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ABSTRACT
We present a multicriteria clustering approach that has been
developed to address a problem known as attack attribution
in the realm of investigative data mining. Our method can
be applied to a broad range of security data sets in order to
get a better understanding of the root causes of the underly-
ing phenomena that may have produced the observed data.
A key feature of this approach is the combination of cluster
analysis with a component for multi-criteria decision analy-
sis. As a result, multiple criteria of interest (or attack fea-
tures) can be aggregated using different techniques, allowing
one to unveil complex relationships resulting from phenom-
ena with eventually dynamic behaviors. To illustrate the
method, we provide some empirical results obtained from
a data set made of attack traces collected in the Internet
by a set of honeypots during two years. Thanks to the ap-
plication of our attribution method, we are able to identify
several large-scale phenomena composed of IP sources that
are linked to the same root cause, which constitute a type of
phenomenon that we have called Misbehaving cloud (MC).
An in-depth analysis of two instances of such clouds demon-
strates the utility and meaningfulness of the approach, as
well as the kind of insights we can get into the behaviors of
malicious sources involved in these clouds.

Keywords
Investigative data mining, attack attribution, threat analy-
sis.

1. INTRODUCTION
There is no real consensus on the definition of “attack attri-
bution” in the cyber domain. If one looks at a general def-
inition of the term attribution in a dictionary, he will find
something similar to: “to explain by indicating a cause”
[Merriam-Webster]. However, we observe that most previ-
ous work related to that field tend to use the term “attri-
bution” as a synonym for traceback, which consists in “de-
termining the identity or location of an attacker or an at-
tacker’s intermediary” [20]. In the context of a cyber-attack,
the obtained identity can refer to a person’s name, an ac-
count, an alias, or similar information associated with a per-
son or an organisation. The location may include physical
(geographic) location, or any virtual address such as an IP
address or Ethernet address. The rationale for developing

such attribution techniques is mainly due to the untrusted
nature of the IP protocol, in which the source IP address is
not authenticated and can thus be easily falsified. An ex-
tensive survey of attack attribution techniques used in the
context of IP traceback can be found in [20].

In this paper, we refer to “attack attribution” as something
quite different from what is described here above, both in
terms of techniques and objectives. Although tracing back
to an ordinary, isolated hacker is an important issue, we
are primarily concerned by larger scale attacks that could
be mounted by criminal or underground organizations. For
this purpose, we present an analytical method that can help
security analysts in determining the plausible root causes of
attack phenomena, and in deriving their modus operandi.

The method presented hereafter can be applied to a broad
range of security data sets, or more generally, to many prob-
lems related to investigative data mining. This paper illus-
trates the application of this method through an empirical
analysis of some attacks collected during two years by a set
of low interaction honeypots deployed all over the world by
the Leurré.com project [11]. Regarding this specific dataset,
some typical phenomena that we want to identify vary from
worm or malware families propagating through code injec-
tion attacks [10], to established botnets controlled by the
same people and targeting machines in the IP space. As
showed in the experimental results, all malicious sources in-
volved in the same root phenomenon seem to form what we
call a Misbehaving Cloud (MC).

The remainder of this paper is structured as follows: in Sec-
tion 2, we formally describe the main components of our
multi-criteria clustering method, i.e., a graph-based clus-
tering process followed by a multi-criteria decision analysis.
Then, Section 3 describes how we have applied this method
to a specific dataset made of network attack traces. In Sec-
tion 4, we detail some experimental results, and we provide a
more in-depth study of two instances of misbehaving clouds.
Section 5 concludes the paper.

2. MULTI-CRITERIA CLUSTERING

2.1 Introduction
In investigative data mining, an analyst must usually syn-
thesize different pieces of evidence to eventually identify the
potential root causes of attack phenomena. The goal is to
determine how to “connect the dots”, i.e., how to discover
important patterns and how to combine them meaningfully,
so as to expose the “big picture” [19]. However, the amount
of data of today’s systems used for gathering data far ex-
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Figure 1: Overview of the multi-criteria clustering method. Fk

refers to the set of features selected from a security dataset, and
Gk refers to the set of corresponding weighted graphs of relation-
ships resulting from the clustering component. The multi-criteria
component combines all Gk so as to produce a combined link
graph.

ceeds our capacity to analyze it manually. For this reason,
we aim at developing a multi-criteria clustering approach
that can systematically discover, extract and combine un-
known patterns from a security dataset, according to a set
of potentially useful features.

