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Abstract

With an ever increasing number of mobile applications downloaded every day, Android
security has been a hot topic of research for years. Because of its design, the Android
operating system and more broadly, the Android environment is prone to a lot of varied
threats. One of the most damaging threats for Android users is the development of mal-
wares. Malware developers will often modify an existing application to redistribute it on
non official platforms through a process called repackaging. To leverage such an attack,
adversaries use a wide collection of techniques ranging from static analysis to code instru-
mentation. Countermeasures and defense mechanisms against this particular attack were
proposed in the past, often with a focus on the prevention of application modification. As
will be demonstrated in this thesis, focus must also be put on different attack vectors to
effectively and durably protect Android applications.

Recently, products aiming at protecting applications from within appeared on the mar-
ket with many companies offering Runtime Application Self Protection (RASP) solutions.
Those products often claim more or less the same features: root detection, debugging
detection and prevention, emulator detection, obfuscation and tampering prevention. In-
terestingly (most probably because of the commercial nature of these solutions), very few
literature exist on the topic of RASP development.

This thesis aims at providing one of the first design and development document of
a RASP solution for Android. The research presented in this paper heavily relies on
the Anti-Repackaging through Multi-pattern Anti-tampering based on Native Detection
(ARMAND) project, developed by the Italian researchers Alessio Merlo, Antonio Ruggia,
Luigi Sciolla and Luca Verderame from the University of Genova.

My contribution on the topic will be the addition of effective protections against dy-
namic analysis to the ARMAND project which will help build a safer cyberspace for An-
droid application and their users.
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Chapter 1

Introduction
1.1 Motivations

1.1.1 Context

For about 20 years now, smartphones have taken increasingly significant importance in
our everyday life. Nowadays we use them for a lot of various tasks such as sending and
receiving emails, consulting our favorite social media, transfer money through banking
applications, etc ... They gained such importance that they’ve become an essential tool for
a lot of people and that it would be almost impossible to live without one at this point.

At the beginning, smartphone operating systems were varied and depended on the
device’s manufacturer until 2007 and 2008 when two major companies released their own
operating systems. In 2007 the first IPhone and the IOS operating systems were released
by Apple and one year later, in 2008, the Android operating system was introduced by
Google. Since then, the two operating systems have been fighting over market shares and
in 2012, Android became the leading operating system worldwide with approximately 75
%market share according to the research firm IDC [28].

This much importance into people’s everyday life attracted the attention of attackers
and security of Android became an important concern. The Android platform owes its
attractiveness to a couple of factors; its operating system is open source and there exists
a variety of application stores to choose from, which don’t enforce good enough security
measures. On top of that, Android malware development was proven to be a lucrative
practice as in 2014, a report showed that attackers can earn up to 12000 $ through mobile
malware related activities [37]. Another report also showed that in 2013, 98.05% of all
mobile malwares detected targeted this platform confirming both the popularity of the
operating system and the vulnerability of its design [20].

1.1.2 Problem statement

In this thesis I will focus on defending Android applications against dynamic analysis.
To do that I will be explaining in details the design and implementation of a Runtime
Application Self Protection (RASP) for Android.

In web application security, a Web Application Firewall (WAF) is a traditional solu-
tion used to increase security. Its purpose is to protect web applications and application
programming interfaces (API) against attacks ranging from Denial of Service (DoS) to in-
jection attacks and everything in between. They operate on the border of the application
and thus sometimes lack the context needed to determine if a given input should be blocked
or not. This results in a lack of accuracy which can be critical as it can, in some cases,
not recognize an attack being made. RASPs products are the next logical step. According
to Gartner, a RASP is "a security technology that is built or linked into an application or
application runtime environment and is capable of controlling application execution and
detecting and preventing real-time attacks." [12].

In the case of Android security, a RASP can be seen as an additional security layer
in the application development that aims at controlling the application’s behavior from
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the inside to detect and mitigate threats at runtime. As we have seen in the introduction
and will continue to demonstrate during this thesis, the Android environment is unsafe by
nature and developers have always tried to increase their applications’ security the best
they could. Since the Android platform came out, multiple solutions and workarounds
were found and used to protect Android applications as well as possible, but it usually was
a cumbersome task for the developers.

To develop this product I will base my work on the ARMANDroid [38] project. AR-
MANDroid represents the state of the art in anti-repackaging solutions thanks to its
advanced tampering protection system. ARMANDroid’s aim is to protect applications
against repackaging and contains therefore a great code injection mechanism which allows
me to focus on the development of security checks and not on the code injection process. In
this thesis I will showcase how I turned the ARMANDroid project to a full fledged RASP
solution by expanding its set of features to include additional security protections against
dynamic analysis.

Developing an SDK offering security controls and letting developers use it in their
projects adds additional workload on the development team which then has to learn the
documentation and use the solution the intended way. On top of letting the development’s
team deal with this security library, calls to the SDK’s API can sometimes be bypassed
by attackers by patching the source code. This is why an anti-tampering scheme such as
ARMAND is useful in this situation. Thanks to this scheme, the added security checks
cannot be removed by an attacker. ARMAND’s implementation for Android, namely AR-
MANDroid, works on the packaged application in APK format by injecting the protections
directly in the application’s code. Since it requires no developer interaction, this solution
could be used in an automated delivery process to add a security layer to applications
before release.

1.2 Project statement & contributions

This project will offer multiple features all aiming at increasing the security of a packaged
application with minimal developer interaction. The proposed solution in this thesis will
offer the following set of protections:

• Root & emulator detection Preventing an application from running on a com-
promised device (i.e. a rooted physical device or an emulator) mitigates all kinds of
attacks ranging from unauthorized data access to interception of communications,
effectively slowing down attackers.

• Debug detection & prevention Preventing a production applications from being
inspected with a debugger slows down the analysis of the app, which makes attacks
harder to execute.

• Dynamic analysis tools detection Stopping the application from running when
a hooking framework is present will mitigate attacks against it as those frameworks
are used to analyze the app and bypass some of its security checks.

