, this would enable us to get better insights into a botnet
phenomenon for which the attack events are strongly correlated by the origins, but they
target different sensors located in different IP subnets and use different exploits (and thus
target different ports). The problem is: how to combine all those features, so as to get
meaningful results? Which features do we have to combine to observe phenomenon X or
Y ? In fact, the attribution of different events to the same phenomenon does not always
appear so clearly, and performing such a multi-criteria analysis by hand is a very tedious
process, due to the many possible combinations to be investigated.

To illustrate this point, let us visualize in Fig. 5.10 (on page 118) a given phenomenon
as viewed through four different attack features. An in-depth analysis has revealed that
all µ-events highlighted with larger pixels (and enclosed in dashed rectangles) are due to
the same botnet that has targeted a subset of platforms located in different subnets, at
different moments (for a total duration of about 3 months), and using several exploits on
ports 445T and 139T. As we see on the maps, those attack events are thus highly correlated
w.r.t. Fps and Ftime; however, they still form several smaller clusters which are somehow
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close to each other. Regarding the other two features (Fgeo and Fsub), we see that the
origins of the phenomenon have apparently evolved over time, as the µ-events are grouped
into a series of 8 to 10 different clusters which together form an elongated shape on the
maps.

This example illustrates again the two fundamental issues described in Section 4.1, i.e.,
the fuzzy and dynamic aspects of attack phenomena, which complicates the root cause
analysis of security events. In the next Section, we will perform a systematic multi-criteria
aggregation of those attack events, by leveraging the aggregation techniques described in
Chapter 4. As we show in the experimental results, this can effectively help us to combine
different viewpoints and get insights into complex behaviors of attack phenomena.

(a) Phenomenon viewed w.r.t. Fgeo (b) Phenomenon viewed w.r.t. Fsub

(c) Phenomenon viewed w.r.t. Ftime (d) Phenomenon viewed w.r.t. Fps

Figure 5.10: Visualization of the same phenomenon (i.e., the events of larger size highlighted by the
dashed rectangles), as viewed w.r.t. four different attack features. In this illustration, we can clearly
observe the fuzzy and dynamic aspects of the phenomenon.
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5.4 Aggregation of all features

5.4.1 Defining parameters

We are now in the position of combining all attack features by using an aggregation function.
Recall that the purpose of this final step consists in finding which subsets of µ-events (which
can belong eventually to different clusters w.r.t. individual features) are very likely due to
a same root cause.

To perform this aggregation, we have extensively described in Chapter 4 two main
classes of functions: (i) Ordered Weighted Averaging functions (i.e., OWA and WOWA),
and (ii) an aggregation based on the Choquet integral. We have thus applied each of
these aggregation functions to our 2-year data set of attack events. For OWA functions,
we simply need to define two weighting vectors, namely w (used in OWA to quantify
the importance of the largest or smallest similarity scores), and p (used in WOWA, in
conjunction with w, to quantify the reliability of the features).

Based on our domain analysis of the selected attack features (that we have done in
Section 5.2), and considering the behavior of those OWA functions (described in Chapter 4),
we can derive some reasonable sets of values to model the behavioral requirements of the
phenomena that we want to identify. Hence, we define w and p as follows:

�
w = [ 0.05, 0.10, 0.35, 0.40, 0.10 ]
p = [ 0.10, 0.15, 0.30, 0.15, 0.30 ]

The weighting vector w expresses that at least three features must be strongly
correlated in order to obtain a global score close or above 0.5, whereas vector p quantifies
the reliability of each feature, drawn from our domain knowledge.

Regarding the Choquet integral, we have to define a fuzzy measure v. However, we
should define in this case 32 different values corresponding to the 25 possible combinations
of features. As described in Chapter 4, when the number of features n becomes too
excessive to define manually such a fuzzy measure, we can rely on different methods to
reduce this complexity, for example, we can simply define a λ-fuzzy measure vλ.

In this application, we have in fact three redundant features (which are Fgeo, Fsub and
Fcip). As a result, it is probably appropriate to define vλ so that the global behavior of the
fuzzy measure is subadditive. Moreover, we have to keep also the relative importance of
each feature. So, for the definition of each singleton value of vλ, we can simply start with
the following values: [ 0.10, 0.20, 0.40, 0.20, 0.40]. Those values are consistent with the
preference relations between criteria expressed previously (in Section 5.2), and the sum of
the values is greater than 1, which leads to a subadditive fuzzy measure by resolving the
equation 4.22 (i.e., we obtain then λ = −0.396).

A last thing we need to define is of course the decision threshold (ε) that is used
to identify connected components within the combined graph. This is a quite important
step, since the properties of the resulting components identified within the graph highly
depend on this threshold.

One way to define an appropriate range of values for ε is to perform a sensitivity
analysis. By analyzing the impact of this decision threshold on the components within the
graph, we have observed the following phases as the threshold increases (Fig 5.11):
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(a) Phase 1 (b) Phase 2 (c) Phase 3

Figure 5.11: Illustration of the 3 phases of formation when searching for connected components (i.e.,
phenomena) within a graph by increasing the decision threshold ε. (a) “Phase 1” is where phenomena are
being formed by breaking the weak and unwanted relations among them (represented with dashed lines).
(b) “Phase 2” is where the number of phenomena becomes stable. (c) “Phase 3” is where an excessive
threshold begins to split and eliminate phenomena.

(i) during the first phase, the number of phenomena increases as well, since phenomena
are being formed by removing all weak (and unwanted) relationships among them
(Fig 5.11 (a));

(ii) at the beginning of the second phase, we observe a stable number of phenomena (as
all weak edges have been removed), shortly followed by a new increase of this number
because the increasing threshold starts to split certain phenomena into smaller parts
(Fig 5.11) (b));

(iii) finally, in the last phase, the decision threshold becomes excessive, and thus the
number of phenomena starts to decrease as too many edges (even strong ones) are
being removed (Fig 5.11 (c)).

Applying this approach to our data set, we can now look at the evolution of the number
of largest phenomena, |P| =

�
|Pi|, as a function of ε. By “largest”, we mean phenomena

comprising at least 10 µ-events (i.e., |Pi| ≥ 10). This is illustrated in Fig. 5.12 (a) for the
OWA aggregation, and in Fig. 5.12 (b) for the Choquet integral (the sensitivity analysis of
the WOWA aggregation is very similar to those curves). We have indicated on the graphs
the three regions of interest in the determination of ε.

Interestingly, in the second region (“Zone 2”), we can observe a sort of small plateau
around ε = 0.6, which seems to indicate some good values for the decision threshold as
the number of phenomena is fairly stable in this region. Increasing further the threshold
leads to a slight increase of |P| (up to a maximum value), which could a priori also provide
meaningful results to the analyst. However, we have observed that this maximum number
of phenomena is generally not as good as those obtained with the first plateau, for the
simple reason that several components Pi are then split into smaller subgraphs.

The last region (“Zone 3”) is obviously not indicated, since the decision threshold be-
comes excessive and we eliminate too many µ-events. Thus, we lose some semantics about
the phenomena.

Observe also that the appropriate range of values for ε usually lies around k/n, with k
the desired number of correlating features (in this case, 3/5).
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Figure 5.12: Sensitivity analysis of (a) OWA aggregation; and (b) Choquet integral. The regions 1, 2
and 3 indicated on the graphs correspond to the 3 phases described in Fig. 5.11. The axis on the right (in
magenta) shows the total number of µ-events (i.e., graph nodes) being grouped into phenomena.

5.4.2 Results overview

Let us briefly compare the results given by each aggregation method. Looking at Table 5.4,
we see that the decision threshold ε was approximatively the same for each aggregation
technique. The total number of phenomena |P| found by each technique is rather limited,
and this number is also roughly the same for each method. However, the Choquet integral
can apparently find more correlated µ-events, and can assign them to the same number of
phenomena.

Table 5.4: Comparison of different aggregation methods.

Characteristic OWA WOWA Choquet
Threshold ε 0.58 0.59 0.56

|P| 73 84 73
|P|, with |Pi| ≥ 10 24 21 21

Nr of µ-events 1,685 1,685 1,748
Average Cp 0.54 0.57 0.58

The sets of phenomena found by the three techniques are fairly consistent with each
other. Overall, we found approximatively 20 large phenomena (i.e., containing at least 10
µ-events), and the average compactness of each set of phenomena is just under 0.6, which
is fairly good. The best results were obtained using the Choquet integral, with admittedly
a rather incremental improvement (w.r.t. Cp) over the other two techniques. However, the
Choquet integral could attribute more events to phenomena, thanks to its greater modeling
capability.

To further evaluate the consistency of the results, we have also represented in Fig. 5.13
the global graph compactness Cp for the largest phenomena, as calculated individually by
feature. This view is also interesting to figure out which features tend to group attack events
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together within each Pi. As one can see, Fps has in general a very high Cp, whereas Ftime

has usually the smallest compactness. For each Pi, we observe that it can be characterized
by varying degrees of correlation regarding each feature, but overall there are always at
least three different features with a high correlation.
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Figure 5.13: Evaluation of the results consistency with the global compactness (Cp) of the largest
phenomena found using (a) the OWA aggregation; and (b) the Choquet integral. Each color refers to the
Cp index of each feature individually.

Finally, let us consider some global statistical properties of the 21 largest phenomena (as
found by the Choquet integral). Fig. 5.14 (a) represents the cumulative distribution (CDF)
of the phenomenon’s size, in terms of number of sources involved in each phenomenon.
Some phenomena contain rather few sources, however, there are still 30% of them that
consist of more than 20,000 (observed) sources.

Fig. 5.14 (b) shows the CDF of the phenomenon’s lifetime (or duration). Such lifetime
is defined as the time interval, in days, between the very first and the very last attack
event of a given Pi. As we can see, the CDF is rather linear, and the average lifetime of
an attack phenomenon is about 330 days. Certain phenomena have even been observed
for more than 700 days!

Looking at the CDF of the number of targeted platforms, in Fig. 5.14 (c), and the
CDF of the number of targeted IP subnets, in Fig. 5.14 (d), we can conclude that most
phenomena are seen on less than 10 platforms that are in general located in maximum 5
different subnets.

These various characteristics suggest that the root causes behind the existence of these
attack phenomena are fairly stable, localised attack processes. In other words, different
places of the world do observe different kind of attackers, but their modus operandi remain
stable over a long period of time. We are, apparently, not so good at stopping them from
misbehaving.



5.5. Behavioral analysis of attack phenomena 123

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size (Nr of sources)

C
D

F

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (Nr of days)

C
D

F

(a) Size (b) Duration

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nr of targeted platforms

C
D

F

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nr of targeted IP subnets

C
D

F

(c) Targeted platforms (d) Targeted IP subnets

Figure 5.14: Overview of some statistical characteristics of the largest attack phenomena.

5.5 Behavioral analysis of attack phenomena

5.5.1 Introduction

In this final Section, we give a more in-depth analysis of 5 illustrative case studies, in order
to show the kind of insights our attribution method can offer, in a systematic manner, into
the behavior of the identified phenomena.

In fact, the attack phenomena we have found within this 2-year honeynet data set,
seem to form some sort of “clouds of malicious sources”, each cloud showing a given type of
behavior. For this reason, we have called those attack phenomena “Misbehaving Clouds”
(or MC), which seems an appropriate term to describe them.

The five MC’s that are studied in this Section have been summarized in Table 5.5.
Note that these experimental results are based on case studies that have been presented
in [167, 168, 40].

Those Misbehaving Clouds involve several common services such as NetBios (ports
139/TCP, 445/TCP), Windows DCOM Service (port 135/TCP), Virtual Network Comput-
ing (port 5900/TCP), Microsoft SQL Server (port 1433/TCP), Windows Messenger Service
(ports 1025- 1028/UDP), Symantec Agent (port 2967/TCP), and some others. Not sur-
prisingly, those services are amongst the ones that are commonly exploited by well-known
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Table 5.5: High-level characteristics of five Misbehaving Clouds (MC’s) under study. The colon Root
cause refers to the presumed type of phenomenon, based on the results of the attack attribution method.
∆tMC indicates the lifetime of MC’s.

MC # events # sources ∆tMC Root cause Targeted ports
1 143 64,054 323 Botnet cloud ICMP, 445T (Microsoft-DS), 139T (Netbios)
2 578 90,386 774 Worm-behaving 1433T (MSSQL), 1025T (RPC), 5900T (VNC),

cloud 135T-139T (Netbios), 2967T-2968T (Symantec)
3 63 48,438 634 UDP spammers 1026U (Windows Messenger)

(botnet)
4 112 195,234 696 UDP spammers 1026U, 1027U, 1028U (Windows Messenger)

(botnet)
5 38 35,588 759 Allaple worm ICMP, 139T, 445T
6 147 27,030 573 P2P Unusual ephemeral ports (TCP)

families of bot software, such as SDBot, Spybot, Agobot, GT Bot and RBot [136, 79].
Regarding the origins of MC’s, we can observe some very persistent groups of IP subnets

and countries of origin. To illustrate this point, we have represented in Fig. 5.15 the CDF
of the IP addresses involved in those five MC’s, where the x-axis represents the first byte
of the IPv4 address space. Observe that MC3 and MC4 have apparently a very singular
behavior (i.e., uniform distribution), which will be explained later in Section 5.5.4.

Clearly, malicious sources involved in those phenomena are highly unevenly distributed,
and form a relatively small number of tight clusters that are responsible for a large deal of
the observed malicious activities. This is consistent with other prior work on monitoring
global malicious activities, in particular with previous studies related to measurements of
Internet background radiation [30, 114, 195].

However, we can show here that there are still some notable differences in the spa-
tial distributions of those misbehaving clouds, even though there is some overlap between
“zombie-friendly” IP subnets (such as the distributions of MC1, 2 and 5). Moreover,
because of the dynamics of those phenomena, we can even observe different spatial distri-
butions within the same cloud at different moments of its lifetime. This is an advantage
of our analysis method, which can be more precise and enables us to distinguish individual
phenomena, instead of some global trends.

5.5.2 Coordinated Botnet

The Misbehaving Cloud MC1 is a first interesting case involving a coordinated botnet that
has mostly targeted the Windows ports (445T and 139T). An in-depth analysis of the
shapes of the time series, and the arrival rate of the sources involved in the 143 µ-events,
has led us to conjecture that MC1 is quite likely due to a botnet phenomenon.

On Fig. 5.16, we see that this cloud had four main waves of activity during which it
was randomly scanning different subnets (actually, always the same 5 subnets). Note also
the perfect coordination of the time series. When inspecting the IP subnet distributions
of the sources belonging to those different attack waves, we could also observe a drift in
the origins, probably as certain machines were infected by (resp. cleaned from) the bot
software. In fact, this drift in the origins can be visualized in Fig. 5.10, where the events
of this phenomenon have been highlighted by dashed rectangles.

What is also of interest is that MC1 has showed a coordination among its sources,
with apparently two different communities of machines. In fact, a very large community
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Figure 5.15: Cumulative distributions (CDF’s) of originating IP subnets for the largest phenomena.
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Figure 5.16: Coordinated time series of µ-events belonging to MC1.

of machines within MC1 was simply scanning (in a random fashion) the IP subnets where
our sensors are located, using innocuous ICMP packets. On the other hand, we found
out there was another (smaller) group of machines, also involved in MC1, but those were
directly attacking the Windows honeypots on specific ports (139T and 445T), like if they
were controlled to attack only specific IP addresses. Furthermore, this group of attacking
machines had very different origins from those of the ICMP scanners.

To further confirm this assumption, we have computed the distribution of targeted
honeypots, for each µ-event. The result is quite surprising: the “scanning sources” are
equally targeting the three honeypots of each platform (i.e., 33% of the scanners have been
observed on every honeypot IP address), whereas the attacking machines are only targeting
the two Windows honeypots, with exactly 50% of the sources observed on the two first
IP’s of each platform (and none on the third honeypot, which emulates a Linux OS).
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We hypothesize that the group of attackers probably took advantage of the scanning
results given by the larger community of scanners of the same phenomenon (scanners
were probably relying on some OS fingerprinting technique, such as P0f or Xprobe). It is
interesting to see how bots of the same botnet are thus able to coordinate their efforts.

In Fig. 5.17, we provide another visualization of this misbehaving cloud using a node-
link graph, so that an analyst can visualize, in a single picture, multiple attack features
and all relevant relationships among events.

Figure 5.17: Node-link graph for MC1, which represents relationships between µ-events (in antique
white) w.r.t. different attack features.
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In this type of visualization, we have represented the µ-events of MC1 with nodes in
“antique white” color. The µ-events are then linked to other nodes representing the clusters
they belong to, w.r.t. different features. In this case, clusters represented with blue nodes
refer to Fgeo, clusters in pink refer to Fsub. The centroïds of the clusters (i.e., the average
distributions) are written as labels in the nodes. In the middle of the graph, we have
represented a time axis with the starting dates of the M-events that contain the µ-events,
so we have an idea of how many “waves” of attacks this MC has performed.

This node-link graph further illustrates the typical behavior of MC1, i.e., the separa-
tion of duties between scanners and attackers. In this cloud, µ-events involving machines
attacking or exploiting directly the Windows ports are highlighted with port sequences
written in red inside the node labels. We can also observe the drift in the origins of the
sources, which leads to multiple geographical clusters having quite different distributions
of countries and IP subnets.

5.5.3 Worm-behaving Cloud

MC2 consists of 578 µ-events. The temporal shape of those events is fairly similar to the
one left by a typical worm: its trace exists for several days, it has a small amplitude at the
beginning but grows quickly, exhibits important drops that can correspond to subnets being
cured or blacklisted, and it eventually dies slowly (see [117] for a more formal description
of this class of phenomena).

The interesting thing with MC2 is that it is made of a sequence of worm-like shaped µ-
events, and the lifetime of this MC is fairly long: 774 days! It is composed of µ-events that
have targeted a number of distinct services, including 1025T (RPC), 135T-139T (Netbios),
1433T (SQL), 2967T-2968T (Symantec) and 5900T (VNC). Many different exploits have
thus probably been included in the worm codebase, so as to maximize its propagation.

The results of the multi-criteria fusion algorithm indicate that those µ-events have
been grouped together mainly because of the following three features: the origins, the
targeted platforms, and the port sequences. Moreover, it seems that an important amount
of IP addresses is shared by many µ-events composing this MC. Fig. 5.18 shows another
visualization of this phenomenon using a node-link graph and multiple attack features.

To illustrate the kind of µ-events found in this MC, Figures 5.19 (a) and (b) represent
four µ-events time series. Figure 5.19 (a) represents two of them, namely e626 and e628,
consisting of activities against Microsoft SQL Server (1433/TCP). Whereas Figure 5.19 (b)
represents the other two, namely e250 and e251, consisting of activities against a Symantec
Service (2967/TCP). Figure 5.19c zooms on these last two µ-events from day 100 to day
150. We can observe the slow increase of the two curves that are apparently typical of
worm-related attacks [117, 196].

The two µ-events on the left (resp. middle) share 528 (resp. 1754) common IP addresses
with each other. Given these elements, we are tempted to believe that e626 and e628
(resp. e250 and e251) are generated by the same worm, called WORM_A (resp. called
WORM_B). Both worms, WORM_A and WORM_B, target the same two platforms:
25 and 64. Furthermore, we found that these four µ-events share an important amount
of common compromised machines. This could indicate that both worms, before having
contacted our honeypots, had contaminated a relatively similar population of machines.
A plausible explanation could be that both had been launched from the same initial set of
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Figure 5.18: Visualization of the µ-events composing MC2, using a node-link graph. The following
attack features are represented: Fgeo (in blue), Fsub (in pink), and Fps (in the node labels). To avoid
visual clutter, in the yellow nodes, we have grouped the targeted platforms located within a same Class
A-subnet (this information is derived from the feature Ftime).

machines and that they were using the same, or similar, code to choose their targets.
From the attack vector viewpoint, these two worms have nothing in common since they

use very different types of exploits. Moreover, they have been active in different periods
of time. However, the analysis reveals that they exhibit a very similar pattern, both in
terms of propagation strategy and in terms of success rates. Thus, even if the infection
vector differs between the two, the starting point of the infection as well as the code
responsible for the propagation are, as explained, quite likely very similar. This reasoning
can be generalized to all 578 µ-events, revealing the high probability that all these different
attacks have some common root cause(s).

This does not mean per se that all these attacks are due to the very same person or
organisation -even if this is likely- but it indicates that the same core piece of code has
probably been reused, from a very similar starting point to launch a number of distinct
attacks. This reveals some aspect of the modus operandi of those who have launched
these attacks, and this is an important piece of information for those who are in charge of
identifying these misbehaving groups, as well as their tactics.
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Figure 5.19: Attack time series (nr of sources by day) of some µ-events from MC2, targeting (a) MS
SQL Server (1433/TCP), (b) Symantec agent (2967/TCP). Fig. (c) is a zoom on (b).

5.5.4 Botnet serving Messenger Spammers

In this case study, we look at two distinct clouds, namely MC3 and MC4. Both are
made of µ-events that have exclusively tried to send spam to innocent victims thanks
to the Windows Messenger service, using UDP packets. This is a rather complex but
interesting phenomenon that, as far as we know, very few people have investigated at the
time of writing this dissertation. A possible reason is that people consider those UDP
packets just as “junk traffic”, which can be easily spoofed and thus also difficult to analyze.
Consequently, security practitioners simply prefer to disregard or filter out those packets,
instead of investigating further the root causes of this phenomenon.

However, this won’t allow us to stop UDP spammers from misbehaving. As our ex-
periments demonstrate hereafter, our method offers some unique insights into this UDP
phenomenon.

The two clouds MC3 and MC4 have been observed over a large period of time, more
than 600 days in both cases. Even if they, conceptually, look similar, there are important
differences between the two clouds. First, the targeted ports are not identical: in MC4,
UDP packets are being sent to three different UDP ports, namely 1026, 1027 and 1028,
while in MC3 packets are sent exclusively to the 1026 UDP port.

Then, as illustrated in Fig.5.15 where we can see the cumulative distribution (CDF) of
sources IP addresses (grouped by /8 blocks of addresses), we observe that MC3 is uniformly
distributed in the IPv4 space. This result is absurd, since large portions of the IPv4 space
can not be allocated to individual machines (due to multicast, bogons, unassigned, etc.)
and, in all these regions, it is impossible to find compromised machines sending spams. If
we find these IPs in packets hitting our honeypots, it clearly means that these are spoofed
IP addresses. Furthermore, the uniform distribution of all the IP addresses in that MC
leads us to believe that all other IPs are also spoofed.

On the other hand, MC4 has a constant distribution pointing exclusively to a single /8
block owned by an ISP located in Canada4. A likely explanation is that those spammers
have also used spoofed addresses to send UDP messages to the Windows Messenger service,
and they have been able to do so for 600 days without being disturbed!

To further validate those results, we have also looked at the payloads of the UDP pack-
4Actually, a closer inspection of sources IP addresses reveals they were randomly chosen from only two

distinct /16 blocks from this same /8 IP subnet.



130 5. Application to Network Attack Traces

ets by computing a hash for each packet payload. What we discovered is quite surprising:
all payloads sent by the sources have exactly the same message template, but the template
was different for the two clouds. Fig.5.20 and Fig.5.21 show the two different templates
used by spammers of MC3 and MC4 respectively. Regarding MC3, we also observe many
alternate URL’s, such as: 32sys.com, Fix64.com, Key32.com, Reg64.com, Regsys32.com,
Scan32.com, etc, whereas spammers in MC20 use apparently almost5 always the same
URL (www.registrycleanerxp.com).

SYSTEM ALERT - STOP! WINDOWS REQUIRES IMMEDIATE ATTENTION.

Windows has found CRITICAL SYSTEM ERRORS.

To fix the errors please do the following:

1. Download Registry Cleaner from: http://www.wfix32.com

2. Install Registry Cleaner

3. Run Registry Cleaner

4. Reboot your computer

FAILURE TO ACT NOW MAY LEAD TO DATA LOSS AND CORRUPTION!