As illustrated in Fig. 1, our approach is based on three com-
ponents:

1. Feature selection: we determine which features we
want to include in the overall analysis, and we charac-
terize each object of the dataset according to the set of
extracted features Fk (e.g., by creating feature vectors
for each object);

2. Graph-based clustering: an undirected edge-weighted
graph is created regarding each feature Fk, based on
an appropriate distance for measuring pairwise simi-
larities. Strongly connected components can then eas-
ily be identified within each graph, so as to reveal re-
lationships among objects sharing common patterns
regarding some features;

3. Multi-criteria aggregation: the different graphs are
then combined using an agregation function that some-
how models the expected behavior of the phenomena
under study.

The approach is mostly unsupervised, i.e., it does not rely
on a preliminary training phase to classify objects to larger
scale phenomena. Instead, we have only a data set of un-
labeled observations, and we need to learn what patterns
are present in the data in function of different characteris-
tics that can hopefully bring some light on the underlying
phenomenon.

2.2 Feature selection
In cluster analysis, one of the very first steps consists in se-
lecting some key characteristics from the dataset, i.e., salient
features that may reveal meaningful patterns [7]. The se-
lection of these features may optionally be completed by a
feature extraction process, i.e., one or more transformations
of the input to produce features that are more suited to
subsequent processing. Pattern representation refers to the
number of categories, classes, or variables available for each
feature to be used by the clustering algorithm.

More formally, we have thus a dataset D composed of N
data objects. From D, we can select and/or extract n dif-
ferent features so as to create our feature set F = {Fk}, k =
1, . . . , n. The purpose of this first component consists in
creating one set of feature vectors Xk for each Fk, i.e.:

Xk =

2666664
x

(k)
11 x

(k)
12 · · · x

(k)
1p

x
(k)
21

. . .
...

...
. . .

...

x
(k)
N1 · · · · · · x

(k)
Np

3777775
where a row Xk(i, 1 : p) = x

(k)
i represents a feature vector

for the ith object of D obtained for the kth feature Fk. The
dimensionality of the feature vectors is p, the number of
variables (or categories) that have been extracted or defined.

2.3 Graph-based clustering
We now turn to the description of the second component of
our method, which implements a pairwise clustering. We
formulate the problem of clustering objects from D using a
graph-based approach. That is, for each feature Fk, we can
construct a graph Gk in which the vertices (or nodes) are

mapped to the feature vectors x
(k)
i , and the edges (or links)

express some degree of similarity between objects regard-
ing the considered feature. As customary, we can represent
the undirected edge-weighted graph (with no self-loops) ob-
tained for a given feature Fk by Gk = (Vk, Ek, ωk), where

Vk = {x(k)
1 ,x

(k)
2 , . . . ,x

(k)
N } is the vertex set, Ek ⊆ Vk × Vk is

the edge set and represents the relationships between each
pair of vertices, and ωk : Ek → <+ is a positive weight func-
tion associated with each edge of Ek.

In practice, we represent each graph Gk with its correspond-
ing weighted adjacency matrix (or dissimilarity matrix), which
is the N ×N symmetric matrix Ak(i, j) defined as:

Ak(i, j) =


ωk(i, j), ∀(i, j) ∈ Ek

0, otherwise.

Note that the weight function ωk(i, j) must be defined with
a similarity metric that is appropriate to the nature of the
feature vectors. In fact, there is a wide range of possibil-
ities for chosing a distance, from rather simple ones (e.g.,
Euclidean, sample correlation, Mahalanobis, Minkowski) to
more elaborate functions such as statistical distances (e.g.,
Kullback-Leibler, Bhattacharyya, etc). We further detail
this aspect in the application of the method (Section 3).

Finally, the graph-clustering can be performed by extracting
strongly connected components for each graph Gk. To do
this, we use an algorithm based on maximal cliques, which
are induced subgraphs in which the vertices are fully con-
nected (i.e., complete subgraphs). In practice, this means
we identify for each feature Fk which subgroups of objects
are highly similar and thus share the same pattern regard-
ing Fk. The Maximal Clique Problem (MCP) is a classical
combinatorial problem that can be solved using different
algorithms. In our method, we take advantage of the domi-
nant sets approach of Pavan et al. [14], which generalizes the
MCP to the edge-weighted case. Dominant sets (DM) are
equivalent to maximum weighted cliques, hence to very co-
herent clusters. However, finding dominant sets is attractive
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Symbol Description
D raw dataset
N Number of objects in D
F Feature set (F = {Fk}, k = 1, · · · , n)
n Number of features in F
Xk Set of feature vectors contructed from Fk

x
(k)
i The feature vector of the ith object obtained for Fk

Gk(Vk, Ek, ωk) The undirected weighted graph built for Fk

Ak The weighted adjacency matrix of Gk

F An aggregation function
zij , or simply z A criteria vector built for a pair of data objects i, j

