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Abstract—In this paper we propose a new algorithm to
detect Advanced Persistent Threats (APT’s) that relies
on a graph model of HTTP traffic. We also implement
a complete detection system with a web interface that
allows to interactively analyze the data. We perform a
complete parameter study and experimental evaluation
using data collected on a real network. The results
show that the performance of our system is comparable
to currently available antiviruses, although antiviruses
use signatures to detect known malwares while our
algorithm solely uses behavior analysis to detect new
undocumented attacks.

I. Introduction

Advanced Persistent Threats (APT) are targeted cyber
attacks committed over a long period of time by highly
skilled attackers.

An example of an APT is the Miniduke attack [1] that
targeted the governments of at least 20 countries including
the Czech Republic, Ireland, Portugal, Romania and the
United States. The malware infected PCs when victims
opened a cleverly disguised Adobe PDF attachment to an
email, which was specifically tailored to the target. The
attachment referred to highly relevant subjects like foreign
policy, a human rights seminar, or NATO membership
plans.

Such attacks are becoming evermore sophisticated and
manage to bypass the state of the art commercial-off-the-
shelf protections that are currently in place. The attackers
regularly succeed in remotely controlling hosts in our
networks long enough to locate the information they are
after, gain access to it and finally exfiltrate sensitive data.
APT attacks have therefore become a major concern for
network security professionals around the world.

All APT’s have some characteristics in common. First,
they use advanced techniques like 0-day attacks and social
engineering to infect the target organization. This makes
them impossible to detect using regular, signature based,
detection tools like antiviruses and intrusion detection
systems (IDS).

Second, once a computer is infected, an APT will try
to establish a communication channel with a command
and control (C2) server outside the organization. This

channel will be used to download a payload, to download
further instructions or to exfiltrate data. This link can be
established using any protocol allowed through the borders
of the organization: HTTP, DNS, SMTP, or even SIP.

In a security conscious organization, however, all these
protocols should take place through some sort of choke-
point. For the HTTP protocol, this would be a proxy
server installed in the DMZ. This allows to log all con-
nections taking place with servers located outside the
organization, and offers a chance to detect the activity
of the APT.

In this paper, we focus on the detection of APT’s that use
the HTTP protocol to establish a communication channel
with their C2 server. Naive APTs perform connections to
their C2 server at fixed or variable time intervals. This
results in traces in the proxy logs that are quite easy
to detect, like on top of Figure 1. The most evolved
APT’s however are able to sense user activity and wait for
outgoing traffic to perform connections to the C2 servers.
This makes them much more difficult to detect, like on the
bottom of Figure 1. In this paper we focus on detecting
the latter, activity-sensing APT’s.

Therefore we build a graph of HTTP traffic. In this graph,
the APT becomes an anomaly that can be detected. The
rest of this paper is organized as follows: in Section II we
show how we model HTTP traffic, and we explain how
this graph can be used to detect APT’s; in Section III we
present how we implemented this algorithm in a complete
detection system; in Section IV we perform an experimen-
tal evaluation and we study the impact of the different
parameters of the algorithm using data collected on a real
network; finally, in Section V we present our conclusions.

II. Graph modeling of HTTP traffic

A. Modelization of legitimate traffic

When a user is browsing the Internet, each page requested
by the browser triggers multiple HTTP request. Usually,
the first request contains HTML code, then the browser
downloads javascript, CSS, font files and images referenced
in the code. These may further trigger the download of
other files, or trigger AJAX requests, and so on. Each page
visited by a client can thus be represented by a tree, where
the root is the original page requested by the user, and978-1-5386-4559-8/18/$31.00 c© 2018 IEEE
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Fig. 1: HTTP traffic generated by a single computer,
infected by a frequency-based APT (top) and a sensing
APT (bottom).

Fig. 2: Graph model of HTTP traffic reconstructed from
the logs of a proxy server

each subsequent request has a single edge (a link) to the
request that triggered this download. These trees can be
built from the logs of the proxy server. This is depicted on
Figure 2. The user successively opened three pages (pink,
green and blue), which triggered a number of requests that
can be observed in the logs of the proxy server.