Figure 5.20: Spam template used in MC3.

Local System User

CRITICAL ERROR MESSAGE! - REGISTRY DAMAGED AND CORRUPTED.

To FIX this problem:

Open Internet Explorer and type: www.registrycleanerxp.com

Once you load the web page, close this message window

After you install the cleaner program

you will not receive any more reminders or pop-ups like this.

VISIT www.registrycleanerxp.com IMMEDIATELY!

Figure 5.21: Spam template used in MC4.

All this knowledge derived from the observation of the MCs illustrates already the
richness and meaningfulness of the analyses that can be performed. At this point, there
are still two questions left unanswered when we look at those two UDP spam phenomena:

(i) Do all those UDP packets really use spoofed IP addresses, and how were they sent
(e.g., from a single machine in the Internet, or via a large botnet)?

(ii) Could it be that those two phenomena have in fact the same root cause, i.e., the
same (group of) people running in parallel two different spam campaigns?

To answer the first question, we have extracted from the UDP packets the Time To Live
(TTL) value of their IP headers. We have computed the distributions of these TTL values

5For MC20, only a few instances of spam messages were observed with a different URL: nowfixpc.com
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for both phenomena, grouped by targeted platform. The results, illustrated in Fig.5.22,
seem to confirm our intuition about spoofed UDP packets, since these TTL distributions
are too narrow to originate from a real population of physical machines. In both cases
(MC3 and MC4), we observe that the TTL distributions have a width of about 5 hops,
whereas TTL distributions for non-spoofed packets are normally much larger, as malicious
sources are, generally speaking, largely distributed in several AS’s. As a sanity check,
we retrieved the TTL distributions for another phenomenon, which has been validated as
a botnet of Windows machines (actually, MC1). As one can see in Fig.5.23, the TTL
distributions are much larger (around 20 hops) than for spoofed UDP packets.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 104

IP Time To Live

N
r o

f p
ac

ke
ts

 

 
platform 6 (213/8)
platform 9 (195/8)
platform 21 (193/8)
platform 25 (192/8)
platform 27 (193/8)
platform 57 (24/8)
platform 64 (192/8)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 105

IP Time To Live

N
r o

f p
ac

ke
ts

 

 
platform 30 (129/8)
platform 56 (202)
platform 57 (24/8)
platform 64 (192/8)
platform 84 (195/8)
platform 89 (198/8)

(a) (b)

Figure 5.22: TTL distribution of UDP packets for MC3 (a) and MC20 (b) (grouped by targeted
platform)
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Figure 5.23: TTL distribution of TCP packets for a phenomenon (MC28) attributed to a botnet of
Windows machines targeting ports 445T and 139T (grouped by targeted platform).

Another finding that we can presumably derive from Fig.5.22 is that some unusual
initial value was used as TTL’s. The default initial value for TCP and UDP packets sent
from Windows platforms is 128 for most recent versions of the OS, i.e., starting from Win-
dows NT 4.0 and XP [95, 96]. For ICMP packets, the default TTL is usually 64. However,
previous research has showed that the average number of hops grows logarithmically with
the size of the network in networks that are both scale-free and small-world, which are at
the heart of systems like the Internet and the World Wide Web [161, 124]. Furthermore,
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several authors have showed, by means of active measurements of the Internet topology,
that the average number of hops between two devices in the Internet lies usually around 17
hops [66, 97]. Another measurement study in [50] has showed that, in the continental US,
more than 90% of hosts can be reached within 18 hops, whereas the results of the same
study for international measurements (i.e., US to Europe and US to Asia) show that the
average number of hops was rarely above 20 hops. Consequently, we can assume that the
initial TTL value used for UDP packets in MC3 (Fig.5.22 (a)) was probably 64, while the
initial TTL value for MC20 (Fig.5.22 (b)) lies probably around 80. In conclusion, this TTL
viewpoint seems to confirm the assumption that those UDP packets were probably forged
using raw sockets, instead of using the TCP/IP protocol stack of the operating system.
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Figure 5.24: Distribution of malicious sources grouped by weekdays. For each MC, a data point represents
the accumulated number of sources observed for a given day and hour of the week.

Finally, trying to answer the last question (same root cause or not), we looked at one
additional feature of the attacks. We generated a distribution of sources by grouping them
based on the day and hour of the week they have been observed by our platforms (using
the same universal time reference, which is GMT+1 in this case).

As one can see in Fig.5.24, the result is very intriguing: although there is no privileged
day or time interval in the week on which we observe a specific pattern, the UDP traffic
created by MC3 (in dashed) and MC4 (in green) look apparently synchronized. Since
both phenomena have lasted more than 600 days, it is quite unlikely that such correlation
could be due to chance only. So, while we have no true evidence to verify this, we can
reasonably assume that both phenomena have been orchestrated by the same people, or
at least using the same software tool and sets of compromised machines.

One could argue that this temporal correlation is possibly an artefact due to groups of
compromised machines lying in the same subnetwork, which are up and running all day
and thus exhibit the very same diurnal pattern with respect to their availability to UDP
spammers. However, from what we have observed experimentally, such a day-night pattern
appears usually in a clearer fashion, similarly to what can be observed, for example, in the
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case of MC6 on Fig.5.24.

5.5.5 Cloud of Allaple Worms

MC5 is another worm-related cloud. Indeed, the arrival rate (on a daily basis) of the
sources involved in the 38 µ-events have a temporal pattern typical of a network worm:
there is a worm outbreak day, on which we see a steep rise in the number of observed
sources, followed by an exponential growing trend up to a maximum number of infected
machines. After this, we observe a slow decreasing rate, corresponding to the period where
the number of machines that are being cured is larger than the number of new infections.
This is somehow visible on Fig. 5.25 that represents the time series of some µ-events
involved in MC5, as observed on 7 different platforms. According to our measurements,
the outbreak of this worm started around November 5th, 2006.
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Figure 5.25: Some time series of µ-events belonging to MC5 (related to W32/Allaple.B), observed on 7
platforms.

The targeted ports and services of this cloud are mainly ICMP, sometimes followed
by exploits on 139T and 445T (note that the port sequence is different from those per-
formed by MC1: in this case, 139T is targeted first by the worm). A search on the Web
quickly revealed that a network worm called W32/Allaple.B [148] (or RaHack.W [156])
was propagating using those different ports. Allaple is a polymorphic worm for Windows
platforms that spreads to other computers by exploiting common buffer overflow vulnera-
bilities, including: SRVSVC (MS06-040), RPC-DCOM (MS04-012), PnP (MS05-039) and
ASN.1 (MS04-007), and by copying itself to network shares protected by weak passwords.

A closer look at the network traffic collected by our honeypots quickly confirmed this
intuition, since the worm has a very specific signature within the payload of the ICMP
packets sent as probes to find other alive hosts (i.e., Babcdefgh. . . - see the Snort signature
in Fig. 5.26 as provided by EmergingThreats6). However, it is worth noting that no
predefined signature was needed to group all those µ-events in the same misbehaving cloud,
thanks to our method that relies on the correlation (and combination) of multiple features,
even contextual ones such as spatial distributions. Furthermore, all ICMP packets involved
in other MC’s have different payloads, which confirms the effectiveness of the approach for
the attribution of events to phenomena having the same root cause.

6http://www.emergingthreats.net/rules/emerging-virus.rules
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The lifetime of this Allaple-related cloud is about 750 days. More than 35 thousand
sources infected by Allaple have been observed by 14 different platforms (located in 8
different Class A-subnets), to be finally attributed to the same root cause by our multi-
criteria clustering technique. The global geographical distribution of infected machines
revealed that a majority of machines was coming from following countries: KR(13%),
US(13%), BR(8%), CN(6%), PL(6%), TW(3%), CA(5%), FR(4%), and JP(3%). Another
strong advantage of our approach is that, once identified, we can easily follow the evolution
of such a worm-related phenomenon (i.e., how it propagates in the Internet).

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ET WORM Allaple ICMP
Sweep Ping Inbound"; icode:0; itype:8; content:"Babcdefghijklmnopqrstuvwabcdefghi";
threshold: type both, count 1, seconds 60, track by_src; classtype:trojan-activity;
reference:url,www.sophos.com/virusinfo/analyses/w32allapleb.html;
reference:url,isc.sans.org/diary.html?storyid=2451;
reference:url,doc.emergingthreats.net/2003294;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/VIRUS/WORM_Allaple;
sid:2003294; rev:6;)

Figure 5.26: Snort IDS signature for ICMP Ping packets sent by the Allaple worm.

5.5.6 P2P aberrations

MC6 is a very interesting, yet intriguing, cloud. Our technique has grouped together
147 µ-events that have been observed over a period of 573 days. All these events share a
number of common characteristics that we have some difficulty to explain:

- The vast majority of these µ-events target a single platform, located in China. A
very few µ-events have also hit another platform in Spain.

- The vast majority of these µ-events originate from Italy and Spain only.

- All these µ-events are like epiphenomena, i.e., they exist on a single day, and then
disappear.

- All these µ-events target a single high, unusual TCP port number, most of them not
being assigned to any particular protocol or service (e.g. 10589T, 15264T, 1755T,
18462T, 25618T, 29188T, 30491T, 38009T, 4152T, 46030T, 4662T, 50656T, 53842T,
6134T, 6211T, 64264T, 64783T, 6769T, 7690T)

- These µ-events share a substantial amount of source addresses among them.

- A number of high port numbers correspond to port numbers used by well known P2P
applications (e.g., 4662/TCP, used by eDonkey P2P network).

This last remark leads us to hypothesize that this extremely weird type of attack traces
may have something to do with P2P traffic aberrations. It can be a misconfiguration or,
possibly, the side effect of a deliberate attack against these P2P networks, as explained
in [105, 46], in which the authors argued that it is possible to use P2P networks to generate
DDoS attacks against any arbitrary victim.
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Figure 5.27: Visualization of the µ-events (nodes in antique white) composing MC6. Geographical
clusters of µ-events (Fgeo) are depicted in blue, clusters of originating subnets (Fsub) are in pink, and
the targeted ports (Fps) are in the node labels. In the yellow nodes, we have represented the targeted
platforms, and in the red nodes, the dates of the corresponding M-events (which is obtained from the
feature Ftime).

In Fig. 5.27, we have created a node-link graph to easily visualize MC6. As one can see,
almost all µ-events are targeting a single platform (number 50), at many different points in
time. The µ-events are grouped into 10 geographical clusters; however, the distributions of
countries share many commonalities (the sources originate mostly from Italy and Spain).

Finally, Fig. 5.24 highlights the fact that these 147 µ-events are not randomly dis-
tributed over the hours of the week but instead, they seem to exist on a limited number
of recurrent moments.

All these elements tend to demonstrate the meaningfulness of grouping all these, ap-
parently different, attack events. Even if we are not able, at this stage, to provide a
convincing explanation related to their existence, our method has, at least, the merit of
having highlighted the existence of this, so far unknown, phenomenon.

It is our hope that other teams will build upon this seminal work and our preliminary
findings, to help all of us to better understand these numerous threats our approach has
helped to identify.

5.6 Summary

This Chapter has illustrated the application of our attack attribution method to a data set
of network attack traces collected by worldwide distributed honeypots during more than
two years. We have described in details each step the method goes through, and we have
presented several experimental results to demonstrate the utility and meaningfulness of the
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approach. In particular, we have performed a more in-depth analysis of several instances
of Misbehaving Clouds found by our multi-criteria clustering approach.

In the next Chapter, we will show how the very same method can be used to analyze a
completely different data set made of malicious web domains that aim at selling fake anti-
virus software, also called rogue AV domains. Thanks to different website features that we
have observed from more than five thousand rogue domains in the Internet, we will show
how a multi-criteria analysis of this data set can give insights into the modus operandi of
cybercriminal organizations which are responsible for setting up rogue AV campaigns.
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Chapter 6

Application to Rogue Security
Software

“Experience without theory is blind,
but theory without experience is mere intellectual play.”

– Immanuel Kant

One of the requirements in the design of our attack attribution method is its appli-
cability to a broader set of problems relating to Internet threats, intelligence analysis, or
more generally to the analysis of any security data set.

In this Chapter, we demonstrate how the very same method can be used to address
another emerging security problem, namely rogue security software, which is very different
from the phenomena that we have previously analyzed by means of honeynet data. A
rogue security software is a type of misleading application that pretends to be legitimate
security software, such as an antivirus scanner. In reality, these programs provide little
or no protection and, in fact, may actually install the very malicious code it purports to
protect against.

In the following Sections, we describe how we leveraged our multi-criteria clustering
method to analyze the campaigns through which this type of malware is distributed, i.e.,
what are the underlying techniques, server infrastructure and coordinated efforts employed
by cyber-criminals to spread their rogue software. In the experimental results, we give a
more in-depth presentation of some typical networks of rogue domains that are likely
linked to the same campaign, which helps to reveal the modus operandi of the criminal
organizations behind them.

6.1 Introduction

The previous Chapter has presented an in-depth analysis of a data set collected by a
worldwide honeypot deployment for the observation of server-side attacks. Thanks to our
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attribution technique, we have identified some large groups of malicious sources forming so-
called Misbehaving clouds, and having a common root cause (e..g, botnet, network worm,
etc).

However, in the recent years security analysts have witnessed a certain shift of attention
from server-side to client-side attacks, with a specific focus on attacks targeting vulner-
abilities in Web browsers. According to the Symantec ISTR [157] - Volume XIII (2008),
over half of the patched medium- and high-severity vulnerabilities in the second half of
2007 were browser and client-side vulnerabilities. In Volume XIV of the same series of
reports, it appears that drive-by downloads are becoming an increasingly dominant vector
of attack.

This has motivated researchers of the WOMBAT Project1 to collect detailed infor-
mation on this increasingly prevalent attack vector. Starting from June 2009, WOMBAT
researchers have been observing and tracking a large number of malicious websites possibly
offering this kind of fake security software. This led to the construction of a data set called
HARMUR, which is based on an information tracker that collects different features char-
acterizing various aspects related to suspicious web domains. Among those domains, not
only those hosting or delivering rogue software are being tracked, but actually any domain
that was reported to host malicious content or client-side threats (e.g., browser exploits,
trojans, spywares, etc).

In this Chapter, we turn our attention to the detailed analysis of a specific data set
made of 5,852 rogue web sites, as observed by HARMUR during a two-month reporting
period (July to August, 2009). The primary goal of this analysis is to identify the server-
side components of rogue AV campaigns, which refer to the coordinated efforts (in terms
of server infrastructure, malware code, and registration strategies) made by criminals to
distribute their rogue AV.

One assumption that can reasonably be made is that a campaign is managed by a
group of people, who are likely to reuse, at various stages of the campaign, the same
techniques, strategies, and tools (for obvious reasons of development cost). Consequently,
we have applied the very same multi-criteria clustering method to this specific data set,
with the purpose of identifying any emerging patterns in the way rogue domains are created,
grouped, and interconnected with each other, based upon common elements (e.g., rogue
AV-hosting sites, DNS servers, domain registration) that are likely due to the same root
cause, i.e., the same rogue AV campaign.

Finally, in Section 6.5, we provide a more in-depth presentation of some typical networks
of rogue domains found experimentally by our attack attribution method. Note that some
of these experimental results have been included in the Symantec Report on Rogue Security
Software, published mid-October 2009 [159], and presented at the 5th European Conference
on Computer Network Defense (EC2ND) in November 2009 [36].

6.1.1 Rogue AV ecosystem

To introduce the problem, we start by providing a brief overview of some noteworthy
characteristics related to rogue security software and its ecosystem, as observed globally
by security companies and researchers.

1Worldwide Observatory of Malicious Behaviors and Threats - http://www.wombat-project.eu
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A rogue security software program is a type of misleading application that pretends
to be a legitimate security software, such as an anti-virus scanner, but which actually
provides the user with little or no protection. In some cases, rogue security software (in
the following, more compactly written rogue AV ) actually facilitates the installation of the
very malicious code that it purports to protect against ([159]).

Rogue AV makes its way on victim machines in two prevalent ways. First, social
engineering techniques, such as Web banner advertisements, pop-up windows and attractive
messages on blogs or sent via spams, can be used to convince unexperienced users that a
rogue tool is free and legitimate and that its use is necessary to remediate often inexistent
threats found on the victim’s computer (hence, the other name scareware given to those
programs [159])). A second, more stealthy technique consists in attracting victims to
malicious web sites that exploit vulnerabilities in the client software (typically, the browser
or one of its plugins) to download and install the rogue programs, sometimes without any
user intervention (i.e., via drive-by downloads).

Rogue AV programs are distributed by cyber-criminals to generate a financial profit.
In fact, after the initial infection, victims are typically tricked into paying for additional
tools or services (e.g., to upgrade to the full version of the program or to subscribe to
an update mechanism), which are of course fictitious and completely ineffective. For the
victims, the initial monetary loss of these scams ranges from $30 to $100. Some examples
of prevalent rogue security applications (as reported by Symantec for the period July 2008
- June 2009 [159]) are known as SpywareGuard 2008, AntiVirus 2008, AntiVirus 2009,
Spyware Secure, and XP AntiVirus.

Despite its reliance on relatively unsophisticated techniques, rogue AV has emerged
as a major security threat, in terms of the size of the affected population (Symantec’s
sensors alone reported 43 million installation attempts over a one-year monitoring pe-
riod [159]), the number of different variants unleashed in-the-wild (over 250 distinct fam-
ilies of rogue tools have been detected by Symantec [159]), and the volume of profits
generated by cyber-crooks. Their business model relies on an affiliate-based structure,
with per-installation prices for affiliate distributors ([77, 159] reported earnings of as much
as $332,000 a month in affiliate commissions alone, as observed on a distribution website
called TrafficConverter.biz).

The prevalence and effectiveness of this threat has spurred considerable research by
the security community [159, 112, 113]. These studies have led to a better understanding
of the technical characteristics of this phenomenon (e.g., its advertising and installation
techniques) and of the quantitative aspects of the overall threat (e.g., the number and
geolocation of the web sites involved in the distribution of rogue programs and of their
victims).

However, a number of areas have not been fully explored. Indeed, malware code,
the infrastructure used to distribute it, and the victims that encounter it do not exist in
isolation, but are different aspects of the coordinated effort made by cyber-criminals to
spread rogue AV. We refer to such a coordinated activity as a rogue AV campaign. As
we show in this Chapter, rather than examining single aspects of this phenomenon, we
analyzed the rogue campaign as a whole thanks to our multi-criteria clustering method. In
particular, we focus on understanding its server infrastructure, and the way it is created
and managed.
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6.1.2 HARMUR data set

Our experimental data set comes from HARMUR, the Historical ARchive of Malicious
URls, which is a recent initiative developed in the context of the WOMBAT Project [188,
189]. HARMUR is an information tracker that aims at collecting and storing detailed
information on the nature, structure, and evolution of Web threats, with a special focus
on their historical dimension.

For every monitored web site, the HARMUR repository gathers information on the
possible hosting of browser exploits and drive-by downloads, which occur when a user vis-
its a malicious website (or a legitimate website that has been compromised), and malicious
code is downloaded onto the user’s computer without the user’s interaction or authoriza-
tion. This type of attacks usually implies the exploitation of vulnerabilities in browsers,
or browser plug-ins.

Instead of developing new detection technologies (e.g., based on honeyclients, or special
web crawlers), HARMUR integrates multiple information sources and takes advantage of
various data feeds that are dedicated to detecting Web threats. By doing so, HARMUR
aims at enabling the creation of a “big picture” of the client-side threat landscape and its
evolution. We are particularly interested in studying the evolution over time of the threats
associated to web sites, to get a unique perspective on the modus operandi of attackers
exploiting this class of attack vectors for malware distribution.

A prototype of the HARMUR information tracker has been running since June 2009.
Since then, it has collected information on the following site or domain features:

• Norton Safeweb. Thanks to Symantec’s Norton Safeweb2, a web site reputation
service, HARMUR gathers detailed information on known web threats identified on
each suspicious web site being tracked.

• Google Safebrowsing. To double-check the malicious aspect of web sites, HAR-
MUR relies also on blacklisting information available from the Google Safebrowsing
service3 .

• DNS mapping. HARMUR keeps track of DNS mappings between domain names,
corresponding authoritative nameservers, and server IP addresses (i.e., addresses of
HTTP servers hosting suspicious domains).

• Whois information. For each web site, Whois registration information for the
domain name is gathered and stored in HARMUR.

• Geolocation and Autonomous System. Information on the physical location (in
terms of countries) and network location (in terms of Autonomous System, or AS)
is collected for each nameserver and HTTP server associated to a web site.

• HTTP server status. When available, information on the reachability of the web
servers, and on their software version (as advertised in the HTTP headers) is stored
in the repository.

2http://safeweb.norton.com
3http://code.google.com/apis/safebrowsing/
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Figure 6.1: Map of rogue AV servers, as monitored by HARMUR over a period of two months, in July
and August 2009.

The HARMUR data set is thus centered on the notion of site, i.e., a certain web
page identified by a URL. The data collection process consists of interleaving a periodic
operation of site feeding, to identify new interesting URLs to be included and consequently
monitored in the dataset, with the process of site analysis by means of different analysis
feeds, which provide information on the threats associated to HARMUR-monitored sites.

Site analysis is based on a scheduling policy, that determines when a given site needs to
be re-submitted to the analysis feeds. The scheduling policy allows to define the frequency
by which a site is analyzed, according to its current relevance and interest.

Experimental data set

The HARMUR data set we have considered for this analysis was collected over a period of
approximately two months, in July and August 2009. The rogue AV-hosting servers were
identified through a variety of means, including automated and manual feeds.

To build our experimental data set, we considered 5,852 DNS entries pointing to 3,581
distinct IP addresses of web servers that were possibly hosting rogue security software.
After analysis, the 3,581 Web servers have been broken down into the following categories:

• 2,227 Web servers (as identified by their unique IP addresses) were hosting domains
serving only rogue security software,

• 118 servers hosted rogue security software along with domains that served malicious
code,

• the remaining IP addresses served malicious code along with innocuous domains.

Regarding the geographical distribution of these servers (Table 6.1), we observed that
53% were in the USA, far more than any other country. The high ranking of the US may
be due to the methods used for identifying rogue AV sites, which more easily identified



142 6. Application to Rogue Security Software

English-language sites than sites marketing scams in other languages. Germany ranked
second in this survey, accounting for 11% of the total servers hosting rogue security soft-
ware identified. Fig. 6.1 graphically depicts the geographical distribution of rogue AV
servers, where each red dot represents a distinct server, while the different gradients on
the background underline the areas with highest density of deployed servers.

Table 6.1: Geographical distribution of rogue AV servers, as monitored by HARMUR over a period of
two months, in July and August 2009.

Rank Country Percentage
1 United States 53%
2 Germany 11%
3 Ukraine 5%
4 Canada 5%
5 United Kingdom 3%
6 China 3%
7 Turkey 3%
8 Netherlands 2%
9 Italy 2%
10 Russia 1%

6.2 Selection of site features

We turn now to the application of our attack attribution method to this data set of 5,852
rogue AV websites. As described previously, we want to identify emerging patterns in the
way domains (and servers) are grouped and interconnected with each other, based upon a
series of common elements.

As usual, we start by analyzing which elements, or site features, can give us relevant
viewpoints on those rogue AV phenomena. Some illustrative examples of these features
are summarized in Table 6.2 for a subset of rogue domains monitored by HARMUR. We
further detail the selection and the meaning of those network-related features hereafter.

6.2.1 Server IP addresses

Every web site (or web domain) has to be hosted on a publicly available Web server, to
which an IP address has been assigned. The mapping between a web site and the server IP
address is maintained via the Domain Name System (DNS), a hierarchical naming system
for computers, services, or any resource connected to the Internet or a private network. Via
specific requests to DNS servers, one can know the IP address of the server hosting a given
domain name, as well as the authoritative nameserver (i.e., the DNS server responsible for
keeping the records of the domain name).