Table 1: Table of notations

from a computational viewpoint, since it can be done with
a continuous optimization technique that applies replicator
dynamics (from evolutionary game theory). As a result, we
can find dominant sets by simply making a particular tem-
poral expression converge. More precisely, consider the fol-
lowing dynamical system represented with its discrete time
equation, and Ak being the adjacency matrix of Gk:

xi(t+ 1) = xi(t) ·
(Ak x(t))i

x(t)TAk x(t)

with i = 1, . . . , N . Starting from an arbitrary initial state,
this dynamical system will eventually be attracted by the
nearest asymptotically stable point. As it has been showed
in [14], this corresponds to a dominant set, hence to a max-
imum weighted clique. Then, the DM algorithm will try to
find a new dominant set with the remaining vertices of the
graph until a stopping criterion is met (e.g., when the sum
of the remaining edge weights is less than 0.05).

2.4 Multi-criteria aggregation
Aggregation functions are used in many prototypical situa-
tions where we have several criteria of concern, with respect
to which we assess different options. The objective con-
sists in calculating a combined score for each option, and
this combined output forms then a basis from which deci-
sions can be made. For example, aggregation functions are
largely used in problems of multi criteria decision analysis
(MCDA), in which an alternative has to be chosen based on
several, sometimes conflicting criteria. Usually, the alter-
natives are evaluated from different attributes (or features)
that are expressed with numerical values representing a de-
gree of preference, or a degree of membership.

Definition (Aggregation function). An aggregation func-
tion is formally defined as a function of n arguments (n > 1)
that maps the (n-dimensional) unit cube onto the unit inter-
val: F : [0, 1]n −→ [0, 1], with the following properties [1]:

(i) F(0, 0, . . . , 0| {z }
n-times

) = 0 and F(1, 1, . . . , 1| {z }
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies F(x1, . . . , xn) ≤
F(y1, . . . , yn)

In our multi criteria method, we have n different attack
features, according to the Fk’s, and thus a vector of criteria
zij ∈ [0, 1]n can be constructed from the similarity weights,

such that:

zij = [A1(i, j), A2(i, j), . . . , An(i, j)]

with Ak the weighted adjacency matrix of graph Gk corre-
sponding to attack feature Fk, and (i, j) is a pair of objects
from the data set D. Our approach consists in combining
the n values of each criteria vector zij (which reflects the set
of all relationships between a pair of data objects), in order
to build an aggregated graph G∗ =

P
Gk.

A rather simplistic approach consists in combining the cri-
teria using a simple arithmetic mean, eventually with differ-
ent weights assigned to each criteria (i.e., a weighted mean).
However, this does not allow us to model more complex re-
lationships, such as “most of”, or “at least two” criteria to
be satisfied in the overall decision function, and this without
having to know which set of criteria is more relevant for a
given pair of objects. In other words, what we need is an
aggregation function in which the combination of criteria of
interest (and the associated weights) is not predetermined
in a static way.

Ordered Weighted Averaging.
Yager has introduced in [21] a type of operator called Or-
dered Weighted Averaging (OWA), which allows to include
certain relationships between criteria in the aggregation pro-
cess. An OWA operator differs from a classical weighted
means in that the weights are not associated with particular
inputs, but rather with their magnitude. As a result, OWA
can emphasize the largest, smallest or mid-range values. It
has become very popular in the research community work-
ing on fuzzy sets.

Definition (OWA). For a given weighting vector w, wi ≥
0,
P
wi = 1, the OWA aggregation function is defined by:

OWAw(z) =

nX
i=1

wiz(i) =< w, z↘ >

where we use the notation z↘ to represent the vector ob-
tained from z by arranging its components in decreasing
order: z(1) ≥ z(2) ≥ . . . ≥ z(n).

It is easy to see that for any weighting vector w, the result of
OWA lies between the classical and and or operators, which
are in fact the two extreme cases when w = (0, 0, . . . , 1)
(then OWAw(z) = min(z)) or when z = (1, 0, . . . , 0) (then
OWAw(z) = max(z)). Another special case is when all
weights wi = 1

n
, which results in the classical arithmetic
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mean.