1.2.1 Use cases

The solution presented in this thesis has a lot of practical uses and goes beyond just a
theoretical demonstration. In recent years, RASP products gained a lot of traction and
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companies started developing their own version of the solution to then sell it commercially.

Mobile banking and Fintech

In Fintech (Financial technologies) applications, security is of prime importance because
of the type of data processed. Moreover, the new European regulation PSD2 [25] in place
since 2018 impose requirements that must be met by financial institutions when providing
mobile applications to the public. Those requirements include:

• Implement monitoring mechanisms to take into account signs of malware infection.

• Ensure users have a secure environment to perform financial operations.

• Put security measures in place to enforce the user device’s integrity.

The use of a RASP product can help companies become compliant with this regulation
thanks to the security measures it adds to the companies’ applications. A RASP can
detect signs that a mobile application is installed on a compromised device or that the
application itself has been modified and refuse to run the application until those risks have
been remediated.

Mobile gaming

Patches or mod development in mobile gaming have been a known issue for years. Nowa-
days, patched versions of popular mobile games are being redistributed on non officials app
stores which makes them easily accessible to the public. Even though some of those mods
don’t have a high impact on the game and just give some additional capabilities to the
gamer, others can have a much higher impact by, for example, unlocking paid content for
free. Those types of mods are a real problem for game studios since in-app purchases are
the only source of revenue for some free mobile games. Using a RASP product to protect
a mobile game prevents or at least slows down the development of patches, ensuring that
paid content won’t be easily accessible to gamers.

Preventing malware development

As I will explain more in details later on, repackaging is the process of modifying an existing
application to then distribute it on non official app stores. Through this process, attackers
modify the behavior of the application to add malicious capabilities. Most of the time,
those added capabilities have the only goal of providing a financial benefit to malware
developers. Sometimes, such a modified application can have more pernicious intent and
steal personal information from infected devices.

On top of the damage a malware infection does to the victim, the company owning
the application suffer from loss of trust on the part of users. Such an event can sometimes
make the news and hurt the company’s reputation badly. For all these reasons, preventing
repackaging should be a crucial goal for companies developing mobile applications.

1.3 Organization of this document

Chapter 2 will be dedicated to providing a thorough description of the relevant parts
of the Android operating system and environment, limiting myself to what is needed to
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understand the content of this thesis. In chapter 3, I will explain and describe the different
tools and techniques used by adversaries to attack Android applications. Then in chapter
4, I will showcase which techniques exist that can prevent or at least mitigate such attacks
in order to add a security layer to Android applications. In chapter 5 I will describe how
I implemented and integrated the protection techniques discussed in chapter 3 with an
existing project, ARMANDroid. In chapter 6, I will showcase the results of my work and
experiments and how the implemented mechanisms effectively mitigate attacks. Finally in
chapter 7 I will discuss what could be improved and the current limitations of my work.
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Chapter 2

Android system description
2.1 Introduction

As any other operating system, Android is complex and offers a broad set of features for
both users and developers. Therefore, this chapter will only explain the core concepts of
the Android system needed to understand the rest of this thesis. Focus will be set on
the composition and behavior of Android applications and a rigorous description of their
technical details will be given. Understanding how applications are developed, packaged
and installed on a device is of prime importance for the rest of the thesis as all those
concepts were used to develop the work presented in this thesis. Each of those concepts
gives to the security aware reader hints of what could be done by an adversary to attack
such applications and consequently what could be done to protect them.

2.2 Android platform

The Android platform is composed of different layers with specific roles, each containing
multiple components [24] as shown in figure 2.1.

Figure 2.1 – Platform Stack taken from Google’s documentation
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The Android Kernel Android is built of off a Linux Kernel allowing for great modu-
larity and portability. Linux’ design makes it easy for manufacturers to develop hardware-
specific features through the development of drivers.

Hardware Abstraction Level (HAL) This layer makes hardware capabilities available
to the higher level Java API framework through interfaces. It consists in multiple library
modules, each defining an interface to interact with a specific hardware component (e.g.
camera or Bluetooth). Every time an API makes a call to access device hardware, the
module of that component is loaded by the Android system.

Android Runtime (ART) ART is designed to run multiple virtual machines on low-
memory devices by executing DEX files, a bytecode format replacing the Java bytecode
contained in .class files in classic Java environments. It has been replacing the Dalvik
virtual machine since Android Lollipop (version 5.0). In Android, each app runs in its own
process and with its own instance of ART.

Native C/C++ libraries Many essential components and services of the Android sys-
tem such as HAL or ART rely on libraries written in C and C++. Android provides Java
framework APIs to enable apps to access some of those libraries. If an app requires C or
C++ code, the developer can use the Android NDK to use those native libraries directly
from native code.

Java API framework The developer interacts with the multiple services and compo-
nents of the Android operating system through a variety of Java APIs.

System apps System apps are applications installed by default on the device that offer
basic features you would expect for a smartphone such as SMS messaging or a calendar.
These apps also offer their features to developers if they need it inside their own application.

2.3 APK structure

Android applications are packaged into an APK file which is in fact just a zip file that
anyone can decompress to access the compiled sources. This file follows the structure
described in figure 2.2

AndroidManifest.xml This file defines the activities used in the application along with
permissions needed by the application.

classes.dex This file contains the bytecode of the application in dalvik bytecode.

ressources.arsc This file contains all precompiled resources.

lib This directory contains the compiled code of native libraries that are platform depen-
dent. It contains a sub-directory containing the library for each CPU architecture.

assets This directory contains all the visual and audio resources of the application.
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Figure 2.2 – APK file structure

META-INF This folder contains the certificate of the application along with the
MANIFST.MF file which contains metadata about the app and the CERT.SF file which con-
tains the list of all files composing the APK and their corresponding SHA-1 digest.

res This folder contains the resources not compiled into resources.arsc.

2.4 Android build process

The process depicted in figure 2.3 starts by calling aapt (Android Asset Packaging Tool),
which is a tool used to compile and package the app resources contained in the res folder.
R.java, which contains the id of all available resources, and other auxiliary files are created
during this step.