As a result, if cyber-crooks want to distribute their rogueware to innocent victims,
they have to i) find some hosting web server with a publicly available IP address; and
ii) register their domain names and let them point to those server IP addresses. Due
to the fraudulent aspect of their business, we could a priori believe that cyber-criminals



6.2. Selection of site features 143

would host rogue AV websites on compromised computers (e.g., on zombie machines that
are part of a botnet), as it is often the case with phishing pages, illegal porn and warez
websites. However, our experimental analysis tends to show that a large majority of those
rogue domains are hosted by some popular commercial domain registrars and web hosting
companies (e.g., GoDaddy, eNom, Tucows, OnlineNIC, etc).

Assuming that cyber-criminals want to make their efforts profitable, they will probably
look for a certain type of hosting infrastructure that is not too expensive, somehow “reli-
able” for them (i.e., offering some oversight regarding the registration of suspicious names,
and slow in taking down fraudulent domains), and possibly allowing to automate certain
administrative tasks, such as the bulk registration of new web domains. Furthermore, due
to the affiliate structure and the social networking aspect of those criminal organizations,
we hypothesize that many affiliates belonging to the same community will most likely reuse
the same tools in order to quickly create new domains, distribute rogue AV and thus make
some profit.

Consequently, our intuition about a rogue AV campaign is that cyber-crooks of a same
organization will, at various stages of the campaign, reuse the very same techniques to
create and register their domains. They may also choose for a specific domain registrar
or web hosting company, for the very same reasons explained here above. In other words,
when two rogue domains are hosted on the same web server at a given point in time, this
can eventually be an indication of domains involved in the same overall campaign.

However, to reduce the cost of ownership, most web hosting companies offer some
shared hosting on server farms, which means that two domains registered during the same
campaign can perfectly be hosted on two different servers of the same Web company (e.g.,
GoDaddy), having thus nearby IP addresses (i.e., located within the same IP subnet). For
this reason, we observed that it is sometimes useful to group server IP addresses by Class
C or Class B-subnet, such that we can compare the IP subnets on which two rogue sites
are located, instead of the exact IP addresses (see for example domains 465709 and 465706
in Table 6.2 on page 145).

It is also worth noting that some rogue AV domains were observed as being hosted
on more than one server, which may be an attempt to reduce the effectiveness of miti-
gation measures such as IP blocking or blacklisting servers, by providing a certain level
of redundancy with spare IP addresses being reserved for a given domain. That is, when
cyber-crooks detect an attempt of blocking certain IP addresses, they just need to activate
a spare IP address and let their rogue domain point to this new address (i.e., by changing
the ’A’ record of the rogue domain in the nameserver).

In conclusion, the considerations here above lead us to define the following site features,
which can be used to link rogue domains to the same campaign:

• FIP , which represents the IP address(es) of the web server(s) hosting a given rogue
domain. The corresponding feature vector is thus a set of server IP addresses;

• FCl.C , which represents the Class C-subnet(s) of the web server(s) hosting a given
rogue domain. The corresponding feature vector is thus a set of Class C-subnets;

• FCl.B, which represents the Class B-subnet(s) of the web server(s) hosting a given
rogue domain. The corresponding feature vector is thus a set of Class B-subnets;
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• FNS , which represents the IP address(es) of the authoritative nameserver(s) for a
given rogue domain. The corresponding feature vector is thus a set of nameserver IP
addresses.

Finally, it is important to note that none of these network observables by itself is
considered as sufficient to attribute with high confidence two rogue domains to the same
campaign. Indeed, using a specific web hosting provider, or pointing to the same web server,
does not necessarily mean that the hosted domains are part of the same rogue campaign
(and in fact, many legitimate web sites are being hosted on the very same servers as those
of rogue sites). Additional features are thus needed to bring a stronger evidence of two
domains having a common root cause.

6.2.2 Whois information

Whois is a query/response protocol that is widely used for querying databases in order
to determine the registrant or assignee of Internet resources, such as a domain name, an
IP address block, or an autonomous system number4. By performing periodically Whois
lookups, HARMUR can retrieve and store some valuable information about each web site
being monitored, such as the registrant name (usually, an email address), the domain
registrar, the geolocation of the hosting web server, and the creation date of the domain.

For the very same reasons as those stated here above, we hypothesize that two domains
created by the same criminal organization, for the purpose of running a rogue campaign,
will have commonalities in one or several Whois features (i.e., same registrant address,
or same registrar and creation date for domains that are create in bulk using automated
tools).

This leads us to define the following site features related to the available Whois infor-
mation:

• FReg, which refers to the name or email address of the registrant;

• FRar, which refers to the name of the Registrar;

• FGeo, which refers to the geolocation of the web server hosting a given domain (i.e.,
a country);

• FCrea, which refers to the creation date of the domain, as given in the registration
data.

As with the previous ones, these features can be used to link rogue domains to the
same campaign, but none of them is sufficient by itself to identify a rogue campaign in a
reliable fashion.

6.2.3 Domain names

When cyber-crooks decide to create dedicated web sites for hosting rogue AV software,
we observed that, in many cases, they tend to choose some appealing names that can
lure users into believing that their web sites are genuine and legitimate. Furthermore, the
domain names can also be chosen so as to be consistent with the “brand name” given to

4http://en.wikipedia.org/wiki/WHOIS
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their rogue software, for example windowsantivirus2008.com, xp-2008-antivirus.com,
malwaredefender2009.com, or pcregistrycleaner.com.

Consequently, a good reason to look at domain names patterns is that rogueware dis-
tributors and their affiliates can rely on the same software tools to quickly create new
domain names in an automated fashion, e.g. by combining (randomly or with a given
logic) some tokens that are commonly used in the names of legitimitate anti-malware
products (e.g., XP, anti, virus, spyware, malware, registry, home, cleaner, defender, etc).

Identifying patterns and commonalities among domain names may thus give us some
indication on the tools or techniques that are being reused by criminals during the same
campaign when creating new domains. We denote this site feature as FDom.

6.2.4 Other possible features

Some other network observables, or features, could be useful in the identification process
of rogue AV campaigns. While we haven’t directly used those features in the multi-criteria
clustering process, we believe that they can bring additional interesting viewpoints on
groups of domains attributed to a common phenomenon.

Software version

A first additional feature we may consider is the software version of the HTTP server
hosting the rogue domain. This feature can be obtained either from the HTTP header sent
by the server, or sometimes also from Whois servers. Some possible values of server version
are, for example, “Apache/2.2.3 (Red Hat)”, “Microsoft-IIS/6.0”, but also “nginx/0.6.35”,
“lighttpd/1.5.0”, “LiteSpeed”, or eventually some other not-so-commonly-used software like
“Oversee Turing” and “gws”.

As such, two domains hosted on different web servers running the same HTTP software
may not indicate anything useful if we consider this feature alone. However, looking at
the distribution of software versions for a group of domains that we suspect of being part
of the same phenomenon may help us to confirm the results. More precisely, we see two
main reasons for this:

• if cyber-criminals are hosting their rogue web site on compromised servers (as they
don’t want to pay a commercial provider for hosting hundreds of domains), chances
are high that they will reuse the very same technique (or exploit) to take advantage
of a given vulnerability they discovered in a specific version of a server software (e.g.,
an exploit only targeting Apache/2.2.3 running on Windows platforms).

• cyber-criminals can also decide to hire zombie machines that are part of a botnet to
host their server infrastructure. In this case, the available server software will depend
on the bot software used to control the compromised machines, and in most cases,
the web server is then based on some custom, lightweight server software that can
be easily downloaded and installed, in a stealthy manner, on zombie machines with
high-speed connections and public IP addresses. Since the bot herder has usually
full access to the underlying operating system of the bots, he can even configure
the HTTP server software in such a way that standard banners are replaced by a
stealthier one (of his own choice).
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Threat type

Another useful feature that we could include in the analysis of rogue AV campaigns is
the type of threats found on each rogue web site, such as possible browser exploits, trojan
downloads, obfuscated (malicious) javascripts, or fake codecs installation. This kind of
information is available via web site reputation services, such as Norton SafeWeb, which
is used as analysis feed by HARMUR. Those reputation services usually rely on high-
interaction honeypots to effectively detect these client threats.

In our measurements, only a small fraction of the monitored rogue domains also in-
volved the hosting of additional threats, such as browser exploits, malware downloads,
etc. However, we hypothesize that using this feature in combination with the others may
be helpful to identify and characterize malicious domains that are controlled by the same
group of criminals, as they will quite likely reuse the same techniques to distribute their
malware, at least as long as those techniques are effective for infecting new victims.

6.3 Graph-based clustering

Based on the feature analysis and our domain knowledge, we have selected the following 6
features for the iterative application of our graph-based clustering component: FDom, FIP ,
FCl.C , FCl.B, FReg and FNS .

The other features were not selected mainly for two reasons: (i) for certain aspects,
the collected data may be, at this stage of the HARMUR project, either too generic or
incomplete to be used as clustering feature (like threat types or Whois information, also
because some web sites may not be active any more); and (ii) features like FGeo and FRar

are somehow redundant with other selected features, such as the information provided by
IP subnets. Indeed, each registrar is managing specific IP blocks allocated to him, and
there is a direct mapping between IP addresses and the geographical place.

One could argue that FCl.C and FCl.B are also redundant with FIP . However, as
explained in previous Section, those features are less specific than FIP but still more
precise than FRar, and can better grasp the fact that rogue domains created during the
same campaign can point to different server IP’s with nearby addresses (which eventually
belong to the same web provider). Moreover, we note that domains registered through
the same Registrar on very close dates are apparently hosted on servers with nearby IP
addresses (as it is the case with domains 465709, 465706 and 465710 in Table 6.2 on
page 145), which further justifies the choice of FCl.C and FCl.B as clustering features.

As usual, prior to running the clustering algorithm, we need to define a dissimilarity
metric for each site feature.

6.3.1 Distance metrics for measuring pattern proximities

IP addresses

Since feature vectors defined for FIP , FCl.C , FCl.B and FNS are simply sets of IP addresses
(or sets of IP subnets), it is relatively easy to calculate a similarity between two sets by
using the Jaccard coefficient (given by equation 5.1).

For example, looking at domains in Table 6.2 (page 145):
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• for domains 465709 and 465706, comparing IP addresses (FIP ) with the Jaccard
coefficient gives a similarity equal to 0, whereas the same operation for FCl.C and
FCl.B yields 0.5 and 1 respectively.

• idem for domains 334096 and 334091, where the similarity for FIP is zero, but the
IP subnets (Class C and B) are identical.

Registrant names

The most straightforward way of measuring a similarity between two registrant names is
simply to check the equality between the two. However, this does not allow us to grasp
commonalities in the way that registrant names (i.e., email addresses) have been created,
like for example:

• people can use automated tools to create new email accounts, usually offered by spe-
cific email providers (such as Gmail, Hotmail, Yahoo, etc), and use them afterwards
to automatically register rogue domains;

• we have observed some recurrent patterns in the email addresses of certain registrants,
like the use of specific keywords, or string tokens (often borrowed from the domain
name being registered), probably also created in an automated fashion;

• a substantial amount of rogue domains have been created using third-party companies
offering domain privacy protection services (e.g., domainsbyproxy.com, whoisguard.
com, privateregistrations.ws, or eNom’s “Whois Privacy Protection Service”).
Consequently, comparing which specific email domain is used by registrants can
reflect a certain strategy used by cyber-crooks (in this case, protecting their identity).

These considerations have led us to define a heuristic distance for comparing email
addresses used by registrants. More precisely, for two given rogue domains:

(1) we start obviously by checking the equality between the two registrants addresses;

(2) when the value given in (1) is zero, then we further compare the three following sub-
features: email domain, username, presence of AV-keywords. The final similarity
value is then given by a weighted mean, defined by the following empirical weighting
values: [0.2, 0.2, 0.5].

The latest sub-feature refers to the screening of about 30 commonly-used AV-keywords
within the email addresses, such as {anti, virus, cleaner, remove, malware, spyware, . . .}.
When at least 2 different tokens are found, this sub-feature is equal to 1. This simple
heuristic distance proved to be effective in grouping registrants addresses that looked se-
mantically related.

Let us consider a few examples from Table 6.2 (page 145):

• for domains 334096 and 334091, the similarity for FReg is equal to 1:

• for domains 334096 and 465709, the similarity is equal to 0.2 (same domain only);

• for domains 211552 and 122287, the similarity is equal to 0.7 (same domain and
presence of at least two AV-related keywords);
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Domain names

Regarding FDom, we need to catch commonalities between rogue domain names having
similar patterns, or common sequences of the very same tokens, which can indicate that
the very same tool has been used to dynamically create new names based on a given set
of keywords. A commonly used technique for measuring the amount of difference between
two sequences (or two strings) is the Levenshtein distance, also called the edit distance,
which is used in various domains such as spell checking, information retrieval, text and
web mining, or DNS sequence analysis.

The Levenshtein distance is given by the minimum number of operations needed to
transform one string into the other, where an operation is an insertion, deletion, or sub-
stitution of a single character. It can be considered as a generalization of the Hamming
distance, which is used for strings of the same length and only considers substitution edits.

The Levenshtein distance is zero if and only if the strings are identical, and the upper
bound is given by the length of the longer string. Let us consider a few examples of
distances between rogue domain names we have observed:

• the distance between scan4lite.com and scan4life.com is only 1, whereas the
distance between scan4lite.com and scan4safe.com is equal to 3;

• the distance between gofilescan.com and gofullscan.com (resp. fast4scan.com)
is 2 (resp. 6);

• in Table 6.2, the distance between home-antivirus2010.com and homeanti-virus-2010.

com (resp. homeav-2010.com) is 3 (resp. 8);

• in Table 6.2, the distance between home-antivirus2010.com and pc-anti-spy2010.

com (resp. anti-malware-2010.com) is 9 (resp. 12).

Since Levenshtein gives a distance (and not a similarity) metric, we still need to tran-
form those values into similarities, for example by using equation 5.2. Similarly to the
calibration procedure performed in Chapter 5 (on page 111), we need to determine a con-
stant σ that reflects the decreasing rate of the similarity as an exponential function of the
distance.

By considering a large number of domain names in our data set, we observed that
an edit distance of 5 or 6 was in most cases reflecting an average similarity between two
rogue domains names, with a sufficient number of common tokens justifying a similarity
value around 0.5, whereas a Levenshtein distance above 12 was clearly indicating that
the two domains had almost nothing in common in their name schemes (or at least, no
significant pattern in common). Based on those observations, we have derived an empirical
value for σ = 7. The similarity values obtained from transforming some Levenshtein
distances are showed in Table 6.3, which correctly translates our requirements regarding
the measurement of similarities between rogue domain names.

Note that some other types of string or text distances could be used to better grasp
commonalities among domain names. For example, we could try define a “token-based
distance”, which computes the number of common tokens between two domain names
(based on a predefined list of commonly-used keywords), and normalizes this value by
using the Jaccard coefficient (equation 5.1).
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Table 6.3: Transforming Levenshtein distances into similarity values using σ = 7 in equation 5.2.

Levenshtein 0 1 2 3 4 5 6 7 8 9 10 11 12
Similarity 1 0.98 0.92 0.83 0.72 0.60 0.48 0.37 0.27 0.19 0.13 0.08 0.05

Another possiblity would be to rely on more complex distances, such as semantic match-
ing, or certain metrics defined in Latent Semantic Analysis (LSA), to analyze the possible
meaning of each domain name and consequently, to determine whether two domain names
are semantically related (i.e., similarly to what a human expert tries to do). However, we
leave the study of these options as future work, as the Levenshtein distance has performed
very well on this data set, and meaningful clusters have been obtained with this simpler
metric.

6.3.2 Cluster analysis of Rogue domains

Based on the previously defined features and distance metrics, we have then applied the
graph-based clustering to each individual feature, using the dominant set framework in-
troduced in Chapter 3.

An overview of the clustering results is given in Table 6.4, where we can compare the
global performance of site features individually. As usual, the consistency of the clusters
can be assessed through the average compactness value of all clusters, given by the column
Cp. We have also calculated an average compactness for the first 20 clusters, represented
by Cp,20, as these are usually the most meaningful clusters found by the dominant sets
algorithm. The column size refers to the average size of the clusters.

First, we can observe that the features related to IP addresses (FIP ) or to IP subnets
(FCl.C and FCl.B) provide apparently very compact clusters, i.e., very high Cp (even close
to 1). This seems to indicate that rogue AV sites are located in a limited number of
IP subnets (between 61 and 73% of all rogue sites could be clustered in only 110 to 192
clusters), and they tend to form very tight clusters. This can be observed in more details in
Fig. 6.2 showing the individual compactness values for the first 20 clusters. Furthermore, a
large majority of the sites is included in the first 20 clusters, as the evolution of the cluster
size seems to show (curve in magenta in Fig. 6.2 (b), (c) and (d)). As we could expect,
features related to IP subnets (Class C and B) give fewer clusters than FIP , and they are
also larger and more compact.

Table 6.4: Overview of the graph-based clustering results for the rogue AV data set.

Feature Nr clusters Nr sites size Cp Cp,20

FDom 132 4,117 (70%) 31.2 0.46 0.53
FIP 192 3,559 (61%) 18.5 0.82 0.98

FCl.C 110 3,667 (63%) 33.3 0.97 0.99
FCl.B 122 4,250 (73%) 34.8 0.98 1
FReg 19 2,937 (50%) 172.2 0.78 0.78
FNS 40 2,529 (43%) 63.2 0.95 0.99
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Regarding domain names (FDom), it is quite surprising to see that about 70% of this
data set has been clustered based on commonalities in domain name patterns. The average
compactness of the clusters is, admitteddly, a bit lower than for IP addresses, but still
acceptable (see also Fig. 6.2 (a)). Still, the largest cluster found for FDom contains about
800 domain names. These results, in addition to some illustrative patterns of domain name
clusters given hereafter, seem to confirm the intuition that miscreants are likely using very
effective, automated tools to create large amounts of domain names with common patterns,
in a bulk fashion.

Even more surprisingly, only 19 clusters of registrant names were found, accounting for
50% of the data set. The mean cluster size for this feature is also the largest one, with (on
average) about 170 rogue sites associated with the same registrant(s) ! The individual Cp

values of the clusters, showed in Fig. 6.2 (e), indicate that all registant clusters are quite
consistent, i.e., there are apparently very good reasons to group those rogue domains based
on the registrant names. Here too, we hypothesize that cyber-crooks are able to create
new email accounts using highly effective, automated tools, and those new email addresses
are then used to create and register new domain names quite anonymously. An in-depth
analysis of the cluster patterns further confirmed this assumption, as illustrated hereafter
with some detailed results.

Finally, looking at clustering results obtained w.r.t. nameservers (FNS), we note that
rogue domains are apparently not as much correlated than by the other IP-related features.
The number of clusters found with this viewpoint is significantly lower (only 40 groups
comprising totally 43% of the sites). However, those clusters are still very compact, but
also larger than clusters of IP addresses or IP subnets.
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Figure 6.2: Compactness values of the clusters (in blue) and their respective sizes (in magenta) for the
first 20 clusters found in the Rogue AV data set (5,852 rogue sites).
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Some detailed results

To visualize the clusters, we have created 2-dimensional maps for different features using
the same dimensionality reduction technique as used before in Chapter 3 and 5, i.e., t-
distributed Stochastic Neighbor Embedding, or t-SNE [175].

For the sake of illustration, we have considered all rogue sites involved in the largest
clusters only, which are the most representative of the kind of results we have obtained.
Also, we illustrate some detailed results only for the four features FDom, FIP , FCl.B and
FReg. However, very similar visualizations can be obtained for the other two features (FNS ,
FCl.C), with similar interpretations regarding cluster patterns.

Let us consider Fig. 6.3 (a) (on page 153), on which we can visualize the 20 largest
clusters obtained w.r.t. rogue domain names (FDom), and comprising 3,151 rogue sites.
On this map, each pixel represents the domain name of a given site, and the pixel color
refers to which cluster the site belongs to (notice the numbers around certain points to
indicate the cluster id’s). The relative interpoint proximities have been mapped to the
inter-domain similarities, as calculated with the chosen distance metric (i.e., Levenshtein
in this case). As we can observe, the overall structure of the map seems to indicate that
there are basically two regions: (i) a region with well-separated clusters of domain names
(like clusters 1, 11, 20, 7, 12); and (ii) a quite large and “messy” zone, where data points
are somehow mixed and clusters overlap with each other (like clusters 2, 4, 6, 3, 5, 16, 19,
etc).

This aspect can be easily explained by looking at the cluster patterns, like those ex-
plicitely given in Fig. 6.4 (a). In this table, some domain name patterns are represented
using regular expressions for the variable parts of the names, whereas fixed string tokens
(common to all domains of the indicated cluster) are highlighted in bold. This can help the
analyst to understand, very quickly and via a single global picture, the inter-relationships
among those domain name patterns. For example, cluster 1 (which contains about 794
sites) is made of domain names that are built with exactly 5 randomly-chosen alphanumeric
characters, whereas cluster 11 (containing 110 sites) represents domain names made of 7
to 8 alphanumeric characters (most of them also randomly chosen). This does not mean,
per se, that the two clusters are due to the same root cause (or the same tool); however,
it already explains their mutual proximity on the map.

The same reasoning holds for clusters 7 and 12, where some common string tokens
(e.g., scan and .info) tend to tie those clusters close to each other (idem with clusters 2
and 8). Regarding the fuzzy area in which we find clusters 4, 6 and many others as we
move towards the top of the map, we observed that those overlapping clusters represent
domain names with commonly-used words, made of 4 to 10 alphanumeric characters, and
involving many keywords usually related to anti-malware or anti-spyware software, which
explains why those domains are somehow inter-related with many others. In other words,
the variability of those patterns combined with the numerous commonalities among some
of them explains why the t-SNE algorithm had difficulties to clearly separate those domain
names on a reduced map with only 2 dimensions.

As we could expect from the global clustering results, the two-dimensional maps ob-
tained for the viewpoints related to IP addresses (Fig. 6.3 (b)) and IP subnets (Fig. 6.3 (d))
reflect the strong correlating aspect of those features. In both maps, we have considered
the 20 largest clusters, which comprise about 1,269 and 2,589 rogue AV sites for FIP and
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Id. Cluster pattern
1 [a-z0-9] {5}.cn
11 [a-z0-9] {7, 8}.cn
7 scan[4|6] {lite, live, home, user . . .}.info
12 {lite, live, home, user . . .} [4|6]scan.info
20 {assist, beers, cds, cigars, sofas, . . .}online.cn
2 {any, av, best, easy, fast, go, lite, . . .}scan.com

4,6 [a-z0-9] {4, 10}.com
10 adware{2009, clean, alert, bot, pro, . . .}.com
8 goscan{-pro, data, elite, file, gate, lite, . . .}.com

Id. Cluster pattern
1 84.16.247.12, 89.149.236.145
2 209.44.126.102
7 209.44.126.241
11 69.64.155.119
4 64.191.92.197
16 64.191.92.197, 91.206.231.146
3 195.95.151.174
19 195.95.151.174, 195.95.151.138, 91.212.41.114

(a) FDom (b) FIP

Id. Cluster pattern
1,3 [a-z0-9]∗@gmail.com
2,8 cn@id-private.com, cn@space.kz

4,5,9 [a-z0-9]∗@yahoo.com
6 contact@privacyprotect.org
7 admin@mas2009.com
10 support@NameCheap.com
17 { AV-keywords }@domainsbyproxy.com

Id. Cluster pattern
1 84.16, 89.149
3 195.95
5 63.146
7 209.44
9 209.44
10 209.44, 69.64
4 64.191
16 64.191, 91.206
20 210.51, 220.196, 222.73, 91.212

(c) FReg (d) FCl.B

Figure 6.4: Some cluster patterns found for each feature of the rogue AV data set. For clusters containing
multiple string patterns (FDom, FReg), variable parts are represented with a syntax based on regular
expressions, whereas fixed string tokens are highlighted in bold. For FReg, AV-keywords refers to a set of
about 30 AV-related keywords, such as adware, anti, malware, spyware, av360, error, repair, tool, virus,
bot, clean, registry, fix, remove, . . .