In real-life, reconstructing the HTTP graph is much more
complicated. First, requests belonging to multiple pages do
frequently take place at the same moment. This can lead
to the construction of incorrect trees. This is illustrated in

Fig. 3: Graph model of HTTP traffic reconstructed from
the logs of a proxy server when multiple pages are loaded
in parallel.

Figure 3.

Second, as most pages on the Internet are built dynami-
cally, loading the same page multiple times usually results
in the execution of different, although similar, series of
requests.

Finally, browsers try to keep in cache memory content that
is not supposed to change, like images, javascript and css
files. This also modifies the requests executed to display
the same page.

Therefore we actually build a weighted graph, a graph
where each node may have edges (links) to multiple other
nodes, and each edge has a weight. In our graph, the weight
of the edge from request B to request A indicates the
probability that request B is a consequence of request A.
How we exactly compute these probabilities is explained
below. Hence, a request (B) may have edges to multiple
other requests, each indicating the probability that request
A is a consequence of each other request.

B. Detection of APT traffic

When an APT waits for legitimate traffic (caused by a
user browsing the Internet) to contact its C2 server, the
requests performed by the APT take place roughly at the
same moment as other requests from the graph. Hence,
these requests have weak edges to multiple other requests.

This is illustrated in Figure 4: the requests performed by
the APT happen together with the requests caused by
the pink page, the green page and the blue page. As a
consequence, the APT request has weak edges to all three
root-requests.

A simple way to detect those requests is thus to prune
the graph, which means to cut all edges whose value is
lower then a threshold. The APT requests then appear as
isolated nodes, while other legitimate requests are linked
together into clusters.

III. Implementation

To test the algorithm, we implemented a complete detec-
tion system1. The system offers a web interface that allows

1The complete source code and documentation are available at
https://github.com/RUCD/apt-graph



Fig. 4: Graph model of HTTP traffic reconstructed from
the logs of a proxy server with the impact of a sensing
APT.

the analyst to interactively analyze the requests taking
place on the network using his browser. The detection
relies on multiple parameters that the analyst can easily
modify to spot hidden APT’s. A screenshot of the web
interface is presented in Figure 5. This view was generated
using log files from a real network, hence the domains were
anonymized. APT’s were simulated by injecting requests
in the log.

The system consists in two components: 1) the batch
processor and 2) the web interface that allows interactive
analysis of the data.

A. Batch processing

The system is designed to allow the analysis of HTTP
traffic generated by large networks of computers. In such
networks, millions of requests are generated each day.
Storing a complete (fully connected) graph requires to
store O(n2) values, where n is the number of nodes
in the graph. Hence, storing a graph containing just 1
million requests requires roughly 1TB of storage. With
current hardware, this is heavy to store on disk and almost
impossible to store in memory unless a supercomputer is
used. Hence, we instead build a k-nearest neighbors (k-nn)
graph, a graph were each node has an edge to the k most
similar other nodes in the graph. These graphs are a close
approximation of a complete graph if k is large enough.
However, they have the huge advantage that their memory
requirement is linear in n (namely kn), which makes them
also faster to process [2].

Before the k-nn graph is stored, it has to be computed,
which requires to compute O(n2) similarities using a
naive algorithm. This is not acceptable either for the
large graphs we envision. Hence we use instead a fast
approximate algorithm called nn-descent that requires to
compute O(n1.14) similarities to build the k-nn graph [3].
Moreover, this algorithms can easily be implemented in
parallel, which allows to take advantage of all the cores
available on the processing server.

Even using theses two optimizations (k-nn graphs and
nn-descent algorithm), building the graph is a compu-
tationally heavy process that requires a non-negligible

amount of time. Hence the system is split in two separate
components: a batch processor and a web interface to
perform the analysis.

The batch processor is responsible for computing the
initial graph, without applying any detection. As the name
states, this time consuming processing is meant to be run
only once for each dataset.

Moreover, the system is designed to let the analyst tweak
the definition of similarity between requests. Indeed, mul-
tiple criteria can be used to measure the probability that
request B is a consequence of request A:

• requests A and B belong to the same domain;
• request B took place shortly after request A;
• etc.