To define the weights wi to be used in OWA, Yager sug-
gests two possible approaches: either to use some learning
mechanism with sample data and a regression model (i.e.,
fitting weights by using training data and minimizing the
least-square residual error), or to give some semantics, or
meaning to the wi’s by asking a decision-maker to provide
directly those values, based on domain knowledge. In many
attribution cases, we shall rely on the latter since the process
is mostly unsupervised, i.e., we have no training samples for
the phenomena we aim to identify.

Combined graph G∗.
The multicriteria aggregation leads finally to a combined
graph G∗, represented by its adjacency matrix A∗, which
can be obtained through following operation:

A∗(i, j) = OWAw(zij), ∀(i, j) ∈ D

Finally, we can extract the connected components from G∗

in order to identify all subgraphs in which any two vertices
are connected to each other by a certain path:

P = components(A∗)
= {SG1, SG2, . . . , SGm}

which gives us our final set of subgraphs P, where SGx ⊆
G∗, and ∀(i, j) ∈ SGx : OWAw(zij) ≥ t, with t ∈ ]0, 1].
There exist several algorithms to extract connected compo-
nents from a graph (depth-first search, breadth-first search,
etc). We use here the Dulmage-Mendelsohn decomposition
of A∗, which is a lightweight and efficient operation on ma-
trices [6].

Each subgraph can now help the analyst to figure out which
root phenomenon could have created the observations within
SGx. As we show with a practical application in Section 4,
by analyzing and visualizing the resulting phenomena through
the clustering results of their respective features, we can get
a global picture of all important relationships among the
observations of a same subgraph, and hence we get a better
insight into the root cause and the behavior of the underly-
ing phenomenon.

Note that we can optionally apply a thresholding function
on A∗ in order to eliminate combined edges that could re-
sult from an unfortunate linkage between two objects having
some weak correlation for a number of features, which means
they would otherwise end up in the same subgraph while not
related to the same root phenomenon.

3. APPLICATION TO ATTACK TRACES
To illustrate our multi-criteria attribution method, we present
a specific application of this method to a set of attack traces
collected by honeypots in the Internet.

3.1 Experimental dataset
Our dataset is made of network attack traces collected from
a distributed set of sensors (e.g., server honeypots), which
are deployed in the context of the Leurré.com Project [9; 11].
Since honeypots are systems deployed for the sole purpose of
being probed or compromised, any network connection that
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Figure 2: Illustration of aM-event, composed of 3 µ-events that
are correlated on 2 different sensors, and are targeting 3 different
ports.

they establish with a remote IP can be considered as mali-
cious, or at least suspicious. In Leurré.com, each IP source
observed on a sensor is assigned to a so-called attack clus-
ter [16] according to its network characteristics, such as the
number of IP addresses targeted on the sensor, the number
of packets and bytes sent to each honeypot, the attack du-
ration, the average inter-arrival time between packets, the
associated port sequence being probed, and the packet pay-
load. Therefore, all IP sources belonging to a given attack
cluster have left very similar network traces on a given sen-
sor and consequently, they are considered as having the same
attack profile. This leads us then to the concept of micro at-
tack event:

Definition (µ-event). A micro attack event (or µ-event)
refers to a set of IP sources having the same attack profile
on a given sensor, and whose coordinated activity has been
observed within a specific time window.

Fig. 2 illustrates this notion by representing the time series
(i.e., the number of sources per day) of three coordinated
µ-events observed on two different sensors in the same time
interval, and targeting three different ports. By extension,
a macro event (orM-event) refers to the set of all µ-events
observed over the same time period, and during which the
time series are strongly correlated (e.g., the three µ-events
in Fig. 2 belong to the sameM-event). How to identify such
events from the spurious, nonproductive traffic collected by
honeypots are issues that have been explained in [15]. For
the purpose of this study, our dataset D comprises 2,454
µ-events that have been observed on 40 different platforms
located in 22 different countries, on a period spanning from
Sep 2006 until November 2008. Our set of µ-events accounts
for a total of 2,538,922 malicious sources, which have been
assigned to 320 distinct attack profiles.

In the rest of the paper, we show how we have applied
our multi-criteria method to this set of attack events in
order to establish connections between them. All µ-events
that share enough features constitute a phenomenon that we
call a Misbehaving Cloud (MC). We hypothesize that mali-
cious sources involved in a MC have a common root cause.
By identifying them and studying their global behavior, we
hope to get a better insight into the modus operandi and
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the strategies of those responsible for them.