FCl.B respectively. Most of the clusters are apparently well-separated. However, we can
observe a few overlapping clusters, for example clusters 4 and 16 (in both maps), or clus-
ters 7, 9, 10 in the FCl.B map, which can again be easily explained by the corresponding
patterns given in Fig. 6.4 (b),(d). We note also that clusters found w.r.t. FCl.B are quite
obviously much larger than those found with FIP .

Even though IP-related clusters tend to form very tight clusters, we argue that this
feature alone is probably not sufficient in many cases to identify a rogue AV campaign.
In our opinion, all web sites hosted on the same IP subnet (or even on the same web
server) are not necessarily created by the very same group of cyber-crooks. There are,
apparently, several popular Web providers among those communities (probably for good
reasons), and thus the same web server can perfectly host (malicious) domains created by
different groups or communities.

Finally, we have represented in Fig. 6.3 (c) the 10 largest clusters obtained with FReg.
Those clusters contain 2,501 rogue sites, and each data point on the map represents here
the domain registrant. The patterns corresponding to those clusters are given in Fig. 6.4
(c), where variable parts of the registrants are again represented by regular expressions,
and fixed tokens are emphasized in bold style. These registrant patterns can explain why
we find a very large mixed cluster (1,197 points) in the center of the map, due to two
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inter-related clusters (1 and 3) that are composed exclusively of email addresses from the
gmail.com domain. Idem with clusters 4, 5 and 9, but this time within the email do-
main yahoo.com. As such, observing two domains whose registrants use an email address
of the same domain does not mean anything special. However, other clusters are well-
separated, showing more interesting patterns like clusters 2 and 8 (cn@id-private.com
and cn@space.kz), or cluster 6 and 17 for which we can see that domain owner(s) also
protect their privacy by using different whois domain protection services.

In conclusion, we note that most of the clusters obtained w.r.t. each site feature
can reveal interesting and meaningful patterns revealing how those rogue sites have been
created and managed. In fact, each feature can be seen as a viewpoint giving a certain
perspective on the underlying phenomenon (or root cause), which in turn can also highlight
interesting aspects of the modus operandi of the miscreants.

However, it becomes difficult (and time-consuming) to combine those viewpoints man-
ually when the number of features increases, even when we rely on graphical visualization
techniques such as those presented here. Furthermore, the fact that rogue sites have been
clustered w.r.t. a given aspect, or even two clusters that are lying in the same neighborhood
on a given 2D map, does not mean that the rogue sites under scrutiny are necessarily due
to the same root cause. As explained previously, only one common feature can be merely
due to a coincidence, to a commonly-seen pattern, or to a commonly-used technique.

To identify the underlying phenomena in a more systematic and reliable manner, certain
clusters are likely to be merged whereas some others may have to be split. To aid the
analyst to make such a decision, our multi-criteria aggregation method can be used to
effectively combine all these viewpoints, such that the final result models the expectations
of an expert regarding the (combination of) features that must be satisfied in order to
attribute two rogue sites to a common root cause.

6.4 Aggregation of all features

6.4.1 Defining parameters

We are now in a position to combine all site features using an aggregation function, with
the purpose of identifying rogue AV campaigns whose rogue domains are automatically
grouped together based upon common elements likely due to the same root cause.

As a first exploratory approach, we have used two different Ordered Weighted Averaging
functions (OWA and Weighted OWA) as aggregation means, which have been extensively
described in Chapter 4. However, nothing forbids us from performing the very same
analysis using more complex aggregation methods, such as a Choquet integral, assuming
that we are able to model the behavior of rogue AV phenomena in a more accurate way
though. We leave the study of this option as future work.

Based on our site feature analysis performed in Section 6.2, and considering our intu-
ition on rogue AV campaigns, we have defined the following weighting vectors to be used
in the (W)OWA aggregation:

�
w = [ 0.10, 0.10, 0.20, 0.30, 0.20, 0.10 ]
p = [ 0.20, 0.20, 0.15, 0.10, 0.25, 0.10 ]
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By defining the weighting vector w, we give more importance to criteria starting from
the third highest position, which means that the two highest scores will have lower weights
(0.10) and thus at least three strong correlations will be needed in order to have a global
score above 0.3 or 0.4.

Regarding the weighting vector p, we give a little more confidence to the features FDom,
FIP and FReg. Intuitively, we can reasonably assume that a combination of those specific
features will yield a high probability that correlated rogue sites are likely due to the very
same campaign. On the other hand, we give a little less confidence to FCl.C , FCl.B and
FNS , as these features are obviously less specific, and even somehow redundant with some
of the previous features.

It is worth reminding that a strong advantage of these agregation techniques is that the
analyst does not need to determine beforehand which set of features are the most relevant
ones in the aggregation.
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Figure 6.5: Sensitivity analysis of (a) OWA (b) WOWA aggregation techniques; to determine appropriate
ranges of values for the threshold ε. The regions 1, 2 and 3 indicated on the graphs correspond to the 3
phases described in Fig. 5.11. The axis on the right (in magenta) shows the size of the largest phenomenon
(or rogue AV campaign) for each threshold value.

The last important parameter to be defined is the decision threshold ε, which is used
to eliminate unwanted links in the combined graph, and thus also to identify connected
components from it. As usual, we can determine an appropriate range of values for ε
by performing a sensitivity analysis, i.e., we let ε increase from a very low to high value,
and we observe the number of largest components (or phenomena) that we obtain in the
resulting graph, as well as the size of the largest one. This is illustrated in Fig. 6.5 where
we can observe the impact of the threshold on (a) the OWA aggregation method, and (b)
on the Weighted OWA. We have indicated on the graphs the three regions of interest in
the determination of ε, as described previously in Chapter 5 (on page 120).

In the second region, we can observe a sort of plateau starting around the values
ε = 0.25 for OWA, and ε = 0.35 for WOWA, which seems to indicate some reasonable
values for our decision threshold (as the number of large phenomena becomes stable). Even
the size of the largest phenomenon becomes fairly stable at those threshold values (certainly
with the WOWA operator). It should be noted that increasing ε up to an excessive value
leads to a significant loss of rogue sites, and thus also of semantics that can be derived
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from the phenomena.

6.4.2 Results overview

In Table 6.5, we briefly compare the performance of each aggregation method. Overall, we
note that the two sets of phenomena found by the two techniques are consistent with each
other, both in terms of size as well as with respect to the composition of each phenomenon.
As it could be expected, the WOWA technique performed a little better than OWA, which
is due to the use of a second weighting vector p that models the reliability of site features.

Table 6.5: Comparison of OWA and WOWA aggregation methods for the rogue data set.

Characteristic OWA WOWA
Threshold ε 0.30 0.35

|P| 161 173
|P|, with |Pi| ≥ 10 39 44

Nr of sites 4,049 (69%) 3,586 (61%)
Average Cp 0.46 0.51

To further evaluate the consistency of the results, we have represented in Fig. 6.6 the
global graph compactness Cp for the largest phenomena, as calculated individually for each
feature. This interesting view can be used to determine which features tend to group rogue
sites together within each phenomenon Pi. First, we note that most of the phenomena have
globally high compactness values, except for a few ones (such as P1 and P3 found with
OWA). A deeper inspection of those phenomena reveals that these are also very large
connected components, which explains why they are less compact since they are usually
made of several loosely connected subgraphs.

Quite naturally, we see also on Fig. 6.6 that IP-related features contribute the most to
the correlation of rogue sites. In many cases, FReg seems to complete or reinforce those
correlations. It is also interesting to see that some phenomena are correlated by FCl.C and
FCl.B, but not by FIP (such as P27 found with OWA), which justifies the selection of those
features.

FDom has in general lower Cp values, but there are still 3 or 4 phenomena in which
domain name correlation plays a significant role (like for P4, P10 and P34 found by OWA).
Finally, we observe that each Pi can be characterized by varying degrees of correlation
regarding each feature, but overall there are always at least three different features having a
high correlation (except for P1, the largest phenomenon comprising more than one thousand
sites).

6.5 Behavioral analysis of Rogue AV campaigns

6.5.1 Introduction

In this final Section, we present a more in-depth analysis of some illustrative case studies,
in order to show the kind of insights we can get into the behavior of so-called Rogue AV
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Figure 6.6: Evaluation of the results consistency using the global compactness (Cp) of the largest phe-
nomena found using (a) the OWA aggregation; and (b) the WOWA aggregation. Each color refers to the
Cp index of each site feature individually.

Table 6.6: High-level characteristics of some typical Rogue AV campaigns (RC’s).

RC # sites # Reg. # Registrar # IP’s # Class B Timespan Server countries
3 438 115 6 50 15 03 Oct 2008 - 03 Jun 2009 UA, CN, KY, SG
4 752 4 1 135 7 22 Jun 2008 - 27 Feb 2009 US, DE, BY
5 310 17 1 13 5 17-20 Oct 2008 CN, DE
27 15 3 1 8 4 25 Jun - 14 Jul 2009 US
34 14 3 1 19 2 29 Jul 2009 US

campaigns (shortly written RC’s in the following), which were identified, in a systematic
and automated manner, by our multi-criteria clustering technique.

The different RC’s that are studied in this Section are summarized in Table 6.6. It is
worth mentioning that these experimental results are based on case studies that have been
presented in [159, 36].

6.5.2 Two similar campaigns related to Anti-{virus, spyware}-2010

As a first illustrative case study, we present two relatively simple but interesting phenomena
identified by our method, namely RC 27 (Fig. 6.7) and 34 (Fig. 6.8). In those figures, the
domain names are shown in light blue, the web server /24 subnets in yellow, nameservers in
purple, and the email address of the Registrant in red. Double-edged purple boxes indicate
servers with co-located DNS and web servers.

Both RC’s are composed of a small number of rogue sites, and these are mostly corre-
lated by server IP addresses and by common patterns in the domain names (notice that
this is consistent with the assessment of graph compactness in Fig. 6.6). Note also that all
domain names are clearly referring to anti-virus or anti-spyware software “products”.

Although the two RC clusters initially appear to be distinct, they present a number of
similarities:

• Both clusters use the exact same domain naming scheme (except that one uses “spy-
ware” while the other uses “virus”);
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• All of the domains in each cluster use the same registrar (OnlineNIC) and are serviced
by the same two ISPs;

• The email addresses of all domain registrants are in “.ru” domains;

• The servers were on consecutive IP addresses;

Perhaps even more conclusively, we found that the content of each site was identical,
with the exception of one differing image (recall that the site content was not a feature of
our clustering system).

In fact, cyber-crooks used for both RC’s a single registrar (OnlineNIC5 ) which ap-
parently offers the free use of their registration API/template system. The similarities
described here above strongly suggest that the task of registering, creating, and hosting
these rogue security software domains was automated and that the same entity may be
responsible for both clusters.

Also worth noting is that both clusters are split between two different ISPs, suggesting
an attempt to provide some level of redundancy in case a cluster is taken offline by the
ISP. Finally, we observed that all of the hosting web servers were located in the US.

Figure 6.7: RC27: a rogue campaign related to Anti-virus2010.

5http://www.onlinenic.com
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Figure 6.8: RC34: a rogue campaign related to Anti-spyware2010.

6.5.3 Two different campaigns within the .cn TLD

Our attribution method has also identified some other clusters that represent more sophisti-
cated campaigns. Two such examples are RC 4 and RC 5, which are two different campaigns
observed within the .cn top-level domain (TLD). Regarding cluster RC 5, about 310 .cn
domain names were registered in only three days, as represented in Fig. 6.9 on page 163.
The domain names (in blue) point to 13 IP addresses residing in five subnets (yellow) and
were registered by a number of Web-based email addresses (red) in three days (purple).
The prevalent use of popular Web-based email accounts (e.g., yahoo.com, gmail.com and
hotmail.com) to register these domains is assumed to be because these email services are
easily anonymized.

Interestingly, all of the domain names in RC 5 are referring to various popular web cat-
egories, such as games, fun, e-cards, casino and even porn sites, but apparently not a single
domain name seems to relate to AV software. However, since they have been included in
our rogue data set, they were still somehow related to rogue AV. One could think that some
of those web sites are possibly “legitimate” ones that have been compromised, so that they
could serve rogue AV software. Note also that we found many of these sites were also host-
ing malware (e.g., trojans, fake codecs). Considering the abnormal pattern showing the
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registration of all those domains “in bulk”, a more likely explanation is that (i) cyber-crooks
try to diversify their activities, by hosting different types of threats, and (ii) they want to
optimize the monetization of their web sites by attracting as many users as possible with
popular web categories. Finally, all of the domains have been registered at a single Chinese
registrar (Era of the Internet Technology), and 97% of the web servers are located in China.

In the next cluster, RC 4, about 750 rogue domains have been registered also in the
.cn TLD (resolving to 135 IP addresses in 14 subnets), on eight specific dates over a span
of eight months (Fig. 6.10 on page 164). However, differently from RC 5, the majority
of the IP addresses of the hosting servers (pointed to by these domains) were hosted in
the United States, Germany, and Belarus. In fact, no server could be identified as being
located in China6.

Like in RC 5, the same Chinese registrar (Era of the Internet Technology) was used by
cyber-crooks for the registration of all domain names. However, differently from RC 5, all of
the domain names are composed of exactly 5 alphanumeric characters, apparently chosen in
a random fashion, which again indicates the use of automated tools to create those domains.
Finally, a noteworthy characteristic of this RC is that the registrant responsible for 76% of
the domains makes use of a whois domain privacy protection service (cn@id-private.com),
which is also a commonly observed characteristic in certain rogue campaigns.

6.5.4 An affiliate-based rogue network

Our multi-criteria method has identified RC 3, a rogue network showing an even more
complex structure, as represented in Fig. 6.11 on page 165. In this cluster, more than
430 rogue sites (in blue) are forming some sort of “bubbles” that are interconnected by
common registrants (in red) and common hosting servers or IP subnets (in yellow). We
hypothesize that this weird and complex network of rogue AV websites is likely to reflect
the affiliate-based structure used by cyber-crooks to propagate rogue security software.
Different reasons support this assumption:

• there is a large number of registrants, and most of them are responsible for a single
domain;

• the domains are registered at 6 different registrars, which are quite popular for hosting
malicious web sites;

• besides rogue AV names, many other domain names are also associated to other
web categories that are often used for hosting dubious or suspicious websites, e.g.:
online pharmacy (like pharmacyeasy.cn), casino (like smilecasino.cn), porn sites
(like hot-girl-sex-tube.com), and there are even a few examples of typo-squatting
web sites (like disenyworld.com or rapidhsare.com). This seems to indicate a
diversification of activities as performed by different affiliates;

6It should be noted that the .cn top-level domain (i.e., the domain designation for China) has no
registration restrictions, and non-Chinese based operators can easily register .cn domain names for a very
cheap price.
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• many other types of web threats have been found on a significant number of those
sites (almost 50% of them), which can again reflect that affiliates attempt to monetize
their domains by serving other malicious purposes as well;

• in this cluster, the numerous commonalities found among subsets of rogue sites
indicate that several groups of affiliates are probably reusing the very same tech-
niques,e.g.: creating and registering new domains at the same registrar or ISP (which
does not really care about suspicious domain names), reusing the same browser ex-
ploits for hosting drive-by downloads, or serving the same malware or trojan (only 8
unique MD5 were found among all malicious binairies hosted on these web sites).

Also worth noting is that this cluster RC 3 has been observed in a span of time of 8
months. However, we observe once again that most of these sites are being registered in
large groups during three phases, each one having a timespan of only a few days, which
obviously requires a high level of coordination.

Finally, the geographical location of the web servers has also an interesting pattern,
with 42% of the servers in Ukraine (UA), and the rest of the servers is spread in China
but also in Cayman Islands (KY), Singapore (SG), and a few of them in Latvia (LV). We
note again the prevalent use of Web-based email domains for registrants (more than 40%
of gmail.com and about 26% of yahoo.com).

6.6 Summary

In this Chapter, we analyzed different rogue AV campaigns by leveraging our multi-criteria
clustering technique. By attributing rogue web sites to a common root cause based upon
common elements, we showed how this technique can offer to analysts some unique per-
spective on how those rogue campaigns and their server-side components are effectively
organized, created and managed. By using various server features, we could identify about
40 campaigns out of 5,852 involved rogue sites. An in-depth analysis of some of them was
presented to demonstrate the kind of insights we get into the behavior of those miscreants,
in a systematic and automated manner.

These results can be leveraged in several ways. First, they give a more explanatory
description of the rogue AV threat, in which, for example, individual, disconnected sites
are substituted by sets of related sites in which time relationships (e.g., creation dates)
are more explicit. Second, campaign-level information reveals the modus operandi of the
criminals orchestrating the campaign, i.e., how they register the domains, what are their
hosting partners, the duration of their efforts, the sophistication of the tools available to
them (e.g., to automate the registration of domain names), and the countermeasures they
employ against take-down efforts. Finally, the patterns discovered by our multi-criteria
clustering analysis could yield means for identifying additional rogue AV sites proactively
or reactively.
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Figure 6.9: RC5: A rogue campaign within the .cn TLD.
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Figure 6.10: RC4: Another rogue campaign within the .cn TLD (different from RC5).
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Chapter 7

Conclusion and Perspectives

“The cause is hidden; the effect is visible to all.”
– Ovid

The investigations performed in this research thesis have led to many interesting obser-
vations and new insights, which are summarized in this Chapter. We provide also answers
to the research questions and to the general problem statement of the thesis. Finally, we
conclude this work by presenting some interesting directions for future research.

7.1 Research contributions

This work started by underlining the importance of developing a systematic, analytical
approach to address the problem of attack attribution. In the light of the developments
and experimental results presented in the previous chapters, we are now able to answer
the research questions formulated in the introduction of the thesis.

7.1.1 Answers to the research questions

Research question 1 (RQ1): how can we analyze attack phenomena from separate view-
points, revealing different correlation patterns?

This problem was successfully addressed by a novel graph-based clustering approach that
allows an analyst to extract hidden correlation patterns with respect to any attack feature.
The particularity of investigating attack phenomena, and their root causes, is the fact that
we usually have no “ground truth”. This aspect has motivated the choice of unsupervised
classification techniques, such as the one we have presented, which is based on the dominant
sets framework.

We have also underlined the importance of selecting salient features, which can poten-
tially reveal interesting viewpoints on unknown attack phenomena. Closely related to this
feature selection process, we have showed how critical it is to define appropriate distance
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metrics for comparing observations, such that this comparison truly reflects the semantics
of the underlying phenomenon.

Conclusion 1: we have clearly demonstrated that our graph-based clustering approach
could answer RQ1. In particular, this approach is appropriate to automate the discovery
of new relevant knowledge from security data sets. Furthermore, the modularity of this
iterative clustering approach facilitates the integration of new features in the framework,
as a function of the analyst’s requirements.

Research question 2 (RQ2): how can we systematically combine all viewpoints such
that the behavioral properties of attack phenomena are appropriately modeled in the aggre-
gation process?

We have presented a formal and elegant solution to this problem, by showing how an
approach based on multi-criteria decision analysis (MCDA) can effectively help to com-
bine multiple attack viewpoints. The reasons of this success are threefold.

First, aggregation functions used in MCDA are not bound to a rigid decision-making
scheme, i.e., they are not based on binary relations between pairs of events. On the con-
trary, the inputs (e.g., cluster membership or similarity degree) can be naturally expressed
by fuzzy variables. This can effectively address the problem of fuzziness and uncertainty
that are intrinsically bound to real-world phenomena and imperfect measurements.

Secondly, attack features are, generally speaking, not independent. As a result, it is
necessary to model interactions among subsets of inter-related features, such as a redun-
dancy or a synergy between two or more features. Aggregation functions provide such a
flexibility, and are particularly well-suited to this kind of modeling.

Thirdly, the nature of real-world phenomena is essentially evolutive. Consequently, it
is difficult to predict which set of features is the most relevant to link an attack event to
a given phenomenon, as it may have evolved with respect to previously observed events.
Here too, we have demonstrated that aggregation functions allow analysts to get rid of the
need to define the importance (or the relevance) of attack features in a rigid manner.

Conclusion 2: based on the observations here above, we can conclude that our approach
based on multi-criteria decision analysis can successfully answer RQ2.

7.1.2 Answer to the problem statement

On the basis of the answers to the research questions, we are now in the position of
answering the problem statement.

Can we effectively address the problem of attack attribution in the cyber-space
by means of a systematic, analytical approach?

As showed throughout this thesis, attack attribution in the cyberspace is a complex
problem, mainly because of the large number of dimensions involved in the investigation
process, and the dynamicity of real-world attack phenomena. However, we have demon-
strated that this problem can be successfully addressed by means of an analytical method
that leverages multiple attack viewpoints in a systematic (and possibly automated) way.
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Through this multi-criteria analytical approach, the dynamic behavior of a priori unknown
attack phenomena can be effectively modeled, and the modus operandi of the attackers are
also better emphasized.

We believe that the results of our experimental validation on two different security
data sets have clearly demonstrated the applicability and the effectiveness of this attack
attribution method, but also the kind of new insights it can offer to security analysts
with respect to open questions in the security domain. In conclusion, we believe that the
proposed framework is a successful answer to the problem statement that has motivated
this work. We are looking forward in having other opportunities to apply this method to
other security datasets that future partners would be willing to share with us.

7.2 Future research

The development of this attack attribution framework has also opened a number of inter-
esting questions and challenges that could be investigated in future research.

First, by acquiring more experience in threat monitoring, we can identify other innova-
tive features that could represent some critical aspects of attack phenomena. The integra-
tion of these attack features into our framework can obviously offer additional viewpoints
to security analysts, which could further improve our insights into emerging cyber-criminal
activities.

Secondly, other clustering techniques could be considered in order to improve the scal-
ability and the efficiency of the framework. We envision also the development of an incre-
mental, DB-oriented version of this framework, such that larger data sets can be processed
more easily, and can also be updated in a very short time. This would alleviate (at least
partially) the scalability issue related to the exponential complexity of the memory require-
ments imposed by pairwise correlation techniques. At this point, we are indeed limited
by the amount of memory that is needed to store the n dissimilarity matrices made of
m× (m− 1)/2 elements (where n is the number of attack features, and m is the number
of security events in the data set). As of now, the memory complexity of the framework is
thus O(nm2). Yet, in practice we could easily process data sets comprising up to 10,000
events, using 8 attack features concurrently. The processing time for such a data set is
about a few hours.

Thirdly, we believe that the application of the very same method to many different
(but still inter-related) security data sets, followed by the combination of all results, could
provide a rather unique multi-perspective viewpoint on cyber-criminal activities. Exam-
ples of unexplored data sets that we may consider to include in such analysis are malware
repositories, and rich attack data sets collected by high-interaction honeypots. Regarding
malware data sets, there are many interesting features that we could leverage with our
multi-criteria analysis method, such as behavioral features related to the dynamic execu-
tion of malware, or static features related to their coding style. An example of rich data
set collected by high-interaction honeypots is the SGNET infrastructure, which enables to
collect detailed information on server-based code injection attacks using a distributed and
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highly scalable solution.

Fourth, we have extensively studied in this work two main classes of agregation func-
tions, namely Ordered Weighted Averaging functions and Choquet integrals. However,
many other families of aggregation functions exist and have been successfully used in other
domains in which complex decision-making schemes have to be modeled. We hope this
work will inspire other researchers to explore the utility of other multi-criteria methods for
addressing the problem of attack attribution.

Fifth, we are looking forward to developing a software abstraction layer around our
framework, which could hide the complexity and the implementation details of the multi-
criteria clustering components. This would enable other security analysts to take advantage
of our attack attribution method in a flexible way, so that they could potentially obtain
new insights into their own data set.

Finally, we have showed along this thesis how different visualization techniques, such as
graph-based visualizations and dimensionality reduction (t-SNE), could help us to achieve
a better situational awareness in network and information security. We believe that this
work has opened a very interesting and promising research avenue, and suggests also that
more research should be carried on regarding the application of novel visual analytics
technologies to security data sets, perhaps in combination with the multi-criteria analysis
techniques presented in this thesis. This would enable us to perform a joint reasoning on
security events and attack attribution in a systematic, but also visual and interactive way.