Next, the java compiler compiles all the source code and outputs their bytecode in
.class files. The files can’t be read directly by ART and need to be transformed first in
DEX files. This is done by using the dex compiler or the more recent d8 compiler and
compiling those .class files.

Once the resources and the source code are compiled correctly, they are assembled into
an APK file thanks to the apkbuilder utility. The application can’t be uploaded yet on
the playstore as it needs to be signed first. Multiple tools allow to sign an APK file, the
recent apksigner offered with others Android cli programs.

The last step of this process is to call zipalign on the signed APK in order to reduce
the RAM needed when running the application. Zipalign is an APK optimization tool that
aligns on 4 bytes boundaries all uncompressed data such as images or raw files within the
APK.

2.5 Android application sandbox

Android benefits from Linux-based protections to monitor and isolate applications from
each other. Each application is assigned a unique user ID (UID) and runs in its own
process.
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Figure 2.3 – APK build process taken from Google’s documentation

The UID mechanism is used to set up a kernel-level application sandbox. Security
between applications and the underlying operating system is enforced at process level
through standard Linux features such as user and group IDs that are assigned to apps. By
default, the least privilege principle is applied to applications; they can’t interact with each
other and have limited access to the operating system. For example, if a malicious app tries
to read data from a legitimate application, it is blocked by the sandbox because it does
not have the appropriate user privilege. Since the application sandbox lies at operating
system level, the security model is not limited to Java code but also extends to both native
code and OS-level applications.

Each new application is installed in a new directory named after the app’s package,
which results in the following path: /data/data/<package-name>

If a developer develops two different apps but wants them to easily share data with
each other, they can do that by signing the two applications with the same certificate and
giving them the same UID by setting the sharedUserId entry in the apps’ manifests.

2.6 Android application components

The components described in this section are the main logical building blocks of Android
applications and any developer has to know perfectly how to use them. In some cases,
misuse of those components can lead to security risk and vulnerability, so understanding
their behaviors and interactions is important.
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Figure 2.4 – Application Sandbox

2.6.1 Android Manifest

The AndroidManifest.xml file is a mandatory component of every Android application and
is located at the root of the APK. The manifest file describes the application’s structure, its
components and the permissions the app requires. The file helps configuring the application
and reading it helps understand what the application is doing. In this thesis I will often
be referring to this file as simply the "manifest" file, which is not to be confused with the
MANIFST.MF file.

2.6.2 Intents

An intent is an asynchronous message to request an action from another component. Typ-
ically, an intent is used in three scenarios: starting a service, starting an activity and
delivering a broadcast. There are two types of intents: implicit and explicit.

• Explicit intents specify the application which will satisfy the intent either by sup-
plying the app’s package name or a fully-qualified component class name. This kind
of intent is usually used to start a component of the same app that sent the intent.

• Implicit intents, on the other hand, don’t specify a particular component but
declare a general action to perform, allowing a component from another app to
handle it. For example, if an application wants to show a specific spot on a map, it
can send an intent to request another app to do that.

Intent filters are expressions defined in the manifest file that specify the type of intents
that the component would like to receive. When an application sends an implicit intent,
Android finds the right component to start by checking intent filters of other applications. If
there’s a match with a component from another app, that component is started and passed
the intent object as a parameter. This mechanism thus only works for implicit intent and
if there is no declared intent filter for a component in the manifest, this component can
only be started with an explicit intent.
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2.6.3 Activities

An activity is basically one screen of the application and thus represents the main way of
interacting with the user. They all work independently from each other but they interact
to form a cohesive work flow inside the application. An application can start an activity
of another application only if the other application allows it; for example, this mechanism
allows the camera application to start an activity from an email application to easily share
a picture.

From a technical point of view, all activities inherit from the Activity class. They
contain all other user interface elements: fragments, views and layouts. Every activity
must be declared in the Android Manifest as follows:

<activity android:name="ActivityName"> </activity>

Activites have their own life cycle and switch from state to state in a deterministic
manner; those state changes can be manipulated by the developer through the following
methods: onCreate, onSavedInstance, onStart, onResume, onPause, onRestart, onDestroy.

If one of those methods is not implemented by the developer, default actions are taken
by the operating system.

2.6.4 Services

A service is an Android component which runs in the background to perform tasks such
as downloading a file over the network or playing music. Contrary to an activity, a service
does not have a user interface. Services exist in two distinct flavours:

• Started services tell the system to keep them running until their job is done.
The system will do its best to keep them alive and will kill them last because it
would result in bad user experience (e.g. a music player shouldn’t stop unless really
necessary).

• Bound services run to serve another application. They run as a dependency to
another process and the system knows that if process A needs process B, it should
keep B and its service alive as long as A lives.

2.6.5 Content providers

A content provider is an Android component that abstracts a data source using a URI
scheme. This data source can take multiple forms, be it a SQLite database or a file for
example. This component is used by an application to perform usual CRUD operations
on a specific data source. By default, a content provider created in an application is not
accessible by other apps. To share it with another application, the content provider must
be declared in the manifest file of the other application that wants to use it.

2.6.6 Broadcast receivers

Broadcast receivers allow applications to receive notifications from the system and from
other apps. For example, an application might send a broadcast to other applications to
tell them that data were downloaded and are now available for them to use or the system
might tell the applications that there is no network connection. A broadcast receiver can,
just like an activity, be declared in the Android Manifest:
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<receiver android:name=".MyReceiver" >
<intent-filter>

<action android:name="com.ulb.myapplication.MY_ACTION" />
</intent-filter>

</receiver>

As this example implies, broadcasts are delivered through intent objects and you use
intent filters to specify which intents the broadcast receiver accepts.