In a naive implementation, modifying the definition of
similarity, even slightly, requires to recompute the com-
plete k-nn graph. Once again, this is a time consuming
operation that would not allow to interactively analyze
the data. Instead, during batch processing, we compute
multiple graphs: one for each elementary similarity.

The time graph is built using the following measure of
similarity:

µtime =
1

1 + |δt|

where δt is the time difference (in seconds) between two
requests.

The domain graph, however, is built using following mea-
sure of similarity:

µdomain =
β(A, B)

max(γ(A), γ(B))

In this equation, β(A, B) is the number of labels in
common in the domain names of request A and B, starting
from the Top Level Domain (TLD), and excluding the
TLD itself. For example, β(cnn.com, www.cnn.com) = 1
because they have the label "cnn" in common. γ(A) is the
number of labels in the domain name of A, without taking
the TLD into account. For example, γ(www.cnn.com) = 2

The complete batch processing thus involves the following
steps:

• Split The data is first split between the different
clients in the network, which corresponds to the
"source IP" field in the proxy logs;

• Graphs For each client, the different k-nn graphs are
computed

• Domains As we suspect the APT will use different
URL’s belonging to the same domain, the different
requests from the same domain are merged together
to build graphs of domains;

• Save The graphs of domains are saved to disk.



Fig. 5: Web interface of the detection system

The batch processor only takes one parameter, k, the
number of edges per node in the k-nn graph. The impact
of varying this parameter is shown below.

B. Interactive analysis

Once the batch processor has computed the k-nn graphs,
these can be interactively analyzed using the web interface.
The analysis mainly requires to: 1) merge the different k-
nn graphs, 2) remove weak edges (pruning), 3) cluster the
graph, 4) filter the graph to show only isolated domains
and 5) rank the remaining suspicious domains.

In this process, the operator can provide several parame-
ters to improve the detection.

First, he can choose which clients from the network are
analyzed. Merging the graphs corresponding to multiple
clients reinforces the edges between naturally related do-
mains. This makes the domains contacted by the APT
more isolated and hence easier to detect.

The analyst can also modify the definition of similarity

used to link requests by providing a different weight for
the time similarity and for the domain similarity.

He can provide a pruning threshold to remove weak
edges from the the final graph. A high threshold removes
a lot of edges in the graph, which leaves a lot of requests
isolated. This causes a higher number of false positives.
At the opposite, a lower value leaves almost all edges

unaffected. Hence the requests generated by the APT
have a higher probability of remaining connected to other
requests, which decreases the probability of detection. The
pruning threshold can be defined as an absolute value or as
a z-score. The relation between a z-score z and an absolute
value x is defined as follows:

z =
x − µ

σ

Using z-scores allows to specify values that are indepen-
dent of the data.

For the filtering step, the analyst can provide a maximum

cluster size. Theoretically, after the pruning step the
APT is supposed to be completely isolated. However, if the
pruning threshold is chosen slightly too low, the APT may
remain connected to some other domains, thus creating a
small cluster. By using a filter to show only small clusters,
the analyst may be able to spot the APT.

To further filter the results, the analyst can specify a
minimum number of requests per domain. During
our experimental evaluation with real data, we discovered
that regular HTTP traffic contains a lot of domains that
have very few requests each. Because they have very few
requests, they are weakly connected to other domains, and
are thus considered as suspicious by our system. An APT,
however, has to regularly contact its C2 server to download
further instructions or to exfiltrate data. Hence we give the



analyst the possibility to filter out domains with very few
requests.

Finally, the system performs a ranking of remaining
suspicious domains. Therefore we use three parameters,
with weights provided by the analyst: 1) the number of
requests to this domain, as a stealthy APT is supposed
to perform only a few requests, 2) the number of child
domains in the graph and 3) the number or parent domains
in the graph, as the domain used by an APT is supposed
to be weakly connected to multiple other domains.

In summary, the following steps are executed to perform
the analysis:

• Load The k-nn graphs are read from the disk;
• Feature fusion The domain and time graphs are

merged using the weights provided by the analyst;
• Users fusion The graphs corresponding to the dif-

ferent users selected by the analyst are merged;
• Pruning Weak edges are removed from the graph;
• Clustering;
• Filtering Clusters larger then a threshold provided

by the analyst are removed;
• Filtering Domains that don’t have enough requests

are removed;
• Ranking The remaining suspicious domains are

sorted using weights provided by the analyst.