Improving all those different aspects should facilitate the development of an automated
system that could be used as the basis for the construction of predictive threat models,
and consequently, the development of an effective Early Warning System.

“The important thing is not to stop questioning.
Curiosity has its own reason for existing.”

– Albert Einstein
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Vers un regroupement multicritères comme outil d’aide
à l’attribution d’attaque dans le cyber-espace

Olivier Thonnard, Mars 2010

1. Introduction

Une meilleure compréhension des menaces informatiques existantes ou émergeantes sur
Internet devrait nous aider à mieux protéger notre infrastructure et l’économie qui en
dépent. Même si cela peut sembler assez évident aux yeux de tout un chacun, atteindre un
tel objectif est moins aisé qu’il n’y parait, et la plupart des experts en sécurité s’accordent
tous au moins sur un fait: combattre la cybercriminalité devient aujourd’hui de plus en plus
difficile [137, 33, 127]. Ceci semble être lié à la consolidation des organisations responsables
des phénomènes d’attaque à grande échelle sur Internet [157, 158, 72, 94].

La motivation des cyber-criminels est bien entendu liée au profit financier considérable
qu’ils peuvent réaliser grâce à la “monétisation” d’activités malveillantes, telles que la vente
d’exploits (type 0-day) et de malware, la location de machines compromises (machines dites
zombies), le spam et le phishing, la vente d’informations personnelles volées, etc [54, 158].
Dans la plupart des cas, ces activités semblent être facilitées par la mise en oeuvre de
réseaux de machines infectées, appelés botnets, qui peuvent compter des milliers, voire
même des millions de machines zombies appartenant souvent à des utilisateurs résidentiels
(ignorant d’ailleurs leur participation à ces réseaux malveillants) [11, 34, 126, 10]. Le
problème mondial de l’envoi de spam sur Internet serait d’ailleurs aussi étroitement lié à
ces botnets qui sont contrôlés par des organisations criminelles. Selon des rapports publiés
récemment par SecureWorks [151] et MessageLabs [94], les principaux botnets observés en
2009 seraient capables d’envoyer quotidiennement plus de 107 milliards de spam. De plus,
le taux moyen de messages de type spam interceptés par la société MessageLabs s’élevait
à plus de 87% de l’ensemble des messages analysés.

Un autre phénomène, tout aussi inquiétant, est celui lié aux présumés “cyber-conflits”
qui auraient eu lieu entre différents pays, et dont l’Estonie et la Géorgie ont été les victimes
en 2007 et 2008 respectivement. Selon les analyses effectuées par différents experts [3, 37,
41], il semblerait que des botnets puissent être utilisés en tant que “armée digitale” pour
attaquer les ressources informatiques d’un pays entier, simplement en lançant des attaques
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de type déni de service distribué (DDoS) contre des systèmes critiques (tels que serveurs
DNS, routeurs, sites web gouvernementaux et bancaires, etc). Vu les pertes économiques
que cela peut engendrer, il est vital de mieux appréhender le comportement et l’évolution
à long terme de ces nouvelles armées de machines [168].

Plus récemment, nous avons assisté à un autre phénomène de monétisation d’activité
illégale par le biais de la distribution de logiciels anti-virus factices (appelés “rogue an-
tivirus”) [159, 112, 36]. En combinant des techniques d’ingénierie sociale avec des méthodes
d’attaque plus sophistiquées (comme l’exploitation de failles dans les navigateurs web ou
le piratage de sites web mal protégés), des cyber-fraudeurs sont capables de distribuer de
faux logiciels anti-virus à des utilisateurs peu méfiants, ce qui leur offre un profit financier
direct assez important étant donné le prix de vente moyen de ces faux logiciels1.

1.1 Le problème de l’attribution d’attaque

Depuis 2003, il semblerait que l’on assiste donc à un changement assez radical dans la nature
des menaces sur Internet. Tous les phénomènes décrits précédemment ont un problème en
commun, à savoir celui de l’attribution d’attaque. Car même s’il existe des indices probables
indiquant les origines, les causes et les conséquences de ces nouvelles activités malveillantes,
assez peu d’affirmations peuvent être réellement soutenues ou démontrées par des preuves
scientifiques. En particulier, pas mal de questions subsistent concernant l’attribution des
attaques et l’organisation de la cybercriminalité: combien de communautés organisées sont
responsables de ces phénomènes, quelles sont leurs origines (e.g., géographiques), quels
fournisseurs d’accès Internet en particulier semblent offrir un hébergement protégé à ces
activités (comme par exemple, RBN2, Atrivo aussi connu sous le nom de Intercage, McColo,
3FN, etc)? Peut-être encore plus important, comment ces réseaux plutôt douteux offrant
un “bullet-proof hosting” évoluent-ils dans le temps? Les botnets hébergés sur ces réseaux
sont-ils capables de coordonner leurs efforts? Et finalement, parmi les milliers d’échantillons
de malware reçus chaque jour par des sociétés telles que Symantec et VirusTotal, comment
déterminer ceux qui pourraient provenir d’une même organisation criminelle?

1.2 Objectifs et contributions

La contribution principale de cette thèse consiste à développer une méthode analytique
permettant d’aborder de manière systématique le problème de l’attribution d’attaque dans
le cyber-espace, c’est à dire: comment attribuer des éléments d’attaque apparaissant
peut-être comme différents à première vue, à une même cause ou une même origine, et
ceci en combinant tous les indices disponibles. Par “une même cause”, on entend par là
l’identification de groupes d’événements, ou des communautés de machines responsables
pour différentes attaques, mais qui sont vraisemblablement liés à un même phénomène.
L’objectif est de faciliter l’identification du type de phénomène (e.g., ver, botnet, etc), mais
un aspect important d’une telle méthode est avant tout sa capacité à mettre en évidence

1Des gains mensuels allant jusqu’à $332.000 ont été observés sur le site web de distribution
TrafficConverter.biz utilisé par ces cyber-fraudeurs [77, 159]

2Le Russian Business Network (RBN) est une organisation cybercriminelle à multiples facettes, qui
est surtout réputée pour l’hébergement d’activités commerciales fort douteuses, voire illégales telles que le
phishing, le spam, la pornographie enfantine et la distribution de malware (voir http://www.bizeul.org/
files/RBN_study.pdf).
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les modes opératoires des attaquants. Ceci doit permettre une analyse stratégique à moyen
et long terme des méthodes utilisées par les cyber-criminels dans la mise en oeuvre de
leurs attaques. Notons que le but ultime de ce travail n’est pas de fournir des noms de
personnes à des autorités ou des forces de police, mais bien d’avoir une méthode d’analyse
systématique qui fournit des modèles comportementaux des entités ou des organisations
responsables des attaques observées. Par la généralisation de ces modèles, cela nous per-
met de mieux comprendre les menaces réelles que chaque individu, ou chaque organisation
connectée à Internet, doit apparemment affronter.

Enfin, la méthode d’attribution d’attaque recherchée doit aussi rester la plus générique
possible. Les phénomènes d’attaque étant extrêmement variés, la même approche doit
pouvoir être appliquée à des ensembles de données différents sans nécessiter de changement
fondamental.

1.3 Enoncé du problème

Ayant décrit les problèmes auxquels les chercheurs en sécurité sont confrontés par rapport
à l’attribution d’attaque sur Internet, cela nous permet à présent de définir la thèse que
nous voulons démontrer dans ce travail:

Est-il possible d’aborder de manière systématique le problème de l’attribution
d’attaque sur Internet par une méthode analytique?

Ce problème peut se traduire par un processus de fouille de données dans des traces
d’attaques provenant de l’observation de phénomènes à l’aide de divers senseurs. Par
conséquent, nous avons abordé le problème en cherchant comment appliquer différentes
techniques de regroupement et de classification à des événements d’attaques, eux-mêmes
enrichis d’informations contextuelles. En regroupant de manière adéquate tous les in-
dices disponibles ainsi que les caractéristiques observées, nous espérons pouvoir dériver
des modèles riches en sémantique, mais également associer de nouveaux événements à des
phénomènes observés précédemment. Les caractéristiques ou données contextuelles qui
peuvent servir à un tel regroupement peuvent être, entre autres, les origines des attaques,
leur succession dans le temps, la méthode de propagation, un biais dans leur implémen-
tation (par exemple, au niveau codage), diverses caractéristiques comportementales, etc.
Dans la suite de ce document, nous utiliserons le terme général de caractéristique d’attaque
pour nous référer à ces différents aspects observables des phénomènes.

Notons que, comme hypothèse de départ, nous supposons que des ensembles de données
cohérents et représentatifs soient disponibles pour l’analyse de phénomènes d’attaque dans
le cyber-espace (e.g., données honeypot ou IDS, dépôts de malware, données collectées par
des web crawlers). Par ailleurs, nous supposons aussi que le degré de coordination inhérent
aux organisations cyber-criminelles devrait se traduire également par divers motifs de cor-
rélation entre des groupes d’événements observés, ce qui justifie l’utilisation d’algorithmes
de fouille de données et de découverte d’information.

A partir de l’énoncé général du problème et des hypothèses de travail ci-dessus, nous
dérivons alors deux points plus spécifiques que nous tenterons de développer:

• Problème de recherche 1 (PR1): comment pouvons-nous analyser des phénomènes
d’attaque à partir de différents points de vue, de sorte qu’ils nous fassent découvrir
des motifs de corrélation intéressants?
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• Problème de recherche 2 (PR2): comment pouvons-nous combiner systématique-
ment différents points de vue d’attaque par un processus d’agrégation de données, de
sorte que les propriétés comportementales des phénomènes observés soient modélisés
de manière adéquate?

Plus précisément, le PR1 a trait au processus de découverte d’information dans des
données de sécurité, dont le but est de créer des points de vue par rapport à différentes car-
actéristiques d’attaque, tandis que PR2 concerne la fusion de tous ces points de vue par la
combinaison appropriée des corrélations trouvées précédemment. Nous verrons que ce pro-
cessus de fusion de données impliqué par PR2 n’est pas trivial puisque deux sous-problèmes
y sont intimement liés, à savoir: (1) l’aspect dynamique (ou évolutif ) des phénomènes
d’attaque; et (2) le problème d’incertitude inhérent à tout phénomène réel que l’on tente
d’observer par différentes mesures.

1.4 Positionnement par rapport à l’état de l’art

Une étude approfondie de l’état de l’art a révélé les insuffisances des méthodes d’analyse
actuellement utilisées dans le domaine INFOSEC 3 pour aborder le problème de l’attribution
d’attaque. Tel que démontré dans la revue de la littérature au Chap. 2, beaucoup d’efforts
ont été investis dans le développement d’infrastructures de collecte de données permettant
le monitoring d’activités malveillantes sur Internet. En particulier, les techniques les plus
utilisées sont:

• les honeypots/honeynets [110, 183, 5, 128, 84, 86, 83, 85, 120, 108, 73, 178, 26, 176],

• les darknets, tels que CAIDA [23], IMS [6], ShadowServer [163] et Team Cymru [164],

• les partages de logs IDS et pare-feu (D-Shield [45, 195], EmergingThreats [47]),

• les projets de collecte de malware (SGNET [83], Mwcollect Alliance [104], Offensive
Computing [111] et Shadowserver Foundation [163] et VirusTotal [177]), ainsi que les
sandboxes (ou “bacs à sable”), tels que Anubis [2], Norman Sandbox [109], Sunbelt
CWSandbox [154], ou encore Argos [119],

• la détection et le tracking de botnets (BotHunter [65], BotMiner [64], [126, 10, 34,
79]).

Toutes ces méthodes de monitoring ou de détection sont aujourd’hui relativement ma-
tures d’un point de vue technique. Par contre, les méthodes pour analyser l’énorme quantité
de données collectées restent relativement peu développées. Par exemple, la plupart des
méthodes d’analyse de trafic malveillant sur Internet (e.g., honeynet, darknet) s’appuient
principalement sur des techniques statistiques assez simples, telles que le nombre d’attaques
groupées par port, par jour/heure, la répartition des attaques par pays ou par réseau
d’origine (AS ou ISP), etc.

Une autre lacune importante des méthodes d’analyse traditionnelles est le manque
de flexibilité pour inclure des informations contextuelles, voire de l’intelligence collective,
à propos des attaques observées. Ceci nous permettrait de mieux appréhender certains

3INFOSEC: sécurité de l’information (En: information security).
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phénomènes en découvrant des liens ou des rapprochements non évidents entre des événe-
ments d’attaque qui peuvent sembler à priori différents. Un des objectifs de ce travail
est donc de combler cette lacune en développant une méthode permettant de combiner
systématiquement un grand nombre de points de vue différents, grâce à des techniques de
fouille de données et d’analyse décisionnelle multicritères.

Notre approche s’inscrit aussi dans une perspective visant à améliorer l’aspect Situa-
tional awareness dans le cyber-espace [196], c’est à dire, permettre à un analyste sécurité
d’évaluer rapidement un phénomène d’attaque à l’aide d’informations de plus haut niveau,
telles que:

• la cause d’une attaque (e.g., un nouveau ver, un botnet, ou un problème de configu-
ration), même si les événements observés n’ont pas de signature connue,

• est-ce que l’attaque était ciblée ou non,

• est-ce que les nouveaux événements peuvent être attribués à des phénomènes déjà
observés dans le passé.

Bien que certains progrès ont été effectués dans cette direction [145], l’état de l’art nous
montre que ce domaine de recherche est encore fort peu exploré.

Ensuite, nos recherches s’inscrivent aussi dans un domaine appelé “fouille de don-
nées investigatrice”, dans lequel des techniques de data mining ont été spécifiquement
adaptées aux besoins liés à des tâches d’investigation (éventuellement criminelle). Con-
cernant l’aspect INFOSEC, tous les efforts de ces dernières années se sont concentrés
sur l’amélioration des systèmes IDS4 (i.e., améliorer leur base de signatures d’attaque)
par l’usage de techniques d’apprentissage automatique (e.g., règles d’association, règles
d’épisode fréquent, algorithmes de classification) [9, 80, 81, 48, 44, 75, 8, 21]. Notre
recherche est fort différente à plusieurs niveaux, puisque notre objectif ne consiste pas
à générer de nouvelles signatures d’attaque pour des systèmes IDS, mais plutôt de com-
prendre les causes fondamentales des phénomènes observés ainsi que leur comportement.
De plus, les méthodes que nous développons s’appliquent principalement à des données
déjà identifées comme étant de nature malicieuse, et donc le but est d’en tirer parti pour
mieux comprendre les modes opératoires des attaquants.

La fouille de données investigatrice est aussi appliquée dans le domaine de l’intelligence,
ou celui des enquêtes criminelles [92, 93, 184]. Les efforts effectués dans ce domaine con-
cernent principalement l’application de techniques de fouille assez traditionnelles (“off te
shelf”), telles que l’analyse de relations entre événements (link analysis), la fouille de texte,
les réseaux de neurones, et l’analyse de réseaux sociaux à l’aide de graphes (Social Network
Analysis, ou SNA). Bien que notre approche présente des similarités avec ces techniques,
il y a aussi des différences notables: (i) notre regroupement basé sur les graphes peut
s’appuyer sur des métriques de distance plus élaborées que celles utilisées en général en
link analysis ou SNA; et (ii) notre approche permet de combiner plusieurs graphes de
similarité à l’aide de techniques d’analyse décisionnelle multicritères, permettant ainsi de
modéliser des relations plus complexes. Ce genre de traitement n’est pas encore disponible
dans les techniques SNA traditionnelles.

4IDS: système de détection d’intrusions (Intrusion Detection System).
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Finalement, nous avons formalisé la dernière étape du processus d’attribution d’attaque
comme un problème d’analyse décisionnelle multicritères (MCDA). Notons au passage
que les techniques MCDA ont été retenues par certains spécialistes parmi les méthodes
d’analyse les plus utiles et les plus efficaces dans le domaine intelligence analysis [185].

Dans une approche MCDA, il est nécessaire de définir une fonction d’agrégation qui
modélise le comportement des phénomènes (i.e., domain knowledge), afin d’attribuer de
nouvelles observations à des phénomènes de manière appropriée. Il existe plusieurs méth-
odes bien connues dans le domaine des applications MCDA (également appelé MAUT,
pour Multi-Attribute Utility Theory) qui réalisent cette fonction d’agrégation multicritères
de différentes façons. Dans la plupart de cas, la fonction d’agrégation est basée sur une
simple fonction de moyenne arithmétique (éventuellement pondérée), tel que Simple Ad-
ditive Weighting, Weighted Product Method, ou la méthode AHP (Analytical Hierarchy
Process) [197]. Les méthodes de recherche opérationnelle telles que ELECTRE, TOPSIS
et PROMETHEE [51] sont également trois autres méthodes relationnelles bien connues
dans l’aide à la décision, qui permettent de classer des alternatives en les évaluant de façon
pair-à-pair par rapport à plusieurs critères d’intérêt.

Dans notre approche, les fonctions d’agrégation utilisées pour combiner les corrélations
sont plus élaborées. En effet, nous démontrons qu’il est possible de modéliser le pro-
cessus d’attribution d’attaque à l’aide de moyennes ordonnées (Ordered Weighted Averag-
ing [192]), et dans des cas plus complexes, à l’aide de l’intégrale de Choquet [63, 62, 17, 173]
appliquée sur une mesure floue qui modélise les interactions entre les différentes caractéris-
tiques d’attaque. A notre connaissance, une telle méthode d’attribution n’existe pas encore
dans le domaine lié à l’analyse des menaces sur Internet.

1.5 Structure du document

Le reste de ce document est structuré de la manière suivante. La Section 2 introduit la
méthode d’attribution d’attaque telle que développée dans cette thèse. Dans cette même
Section, nous tentons de répondre aux deux questions de recherches PR1 et PR2 définies
précédemment. Ensuite, la Section 3 présente la validation expérimentale de la méthode
effectuée sur deux ensembles de données différents: (i) l’application aux traces d’attaque
réseau collectées par un honeynet distribué mondialement pendant plus de deux ans, et (ii)
l’application de la méthode à un ensemble de données collectées par différentes sources sur
Internet (entre autres, des crawlers web et des honeypots client), qui caractérisent des sites
web hébergeant ou offrant des logiciels antivirus factices (rogue antivirus). La Section
4 conclut le document et suggère des perspectives intéressantes pouvant faire l’objet de
recherche future.

2. Méthode d’attribution d’attaque

En fouille de données investigatrice, l’analyste doit en général synthétiser différents élé-
ments ou indices permettant d’identifier les causes de phénomènes. L’objectif final est
de déterminer comment “connecter les points”, i.e., comment découvrir des motifs de cor-
rélation entre différentes observations, et comment les combiner ensuite de manière per-
tinente, de sorte qu’on obtienne finalement une vue d’ensemble (the “big picture”) sur les
phénomènes recherchés [184]. Toutefois, les quantités de données collectées par les systèmes
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Figure 1.1: Aperçu de la méthode de regroupement multicritères. Fk indique l’ensemble des car-
actéristiques sélectionnées à partir des données de sécurité. Gk représente l’ensemble de graphes de
relations obtenus par l’algorithme de regroupement. Quant au composant multicritères, il se charge
de combiner tous les graphes Gk pour produire un graphe combinant toutes les caractéristiques
d’attaque.

actuels excèdent de loin notre capacité à les analyser manuellement. C’est pourquoi il est
nécessaire de développer une méthode de regroupement systématique capable d’extraire
et de combiner des motifs de corrélation à priori inconnus, en tenant compte de multiples
caractéristiques potentiellement intéressantes.

Tel qu’illustré à la Fig. 1.1, notre approche s’appuie sur trois composants:

1. Sélection de caractéristique: nous déterminons quelles caractéristiques (désignées
par Fk) nous désirons inclure dans l’analyse globale, et nous générons pour cha-
cune d’entre elles les vecteurs caractéristiques correspondant (feature vectors) pour
l’ensemble des objets ou événements constituant l’ensemble de données;

2. Regroupement par graphes: un graphe de similarité est créé pour chaque carac-
téristique d’attaque Fk, en utilisant une métrique de distance appropriée à chaque
vecteur caractéristique. Les sous-groupes fortement connectés au sein de chaque
graphe peuvent alors être identifiés, afin de révéler les corrélations fortes existant
parmi des groupes d’objets;

3. Agrégation multicritères: les différents graphes de similarité sont alors combinés
en utilisant une fonction d’agrégation qui modélise le comportement attendu des
phénomènes sous-jacents que l’on veut identifier.

Notons que l’approche est principalement non supervisée, i.e., elle ne requiert aucune
phase d’apprentissage afin de relier les objets (ou les événements) aux phénomènes sous-
jacents qui en sont probablement la cause.

2.1 Sélection de caractéristiques d’attaque

Une analyse par regroupement (cluster analysis) commence la plupart du temps par une
étape qui consiste à sélectionner des caractéristiques pertinentes, i.e., pouvant révéler des
corrélations intéressantes et instructives [70]. Cette sélection de caractéristiques peut
éventuellement être complétée par une ou plusieurs transformations des données initiales,
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afin de produire des données dont le format est mieux adapté au traitement ultérieur
(par exemple, un processus de normalisation). Enfin, ces caractéristiques doivent aussi
être représentées sous une forme adéquate en définissant un certain nombre de classes, de
catégories, ou de variables, lesquelles seront traitées par l’algorithme de regroupement.

De manière plus formelle, nous avons donc un ensemble de données D composé de m
“objects”, qui sont en général, dans notre domaine d’intérêt, des événements de sécurité
(e.g., l’observation d’une ou plusieurs attaques par des honeypots, des alertes d’intrusion
données par un IDS, etc). Nous définissons ensuite un ensemble de n caractéristiques F =
{Fk}, k = 1, . . . , n. Le but de cette première étape est de créer des vecteurs caractéristiques
pour chaque événement ei contenu dans D. Nous utilisons la notation x(k)

i
pour représenter

le vecteur extrait pour l’événement ei par rapport à la caractéristique Fk. En fait, x(k)
i
∈ Rd

est un vecteur de valeurs réelles composé de d dimensions, i.e.:

x(k)
i

= {x(k)
i,1 , . . . , x(k)

i,d
}

où d est fonction de la caractéristique Fk.
Finalement, nous pouvons grouper tous les vecteurs définis par rapport à un caractéris-

tique donnée dans un ensemble Xk = {x(k)
1 , . . . ,x(k)

m }. En data mining, il est assez courant
d’utiliser une notation sous forme de matrice pour représenter cet ensemble de vecteurs
caractéristiques Xk, i.e.:

Xk =





x(k)
1,1 x(k)

1,2 · · · x(k)
1,d

x(k)
2,1

. . . ...
... . . . ...

x(k)
m,1 · · · · · · x(k)

m,d





où la ieme ligne représente le vecteur caractéristique x(k)
i

extrait pour l’événement
ei ∈ D, et obtenu pour la keme caractéristique Fk.

En résumé, la dimensionnalité de notre problème est composée comme suit: m est le
nombre d’événements de sécurité, n est le nombre de caractéristiques d’attaque, et d est
la dimension du vecteur (cette dernière étant fonction de chaque Fk).

Un exemple concret de vecteur caractéristique pourrait être la distribution géographique
des attaquants pour un événement composé de plusieurs traces d’attaque observées par
un honeypot durant un intervalle de temps déterminé. Dans ce cas, le vecteur serait, par
exemple, composé de 229 variables représentant chacune un pays d’origine, et la valeur de
chaque variable serait le nombre d’attaquants provenant de ce pays (i.e., la fréquence ab-
solue). Une autre manière de représenter cette information serait d’utiliser des fréquences
relatives, comme par exemple: US(35%),CN(7%),DE(5%),CA(5%), autres pays (47%).