3.2 Selection of attack features
The first key features used hereafter deal with the spatial
distributions of malicious sources involved in µ-events, in
terms of originating countries and IP blocks. Looking at
these statistical characteristics may reveal attack activities
having a specific distribution of originating countries or IP
networks, which can help for instance to confirm the exis-
tence of “unclean networks” [3]. Concretely speaking, for
each µ-event i, we create a feature vector xgeo

i represent-
ing the distribution of countries of origin (as a result of the
IP to geolocation mapping), and a vector xsub

i represent-
ing the distribution of IP addresses (grouped by their Class
A-prefix, to limit the vector’s size to 256 categories).

We have also selected an attack characteristic related to the
targeted platforms. Looking at which specific platform has
observed a µ-event is certainly a pertinent feature. More-
over, we combine this information with theM-event identi-
fication, since M-events are composed of µ-events that are
strongly correlated in time (which indicates a certain degree
of coordination among attackers). This leads to the creation
of a feature vector xtarg

i for each µ-event.

Besides the origins and the targets, the type of activity per-
formed by the attackers seems also relevant. In fact, ma-
licious software (e.g., worm or bot) is often crafted with a
certain number of available exploits targeting a given set of
TCP or UDP ports. So, it makes sense to take advantage of
similarities between the sequences of ports that have been
probed or exploited by malicious sources. This gives us a
feature vector xps

i made of several categories representing
the targeted ports for each µ-event.

Finally, we have computed, for each pair of µ-events, the ra-
tio of common IP addresses. We are aware of the fact that,
as time passes, some machines of a given botnet (or misbe-
having cloud) might be cured while others may get infected
(and thus join the cloud). Additionally, due to the dynamic
IP allocation of ISP’s, certain infected machines can have
different IP addresses when we observe them at different
moments. Nevertheless, considering the huge size of the IP
space, it is still reasonable to expect that two µ-events are
probably related to the same root phenomenon when they
have a high percentage of IP addresses in common.

To summarize, for each µ-event we define our set of features
F as follows:

F = {Fi} , i ∈ {geo, sub, targ, ps, cip}

where:8>>><>>>:
geo = geolocation of IP sources;
sub = distribution of sources IP addresses;
targ = targeted platforms +M-event membership;
ps = targeted port sequences;
cip = ratio of common IP addresses.

3.3 Cluster analysis
Recall that in the second step, we create an undirected
weighted graph for each attack feature separately, on which
we apply a graph-theroretical clustering algorithm in order
to extract maximal cliques. To create the dissimilarity ma-
trix Ak for each graph Gk, quite obviously, we need an ap-
propriate distance function. When we have to deal with ob-
servations that are in the form of probability distributions

(or frequencies), like in the case of features Fgeo and Fsub,
then statistical distances seem more appropriate. One such
technique (which is commonly used in information theory)
is the Kullback-Leibler divergence [8]. Let p1 and p2 be for
instance two probability distributions over a discrete space
X, then the K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
X

x

p1(x) log
p1(x)

p2(x)

which is also called the information divergence (or relative
entropy). Because DKL is not considered as a true met-
ric, it is usually better to use instead the Jensen-Shannon
divergence (JSD) [12], defined as:

JS(p1, p2) =
DKL(p1||p̄) +DKL(p2||p̄)

2

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon
divergence is the average of the KL-divergences to the aver-
age distribution.

Now, to transform pairwise distances dij to similarity weights
simij , we still have to define a mapping function. Previ-
ous studies found that the similarity between stimuli decay
exponentially with some power of the perceptual measure
distance [17]. As customary, we can thus use the following
functional form to do this transformation:

sim(i, j) = exp(
−dij

2

σ2
)

where σ is a positive real number that affects the decreasing
rate of simij .

Measuring pairwise similarities for the other considered fea-
tures (Ftarg, Fps, Fcip) can be done using simpler distance
functions, such as the Jaccard similarity coefficient. Let s1
and s2 be two sample sets (for instance with Fps, s1 and s2
are sets of ports that have been probed by sources of two
µ-events), then the Jaccard coefficent is defined as the size
of the intersection divided by the size of the union of the
sample sets, i.e.:

JC(i, j) =
|s1
T
s2|

|s1
S
s2|

Extracting cliques of attackers.
We applied the unsupervised graph-theoretic clustering al-
gorithm on each dissimilarity matrix Ak, as described in
Section 2.3. The goal consists in discovering interesting pat-
terns by extracting all groups of highly similar events. The
obtained knowledge will be used to characterize the behavior
of global phenomena identified by the multi-criteria compo-
nent.