Another way of creating a broadcast receiver is through code with the method
registerReceiver() (the following example was taken from OWASP’s MSTG [34]):

// Define a broadcast receiver
BroadcastReceiver myReceiver = new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

Log.d(TAG, "Intent received by myReceiver");
}

};
// Define an intent filter with actions that the broadcast receiver listens

for
IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction("com.ulb.myapplication.MY_ACTION");
// To register the broadcast receiver
registerReceiver(myReceiver, intentFilter);
// To un-register the broadcast receiver
unregisterReceiver(myReceiver);

To make sure that an application will not receive broadcasts from other applications,
the developer can use a local broadcast manager. This ensures that all received broadcasts
originated from the application itself and that broadcasts coming from other applications
will be discarded. This increases security as no inter-process communication will take
place.

2.7 Zygote

On Android devices, all processes are forked from the Zygote process. This process is
started very early during the boot process and contains all the core libraries necessary for
running applications. Once started, this process opens the socket /dev/socket/zygote
and waits for incoming messages from local clients. Upon reception of such a message, it
forks a new process which then loads and executes the application.

2.8 Summary

The concepts described in this chapter are of prime importance to understand the rest of
this thesis. As stated before, the Android operating system is a complex machinery and
its description focused on the development and deployment of applications to keep things
relevant.

The reader should now understand the basics of the Android operating system, what
the building blocks of an Android application are and how such an application is assem-
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bled. The reader might also start to see what can be done to attack such a system and
thus what could be done to protect it. Each of the components described in this chapter
could potentially introduce vulnerabilities or be exploited in one way or another to per-
form malevolent actions on a device. The next chapter will explore this point of view by
providing an overview of the different threats to the Android system.



Chapter 3

Threat model
3.1 Introduction

This chapter will provide a detailed description of the different static and dynamic analysis
tools and techniques used by attackers to compromise an application. The given descrip-
tions will sometimes be accompanied by examples of practical use. Most of those examples
are inspired from the OWASP’s Mobile Security Testing Guide (MSTG) [34]. It is im-
portant to keep in mind that the techniques described here represent only a fraction of
the potential threats to Android systems and applications. This chapter should, however,
give the reader a good overview of the possible attacks to Android applications, which is
important to understand the mitigation techniques described in the next chapter.

3.2 Device rooting

Rooting (or jailbreaking) a device gives the user full control over its operating system. It
allows the user to bypass restrictions such as the application sandbox. Those new privileges
allow the user to use certain tools such as Frida to do code injection or function hooking
more easily.

Rooting can be classified in two main categories as discussed in Long N. et al’s paper [30]
on Android rooting:

1. Soft root which is gaining privileged access on a booted system. This technique is
entirely software-based and relies on the exploitation of vulnerabilities in the kernel
or in a running process for example. This kind of rooting gave birth to "one-click
rooting" applications. Rooting done in this fashion is usually temporary, mostly
in devices which have a locked bootloader, as it checks the integrity of the system
everytime it boots. To persist the root privilege, the bootloader must be unlocked
and the recovery mode must undergo some manipulations.

2. Hard root, in contrary to soft root, requires physical interaction with the device.
It works by booting the device in recovery mode and installing su or replacing the
entire operating system with a new one that has su installed. On some devices
the bootloader is locked, which makes the rooting process more difficult. The main
advantage of this technique over soft rooting is that it is not temporary because it
requires unlocking the bootloader which makes the rooting permanent.

A wide variety of tools exist in the open-source community and can take multiple forms:
an APK, a binary to install on the system, etc ...

3.2.1 Magisk

Magisk [9] is probably the most popular rooting tools on the market at the moment. The
reason for its popularity lies in the way modifications on the system are made. It offers
a mode of operation wich is called systemless in which it does not make visible changes

13



14 3.3. EMULATORS

to data on the system partition, but instead stores its modifications in the boot partition.
This particularity offers the advantage of hiding all rooting related modifications from
root-sensitive applications while allowing to use the official Android OTA (Over The Air)
updates without unrooting the device first.

On top of its main rooting feature, Magisk also offers the application Magisk hide which
allows more fine grained control over the rooting. With this application, the user can select
which application installed on the device should not see Magisk and it will then hide its
presence from the selected applications to evade the root detection controls inside those
apps. To hide itself from a selected app, Magisk needs a way of detecting the app’s start.
Over the years, Magisk used different techniques to achieve this result:

Logcat monitoring. Logcat is a command line tool shipped with the Android SDK
which dumps system and application information. Whenever an application starts,
Logcat will log specific messages that are then used by Magisk hide to detect the
app’s process start. This method requires constant monitoring of system logs and
thus introduces some overhead.

inotify. inotify is a Linux feature that allows to report changes in the file system
to applications. Whenever an app starts, its APK file will be accessed from the file
system. It is thus possible to use inotify to detect the open() system call to the
target the APK to detect when the app’s process starts.

ptrace. As explained in chapter 2, all applications’ processes on Android are forked
from the Zygote process. Therefore, it is possible to monitor all processes’ start by
attaching ptrace to Zygote and stepping through all fork events.

3.3 Emulators

An Android emulator imitates an Android device by reproducing virtually both its software
and hardware architecture. Using an emulator offers advantages over a physical device,
but also comes with downsides. The list of advantages include:

• Snapshot support

• Rooted by default

• Easy to restore if corrupted

The main downside of using an emulator is the performance overhead as emulators
are most of the time way slower than physical devices. They also have limited hardware
interactions, which might lead to errors when running certain native libraries because of
the type of CPU the emulator uses.

3.3.1 QEMU

QEMU [18] based emulators offer complete virtualization of the device by taking into con-
sideration RAM, CPU, battery performance and other hardware restrictions. The QEMU
emulator can emulate different type of CPUs (x86, PowerPC, ARM and Sparc) which
makes it a very versatile tool. The tool is useful for debugging because the state of the
virtual machine can be easily stopped, saved or restored. QEMU is composed of several
subsystems:
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• CPU emulator (x86, PowerPC, ARM and Sparc).

• Emulated devices (e.g. VGA display, 16450 se-rial port, PS/2 mouse and keyboard,
IDE hard disk).

• Generic devices used to allow communication between the emulated and the host
device.