2.2 Regroupement par graphes et découverte d’information

La méthode de regroupement que nous avons choisi dans le 2ème composant s’appuie sur
un technique de regroupement pair-à-pair. Nous avons formulé le problème en utilisant
un approche basée sur les graphes qui est inspirée par l’approche développée par Pouget
dans [120]. Nous avons ensuite étendu et amélioré cette approche, en intégrant entre autres
des métriques plus élaborées (e.g., distances statistiques).
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Pour chaque caractéristique d’attaque Fk, nous construisons un graphe non dirigé,
pondéré, et sans boucle, que l’on note Gk, dans lequel les noeuds correspondent aux
vecteurs x(k)

i
, et les poids des arêtes (ou liens) reflètent le degré de similarité entre les

objets ou événements par rapport à la caractéristique Fk considérée. Nous représentons
un tel graphe par les notations suivantes:

Gk = (Vk, Ek, ωk)

où






Vk = {x(k)
1 ,x(k)

2 , . . . ,x(k)
m } est l’ensemble des noeuds

Ek ⊆ Vk × Vk est l’ensemble d’arêtes (i.e., les relations entre noeuds)
ωk : Ek → �+ est une fonction positive représentant les poids

En pratique, nous représentons chaque graphe Gk à l’aide de sa matrice d’adjacence
(aussi appelée matrice de dissimilarité), qui est une matrice m×m symétrique définie par:

Ak(i, j) =
�

ωk(i, j), ∀(i, j) ∈ Ek

0, autrement.

Métrique de similarité

Il est évident que la fonction de poids ωk(i, j) doit être définie à l’aide d’une métrique de
distance appropriée à la forme des vecteurs x(k)

i
. Ceci est valable en fait pour n’importe

quel algorithme de regroupement, en particulier ceux qui s’appuient sur une approche
pair-à-pair (par ex., le clustering hiérarchique est confronté au même problème). Le choix
de cette métrique est fondamental, puisqu’elle a un impact direct sur les propriétés des
clusters obtenus, telles que leur taille et leurs homogénéités interne et externe.

La distance la plus communément utilisée est probablement la distance euclidienne, qui
n’est en fait rien d’autre qu’un cas particulier de la métrique de Minkowski (pour p = 2):

dp(xi,xj) = (
�

d

k=1 |xi,k − xk,j |
p)

1
p

= �xi − xj�p

Les distances euclidiennes souffrent non seulement du problème d’échelle (scaling) entre
les vecteurs à comparer, mais surtout ces distances sont complètement inappropriées quand
on traite des données n-dimensionnelles (avec n assez élevé). Ceci est principalement dû
au problème surnommé la “malédiction de la dimensionnalité”5, et qui est causé par une
augmentation exponentielle en volume quand le nombre de dimensions augmente. Par
conséquent, les concepts de “proximité”, “distance”, ou de voisin le plus proche, n’ont plus du
tout la même signification quand on utilise des distance orthonormées (du type normes Lk)
dans ce genre d’espace, ce qui peut fausser les résultats des algorithmes de data mining [1]).

Une autre métrique fréquemment utilisée pour comparer des séquences de valeurs réelles
est le coefficient de corrélation, ou coefficient de Pearson, défini par:

dcorr(xi,xj) =
(xi − x)T (xj − x)�

(xi − x)T (xi − x)
�

(xj − x)T (xj − x)
(1.1)

5The curse of dimensionality, un terme introduit pour la première fois par Richard Bellman en 1957 [18].
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où x represents (xi + xj)/2.
Le coefficient de corrélation reflète le degré de dépendance linaire entre deux vecteurs

(i.e., le degré de similarité entre leurs “formes”).
Finalement, quand on doit comparer des vecteurs représentant des distributions em-

piriques (i.e., des histogrammes de fréquences), des distances (ou éventuellement diver-
gences) statistiques, telles que Kullback-Leibler, sont plus appropriées. Par exemple, si xi

et xj sont deux distributions de probabilité, alors la divergence de Kullback-Leibler de xj

vers xi est définie comme étant:

DKL(xi||xj) =
d�

k=1

xi(k) log
xi(k)
xj(k)

qui est aussi appelée la divergence d’information (ou entropie relative). Puisque DKL n’est
pas considérée comme une vraie métrique (car pas symétrique), il est en général conseillé
d’utiliser la distance de Jensen-Shannon ([87]), définie par:

DJS(xi,xj) =
DKL(xi||x̄) + DKL(xj ||x̄)

2
(1.2)

avec x̄ = (xi + xj)/2.
Une alternative à Jensen-Shannon pour mesurer la similarité entre deux distributions

est la distance de Bhattacharyya ([19]), qui est surtout utilisée en traitement de signal.

Regroupement par graphes

En théorie des graphes, la plupart des algorithmes de regroupement (clustering) consistent
à chercher des structures combinatoires dans un graphe de similarité. Quelques exem-
ples bien connus sont l’algorithme de l’arbre recouvrant minimum (minimum spanning
tree [199]), ou celui de la coupe minimale (minimum cut [144, 190]). Une autre approche
classique est celle qui consiste à rechercher des sous-graphes complets, telle que l’algorithme
de “couplage complet” (complete linkage).Un sous-graphe complet maximal, également ap-
pelé une clique maximale, est en effet considéré comme la définition la plus stricte d’un
cluster dans [4] et [125].

Le concept de clique maximale était à l’origine défini uniquement sur des graphes non
pondérés, mais cela a été généralisé récemment au cas des graphes pondérés par Pavan et
al. [116] qui ont proposé une nouvelle approche de clustering basée sur les ensembles dom-
inants (dominant sets). Leur algorithme consiste à extraire itérativement des ensembles
dominants dans un graphe pondéré, en enlevant à chaque étape les noeuds appartenant à
cet ensemble jusqu’à ce que tous les noeuds soient regroupés (partitionnement complet),
ou dès qu’un critère d’arrêt soit satisfait, ce qui peut éventuellement mener à une partition
incomplète. Quelques exemples de contraintes qu’on peut utiliser comme critères d’arrêt
sont: (i) un seuil minimum pour le nombre de noeuds ou d’arêtes restant dans le graphe;
(ii) un seuil inférieur sur la somme des poids des arêtes restantes (par exemple, la procédure
s’arrête si cette somme est inférieure à 0.01 de la quantité initiale). L’algorithme de clus-
tering des ensembles dominants est décrit par le pseudo-code donné par l’algorithme 1.1.
Tel qu’on peut voir, le fondement de cet algorithme est la procédure DOMINANT_SET,
qui doit encore être définie.
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Dans [116], il a été démontré qu’il existe une correspondance directe entre le problème
d’identification d’ensembles dominants et le problème de trouver des extrema d’une fonc-
tion quadratique continue dans un simplex standard. Ceci signifie que l’on peut trouver
des ensembles dominants (i.e., des clusters) en utilisant des techniques d’optimisation con-
tinues telles que des équations de réplication, qui sont des systèmes dynamiques utilisés
en théorie évolutive du jeu. De tels systèmes sont également attrayants car ils peuvent
être codés en quelques lignes seulement dans n’importe quel langage de programmation de
haut niveau.

En conséquence, nous pouvons trouver des ensembles dominants en faisant simplement
converger une expression temporelle particulière, exprimée par le système dynamique suiv-
ant:

xi(t + 1) = xi(t) ·
(Ak x(t))i

x(t)T Ak x(t)

avec Ak la matrice d’adjacence du graphe Gk, et i = 1, . . . , N . Partant d’un état initial
arbitraire, ce système dynamique sera attiré par le point asymptotiquement stable le plus
proche, ce qui correspondra à un ensemble dominant, et donc à une clique de poids maxi-
mal. Ensuite, l’algorithme enlève du graphe les noeuds de l’ensemble dominant trouvé, et
recommence avec les noeuds restants.

Algorithm 1.1 Dominant sets Clustering
Input: un graph de similarité G = (V,E, ω)
Output: une partition P (éventuellement incomplète)
P = ∅
while STOPPING_CRITERION(G) do

S ← DOMINANT_SET (G)
P ← P ∪ {S}
V ← V \ S

return P

2.3 Attribution d’attaque par l’analyse décisionnelle multicritères

Le processus de découverte d’information basé sur le regroupement par graphes nous per-
met de créer différents points de vue par rapport à des caractéristiques d’attaque perti-
nentes. L’étape suivante consiste à combiner tous ces points de vue de manière intelligente,
c’est à dire en utilisant une méthode d’agrégation qui puisse modéliser les comportements
des phénomènes d’attaque sous-jacents.

Les fonctions d’agrégation sont utilisées dans diverses situations où nous devons évaluer
différentes options par rapport à des critères d’intérêt. L’objectif consiste à calculer un
score global combiné pour chaque option, qui peut alors servir de base au processus de prise
de décision. Les fonctions d’agrégation sont, par exemple, largement utilisées en analyse
décisionnelle multicritères (MCDA), où des alternatives doivent être évaluées sur base de
critères qui sont même parfois conflictuels. Ces critères sont exprimés en général à l’aide
de valeurs numériques exprimant un degré de préférence, ou un degré d’appartenance.



182 Synthèse en français

!"#$%&'(

!)#$%&'(

!*#$%&'(

!*#$%&'(+(,-../#!$&'%(,0/(1-23(#$%&'(

4"(!(5"#6"%7"%8"'(

4)(!(5)#6)%7)%8)'(

!$&+(9!)#$%&'%(:%(!"#$%&';(

<1/=,1->?/1(@1$.3>1A(./-B3C( !../1.->1A(./-B3(

D(D(D(

Figure 1.2: Illustration du processus d’agrégation effectué sur n graphes de similarité.

Definition 1.1. (Fonction d’agrégation [17]) Une fonction d’agrégation est une fonc-
tion à n arguments (n > 1) qui projette le cube unitaire n-dimensionnel sur l’intervalle
unitaire: faggr : [0, 1]n −→ [0, 1], en respectant les propriétés suivantes:

(i) faggr(0, 0, . . . , 0� �� �
n-times

) = 0 and faggr(1, 1, . . . , 1� �� �
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies faggr(x1, . . . , xn) ≤ faggr(y1, . . . , yn)

Tous les intervalles unitaires [0, 1] sont considérés ici comme étant continus.

Dans notre méthode d’attribution multicritères, nous avons n caractéristiques d’attaques
Fk, dont les indices font partie de l’ensemble N = {1, 2, . . . , n}. Pour chaque Fk, nous
avons construit un graphe Gk = (Vk, Ek, ωk), représenté par sa matrice de similarité
Ak(i, j) = ωk(i, j), avec ωk défini selon une métrique de distance appropriée.

Donc, pour chaque paire d’événements (i, j) provenant des données D, un vecteur de
critères zij ∈ [0, 1]n peut être construit à partir des matrices de similarités, de sorte que:

zij = [A1(i, j), A2(i, j), . . . , An(i, j)]

De manière informelle, notre approche consiste donc à combiner les n valeurs de
chaque vecteur zij qui reflète chacun l’ensemble des relations existant entre une paire
d’événements. Le résultat de cette opération (illustrée à la Fig. 1.2) est alors un graphe
combiné G∗ =

�
Gk.

En fait, une approche relativement simpliste pourrait se réduire à effectuer une simple
moyenne arithmétique, éventuellement pondérée par des coefficients d’importance (i.e.,
une moyenne pondérée). Toutefois, ce genre d’agrégation ne nous permet pas de modéliser
des relations plus complexes, comme par exemple: “la plupart des critères” ou bien “au
moins x” critères doivent être satisfaits dans le schéma d’attribution. De plus, l’analyste



Synthèse en français 183

ne peut pas toujours exprimer à l’avance quel groupe de critères sera relevant pour chaque
paire d’événements. Nous avons donc besoin d’une fonction d’agrégation dans laquelle les
combinaisons de critères (et les coefficients associés à ceux-ci) ne sont pas prédéfinies de
manière statique.

Ordered Weighted Averaging

Dans [192], Yager a introduit un nouvel opérateur appelé Ordered Weighted Averaging
(OWA). Cet opérateur permet d’inclure certaines relations entre critères grâce au fait que
les coefficients de pondération ne sont pas attribués de manière fixe aux critères évalués,
mais plutôt sur leurs scores préalablement ordonnées. Ceci permet d’exprimer par exemple
que “la plupart des critères”, ou bien, “au moins deux critères” doivent être satisfaits afin
de décider de relier ensemble deux événements. L’opérateur OWA peut donc influencer le
résultat final en mettant l’accent soit sur les x valeurs les plus grandes (ou plus petites),
ou encore sur les valeurs centrales.

Definition 1.2. (OWA) [192, 17] Etant donné un vecteur de pondération w, wi ≥ 0,�
wi = 1, la fonction d’agrégation OWA est définie par:

OWAw(z) =
n�

i=1

wiz(i) =< w, z� > (1.3)

où nous utilisons la notation z� pour représenter le vecteur obtenu à partir de z en
ordonnant ses composants en ordre décroissant: z(1) ≥ z(2) ≥ . . . ≥ z(n).

Il est facile de voir que, pour n’importe quel vecteur w, le résultat de l’OWA est situé
entre les opérateurs classiques and et or, qui sont en fait les deux cas extrêmes quand
w = (0, 0, . . . , 1) (OWA est alors la fonction MIN) et quand z = (1, 0, . . . , 0) (fonction
MAX). Un autre cas particulier est celui pour lequel tous les coefficients wi = 1

n
, ce qui

revient à effectuer une moyenne arithmétique classique.

Nous observons que l’opérateur OWA a donné naissance à toute une série de variantes
en tant que fonctions d’agrégation, telles que Maximum Entropy OWA (MEOWA), Mini-
mum Variance OWA (MVOWA), ou encore Neat OWA, Generalized OWA, etc [17].

Une variante qui nous semble intéressante dans le cadre de l’attribution d’attaque
est la fonction Weighted OWA (WOWA), introduite par Torra [171], et qui combine les
avantages de la moyenne pondérée avec ceux de l’opérateur OWA. Cela permet à l’analyste
de définir non seulement des coefficients de pondération sur les valeurs ordonnées des
critères de similarité (comme pour OWA), mais également de quantifier la fiabilité des
sources d’information (i.e., les caractéristiques d’attaque) en définissant un second vecteur
de coefficients p qui attribue un poids à chaque critère évalué, indépendamment de sa
valeur (comme dans une moyenne pondérée).

Dans le texte en anglais, nous avons effectué une étude de cas sur base de cet opérateur
Weighted OWA, et nous avons comparé les résultats avec ceux obtenus avec une simple
moyenne pondérée ainsi qu’avec l’opérateur OWA. Les résultats démontrent que cet opéra-
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teur offre une meilleure flexibilité dans la modélisation des préférences d’agrégation, et donc
aussi dans le processus d’attribution d’attaque.

Graphe combiné G∗

Ayant défini l’opérateur OWA, il est à présent aisé de l’appliquer aux vecteurs de critères zij ,
i.e.:

A∗(i, j) = OWAw(zij), ∀(i, j) ∈ D (1.4)

avec comme résultat, A∗ la matrice de similarité du graphe combiné G∗.
Nous avons réalisé l’opérateur OWA à l’aide d’une fonction MATLAB� en exploitant

l’approche vectorisée de l’environnement. Par conséquent, si nous avons m événements
dans les données de départ et n caractéristiques à évaluer, cette approche vectorisée per-
met d’appliquer l’opérateur aux m2 éléments des n matrices de similarité en une seule
opération. La seule limitation est bien entendu la quantité de mémoire qui est nécessaire
sur un seul ordinateur pour stocker les n matrices. Ceci dit, nous avons pu réalisé des
expérimentations sur des données contenant jusqu’à 10.000 événements, en combinant 8
caractéristiques d’attaque. Notons également que ces opérations sont facilement parallélis-
ables, si toutefois on devait appliquer cette approche sur des ensembles de données de taille
nettement supérieure.

Evidemment, le problème de la définition des coefficients wi à utiliser subsiste. Yager
suggère deux approches possibles: (i) soit utiliser un mécanisme d’apprentissage, à l’aide
de données d’apprentissage et d’un modèle de régression (e.g., trouver les coefficients qui
s’adaptent aux données en minimisant l’erreur résiduelle selon les moindres carrés), ou (ii)
donner une sémantique, c.à.d. une signification aux différents coefficients wi en demandant
à un expert du domaine (ou au décideur) de fournir directement ces valeurs, sur base de
la connaissance du domaine. Dans la plupart des cas en attribution d’attaque, il est fort
probable que l’on doive choisir la 2ème solution, puisque le processus global est de nature
non-supervisée. Il est en fait difficile de générer ou d’obtenir des données d’apprentissage
représentatives des phénomènes inconnus à identifier. Toutefois, nous renvoyons le lecteur
intéressé au texte anglais de cette dissertation dans lequel nous discutons quelques méth-
odes qui peuvent aider à déterminer ces coefficients de manière plus rigoureuse et justifiée.

Finalement, à partir du graphe combiné G∗, nous pouvons alors aisément extraire les
sous-graphes connectés, c’est à dire les ensembles d’événements qui sont interconnectés
entre eux dans ce graphe:

P = components(A∗)
= {SG1, SG2, . . . , SGm}

Ceci nous donne enfin un ensemble de sous-graphes P, où SGx ⊆ G∗, et ∀(i, j) ∈
SGx : OWAw(zij) ≥ t, avec t ∈ ]0, 1]. En analysant et en visualisant chaque sous-graphe,
l’analyste obtient à présent une bien meilleure vue des phénomènes sous-jacents ayant causé
les observations. Tel qu’illustré par nos résultats expérimentaux, nous obtenons une image
globale de toutes les relations importantes qui relient les groupes d’événements attribués
à un même phénomène, ce qui facilite l’identification de la cause fondamentale et donne
aussi une meilleure compréhension du son comportement.

Notons pour finir qu’il est utile d’appliquer une fonction de seuil sur la matrice A∗ avant
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d’identifier les sous-graphes connectés. Cela élimine ainsi les liens faibles entre événements
non corrélés, mais qui proviennent de l’agrégation d’un certain nombre de corrélations
fortuites non pertinentes. Nous invitons le lecteur intéressé à parcourir le texte en anglais
dans lequel il est expliqué comment déterminer cette valeur de seuil à l’aide d’une étude
de sensibilité.

Intégrale de Choquet

Dans le cas où les phénomènes étudiés semblent présenter des comportements plus com-
plexes, il peut être nécessaire d’utiliser des fonctions d’agrégation autorisant une modéli-
sation plus souple et plus flexible. Cela peut se présenter dans le cas où l’analyste doit
modéliser des interactions entre critères qui ne sont donc pas complètement indépendants
les un des autres. Par exemple, certaines caractéristiques d’attaque peuvent présenter une
synergie (i.e., une interaction positive, ou complémentarité) par laquelle leur effet com-
biné est plus important que la somme de leurs effets individuels; ou au contraire, certains
critères peuvent aussi montrer une certaine redondance (i.e., une interaction négative, ou
substituabilité) par laquelle l’effet de l’un entraîne automatiquement la présence de l’autre
critère.

Aucune fonction de moyenne (même ordonnée) ne permet de modéliser ce genre de
comportement [58]. Il faut alors passer à des méthodes d’agrégation plus complexes, telles
que l’intégrale de Choquet qui généralise en quelque sorte les autres fonctions d’agrégation
comme les moyennes classiques. L’intégrale de Choquet est aussi appelée intégrale floue,
car elle est définie par rapport à un ensemble de coefficients appelé mesure floue ou encore
capacité.

Definition 1.3. (Mesure floue ou Capacité) Soit N = {1, 2, . . . , n} un ensemble de
n critères. Une capacité [31] aussi appelée mesure floue [153] est une fonction d’ensemble
v : 2N → [0, 1] qui est monotonique (i.e., v(A) ≤ v(B) quand A ⊂ B) et qui satisfait
v(∅) = 0. La mesure est normalisée si, en plus, v(N ) = 1.

Donc, on voit clairement qu’une mesure floue, telle qu’utilisée en analyse décisionnelle
multicritères, est un ensemble de 2n coefficients réels où chaque valeur peut être consid-
érée comme une mesure du degré d’importance d’une combinaison particulière de critères
(également appelée une coalition de critères en théorie du jeu). Notons que la condition
de monotonicité impose que l’importance d’une coalition ne peut pas diminuer si on lui
ajoute de nouveaux éléments.

Etant donné la définition d’une mesure floue, nous pouvons à présent définir l’intégrale
de Choquet.

Definition 1.4. (Intégrale de Choquet) [31] L’intégrale (discrète) de Choquet appliquée
sur un vecteur de critères z et définie par rapport à une mesure floue v est donnée par

Cv(z) =
n�

i=1

z(i)

�
v({j|zj ≥ z(i)})− v({j|zj ≥ z(i+1)})

�
(1.5)

où z(1) ≤ z(2) ≤ . . . ≤ z(n), i.e., z(i) est le ieme plus grand élément du vecteur d’entrée z.
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Par exemple, si n = 3 et z2 ≤ z1 ≤ z3. Alors, en utilisant l’équation ci-dessus, on
obtient:

Cv(z1, z2, z3) = z2 [v({2, 1, 3})− v({1, 3})] + z1 [v({1, 3})− v({3})] + z3v({3})

Ceci montre clairement que le score global sera influencé par les coefficients quantifiant les
interactions entre les différents critères, en particulier pour les scores les moins élevés (z2

et z1 dans cet exemple).
Il est important de noter que l’intégrale de Choquet généralise toutes les fonctions de

moyenne discutées précédemment. Celles-ci ne sont en fait que des cas particulier de Cv

par rapport à des mesures floues dégénérées. La description d’autres propriétés formelles
de cette méthode d’agrégation, ainsi qu’une étude de cas pratique et une comparaison avec
(W)OWA, sont disponibles dans le texte en anglais, vers lequel nous renvoyons le lecteur
intéressé.

3. Validation expérimentale

Cette Section donne un résumé des expérimentations effectuées sur deux ensembles de
données réelles collectées sur Internet. La première application démontre l’utilité de notre
méthode d’attribution dans l’analyse de traces d’attaque réseau collectées pendant plus de
deux ans par des honeypots distribués mondialement. Dans la seconde application, nous
démontrons l’aspect générique de notre méthode en l’appliquant à des données différentes,
qui caractérisent des sites web malveillants, ou hébergeant des logiciels antivirus factices
(appelés rogue antivirus) dans le but d’escroquer des utilisateurs peu méfiants. Quelques
résultats expérimentaux illustrent le genre d’informations assez riches que notre méthode
permet d’obtenir, en particulier concernant les causes et les propriétés de ces phénomènes
à grande échelle, ainsi que l’analyse des modes opératoires des attaquants.

3.1 Application aux traces d’attaque réseau

Pour cette 1ère validation expérimentale, nous avons utilisé un ensemble de traces d’attaque
réseau collectées sur Internet par des senseurs appelés honeypots, et déployés dans le
contexte du Projet Leurré.com [86, 85, 122]. Pour rappel, un honeypot est une ressource
informatique dont l’intérêt réside dans le fait d’être sondée, attaquée ou exploitée. Vu
qu’un honeypot n’a aucune valeur de production, il ne devrait observer aucune activité,
et donc toute tentative de connexion envers celui-ci est considérée comme suspecte, voire
mal-intentionnée. Par extension, un réseau distribué de honeypots est appelé un honeynet,
tel que celui maintenu par Leurré.com.

Données collectées par le honeynet

Dans le projet Leurré.com, chaque source IP observée par un honeypot est assignée à
un certain cluster d’attaque (ou attack cluster [121, 85]) en fonction des caractéristiques
réseau laissée par celle-ci sur le senseur, i.e.: nombre d’adresses IP contactées sur le senseur,
nombre de paquets et d’octets échangés, durée de l’attaque, durée moyenne entre l’arrivée
de deux paquets, séquence de ports visés, et charge utile des paquets envoyés. En d’autres
mots, toutes les sources IP malveillantes appartenant au même cluster d’attaque ont laissé
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Figure 1.3: Illustration d’un M-event composé de 3 µ-events qui sont corrélés sur 2 capteurs différents,
et visant 3 ports différents (observés en avril 2008).

la même empreinte sur un honeypot, et ont donc le même profil d’attaque. Ceci nous mène
à la notion d’événement d’attaque (ou attack event):

Definition 1.5. (µ-event). Un micro attack event (ou µ-event) est un groupe de sources
IP ayant le même profil d’attaque, et dont une activité coordonnée est observée par un
certain senseur pendant une durée déterminée.