Although this may seem heavy, processing k-nn graphs
is actually extremely fast. This allows to interactively
analyze huge amounts of data.

IV. Parameter study and experimental

evaluation

A. Test setup

To test the system, we use the logs from the proxy server of
real, large organization. From this huge dataset, we chose
a subnet consisting of 26 computers, and a time period of
10 days. This subset contains a total of 721 921 requests.

In this log file, requests are inserted to simulate the
activity of 4 APT’s in the network. These APT’s are
chosen to exhibit different typical behaviors. The least
stealthy APT generates 239 requests to its C2 server while
the most stealthy APT performs only 13 requests in total,
which makes it very difficult to detect.

To test the quality of detection, we build the receiver oper-
ating characteristic (ROC) curve of the detection system:
we generate a ranking of the requests according to their
suspiciousness using the provided parameters set. Then we
walk the list from the top, and we compare each request
to the known list of requests performed by the APT’s.
At each level of the list, we compute the probability of
detection (pd) and probability of false alarm (pfa):

pd =
number of domains corresponding to an APT

number of domains considered in the list

Fig. 6: Building the receiver operating characteristic
(ROC) curve of a detection system

pfa =
number of legitimate domains

number of domains considered in the list

This allows to draw the ROC of the system, like depicted
in Figure 6.

Finally, to compute the quality of the detection, we com-
pute the area under the curve (AUC). Indeed, for a perfect
detection system pd = 1 ∀ pfa, hence AUC = 1. At the
opposite, the worst detection system has pd = 0 ∀ pfa,
hence AUC = 0.

B. Number of edges per node k

For the first test, with vary values for k, the number of
edges per node in the initial graphs.

We use the following values for the tests:

Weight time similarity 0.5
Weight domain similarity 0.5

Pruning (z-score) 0.0
Filtering: max cluster size 1000000

Filtering: requests/domain/client 1
Ranking: weight parents 0.35

Ranking: weight children 0.35
Ranking: weight number of requests 0.3

The resulting ROC and AUC are presented on Figure 7.

Surprisingly, k = 40 seems to give better results then
k = 100. To study this effect, we perform additional tests
where we compare these two cases by varying the other
parameters. The values used for the different tests are
presented in Table I and the results are shown on Figure 8.

As we can see, although k = 40 does provide slightly better
results in some cases, k = 100 is generally better, as we
expected. From now on, we use k = 100 for all our tests.

C. Fusion weights

We now study the impact of varying the weights used to
merge the graph built using time similarity and the graph
built using domain similarity. To perform the test, we have



Test 1 2 3 4 5 6 7 8 9 10
k 40 100 40 100 40 100 40 100 40 100

Weight time similarity 0.1 0.1 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1
Weight domain similarity 0.9 0.9 0.6 0.6 0.9 0.9 0.9 0.9 0.9 0.9

Pruning (z-score) 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.5 -0.5 0.0 0.0
Filtering: max cluster size 1000000

Filtering: requests/domain/client 5
Ranking: weight parents 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5

Ranking: weight children 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5
Ranking: weight number of requests 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0

TABLE I: Parameters used to compare k = 40 and k = 100

to fix a value for all other parameters. Therefore we choose
neutral values, even though we now these are suboptimal.
For example, we use a large value for the maximum cluster
size, such that we don’t filter clusters out:

k 100
Pruning (z-score) 0.0

Filtering: max cluster size 1000000
Filtering: requests/domain/client 1

Ranking: weight parents 0.35
Ranking: weight children 0.35

Ranking: weight number of requests 0.3

The results are shown on Figure 9.

The best result is achieved when the weight for time based
similarity is 0.1 and the weight for domain based similarity
is 0.9. This shows that the fact that two requests belong to
the same domain is a better indicator of the link between
the requests than the fact that these two requests happen
slightly at the same moment. This was expected, as APT’s
wait for activity to contact their C2 servers. From now on
we use these values for other tests.