• Machine descriptions used to instantiate the emulated devices.

• Debugger.

• User interface.

This emulator or parts of it were used by other well known emulator projects such as
VirtualBox [39] which integrates QEMU’s recompiler or used QEMU’s virtual hardware
devices as a starting point for their own. It also powers the Android emulator project
which is part of the Android SDK and is thus the by-default emulator for a big part of the
Android developer community.

3.3.2 Kernel-based virtual machine

Kernel-based virtual machine (KVM for short) [7] is a Linux kernel module and a type 1
hypervisor allowing full virtualization. Unlike QEMU and type 2 hypervisors in general,
the CPU is not emulated by the hypervisor which reduces the performance overhead.
This module works by adding a character device (/dev/kvm) that exposes virtualization
capabilities to userspace. With this driver, a process can run a virtual machine containing
all the normal components of a virtualized system. Each virtual machine is therefore a
process on the host and a virtual CPU is a thread in that process. Since QEMU’s hardware
virtualization is slow by nature, it uses KVM as an accelerator to increase performance.

3.4 Reverse engineering and static analysis techniques

Reverse engineering is the process of reconstructing a compiled piece of software which
is not made to be human readable. Java or Dalvik bytecode can be easily decompiled
back to a source code really close to the original Java code; if the application does not
use additional native code, the application testing is then almost similar to white box
testing. Native code reverse engineering, on the other hand, requires more skills because
the disassembled code is far from the original source code.

Static analysis is the process of understanding the program’s behavior without running
it, as opposed to dynamic analysis. In a black box context, it is closely related to reverse
engineering since in order to understand code from an APK an adversary must first reverse
it.

In this section I will introduce the processes and tools used by attackers to reverse
engineer and statically analyse Android applications.

3.4.1 Decompiling Java code

The most straightforward way of reversing Java code from an APK is to open it directly
in Android Studio by clicking Profile or debug APK from the welcome screen. The
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downside of this approach is that Smali code, which is harder to understand than Java
code, is created from the bytecode.

Another tool that also produces Smali from Dalvik bytecode is apktool [2]. On top
of that, it can reassemble the package of the application, which is useful for patching and
applying changes to the Android Manifest for example.

Smali code is easier to understand than actual bytecode but it is still more difficult
to understand than Java code. To produce Java from bytecode, a disassembler is needed
and hopefully Java disassemblers usually work well with Android bytecode. Common free
decompilers include:

• JD [21]

• jadx and jadx gui [36]

• CFR [19]

Once an APK is downloaded, an attacker can recompose the source code of an ap-
plication to analyse it in order to find what defenses are in place and where they could
potentially inject malicious code. Dex2jar [35] can convert the dex file of an APK to a jar
which can then be decompiled and inspected.

3.4.2 Disassembling native code

Java code can communicate with native code written in C or C++ through the JNI which
is supported by the Dalvik virtual machine and ART. To run on Android as on other Linux
operating systems, native code is compiled into an ELF dynamic library with the extension
*.so. The developer can then interact with this library by calling the System.load()
function from Java code. Contrary to traditional Linux systems, Android does not rely
on widely used C library such as glibc but instead uses a custom libc called Bionic. This
library has been specifically designed by Google to run on devices with less memory and
processor power than typical Linux systems.

When reversing an Android application, it is important to well understand a data
structure: JNIEnv; this data structure is a pointer to pointers to function tables. It provides
access to most common JNI functions which are accessible at a fixed offset through the
JNIEnv pointer. This pointer is passed to every JNI function as the first parameter.

In order to reverse engineer native code, one needs any decompiler. There exists a wide
variety of those tools but to give some examples, the most common ones are:

• IDA pro

• ghidra

• radare2

3.5 Dynamic analysis

As a defense against static analysis, developers will obfuscate the source code of their app
before packaging it into an APK file; in this case, an attacker won’t be able to perform
static analysis and will have to run the application to study its behavior at runtime. It
also allows the adversary to discover business logic flaws or certain vulnerabilities more
easily than with static analysis.
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Dynamic analysis can be done either on a rooted or non-rooted device. Device rooting
is used a lot for dynamic analysis because it is required by a lot of tools and it offers
complete control over the Android system.

3.5.1 Debugging

Debugging is probably the most well-known kind of dynamic analysis as it is common
practice when developing software. Debugging tools are also useful to an attacker as they
allow to explore memory at runtime and thus effectively bypass obfuscation. There are
two different approaches when debugging Java applications on Android: the first one is to
debug on the Java level with the Java Debug Wire Protocol (JDWP) and the second one
is to debug on the native level through a ptrace-based debugger.

Java debugging

To debug Java code without having access to the source code of the app, one can use
the jdb debugger and the Android utility adb. To do so, we must first open a listening
socket on the host to forward the socket’s incoming connections to the JDWP transport
of a chosen process on the target device:

adb forward tcp:7777 jdwp:12345

Here 12345 is the process id that we are trying to debug. Next we want to attach the jdb
debugger to the correct process:

{ echo "suspend"; cat; } | jdb -attach localhost:7777

The debugger is now attached to the correct process, all threads are suspended and we can
start using it to explore memory at runtime. Jdb offers a lot of features, for example:

• list all loaded classes

• print details about a class and list its methods and fields

• print local variables an current stack frame

• print information about an object

• set a method a breakpoint

• remove a method breakpoint

• assign new value to field, variable or array element

Native code debugging

Since native code is compiled into regular ELF libraries, we can use the regular set of tools
used to debug native libraries such as gdb for example. In order to debug native code,
the Android NDK (Native Development Kit) must be installed on the host as it provides
the gdbserver utility which is used to debug processes on the smartphone. Next we must
copy the gdbserver binary to the testing device:

adb push $NDK/prebuilt/android-arm/gdbserver/gdbserver /data/local/tmp
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Then we attach gdbserver to the right process:

/data/local/tmp/gdbserver --attach localhost:1234 12690

Here 12690 is the id of the process we want to debug. Gdbserver is now correctly
attached and is waiting for debugging clients on port 1234. We can now use adb to
forward this port to a local port on the host:

adb forward tcp:1234 tcp:1234

The last step of this process is to use the prebuilt instance of gdb included in the NDK
toolchain to perform the debugging:

$TOOLCHAIN/bin/gdb libnative-lib.so

We can now use all the features of gdb, including the important target remote :1234,
indicating that we are debugging a remote process from port 1234.