La Fig. 1.3 illustre cette notion en représentant les séries temporelles de trois µ-events
(i.e., nombre de sources par jour), tels qu’observés par deux senseurs différents pendant le
même intervalle de temps, et visant trois séquences de port différentes (dans ce cas-ci, un
seul port à chaque fois). Par extension, un macro-event (ou M-event) est défini comme
l’ensemble des µ-events observés sur un même intervalle de temps, et dont les activités
sont fortement corrélées (tel que ceux de la Fig. 1.3). Le processus d’identification de
tels événements d’attaque dans le trafic collecté par les honeypots a été expliqué en détail
dans [117]. Pour cette validation expérimentale, nos données contiennent 2.454 µ-events
collectés par 40 plateformes situées dans 22 pays différents, sur une période allant de Sep
2006 à Nov 2008. Ces données représentent globalement l’activité de 2.538.922 sources IP
malveillantes, qui ont été assignées à 320 profils d’attaque distincts.

Le but d’appliquer notre méthode d’attribution sur ces événements d’attaque consiste
à identifier des phénomènes globaux auxquels une série d’événements peut être attribuée,
en s’appuyant sur différentes caractéristiques d’attaque que toutes ces sources malveil-
lantes ont en commun. Ces phénomènes d’attaque forment une sorte d’essaim ou de “nuée
malveillante”, que l’on a baptisée Misbehaving Cloud (MC), et qui se propage sur Internet
à la recherche de nouvelles machines vulnérables. Notre méthode permet non seulement
de les identifier, mais également d’en étudier les propriétés ainsi que les modes opératoires
des sources qui les composent.
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Application de la méthode d’attribution multicritères

Nous avons tout d’abord sélectionné un certain nombre de caractéristiques d’attaque qui
nous semblent pertinentes dans l’application de la méthode d’attribution décrite précédem-
ment. Les deux premières caractéristiques retenues ont trait aux distributions spatiales des
sources malveillantes impliquées dans les µ-events, c’est à dire les pays d’origine où se trou-
vent ces sources (en faisant correspondre les adresses IP aux pays correspondants), que l’on
dénotera par Fgeo, et les réseaux d’origine des sources (dénoté par Fsub). Ce choix est mo-
tivé, entre autres, par l’existence de réseaux dits “infestés” [32], i.e., des réseaux qui ont
tendance à regrouper un grand nombre de machines infectées (machines dites zombies)
pendant des périodes de temps assez longues.

Ensuite, nous avons choisi une caractéristique (dénoté par Ftime) qui est liée à la
manière dont les sources malveillantes ciblent les plateformes. Pour cela, nous profitons
de la technique d’identification des événements d’attaque, qui nous donne la corrélation
existant entre certains événements et qui peut provenir de la coordination inhérente aux
botnets (dû à l’exécution coordonné de commandes données par le botmaster aux machines
zombies).

A côté des origines et de la corrélation temporelle, nous avons aussi sélectionné le type
d’activité effectuée par les machines attaquantes. En fait, les logiciels malveillants (e.g.,
vers, bots, etc) sont souvent conçus de telle sorte à intégrer un certain nombre d’exploits
visant différentes vulnérabilités logicielles afin d’optimiser leur propagation. Il semble donc
raisonnable d’intégrer, pour chaque µ-event, la séquence de ports visés par les sources
comme caractéristique d’attaque, que l’on dénotera par Fps.

Finalement, nous avons aussi décidé d’intégrer comme caractéristique le ratio d’adresses
IP communes entre deux µ-events. Il va de soi que cette caractéristique est évolutive, c.à.d.,
les machines infectées peuvent être soit nettoyées, ou recevoir une adresse IP différente de
jour en jour, ou encore de nouvelles machines peuvent être compromises et joindre à leur
tour le botnet dont les origines peuvent donc évoluer d’événement en événement. Toutefois,
compte tenu de la taille relativement grande de l’espace IP, il est raisonnable de considérer
que deux µ-events partageant un nombre considérable d’adresses IP en commun puissent
probablement être liés au même phénomène.

En résumé, nous considérons l’ensemble de caractéristiques d’attaque suivante pour
l’application de la méthode:

F = {Fgeo, Fsub, Ftime, Fps, Fcip}

où





Fgeo = geolocation, as a result of mapping IP addresses to countries;
Fsub = distribution of sources IP addresses (grouped by Class A-subnet);
Ftime = degree of temporal coordination on the targeted platforms;
Fps = port sequences probed or exploited by malicious sources;
Fcip = feature representing the ratio of common IP addresses among sources;

Dans la deuxième étape de la méthode, un graphe non-orienté pondéré est créé pour
chacune de ces caractéristiques séparément, et l’algorithme de regroupement des ensembles
dominants se charge d’en extraire des cliques de poids maximal. Pour ce faire, une distance
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appropriée à chaque caractéristique doit être définie. Pour mesurer les similarités entre les
distributions créées par rapport à Fgeo et Fsub, nous avons choisi la distance statistique de
Jensen-Shannon, telle que définie par l’équation 1.2. Concernant les vecteurs caractéris-
tiques créés pour Ftarg, Fps, et Fcip, il s’agit de simples ensembles de valeurs, donc nous
avons utilisé le coefficient de Jaccard comme mesure de similarité. Si s1 et s2 sont deux
ensembles de valeurs (par exemple, deux ensembles de ports visés par les sources de deux
µ-events), alors le coefficient de Jaccard est défini par:

JC(i, j) =
|s1

�
s2|

|s1
�

s2|
(1.6)

Afin d’évaluer les résultats de clustering obtenus par la méthode des dominant sets,
il peut être utile de les visualiser sur un graphique. Nous avons donc créé pour chaque
caractéristique d’attaque un graphe de dispersion en utilisant une technique de réduction
de dimensionnalité appelée t-distributed Stochastic Neighbor Embedding, ou t-SNE [175].
La Fig. 5.9 (a), à la page 117, représente les clusters (ou groupes) obtenus par rapport à la
dimension Fgeo. Sur ce graphe, chaque point représente la distribution géographique d’un
µ-event donné, et sa couleur indique son appartenance à un certain cluster. Pour illustrer
le type de motifs de corrélation trouvés, les centroïdes de certains clusters sont indiqués
sur le même graphe.

Ce genre de visualisation donne immédiatement un aperçu global des relations existants
entre événements d’attaque par rapport à un point de vue donné (géographique dans
ce cas-ci). Par exemple, nous pouvons facilement observer les similitudes entre groupes
de points proches les uns des autres (impliquant en général des pays assez grands ou
assez populaires au point de vue origine des attaques), tandis que des groupes éloignés ne
partagent quasiment rien en commun. Des conclusions similaires peuvent être visualisées
par rapport aux autres dimensions, i.e., les réseaux IP d’origine à la Fig. 5.9 (b), les
corrélations temporelles à la Fig. 5.9 (c), et les séquences de ports à la Fig. 5.9 (d).

Ces résultats de clustering apportent des points de vue intéressants sur les phénomènes
d’attaque observés par les honeypots. Intuitivement, nous pouvons facilement imaginer
qu’une combinaison de tous ces points de vue puisse encore mieux mettre en évidence
ces phénomènes. Toutefois, la façon de les combiner reste encore à définir: comment
combiner tous ces clusters de manière intelligente, c’est à dire, quelles caractéristiques
devons-nous combiner afin de pouvoir observer un phénomène X ou Y ? Par exemple,
les caractéristiques d’un phénomène de type botnet évoluent souvent dans le temps: ses
origines peuvent changer (dû à un changement dans la composition des bots), et ses activités
peuvent aussi changer (à cause de différents ordres donnés par le botmaster). Par ailleurs,
il est parfois difficile de séparer avec précision les motifs de corrélation par un clustering, à
cause de l’aspect flou des phénomènes réels. Ceci peut entraîner un certain recouvrement
entre différents clusters (e.g., certains pays sont plus populaires que d’autres, certains ports
Windows sont plus visés que d’autres, etc).

Il faut donc fusionner les caractéristiques d’attaque de manière cohérente, en faisant
appel à des techniques d’analyse décisionnelle multicritères (MCDA). Pour cette applica-
tion, nous avons choisi d’appliquer l’opérateur OWAw tel que défini par la formule 1.4.
Nous avons utilisé notre expérience en analyse de menaces sur Internet afin de définir les
coefficients du vecteur w, de façon à modéliser les phénomènes de manière appropriée.
Nous avons émis l’hypothèse que deux µ-events provenant d’un même phénomène (i.e.,
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le même Misbehaving Cloud) doivent être corrélés par au moins deux ou trois caractéris-
tiques différentes (parmi les cinq Fk considérées). Notons que ce ne sont pas forcément les
deux mêmes caractéristiques qui doivent corréler chaque paire d’événements d’un même
phénomène.

Pour modéliser ce comportement, nous avons donc défini un vecteur de coefficients

w = (0.1, 0.35, 0.35, 0.1, 0.1)

qui peut être interprété comme: au moins trois caractéristiques doivent être fortement
corrélées, mais la 1ere est de moindre importance dans le score final (car une seule carac-
téristique corrélée peut être due à une simple coïncidence). Ces coefficients doivent être
choisis avec précaution afin d’éviter un couplage fortuit entre µ-events qui n’ont pas été
causés par le même phénomène, comme par exemple des événements ayant des origines
similaires (e.g., des pays populaires) et visant les mêmes ports quasiment dans le même
intervalle de temps. En considérant différents cas extrêmes, on peut arriver à minimiser la
valeur de décision finale pour ces cas indésirables.

Il est également intéressant de noter que certaines caractéristiques d’attaque peuvent
présenter une interaction (positive ou négative), comme par exemple Fgeo et Fsub qui sont
en quelque sorte redondants (i.e., ces caractéristiques sont toutes deux liées aux origines
des phénomènes). Pour modéliser ces interactions, nous pouvons faire appel à l’intégrale
de Choquet, tel qu’introduit précédemment. Nous renvoyons le lecteur intéressé au texte
anglais pour plus d’information concernant les expérimentations effectuées à l’aide de cette
fonction de décision offrant une modélisation plus flexible (mais toutefois plus complexe).

Résultats expérimentaux

Partant des 2.454 µ-events, la méthode a pu identifier 83 “nuées malveillantes” (notées
MC, pour Misbehaving Clouds), qui regroupent 1.607 µ-events comprenant un total de
506.835 sources malveillantes. La plupart des MC contiennent assez peu d’événements et
de sources, mais environ 10% des MC contiennent tout de même plus de 20.000 sources
observables6 Concernant leur durée de vie, 67% des MC existent pendant moins de 50
jours, mais environ 22% de celles-ci ont réussi à survivre pendant plus de 200 jours. Dans
certains cas extrêmes, nous avons pu observer certaines nuées malveillantes actives pendant
près de 700 jours. Enfin, il est intéressant de noter que dans 94% des cas, ces MC ne sont
observées que par 10 plateformes maximum.

Ces diverses caractéristiques suggèrent donc que les causes fondamentales sous-jacentes
de ces nuées malveillantes sont des phénomènes relativement stables et localisés. En
d’autres mots, on observe différents phénomènes d’attaque en fonction de l’endroit sur In-
ternet, mais leurs modes opératoires restent stables sur de longues périodes d’activité. Ceci
suggère également que nous ne sommes pas vraiment en mesure de stopper ces phénomènes
dans des délais raisonnables.

Concernant les ports et services visés par les sources malveillantes, ils impliquent quasi-
ment tous les services couramment attaqués, tels que NetBios (ports 139/TCP, 445/TCP),
Windows DCOM Service (port 135/TCP), Virtual Network Computing (port 5900/TCP),

6Il est important de signaler que les tailles de ces phénomènes ne reflètent que la partie visible ou
observable par les senseurs. Les tailles réelles de ces nuées malveillantes sont fort probablement beaucoup
plus grandes.
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Microsoft SQL Server (port 1433/TCP), Windows Messenger Service (ports 1025- 1028/UDP),
Symantec Agent (port 2967/TCP), etc. Ceci n’est pas vraiment surprenant, puisque la
plupart de ces services sont également réputés pour être largement exploités par plusieurs
familles de logiciels de type bot, comme SDBot, Spybot, Agobot, GT Bot et RBot [136, 79].

Les origines spatiales des phénomènes identifiés sont assez diverses, mais nous pouvons
tout de même observer quelques groupes de réseaux IP et de pays qui semblent être forte-
ment infestés de machines zombies. Pour illustrer ce point, nous avons représenté à la
Fig. 1.4les distributions cumulatives (CDF) des adresses IP impliquées dans cinq des plus
grands phénomènes (où l’axe des abscisses représente le premier octet des adresses IP). Il
apparait assez clairement sur cette figure que les sources de ces nuées malveillantes sont
fortement concentrées au sein de certains blocs d’adresses IP. Ceci est d’ailleurs cohérent
avec d’autres mesures expérimentales effectuées globalement sur le “bruit de fond Internet”
(Internet background radiation [30, 114, 195]). Toutefois, un avantage important de notre
méthode est qu’elle permet de distinguer ces différents phénomènes et d’en étudier les pro-
priétés dynamiques, malgré le fait que les sous-réseaux d’origine de ces phénomènes soient
souvent assez proches les uns des autres.

Des études de cas plus détaillées de nuées malveillantes ont été présentées dans plusieurs
publications, telles que dans [167, 168, 40]. A des fins d’illustration, nous donnons ci-
dessous un seul exemple de phénomène de ce type, à savoir un cas de botnet coordonné.
Nous renvoyons le lecteur intéressé vers les publications mentionnées ci-dessus pour d’autres
exemples de phénomènes (tels que des nuées de vers Allaple, des spammers UDP Windows
Messenger, ou encore un phénomène d’aberrations P2P).
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MC assez importants.
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Botnet coordonné

Parmi les nuées malveillantes détectées à l’aide de la méthode d’attribution, MC1 est un
cas intéressant qui semble impliquer un botnet coordonné. Les machines zombie de celui-ci
ont visé principalement des ports Windows de partage de fichiers (445T and 139T). En
analysant en détail la synchronisation et la coordination temporelle des sources attaquantes
parmi les 143 µ-events composant ce phénomène, nous en avons déduit qu’il s’agissait fort
probablement d’un botnet.

A la Fig. 1.5, qui représente les séries temporelles des événements appartenant à MC1,
on peut remarquer que ce phénomène est marqué par quatre vagues d’activité principale
pendant lesquelles le botnet scanne aléatoirement cinq sous-réseaux Internet différents, à
la recherche de nouvelle victimes. En analysant les distributions d’adresses IP d’origine,
on peut clairement observer une certaine évolution, probablement due au nettoyage de
machines infectées et au recrutement de nouveaux zombies. Au total, plus de 64.000
sources IP ont pu être atribuées à cette armée de machines qui a survécu sur Internet
pendant au minimum 320 jours.
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Figure 1.5: Séries temporelles coordonnées des µ-events appartenant à MC1.

Enfin, l’aspect sans doute le plus intéressant de ce phénomène mis en évidence par la
méthode d’attribution, est qu’il semble coordonner ses zombies selon deux communautés
distinctes de machines: une communauté assez vaste au sein de MC1 qui ne fait apparem-
ment que scanner les machines présentes dans les sous-réseaux visés (à l’aide de paquets
ICMP), tandis qu’une autre communauté de machines (nettement plus petite) se charge
d’attaquer les machines actives découvertes précédemment par les scanners. Les origines
spatiales de ces deux communautés sont complètement différentes, et pourtant les machines
de la communauté attaquante semblent bien connaitre les adresses IP des machines actives
sur lesquelles les ports 139 et 445/TCP sont ouverts. En effet, les machines de type “scan-
ners” visent de manière égale les trois honeypots de chaque plateforme du honeynet (33%
de requêtes sur chaque IP ciblée), tandis que les attaquants ne visent uniquement les deux
premières IP qui émulent une machine Windows 2000 (et où les ports Windows sont effec-
tivement ouverts). La troisième IP de chaque plateforme émule, quant à elle, une machine
Linux. Ceci montre qu’une coordination interne au botnet est nécessaire afin d’optimiser
ses ressources. Dans ce cas de figure, il est fort probable que les scanners utilisent une
technique de prise d’empreinte d’OS, telle que P0f ou Xprobe), et transmettent ensuite
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cette information vers un plan de contrôle qui permet de diriger les attaquants vers les
“bonnes adresses IP”.

A la Fig. 5.17, nous avons produit un autre type de visualisation basée sur des graphes
multidimensionnels qui représentent toutes les corrélations liant les µ-events par rapport
aux différentes caractéristiques d’attaque considérées. Ceci permet à l’analyste de visualiser
un phénomène entier à l’aide d’une seule et même image d’ensemble.

3.2 Application aux sites web hébergeant des logiciels antivirus factices

Une des conditions nécessaires dans la conception de la méthode d’attribution d’attaque
est son applicabilité à un large éventail de problèmes ou de phénomènes liés aux menaces
globales sur Internet, à l’analyse de renseignements (intelligence analysis) dans le cyber-
espace, ou plus généralement à tout ensemble de données de sécurité.

Pour démontrer cet aspect, nous donnons ici un aperçu des expérimentations effectuées
par rapport à un autre problème émergeant sur Internet, à savoir celui des logiciels antivirus
factices (appelés aussi rogue antivirus [159]). Un tel logiciel prétend être une application
tout à fait légitime permettant de se protéger contre les virus et autres menaces, mais en
réalité le logiciel ne fournit en général aucune protection. Dans certains cas, il peut même
installer (de manière intentionnelle) du code malveillant, alors qu’il est supposé protéger
l’utilisateur contre celui-ci.

Nous décrivons ci-après comment nous avons pu profiter de notre méthode d’attribution
d’attaque pour analyser les campagnes par lesquelles ce type de malware est distribué, i.e.,
quelles techniques automatisées, quelle infrastructure de serveurs et quels efforts coordon-
nés les cyber-criminels semblent utiliser afin de propager et distribuer leur logiciel factice
à des utilisateurs non méfiants. Nous avons analysé les données collectées sur 5.852 sites
web suspects, tel qu’observé par un tracker appelé HARMUR pendant une période de deux
mois (juillet-août 2009). Le but principal de cette analyse est d’identifier l’infrastructure
serveur mise en place lors de campagnes de distribution de faux anti-virus, et les efforts
coordonnés des criminels responsables pour celle-ci.

Il est en effet relativement raisonnable de penser que de telles campagnes soient organ-
isés et gérées par un nombre limité de personnes qui vont réutiliser, à différentes étapes
de chaque campagne, les mêmes outils, techniques ou stratégies (à cause de coûts évidents
liés au développement). Par conséquent, nous avons appliqué la méthode de regroupement
multicritères aux données spécifiques caractérisant ces sites web malveillants dans le but
d’identifier des motifs émergeants dans la manière dont ces domaines sont créés, regroupés
et interconnectés les uns aux autres.

Ecosystème des rogue antivirus

Il y a deux manières assez répandues par lesquelles un logiciel anti-virus factice arrive à
s’installer sur des machines victimes. Premièrement, des techniques d’ingénierie sociale
(comme des bannières de publicité, des fenêtres pop-up ou des messages attractifs sur
des blogs, ou encore envoyés via des spams) sont utilisées pour convaincre facilement des
utilisateurs novices d’installer un outil antivirus gratuit, qui est nécessaire pour remédier
à des menaces (inexistantes) soi-disant trouvées sur l’ordinateur de la future victime. Une
deuxième tactique, un peu plus sournoise, consiste à attirer des victimes vers des sites web
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malveillants qui tentent d’exploiter des vulnérabilités existant dans les navigateurs web
(tel qu’Internet Explorer) ou dans l’un de ses plugins. Ceci permet aux cyber-criminels
de télécharger leur malware sans qu’aucune intervention de l’utilisateur ne soit nécessaire
(i.e., via une technique appelée drive-by downloads).

Les faux anti-virus sont distribués dans le but de générer un profit financier assez sub-
stantiel. En fait, après l’infection initiale par le logiciel, les victimes sont typiquement
incitées à payer pour des services additionnels (e.g., un upgrade vers la version complète
du logiciel), qui sont bien sûr à nouveau factices et complètement inefficaces comme pro-
tection antivirus. La perte financière initiale pour les victimes est en moyenne entre $30 et
$100, perte qui peut éventuellement être aggravée par le vol du numéro de carte bancaire
de la victime servant à une fraude ultérieure. Quelques exemples de logiciels anti-virus
factices assez répandus (tel que rapporté par Symantec pour la période Juillet 2008 - Juin
2009 [159]) sont SpywareGuard 2008, AntiVirus 2008, AntiVirus 2009, Spyware Secure,
and XP AntiVirus.

Malgré des techniques relativement peu sophistiquées, ce phénomène de faux anti-virus
a émergé comme une menace sérieuse sur Internet, certainement en termes de population
concernée (plus de 43 millions de tentatives d’installation rapportées par Symantec durant
la même période [159]), de nombre de variantes distribuées sur Internet, et le volume de
profits générés par les cyber-fraudeurs dont le business model s’appuie sur une structure
de distributeurs affiliés qui sont rétribués par des commissions par nombre d’installations.
Des bénéfices mensuels allant jusqu’à $332.000 ont été rapportés par [77, 159] uniquement
pour les commissions d’un affilié, tel qu’observé sur un site web de distribution appelé
TrafficConverter.biz.

Par conséquent, pas mal d’études et d’analyses ont été effectuées par la communauté
sécurité suite à l’emergence de ce phénomène inquiétant [159, 112, 113]. Toutefois, la plu-
part de ces études se sont penchées uniquement sur certains aspects techniques tels que
l’installation de ces malwares, leur technique de marketing, ou certains aspects quanti-
tatifs comme le nombre de sites web distribuant les faux anti-virus, et leur localisation
géographique. Par contre, les interconnections entre l’infrastructure serveur, les logiciels
anti-virus factices distribués et le processus de création et d’enregistrement des noms de
domaine n’ont pas encore été explorées. Un des objectifs de cette validation expérimentale
était donc de combler cette lacune. Les résultats de notre analyse multicritères ont ensuite
été présentés dans [159, 36].

Données HARMUR

Les données expérimentales de cette analyse proviennent de HARMUR, qui signifie Historical
ARchive of Malicious URls. Ce projet est une initiative récemment lancée dans le cadre
du projet WOMBAT [188, 189], et il a comme but de traquer et collecter des informations
détaillées sur la nature et l’évolution des menaces existants sur le Web.

HARMUR surveille donc toute une série de sites web suspects et collecte des in-
formations concernant l’hébergement éventuel d’exploits visant les navigateurs web, ou
l’existence de drive-by downloads visant à installer du code malveillant à l’insu des utilisa-
teurs en exploitant des vulnérabilités dans le navigateur. Pour cela, HARMUR s’appuie
sur plusieurs sources d’information spécialisées, et pour chaque site web surveillé, les in-
formations suivantes sont rassemblées et stockées dans une base de données:
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• Norton Safeweb. Grâce au service de réputation Norton Safeweb7, HARMUR
collecte des données détaillées sur les menaces détectées par ce service en visitant
chaque site web surveillés.

• Google Safebrowsing. Pour vérifier l’aspect malveillant d’un site, HARMUR
s’appuie aussi sur l’information fournie par les listes noires de Google Safebrows-
ing8 .

• Mapping DNS. HARMUR garde aussi les correspondances entre noms de do-
maine, serveurs DNS autoritaires et adresses IP correspondants aux serveurs HTTP
hébergeant les sites web suspects.

• Information Whois. Pour chaque site web, les informations d’enregistrement de
nom de domaine Whois sont récupérées et stockées dans la DB de HARMUR.

• Localisation et Système Autonome. Des informations de localisation géographique
(pays d’origine) et réseau (systèmes autonomes, ou AS) sont collectées pour chaque
serveur HTTP associé à un site web.