Globally, for each feature Fk, the clique algorithm could find
on average about 85 clusters accounting for approximatively
70% of the data set, which seems to indicate that many
strong relationships exist among µ-events. Note that the
dominant set framework is quite attractive, since it does
not require a number of clusters as input, and the algorithm
will naturally extract the most significant groups in the first
stages of the algorithm.

To illustrate this step, we have mapped on Fig. 3 some ge-
ographical clusters found for Fgeo. We have used a dimen-
sionality reduction technique called t-Distributed Stochastic
Neighbor Embedding (t-SNE), which aims at converting a
high-dimensional dataset into a low-dimensional representa-
tion that can be displayed, for example, in a scatter plot.
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Figure 3: Left: 2D mapping of the 20 largest geographical clusters. Right: a zoom on the zone indicated by the dashed
rectangle on the left.

The aim of dimensionality reduction is to preserve as much
of the significant structure of the high-dimensional data as
possible in the low-dimensional map. This can be helpful
to visualize a certain dimension of the data set, but also to
assess the consistency of the clustering results. t-SNE [18]
is a variation of Stochastic Neighbour Embedding ; it pro-
duces significantly better visualizations than other Multi-
dimensional Scaling techniques (such as Sammon mapping,
Isomaps or Laplacian Eigenmaps) by reducing the tendency
to crowd points together in the centre of the map.

Figure 3 (Left) shows the resulting two-dimensional plot ob-
tained by mapping the top 20 geographical clusters (encom-
passing a total of 720 µ-events) on a 2D map using t-SNE.
Each datapoint on this map represents the geographical
distribution of a µ-event. The coloring refers to the clus-
ter membership of each event, as obtained by applying the
clique algorithm, while the text labels indicate the cluster
centröıd. We could easily verify that two adjacent events
on the map have highly similar geographical distributions,
while two distant events have clearly nothing in common in
terms of originating countries.

However, as showed in Figure 3 (Right), we observe that
several clusters of µ-events originate from some large or pop-
ular countries (e.g., US, China, Korea, France, Italy, etc).
Although the clique algorithm did perform well, several clus-
ters are overlapping with each other. Not surprisingly, the
same kind of issue appeared for other dimensions as well (for
instance, some well-known Windows ports are more heavily
targeted than others). As a result, it leads to the natu-
ral intuition that multiple features need to be aggregated
in a consistent manner so as to leverage the results of this
knowledge discovery process.

3.4 Combining all features
This last step aims at combining all similarity values for
each pair of µ-events (i, j), by applying the OWAw operator
to each criteria vector zij constructed from all graphs Gk,
with k ∈ {geo, sub, targ, ps, cip} . However, we still need to
define which values of the weighting vector w are the most
appropriate to model the phenomena under scrutiny. In this
case, we hypothesize that attack phenomena such as misbe-
having clouds (e.g., worms, botnets) may perfectly evolve

over time. That is, two consecutive µ-events of the same
MC must not necessarily have all their attributes in com-
mon. For example, the composition of a botnet may evolve
over time because of the cleaning of infected machines or
the recruitment of new bots (which leads to a shift in the
IP subnet distribution of subsequent events related to this
botnet). Or, a botnet may be instructed to scan several
consecutive IP subnets in a short interval of time, which
leads to the observation of different µ-events having highly
similar distributions for the origins, but those events target
completely different sensors, and may eventually use differ-
ent exploits (hence, targeting different ports).

Based on this domain knowledge, we have thus defined a
weighting vector w = (0.1, 0.35, 0.35, 0.1, 0.1). It can be in-
terpreted as: at least three criteria must be satisfied, but the
first criteria is of less importance (because the first corre-
lated feature between two µ-events might be due to chance
only). These weights must be carefully chosen in order to
avoid an unfortunate linkage between µ-events when, for ex-
ample, two µ-events involve IP sources originating from pop-
ular countries (typ. US, China, Korea, Germany, etc), and
are targeting common (Windows) ports in the same inter-
val of time; but in reality, those µ-events are not necessarily
linked to the same phenomenon. By considering different
worst-case scenarios, we verified that this weighting vector
w minimizes the final output value in such undesirable cases.