D. Pruning

We now vary the pruning threshold. To keep the test
independent of the data, we actually vary the z-score of
the pruning threshold. The other parameters used for the
test are:

k 100
Weight time similarity 0.1

Weight domain similarity 0.9
Filtering: max cluster size 1000000

Filtering: requests/domain/client 1
Ranking: weight parents 0.35

Ranking: weight children 0.35
Ranking: weight number of requests 0.3

The results are shown on Figure 10.

E. Size of clusters

Now we vary the maximum size of clusters using following
parameters:

k 100
Weight time similarity 0.1

Weight domain similarity 0.9
Pruning (z-score) 0.0

Filtering: requests/domain/client 1
Ranking: weight parents 0.35

Ranking: weight children 0.35
Ranking: weight number of requests 0.3

The results are presented on Figure 11. Interestingly, the
best result is obtained when the maximum cluster size is
1 000,000, which shows that even after pruning, the APT’s
are usually still linked to some much larger clusters.

F. Minimum number of requests per client

This parameter is studied using the setup:

k 100
Weight time similarity 0.1

Weight domain similarity 0.9
Pruning (z-score) 0.0

Filtering: max cluster size 1000000
Ranking: weight parents 0.35

Ranking: weight children 0.35
Ranking: weight number of requests 0.3

The results are presented in Figure 12.

As we explained above, filtering out the domains that
receive very few requests per day (less then 5) allows to
drastically reduce the background "noise" and improves
the quality of detection.

G. Ranking weights

We now vary the weights used to perform the ranking of
remaining domains. We use the following parameters:

k 100
Weight time similarity 0.1

Weight domain similarity 0.9
Pruning (z-score) 0.0

Filtering: max cluster size 1000000
Filtering: requests/domain/client 5

We first vary the weight of the number of requests, and
set the two other weights accordingly:

1 − weight number of requests

2
= weight number of children

= weight number of parents



The results are shown in Figure 13.

Using a negative value for the number of requests seems to
provide the best results. However, this also first enlightens
the less stealthy APT’s, that perform a lot of requests
to their C2 servers. Hence we recommend here to use a
slightly positive value, namely 0.2.

H. Cross validation

We have now identified the parameters that seem to offer
the best quality of detection. These parameters must of
course be tuned by the analyst for the network under test,
and for the kind of APT he tries to detect on the network
(is the APT supposed to be more or less stealthy, etc.).
However, we assume these are robust enough to represent
a relevant starting point for the analyst.

To test this hypothesis, we use another subnet of the proxy
log. This time, the subnet contains 66 clients, 10 days
of data and 1 032 021 requests. We simulate the infection
with 8 APT’s and we analyze the data with the optimal
parameters identified previously.

The resulting ROC is presented in Figure 14 and has an
AUC of 0.9036. This shows the algorithm is very resilient
and performs equally well with a different dataset. It
also shows that the system quickly discovers 90% of the
APT’s. This is equivalent to the performance of most
antiviruses on the market, with the huge difference that
antiviruses use signatures to detect known malwares, while
our detector solely uses behavior analysis to detect new
undocumented attacks.

I. Detected domains

As we stated above, the dataset used to perform the tests
is produced from the logs of the proxy server of a real
network. Hence we manually analyzed the domains that
were ranked as APT’s by the system. These are mainly:

• Content Delivery Networks (CDN);
• domains that display advertising on multiple websites;
• domains that deliver Javascript libraries to multiple

websites;
• websites with very few visits.

Although these are not C2 servers per se, they are charac-
terised by the same behavior as the APT’s that we are try-
ing to detect: they weak links with a lot of other requests.
This shows that the algorithm is actually performing very
well at detecting domains that behave like the domains
used by an APT to contact its C2 server.

V. Conclusion and future work

The results obtained by our detection algorithm are very
promising as they do not rely on a previous knowledge
of the attacks. As a future work we plan to further tune
the detection parameters using deep learning, to further
improve the quality of detection.
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Fig. 7: Result of varying k when building the graphs.
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Fig. 12: Result of varying the minimum number of requests
per client.
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Fig. 13: Result of varying the ranking weights.
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Mix of periodic & traffic APT − AUC =0.9036

Fig. 14: Result with a different dataset.