• Statut et version de serveur HTTP. Quand c’est possible, des informations
quant à la disponibilité actuelle des serveurs web, ainsi que la version de leur logiciel
(telle qu’annoncée dans les en-têtes HTTP) sont stockées dans la base de données.

En réitérant ce processus de collecte d’informations à intervalles réguliers, nous avons
à notre disposition un ensemble de données assez complet et représentatif de la structure
et de la dynamique du paysage des menaces web, en particulier celles associées aux faux
logiciels AV.

Application de la méthode d’attribution multicritères

Pour notre analyse, nous avons considéré les données concernant 5.852 noms de domaines
collectées sur une période de deux mois (juillet-août 2009). Ces noms de domaine pointaient
vers 3.581 adresses IP distinctes (i.e., serveurs web différents), et ils ont été choisis en
raison de leur implication possible dans l’hébergement de faux logiciels AV. De plus, une
petite partie de ces serveurs web hébergeaient en plus d’autres codes malveillants (e.g., des
chevaux de Troie, backdoors, keyloggers, etc).

Environ 45% de ces domaines ont été enregistrés via seulement 29 sociétés d’enregistrement
(appelées des registrars), parmi les centaines de sociétés existants sur Internet. Ceci pour-
rait indiquer que les distributeurs de faux logiciels AV choisissent certains registrars spéci-
fiques en raison de leur laxisme (intentionnel ou non) dans le contrôle des noms de domaine
enregistrés. Concernant la répartition géographique des serveurs web (Fig. 1.6), nous avons
observé que 53% des serveurs étaient aux USA, ce qui peut aussi être du à un artefact dans
la manière dont les sites rogue AV sont identifiés (i.e., il est plus facile d’identifier des es-
croqueries de ce type en anglais que dans d’autres langues, comme le mandarin).

Parmi les différentes informations surveillées par HARMUR, nous avons donc sélec-
tionné un certain nombre de caractéristiques de sites web qui peuvent nous indiquer com-
ment des phénomènes à grande échelle semblent être organisés sur Internet par un individu
ou un groupe spécifique.

• Adresse email du registrant . Lors de la procédure d’enregistrement d’un do-
maine auprès d’un registrar, l’adresse email du propriétaire du domaine (appelée le

7http://safeweb.norton.com
8http://code.google.com/apis/safebrowsing/
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Figure 1.6: Distribution géographique des serveurs hébergeant de faux antivirus (rogue AV) pendant la
période Juillet-Aout 2009.

registrant) doit être communiquée.
• Nom du registrar . Le nom complet de l’autorité d’enregistrement (registrar), telle

qu’identifiée par les données Whois.
• Adresses IP / adresses classe C/classe B des serveurs. Pour permettre

l’identification des serveurs appartenant à la même infrastructure, nous avons consid-
éré séparément les adresses IP complètes des serveurs, ainsi que leurs préfixes réseau
de classe C (/24) et de classe B (/16).

• Adresse IP du serveur DNS. Il s’agit de l’adresse IP du serveur de noms ayant
autorité.

• Nom de domaine enregistré. Nous avons décidé d’utiliser le nom de domaine lui-
même comme caractéristique, afin de détecter des motifs ou des schémas spécifiques
dans les dénominations choisies par les fraudeurs.

En résumé, l’ensemble de caractéristiques sélectionnées est défini par:

F = {FDom, FIP , FCl.C , FCl.B, FReg, FNS}

ce qui servira à la méthode d’attribution multicritères pour lier des domaines suspects au
même phénomène de faux anti-virus. Quelques exemples concrets de ces caractéristiques
sont donnés à la Table 6.2 (page 145) pour certains domaines surveillés par HARMUR.

Dans une 2eme phase, nous allons créer un graphe de similarités inter-domaines par
rapport à chaque caractéristique Fk, en définissant une métrique de distance appropriée.
Vu que les données créées par rapport à FIP , FCl.C , FCl.B et FNS sont simplement des
ensembles d’adresses IP, nous pouvons réutiliser le coefficient de similarité de Jaccard (voir
eq. 1.6). Concernant FReg, nous avons considéré une mesure de similarité un peu plus
heuristique, à savoir:

(1) nous vérifions d’abord l’égalité entre les adresses email des registrants ;
(2) si les adresses sont différentes, nous comparons les sous-caractéristiques suivantes: le
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domaine email, le username, et la présence de mots-clés typiques liés aux faux logiciels
AV. La valeur finale de similarité est alors calculée via une moyenne pondérée, avec
les coefficients suivants: [0.2, 0.2, 0.5].

Finalement, nous avons cherché une mesure de similarité pour FDom qui puisse représen-
ter certaines similitudes dans la manière dont les noms de domaine ont été créés, par exem-
ple en identifiant certains motifs ou séquences de caractères que des domaines pourraient
avoir en commun. Nous avons réalisé cet objectif en utilisant la distance de Levenshtein,
qui correspond au nombre minimum d’opérations nécessaires pour transformer une certaine
séquence de caractères en une autre séquence (où une opération peut être soit une inser-
tion, une suppression, ou encore une substitution d’un seul caractère). Vu que Levenshtein
donne une distance, nous l’avons ensuite converti en similarité à l’aide de la fonction de
transformation suivante [143]:

simij = exp(
−dij

2

σ2
)

où dij est la distance entre les noms de domaine i et j, et σ est une constante positive qui
affecte le taux de décroissance de sim. Dans notre cas, nous avons défini cette constante
de manière empirique à une valeur de 7, ce qui nous permet de modéliser les similarités
inter-domaines de façon efficace.

Enfin, en nous appuyant sur l’analyse des caractéristiques des sites web et sur notre
connaissance du domaine à propos des faux anti-virus, nous avons aussi défini un vecteur
de coefficients w pour l’agrégation multicritères basée sur l’opérateur OWA:

w = [ 0.10, 0.10, 0.20, 0.30, 0.20, 0.10 ]

En d’autres mots, nous donnons plus d’importance aux caractéristiques à partir de la
troisième plus haute valeur de similarité. Les deux premiers scores ont en effet des poids
moins important (0.10), et donc il est nécessaire d’avoir au moins trois corrélations fortes
entre deux sites web afin d’obtenir un score final au-dessus de la valeur 0.3 ou 0.4 (valeur
pouvant être utilisée comme seuil de décision). En réalité, une analyse de sensibilité a
été effectuée sur cette valeur de seuil afin de déterminer des plages de valeurs adéquates
(voir texte anglais pour plus de détails). Un aspect intéressant dans cette approche, c’est
qu’elle libère l’analyste de la nécessité de définir quelles caractéristiques sont les plus perti-
nentes, c.à.d., lesquelles doivent être corrélées pour décider de lier deux sites web au même
phénomène. Ceci est un avantage non négligeable, puisque les caractéristiques d’une même
campagne de faux anti-virus peuvent évoluer dans le temps.

Résultats expérimentaux

Concernant les détails des résultats intermédiaires de clustering pour chaque caractéristique
Fk considérée, nous renvoyons le lecteur intéressé au texte anglais. Dans cette Section, nous
ne donnons qu’un aperçu des résultats finaux en termes de campagnes.

La méthode d’attribution multicritères a identifié 127 campagnes distinctes regroupant
au total 4.549 noms de domaines liés à des faux antivirus. En moyenne, les campagnes
comprennent 35.8 domaines, mais avec une grande variance en taille. En fait, 4.049 do-
maines sont associés à seulement 39 campagnes relativement importantes, la plus grande
campagne impliquant 1.529 domaines.



198 Synthèse en français

Pour évaluer la cohérence des résultats, nous avons représenté à la Fig. 1.7 les indices
de “compacité” (Cp), qui sont utilisés en clustering de graphes pour évaluer la qualité
des clusters obtenus par leur densité interne. La figure représente les indices Cp pour
les 39 plus grands phénomènes, et calculés pour chaque caractéristique séparément (i.e.,
chaque couleur indique une certaine caractéristique Fk). La Fig. 1.7 donne une vue globale
intéressante sur la cohérence des phénomènes, et peut aussi être utilisée pour déterminer
quelles caractéristiques semblent lier les les domaines web au sein d’un même phénomène
Pi, c.à.d., au sein d’une même campagne de faux anti-virus. Nous pouvons aussi observer
que la plupart des phénomènes ont globalement un indice de compacité assez élevé, à
l’exception de P1 et P3 qui sont composés de plusieurs grands sous-graphes plus faiblement
interconnectés (i.e., des sous -ensembles de domaines formant des sortes de “bulles” isolées,
et faiblement reliées entres elles par seulement une ou deux caractéristiques).

Dans l’ensemble, nous pouvons aussi noter que ce sont les caractéristiques liées aux
adresses IP qui semblent contribuer le plus à la corrélation entre sites web proposant
des faux anti-virus, souvent complétées par des corrélations par rapport au noms des
registrants (FReg). Il est intéressant de remarquer que certains phénomènes sont corrélés
par les sous-reseaux d’origine (FCl.C et FCl.B) des serveurs web, mais pas spécialement par
leurs adresses IP (comme par exemple P27).

Par contre, les corrélations liées aux noms de domaines (FDom) sont en général plus
faibles, sauf pour quelques phénomènes où des motifs bien spécifiques semblent lier les
domaines d’une même campagne (comme pour P4, P10 et P34). Finalement, remarquons
aussi que chaque phénomène identifié par la méthode présente divers degrés de corrélation
par rapport à chaque caractéristique individuelle, mais dans l’ensemble il y a toujours au
moins trois caractéristiques différentes qui présentent des niveaux de corrélation élevée.
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Figure 1.7: Evaluation de la cohérence des résultats à l’aide des coefficients de compacité (Cp) des 39
plus grands phénomènes identifiés par l’agrégation OWA. Chaque couleur représente l’indice Cp pour une
des caractéristiques Fk.
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(a) Campagne PC-Security. (b) Campagne PC-Anti-Spyware.

Figure 1.8: Deux campagnes de faux anti-virus. Les noeuds en bleu représentent des domaines rogue
AV, ceux en jaune les sous-réseaux des serveurs web, ceux en rouge les adresses email des registrants. Les
rectangles à double côté (en mauve) indiquent des serveurs web co-localisés avec les serveurs DNS.

Pour finir, nous nous penchons en particulier sur trois campagnes de faux anti-virus afin
d’illustrer le genre de perspective unique que nos techniques MCDA permettent d’obtenir
sur la dynamique et les modes opératoires de ces phénomènes.

Campagnes PC-Security et PC-Anti-Spyware.

Les Fig. 1.8(a) et 1.8(b) représentent graphiquement deux campagnes associées à deux
clusters obtenus par l’analyse multicritères. Dans les graphes, les domaines associés aux
sites web sont représentés en bleu, les sous-réseaux où sont situés les serveurs web sont
indiqués en jaune, et les adresses email des registrants de ces domaines en rouge. Des
rectangles à double côté (en mauve) indiquent des serveurs web co-localisés avec les serveurs
de noms (DNS) associés aux domaines.

Bien que ces deux clusters aient été séparés (dû aux caractéristiques utilisées lors de
l’agrégation multicritères), nous avons très vite pu les rapprocher grâce aux similitudes
assez évidentes indiquant un même modus operandi générique utilisé pour déployer ces
campagnes. En particulier, ces deux campagnes sont composées d’un nombre limité de sites
web proposant des faux antivirus, et ceux-ci sont fortement corrélés par leurs adresses IP
et par des motifs communs dans la composition des noms de domaine choisis. Ces noms de
domaine se réfèrent d’ailleurs assez clairement à des “produits” antivirus ou antispyware de
type commercial (e.g., pcsecurity-2009.com, homeav-2010.com, pc-antispyware2010.com).
Ensuite, nous pouvons observer d’autres similitudes entre les deux campagnes, telles que:

• les deux clusters utilisent exactement le même schéma pour les noms de domaine, qui
consiste à insérer des traits d’union entre certains mots fixes (e.g., pc-anti-spyware-
2010.com, pc-anti-spyware-20-10.com, and pc-antispyware-2010.com). La seule dif-
férence entre les deux campagnes est que le mot spyware est remplacé par virus.

• tous les domaines dans chaque cluster utilisent le même registrar (OnlineNIC) et sont
hébergés par les deux mêmes ISPs.

• Les adresses email de tous les registrants ont une extension de domaine “.ru”.
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• Les serveurs web se trouvent sur des adresses IP consécutives.
Enfin, de manière sans doute encore plus concluante, une inspection manuelle des pages

web de chaque site a révélé que leur contenu était identique, à l’exception d’une seule image
qui différait. Tout ceci nous permet de supposer raisonnablement que le déploiement de ces
domaines hébergeant des faux antivirus a été largement automatisé en passant par un seul
et unique registrar. De plus, le fait d’avoir réparti l’hébergement de ces deux campagnes
sur deux ISPs différents indique aussi une tentative de garantir une certaine redondance
au cas où un des deux clusters serait mis hors-ligne par l’ISP. Enfin, nous observons que
tous les serveurs web d’hébergement étaient situés dans ce cas-ci aux US.

Une campagne à plus grande échelle.

Notre méthode d’attribution a également pu identifier d’autres clusters qui représentent
des campagnes plus sophistiquées. Un tel exemple est représenté à la Fig.6.10 à la page
164. Les noeuds en mauve foncé en bas de page donnent les dates d’enregistrement des
domaines; les autres noeuds suivent la même convention qu’indiquée ci-dessus (Fig. 1.8).

La Fig. 6.10 regroupe environ 750 domaines qui ont tous été enregistrés dans le do-
maine TLD9 .cn (associé à la Chine), à des dates bien précises (8 dates seulement). Ces
domaines pointent vers 135 adresses IP réparties dans 14 sous-réseaux différents, mais mal-
gré l’extension .cn, la grande majorité des adresses IP de ces serveurs web sont situées en
réalité aux US, en Allemagne, et en Biélorussie. En fait, aucun de ces serveurs n’a pu être
localisé en Chine.

Un autre fait intéressant mis en évidence par la méthode est que le même registrar
Chinois (Era of the Internet Technology) a été utilisé pour enregistrer tous ces noms de
domaines, qui sont d’ailleurs tous composés de la même manière, à savoir de 5 caractères
alphanumériques choisis apparemment de façon aléatoire (wxe3x.cn,owvmg.cn,...). Ceci in-
dique fort probablement l’utilisation d’outils automatisés pour la création de ces domaines.
Une autre caractéristique importante de cette campagne est que la personne ayant enreg-
istré plus de 76% des domaines (cn@id-private.com) a utilisé un service de protection de
vie privée bloquant l’accès aux données WHOIS réelles.

Finalement, une analyse manuelle des domaines représentés à la Fig. 6.10 a révélé
un phénomène encore plus complexe qu’il n’y parait. Ces domaines sont en fait reliés
à une fausse page de scan du disque dur de la victime potentielle, laquelle est hébergée
sur un serveur web appartenant à une autre campagne. Ce genre de découverte souligne
l’existence d’interconnexions assez complexes existant dans ce genre d’écosystème de men-
aces, interconnexions qu’il n’aurait sans doute pas été possible d’identifier sans l’utilisation
de techniques de fouille de données capables de réduire un ensemble de milliers de domaines
suspects, à quelques campagnes de faux anti-virus qui sont orchestrées apparemment par
un groupe assez réduit d’individus.

4. Conclusions et perspectives

Les recherches effectuées dans cette thèse ont mené à une série d’observations et de nou-
velles idées qui sont synthétisées dans cette Section.

9Top Level Domain
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4.1 Contributions de recherche

Au vu des développements et des résultats expérimentaux présentés dans ce document,
nous sommes à présent capables de répondre aux deux problèmes de recherche formulés
dans l’introduction de ce travail.

Problème de recherche 1 (PR1): comment pouvons-nous analyser des phénomènes
d’attaque à partir de différents points de vue, de sorte qu’ils nous fassent découvrir des
motifs de corrélation intéressants?

Nous avons pu résoudre ce problème en développant une approche de regroupement non
supervisée basée sur des graphes, ce qui permet à un analyste de découvrir des motifs de
corrélation cachés par rapport à n’importe quelle caractéristique d’attaque. Nous avons
aussi souligné l’importance de choisir des caractéristiques pertinentes, i.e., qui peuvent
mener à la création de points de vue intéressants, mais aussi de choisir des métriques de
distance appropriées pour la comparaison des observations, de sorte que les corrélations
obtenues soient réellement représentatives des phénomènes sous-jacents.

Problème de recherche 2 (PR2): comment pouvons-nous combiner systématiquement
tous ces points de vue d’attaque par un processus d’agrégation de données, de sorte que
les propriétés comportementales des phénomènes observés soient modélisés de manière
adéquate?

Nous avons présenté une solution formelle et élégante à ce problème en nous appuyant
sur une analyse décisionnelle multicritères (MCDA) afin de combiner de multiple points
de vue. Nous voyons plusieurs raisons à ce succès.

Premièrement, les fonctions d’agrégation utilisées en MCDA ne sont pas liées à des
schémas de décision rigides. Au contraire, le vecteurs de critères peuvent être formés de
variables “floues”, telles que des degrés de similarité, ou d’appartenance à des clusters, ce
qui permet de mieux appréhender l’aspect intrinsèquement flou des phénomènes réels ou
l’incertitude liée à des mesures imparfaites.

Deuxièmement, les caractéristiques d’attaque sont rarement complètement indépen-
dantes. Par conséquent, il est nécessaire de modéliser certaines interactions entre critères
interdépendants, telles qu’une synergie ou bien une redondance dans un coalition de critères.
Les fonctions d’agrégation sont particulièrement bien adaptées à cette modélisation, en
particulier l’intégrale de Choquet.

Dernièrement, nous avons constaté que la nature même des phénomènes réels est en
général évolutive. Il est donc difficile de prédire avec précision quel sous-ensemble ou com-
binaison de caractéristiques sera la plus pertinente dans chaque cas. L’attribution de nou-
veaux événements à des phénomènes connus (ou inconnus) peut donc devenir compliquée
pour l’analyste. Ici également, nous avons démontré que certaines fonctions d’agrégation
(telles que celles décrites dans cette thèse) permettent de s’affranchir de cette difficulté, en
évitant de devoir définir de manière rigide l’importance ou la pertinence de chaque critère
d’attaque.
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Réponse au problème général de recherche

Sur base des réponses individuelles données aux deux problèmes de recherche ci-dessus,
nous pouvons finalement donner une réponse circonstanciée au problème général qui a
motivé ce travail.

Est-il possible d’aborder de manière systématique le problème de l’attribution
d’attaque sur Internet par une méthode analytique?

Tel que démontré tout au long de cette dissertation, le problème de l’attribution
d’attaque sur Internet est clairement un problème assez complexe, d’abord parce qu’il im-
plique un grand nombre de dimensions dans le processus d’investigation, mais également
à cause de l’aspect évolutif des phénomènes d’attaque. Toutefois, nous avons démontré
que ce problème pouvait être abordé au moyen d’une méthode analytique permettant de
combiner de multiples points de vue de manière systématique, voire automatisée. Par
cette approche analytique multicritères, nous avons aussi montré que le comportement dy-
namique de phénomènes d’attaque (à priori inconnus) peuvent être effectivement modélisés,
et que les modes opératoires des attaquants sont également mieux mis en évidence.

En conclusion, nous pensons que notre approche de regroupement multicritères offre une
contribution tout à fait intéressante au problème de l’attribution d’attaque, et qu’elle peut
certainement aider les experts en sécurité à éclaircir des questions encore non élucidées
concernant l’organisation d’activités cyber-criminelles, voire même aider à découvrir de
nouveaux aspects liés à celles-ci. Nous sommes bien entendu ouverts à toute proposition
ou opportunité d’application de cette méthode à d’autres ensembles de données que de
futurs partenaires seraient prêts à partager avec nous.

4.2 Perspectives intéressantes

Comme première perspective intéressante, de plus amples recherches en analyse des men-
aces pourraient mener à l’identification et l’intégration de nouvelles caractéristiques à la
méthode d’attribution, ce qui permettrait d’amener des points de vue supplémentaires et
donc d’enrichir les informations sur les phénomènes identifiés.

Deuxièmement, nous pourrions considérer d’autres techniques de regroupement (clus-
tering) que celle des ensembles dominants afin d’améliorer l’efficacité mais également
l’extensibilité de la méthode. Pour pouvoir traiter des ensembles de données de taille
supérieure, nous envisageons aussi le développement d’une version incrémentale de cette
méthode d’attribution qui s’appuie sur une base de données. Actuellement, nous sommes
en effet limités par la quantité de mémoire nécessaire au stockage de n matrices de sim-
ilarité contenant chacune m × (m − 1)/2 éléments, ce qui conduit à une complexité en
mémoire de l’ordre de O(nm2). En pratique, il est toutefois possible de traiter jusqu’à
10.000 événements en utilisant 8 caractéristiques d’attaque simultanément.

Troisièmement, nous pensons que l’application de cette méthode à des ensembles de
données différents concernant des activités cyber-criminelles pourrait fournir une perspec-
tive unique et un regard croisé sur ces activités. Quelques exemples de données que l’on
pourrait inclure dans ce type d’analyse ont trait aux dépôts de malware (i.e., les caractéris-
tiques statiques et dynamique liées à l’analyse des codes malveillants) et aux données plus
riches collectées par des honeypots à haute interaction (tels que SGNET [83], qui permet



Synthèse en français 203

de collecter des informations détaillées sur des attaques automatisées de type injections de
code du côté serveur).

Quatrièmement, nous avons étudié en détail deux classes principales de fonctions
d’agrégation, à savoir les moyennes de type Ordered Weighted Average (OWA), et l’intégrale
de Choquet. Il va de soi qu’il existe encore bien d’autres types de fonctions d’agrégation
dans la litérature scientifique, mais dont l’utilité en attribution d’attaque reste à explorer.

Cinquièmement, nous envisageons le développement d’une couche d’abstraction logi-
cielle autour des outils développés dans le cadre de ce travail, dans le but de permettre son
utilisation à d’autres chercheurs d’une manière plus aisée et plus flexible.

Enfin, nous avons montré tout au long de cette thèse comment certaines méthodes
de visualisation, telles que des graphes de relations et des techniques de réduction de di-
mensionnalité (telle que t-SNE ), permettent d’améliorer l’aspect situational awareness et
l’interprétation de résultats de regroupement, surtout quand de multiples dimensions sont
inclues dans l’analyse globale. Dès lors, nous pensons que ce travail a ouvert une voie
intéressante, et que cela suggère des recherches supplémentaires dans cette direction afin
d’intégrer de nouvelles technologies issues du domaine visual analytics à cette méthode
d’attribution d’attaque. Ceci nous permettrait d’effectuer un raisonnement combiné sur
des événements de sécurité non seulement de manière systématique, mais également vi-
suelle et interactive.

En poursuivant les efforts de recherche dans ces différentes voies, cela devrait nous offrir
des perspectives prometteuses quant au développement de modèles prédictifs de menaces
sur Internet, et par conséquent, permettre le développement efficace d’un système de type
Early Warning System.
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Appendix

List of Figures best viewed in color print

Reference Short caption Page nr
Fig.3.4 Clustering problem illustrated p.41
Fig.3.7 Dominant sets (DM) clustering results p.52
Fig.3.10 Clustering results of HC and K-Means p.59
Fig.4.5 Chaining effect illustrated with connected components and DM p.71
Fig.5.2 Visualization of malicious sources in the IPv4 space (IP map) p.102
Fig.5.9 Visualizing clustering results for the honeynet data set p.117
Fig.5.17 Node-link graph representing MC1 p.126
Fig.5.18 Node-link graph representing MC2 p.128
Fig.5.27 Node-link graph representing MC6 p.135
Fig.6.3 Visualizing clustering results for the rogue AV data set p.153
Fig.6.7 Node-link graph representing RC27 p.159
Fig.6.8 Node-link graph representing RC34 p.160
Fig.6.9 Node-link graph representing RC5 p.163
Fig.6.10 Node-link graph representing RC4 p.164
Fig.6.11 Node-link graph representing RC3 p.165
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