4. BEHAVIORAL ANALYSIS OF ATTACK
PHENOMENA

4.1 Overview
We now turn to the description of the experimental results
obtained from the application of the multi-criteria method
on a 2-year dataset of honeypot traces, as described in pre-
vious Section. Starting from the 2,454 µ-events, the method
has identified a total of 83 Misbehaving Clouds (MCs),
which correspond to 1,607 µ-events, and 506,835 attack-
ing sources. Singletons and MC’s containing less than 3
µ-events have been discarded for further analysis. The phe-
nomena involve almost all common services such as NetBios
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Figure 4: Empirical CDF of MC lifetime and size.

(ports 139/TCP, 445/TCP), Windows DCOM Service (port
135/TCP), Virtual Network Computing (port 5900/TCP),
Microsoft SQL Server (port 1433/TCP), Windows Messen-
ger Service (ports 1025-1028/UDP), Symantec Agent (port
2967/TCP), and some others. Figure 4 shows the cumula-
tive distribution of µ-events per MC. As we can see, in most
cases, the MCs contain rather few µ-events and sources.
However, around 10% of MCs contain at least 20 thousand
observable1 sources, and some even contain up to 200 thou-
sand sources (spread over 300 µ-events or more). Regarding
the lifetime of these MC’s (i.e., the time interval, in days,
between the very first and the very last attack event), about
67% of MCs exist during less than 50 days but around 22%
of them last for more than 200 days. Another global char-
acteristic (not represented on the Fig.) is that, in 94% of
the cases, the MCs are seen on less than 10 platforms.

These various characteristics suggest that the root causes
behind the existence of these MCs are fairly stable, lo-
calised attack processes. In other words, different places
of the world do observe different kind of attackers but their
modus operandi remain stable over a long period of time.
We are, apparently, not that good at stopping them from
misbehaving.

Regarding the origins of MC’s, we observe some very persis-
tent groups of IP subnets and countries of origin. On Fig. 5,
we have represented the CDF of the IP addresses involved
in the ten largest MC’s, where the x-axis represents the first
byte of the IPv4 address space. Clearly, malicious sources in-
volved in those phenomena are highly unevenly distributed,
and form a relatively small number of tight clusters that
are responsible for a large deal of the observed malicious
activities. This is consistent with other prior work on moni-
toring global malicious activities, in particular with previous
studies related to measurements of Internet background ra-
diation [2; 13; 22]. However, we can show here that there
are still some notable differences in the spatial distributions
of those misbehaving clouds, even though there is a large
overlap between “zombie-friendly” IP subnets. Moreover,

1It is important to note that the sizes of the phenomena
given here only reflect the number of sources we could ob-
serve on our sensors; the actual sizes of those armies are
most probably much larger, even though some churn effects
(DHCP, NAT) could also affect these numbers.
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Figure 5: CDF of IP addresses involved in the ten largest MC’s.

because of the dynamics of this kind of phenomenon, we
can even observe different spatial distributions within the
same cloud at different moments of its lifetime. This is an
advantage of our analysis method that is more precise and
enables us to distinguish individual phenomena, instead of
global trends, and even to observe their dynamic behavior.

Another interesting observation on Fig. 5 is the CDF of MC3
(uniformly distributed in the IPv4 space, which means ran-
domly chosen source addresses) and MC20 (a constant dis-
tribution coming exclusively from the subnet 24.0.0.0/8). A
likely explanation is that those MC’s have used spoofed ad-
dresses to send UDP spam messages to the Windows Mes-
senger service. So, this indicates that IP spoofing is still
possible under the current state of filtering policies imple-
mented by certain ISP’s on the Internet. We refer the in-
terested reader to [5] in which we provide a more in-depth
analysis of this interesting UDP spam phenomenon.

4.2 Some detailed examples
Finally, we further detail two case studies from Table 2 to
illustrate some typical behaviors we could observe among
the misbehaving clouds identified so far, e.g.:

i) a move (or drift) in the origins of certain MC’s (both
geographical and IP blocks) during their lifetime;

ii) a scan sweep by the same cloud, targeting several con-
secutive class A-subnets;

iii) within the same cloud, multiple changes in the port
sequences (i.e., exploits) used by machines to attack;

iv) a higher-level coordination among attackers of the same
cloud.