3.5.2 Tracing

Function tracing or code instrumentation is a technique allowing to print the execution
of a program by printing information such as the list of methods executed, time spent in
those methods or even their parameters and return values.

In some cases (e.g. Frida or Xposed), tracing tools also allow to modify methods
parameters and return values, which is a very powerful capability for an adversary. Such
a technique allows to easily bypass some programmatic checks. For example we could
imagine tampering with a specific function checking the validity of a X509 certificate and
simply setting its return value to true.

Jdb execution tracing

Jdb, the java debugger discussed in section 3.5.1 offers the ability to dump all method
entries and exits after a specific breakpoint with the command trace go methods.

Tracing system calls with strace

The previous methods worked on the application level but it is possible to also trace system
calls to the Linux kernel with the strace utility. Intercepting such calls to the kernel gives a
good overview of what a user process is doing and can also allow adversaries to deactivate
low level tampering defenses.

Strace is a Linux utility not included with the Android SDK but can be built from
source with the Android NDK. Since strace is internally using the ptrace system call to
attach to the target process, it is vulnerable to anti-debuging measures which prevent it
to work.

Tracing system calls with ftrace

Ftrace is another tracing utility directly included in the Linux kernel. This tool requires a
rooted device but offers more transparency than strace because it does not use the ptrace
system call.

This utility is installed by default on most Android versions and can be easily enabled:
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$ echo 1 > /proc/sys/kernel/ftrace_enabled

Ftrace log files and directories are all located in the /sys/kernel/debug/tracing di-
rectory.

Method tracing with frida

Frida [4] (which will be described in section 3.7.1) is an open-source toolkit which provides
dynamic code instrumentation by injecting the QuickJs [10] Javascript engine into the
instrumented process. Its aim is to allow Javascript execution inside native apps on Android
and IOS.

Using frida-trace, it is trivial to perform method tracing:

$ frida-trace -U -i "open" com.android.chrome

In the above command, the -U option is used to tell Frida to connect to the USB device,
the -i option is used to specify the name of the function to trace and com.android.chrome
is the fully qualified name of the application to monitor.

$ frida-trace -U -i "Java_*" com.android.chrome

Here, frida-trace will monitor all JNI methods as they all start with the Java_ string by
using a regular expression.

Oftentimes binaries will be stripped (i.e. their debugging information have been re-
moved to shrink their size) and thus do not contain method names. In this case, the user
can trace a method with its memory address as shown below:

$ frida-trace -U com.android.chrome -a "libjpeg.so!0x4793c"

3.5.3 Symbolic execution

According to Wikipedia [14], symbolic execution is a means of analyzing a program to
determine what inputs cause each part of a program to execute.. It translates the program’s
semantic into a logical formula in which some variables are represented by symbols with
specific constraints. This formula is then used as an input by a constraint solver which
finds the right values for those symbols to trigger each execution path.

In other words, symbolic execution uses mathematics to analyze a program without
actually running it. Execution of the program is done by a symbolic execution engine
which maintains, for each explored control flow path:

1. A first order Boolean formula that contains the conditions satisfied by the branches
taken along that path.

2. A symbolic memory store that maps variables to symbolic expressions.

In the end of the process, a model checker based on a Satisfiability Modulo Theories
(SMT) checker is used to verify if the final formula can be satisfied by some assignment of
actual values to the program’s symbolic arguments.

As powerful as this approach is, it still has downsides:
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• Loops and recursions can cause the analysis to never return a value.

• A big code base with multiple conditional branches or nested conditions may lead to
path explosion.

• In some cases, complex equations generated by the symbolic execution engine may
not be solvable by the model checker because of their current limitations.

• The symbolic execution engine does not handle well system or library calls or network
events.

Those downsides can be mitigated by combining symbolic execution with other tech-
niques such as dynamic (aka concrete) execution. This specific combination of concrete
and symbolic execution is referred to as concolic (concrete and symbolic) execution. It is
also possible to combine reverse engineering or static analysis with symbolic execution to
start the symbolic execution at a specific place in the program rather than starting at its
entry point.

Although multiple symbolic execution tools exist, the most common is Angr [1]. Ac-
cording to its documentation page, Angr is a python framework for analyzing binaries.
It combines both static and dynamic symbolic ("concolic") analysis, making it applicable
to a variety of tasks. It is a very versatile tool which is not limited to symbolic execu-
tion; its features include also dissassembly, program instrumentation, control-flow analysis,
data-dependency analysis, decompilation thanks to a large set of plugins.

3.6 Tampering and repackaging

Tampering means modifying the source code of the application to change its behavior. It
has a lot of different use cases which include bypassing security controls or adding new
features to the application. Repackaging means making the modified application ready for
deployment and use.

In this section we will have a look at the most common techniques to leverage tam-
pering, i.e. Android manifest manipulation, Smali code patching, Java code injection and
native code injection, as well as the repackaging process and tools.

3.6.1 Android manifest patching

Patching an application’s manifest allows an adversary to add certain permissions to the
application or to make it debuggable. Simply uncompressing the APK does not allow us
to edit the file as it is encoded in Android’s binary XML and we need apktool to decode
it:

$ apktool d --no-src target.apk

Here the d option specifies that we want to decode target.apk and –no-src means that
we don’t want to disassemble the DEX file.

Now that the file is editable we can add android:debuggable="true" in the application
tag:

<application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app_name"
android:name="com.xxx.xxx.xxx" android:theme="@style/AppTheme">
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3.6.2 Smali code patching

As discussed in section 3.4.1, apktool can be used to decompile Dalvik bytecode to Smali
source code:

$ apktool d target_apk.apk

This resulting Smali code can then be modified with a simple text editor:

.method public
checkServerTrusted([LJava/security/cert/X509Certificate;Ljava/lang/String;)V

.locals 3

.param p1, "chain" # [Ljava/security/cert/X509Certificate;

.param p2, "authType" # Ljava/lang/String;

.prologue
return-void # <-- OUR INSERTED OPCODE!
.line 102
iget-object v1, p0, Lasdf/t$a;->a:Ljava/util/ArrayList;

invoke-virtual {v1}, Ljava/util/ArrayList;->iterator()Ljava/util/Iterator;

move-result-object v1

:goto_0
invoke-interface {v1}, Ljava/util/Iterator;->hasNext()Z

This example was taken from OWASP’s MSTG [34] and describes the patching of the
method checkServerTrusted which is responsible for verifying that the server to which
the app connects to over SSL is trusted. The patching modifies the method’s return value
to make it return immediately, effectively bypassing the check.

Once the Smali file has been modified, we can convert the application’s files back to
Dalvik bytecode with the command:

$ apktool b target_apk

Where target_apk is the folder containing the modified Smali files.

3.6.3 Java Bytecode manipulation

In the previous section we discussed how to manipulate Smali code which is an intermediary
representation of Java bytecode, but it is also possible to modify Java bytecode directly
thanks to various libraries and frameworks. The most common are:

ASM From the official documentation [3], ASM is an all purpose Java bytecode ma-
nipulation and analysis framework. It is a mature library which offers tons of features
and is well documented. It has been used in a variety of different projects such as
the OpenJDK, the Groovy and Kotlin compiler or Gradle to name a few. It makes
bytecode manipulation possible through an API which, although well documented,
requires thorough knowledge of the Java class file format.

Soot According to its official github page [13], Soot is a Java optimization framework.
It allows the developer to analyze and optimize java bytecode by offering four different
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bytecode representations.

Javassist Javassist’s goal is to make Java bytecode manipulation simple [6]. It
has comprehensive and to-the-point tutorials allowing any new user to get started
quickly. The strength of javassist resides in its two levels API: source and bytecode
level. The source level API allows users to edit a class file without knowledge of the
specifications of Java bytecode, and if the user wants to have more control on the
operations performed, the bytecode level API allows to edit bytecode more directly.

Below you will find an example of bytecode manipulation of an Android application
with Javassist:

pool = ClassPool.getDefault();
pool.insertClassPath("c:\Users\username\AppData\Local\Android\platforms\
android-30\android.jar");
pool.importPackage("com.test");

mainActivity = pool.get(mainActivity);
onCreate = mainActivity.getDeclaredMethod("onCreate");

A ClassPool is a container of CtClass object representing a class file. It reads a class
file on demand for contructing a CtClass object and records the constructed object for
responding later accesses. Then, the method insertClassPath() registers the class or jar
path that was used for loading the class that is given in parameter. In this example, the
provided path corresponds to the android.jar file as it is needed to use the Android API.

The method pool.get(mainActivity) will return a CtClass object representing the
main activity that we can extract from the app’s manifest. Inside this activity, the
onCreate() method is the first method called when the activity starts and I can get a
reference to that method by calling getDeclaredMethod("onCreate") on the CtClass ob-
ject representing the main activity.

Now that we have a reference to the onCreate method, we can inject it with whatever
code we want:

String injected_code_stmt = "{Log.d("ULB", "Injected code")}";
onCreate.insertBefore(injected_code_stmt);
mainActivity.writeFile("output.test");

One of the downside of working with javassist is that bytecode manipulation is done
through strings. When one wants to inject code in a class file, the code to inject must be
in the form of a String type variable between curly braces. To actually inject the code to
the class file, we use the insertBefore method with the statement to be injected passed
as a parameter. This method will inject the provided statement at the beginning of the
specified method, in our case onCreate. Finally, the writeFile method will write the
modified class file of the object mainActivity to the path specified in parameter.

3.6.4 Java library injection

Thanks to dex2jar [35], it is possible to convert an APK to a jar file. A jar file being
a compressed file format, it is possible to uncompress it to recover its content. A jar is
composed of folders representing the different packages, each containing their corresponding
class files. In order to inject any library, we need to first compile the wanted Java code
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to bytecode with a Java compiler i.e. javac if we want to do it manually or an IDE
e.g. Intellij. Then we need to create a folder with the right package name inside the
uncompressed jar folder and finally we copy the class files we want to inject inside that
folder.

The last step si to compress the entire jar again and convert it back to the classes.dex
file with a dex compiler such as dex or d8.

$ dx --dex classes.dex modified_jar.jar

Here, classes.dex is the output file and modified_jar.jar is the input jar we want
to convert to DEX bytecode. We can then put the resulting classes.dex file back in
the uncompressed APK folder structure and repackage it to a fully functional APK as
described in section 3.6.6.

This section and the previous one can both be automated and combined to inject any
classes we want into an APK and then modify its bytecode to call methods from the
injected classes. It is a common method for malware development but it can also be used
to add new features to an application or to protect it.

3.6.5 Native library injection

Smali patching and bytecode manipulation

There are different techniques to inject a native library inside a target APK. We can use
the Smali code patching technique described in section 3.6.2 for example:

const-string v0, "inject"
invoke-static {v0}, Ljava/lang/System;->loadLibrary(Ljava/lang/String;)V

This example shows the injection of a call to the method System.loadLibrary() which
loads the library libinject.so. Keep in mind that the injected library must be placed in
the right architecture folder (i.e. armabi-v7a, arm64-v8a or x86) of the lib folder in the
APK for this technique to work.

We can achieve the same result with the bytecode manipulation technique described in
section 3.6.3:

String injected_code_stmt = "{System.loadLibrary(inject)}";
onCreate.insertBefore(injected_code_stmt);
mainActivity.writeFile("output.test");

In this example, onCreate is a CtClass object representing a reference to the onCreate
method of the mainActivity.