Botnet Cloud.
An more in-depth analysis of MC28, in particular the shape
of the time series of µ-events and the arrival rate of the
sources, has led us to conjecture that MC28 is quite likely
due to a botnet phenomenon. What is of interest here is
that it has showed the behaviors i) and iv). On Fig. 6, we
can see this cloud had four main waves of activity during
which it was randomly scanning 5 different subnets (note
the perfect coordination among the time series). When
inspecting the subnet distributions of the different attack
waves, we could clearly observe a drift in the origins of those
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Table 2: High-level characteristics of two examples of Misbehaving Clouds. The colon Root cause refers to the presumed type
of phenomenon, based on the results of the attack attribution method.

MC Id Nr Events Nr Sources Duration Root cause Targeted ports
2 122 45,261 741 Worm-behaving 1433T (MSSQL), 1025T (RPC), 139T (Netbios),

cloud 5900T (VNC), 2967T (Symantec)
10 202 71,157 577 Botnet cloud ICMP, 445T (Microsoft-DS), 139T (Netbios), 80T (Web)

sources, probably as certain machines were infected by (resp.
cleaned from) the bot software. Then, we found also that
a smaller subset of µ-events in this MC were involving ma-
chines that directly attacked the Windows ports (without
scanning them). However, this group of attacking zombies
had quite different origins from those of the scanners, and
seem to be ordered to attack only specific IP addresses on
our sensors (i.e., the Windows honeypots). We conjecture
that the attackers probably took advantage of the results
given by the larger set of scanners. In Annex 1, we provide
a graph visualization of this misbehaving cloud to further
illustrate its behavior (i.e., the separation of duties between
scanners and attackers, and the drift in the origins of the
sources that leads to multiple geographical clusters).

Worm-behaving Cloud.
MC2 is an interesting case in which we can observe the be-
haviors ii) and iii). It consists of 122 µ-attack events that
have a shape which is fairly similar to the one left by a net-
work worm: its trace exists for several days, it has a small
amplitude at the beginning but grows quickly, exhibits im-
portant drops that can correspond to subnets being cured
or blacklisted, and it eventually dies slowly [15].

The lifetime of this MC was fairly long (about 741 days!). It
is composed of µ-events that have targeted a number of dis-
tinct services, including 1025T, 135T, 139T, 1433T, 2967T
and 5900T. The results of the multi-criteria fusion algorithm
indicate that those µ-events have been grouped together
mainly because of the following three features: geographical
location, targeted platform, and ports sequence. Moreover,
a detailed analysis reveals that an important amount of IP
addresses is shared by many µ-events composing this MC.
A node-link graph is provided in Annex 1 to visualize the
rather complex network structure formed by the µ-events
of this worm-behaving cloud, in which we can observe its
highly dynamic behavior. The cloud has been scanning (at
least) four consecutive class A-subnets during its lifetime,
while probing at the same time several ports on these sub-
networks. It is not excluded that all these attacks could
be due to two or three distinct worms (and thus, different
groups of people). However, this result indicates that the
same core piece of code has probably been reused, from a
very similar starting point to launch a number of distinct at-
tacks, which is an important piece of information for those
who are in charge of identifying those misbehaving groups
and their modus operandi.

5. CONCLUSIONS
We have presented a generic and systematic method to ad-
dress the complex problem related to “attack attribution”.
Our approach relies on a novel combination of a graph-based
clustering analysis and a multi-criteria aggregation process.
We have applied our technique to 2 years of attack traces
collected by 40 honeypots located all over the world, which
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Figure 6: Time series of coordinated µ-events for MC28.

has delivered some interesting results showing the utility
and the meaningfulness of this approach. It is worth noting
that the method could as easily be applied on completely
different threats-related events. In fact, the interim Syman-
tec report published mid October 2009 on the analysis of
Rogue Security Software [4] offers results of the application
of this very same method to the problem of understanding
the modus operandi of malicious users setting up Rogue AV
campaigns.

It is our hope that people will be interested in trying to
understand the rationales behind the Misbehaving Clouds we
have identified. We are eager to share as much information
as possible with such interested parties. Similarly, we are
looking forward in having other opportunities to apply this
method to other security datasets that future partners would
be willing to share with us.
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Appendix: Visualization of Misbehaving Clouds through Node-link graphs with multiple features.
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Figure 7: Node-link Graph of MC28 representing relationships between attack events (in beige). Following features are depicted: Fgeo

(in blue), Fsub (in pink), Fps (in the labels of the events), and a time axis of events (in purple). In this botnet cloud, attack events
involving machines attacking or exploiting directly the Windows ports are highlighted with red labels.
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Figure 8: Node-link Graph of MC2 representing relationships for Fgeo, Fsub, Ftarg and Fps.
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