ELF format manipulation

Native code is compiled in a shared library (s.o. file extension) which is itself an ELF file.
An ELF executable includes a list of other shared libraries that are linked to the executable
in order for it to work. This list can be modified to include arbitrary dependencies which
will then be injected in the process.

The ELF file format was not created to be human readable and its manual modification
is thus not a trivial task. Fortunately, this can be done more easily using the LIEF (Library
to Instrument Executable Formats) library in Python:
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import lief

libnative = lief.parse("libnative.so")
libnative.add_library("libinject.so") # Injection!
libnative.write("libnative.so")

In this example, libinject.so is added as a dependency of the library libnative.so.

Preloading symbols

All the tampering techniques described until now used code modification to add a native
library in an application. It is also possible to use the loader of the underlying operating
system to achieve the same result. On Linux, it is possible to load an additional library
with the LD_PRELOAD environment variable.

Symbols loaded by the library set by this environment variable have top priority, mean-
ing that the loader will first look into this library when resolving symbols, overriding the
original ones. This allows an adversary to wrap common libc functions such as fopen,
read, write or strcmmp in order to print their parameters for example. This is particu-
larly useful if they are dealing with an obfuscated library where understanding low level
functions can help better understand the library’s behavior.

On the Android system, this mechanism varies slightly because of the Zygote process.
Each application is forked from this process which is started early during the system boot
up. Simply setting LD_PRELOAD on Android is thus not possible but there is a workaround.
The setprop feature lets you do the same thing:

$ setprop wrap.com.foo.bar LD_PRELOAD=/data/local/tmp/libpreload.so

Where wrap.com.foo.bar is the package name of the application we want to load the library
into.

3.6.6 Repackaging

Once we have made the changes we wanted to the application, we have to repackage it and
sign it to make it ready for deployment. To repackage the app we can either compress its
content folder or we can use apktool:

$ apktool b content_folder -o modified_target.apk

This command builds the content folder into the modified-target.apk. Next
we must use the zipalign utility included in the Android SDK at this location:
[SDK-Path]/build-tools/[version] to align its resources correctly (not doing this step
can fail the installation of the application on a device).

$ zipalign -v 4 modified_target.apk aligned_target.apk

The last step of the repackaging process is to sign the APK with a valid certificate. The
JDK provides a utility for managing keys and certificate called keytool. The following
command creates a keystore and a key and stores it in the keystore:

$ keytool -genkey -v -keystore ulb.keystore -alias signkey -keyalg RSA
-keysize 2048 -validity 20000
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Now that the key is created, we can use it with the apksigner utility provided with
the Android Sdk at the location: [SDK-Path]/build-tools/[version]:

$ apksigner sign --ks ulb.keystore --ks-key-alias signkey aligned_target.apk

The application is now repackaged, signed and ready for deployment; we can install it
on a device with adb:

$ adb install aligned_target.apk

3.7 Dynamic instrumentation

3.7.1 Frida

We already discussed some of the capabilities offered by Frida tool in section 3.7.1 and I
will now explain how it works internally.

Code injection is a vast topic and a lot of different techniques exist. For example,
Xposed [15] permanently modifies the Android app loader, providing hooks for running
your own code every time a new process is started. On the contrary, Frida injects code
directly in the process memory. Once attached to a process:

• Frida uses ptrace internally to hook a running process. It is then usd to allocate a
chunk of memory to install a mini-bootstrapper.

• The bootstraper then starts a new thread, connects to the Frida debugging server
which was previously installed and started on the device and loads a shared library
that contains the Frida agent (frida-agent.so).

• The agent creates a bi-directional communication channel back to the tool (e.g. your
custom Python script)

• The hooked thread restores its original state and resumes to allow normal process
execution.

Frida offers 3 different modes of operation:

Injected: This mode of operation is very flexible and offers a lot of capabilities. It
lets the user either spawn a new program, attach to an already running program or
hijack one as it is being spawned. Other features include listing all installed appli-
cations, running processes and connected devices. A connected device is typically
an Android (or IOS) device where frida-server is running. Frida-server will expose
frida-core over TCP listening on localhost:27042 by default. To use this mode of
operation the device needs to be rooted.

Embedded: This mode lets the user use Frida on jailed (i.e. non rooted) devices
by injecting the shared library frida-gadget into the target apk. Simply loading the
library lets the user interact with it remotely using tools from the Frida toolkit such
as frida-trace. This mode also offers the ability to run scripts from the filesystem
without any outside communication.
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Figure 3.1 – Frida’s internal architecture taken from Frida’s documentation

Preloaded: This mode uses the same logic as DYLD_INSERT_LIBRARIES and
LD_PRELOAD. Those two variables allow the user to specify the path to libaries which
will be loaded before any other. If Frida is used in this mode of operation, frida-
gadget will run autonomously and load a script from the filesystem.

To perform complex operations with Frida, it is possible to write custom scripts in
Javascript.

3.7.2 Xposed

Xposed is a framework that allows the user to import modules to the ROM. Those modules
allow to modify the behavior of the system or applications at runtime without modifying
APKs or re-flashing a new ROM. From a technical standpoint, Xposed extends the Zygote
process and exports APIs that allow Java code execution when a new process is started.
This additional Java code is executed in the context of the instrumented process, which
makes it possible to hook and override Java methods belonging to the started application.
The changes made to applications are applied in memory and are therefore not persistent
as they last only during the app’s execution.

This tool requires a rooted device to work and modules installation is done through
the Xposed installer app, which offers a nice GUI for modules management. Just like
Frida disposes of a wide variety of open-source scripts, Xposed benefits from a long list
of modules created by the open-source community. Creating custom modules can be a
powerful asset to have in the toolbox as they can be used to bypass security measures of
Android applications.

Method overriding

Using Frida it is possible to override a method to arbitrarily modify its content. For
example, an adversary could override a method performing a root check on a device:
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setImmediate(function() { //prevents timeout
console.log("[*] Starting script");

Java.perform(function() {
var mainActivity = Java.use("com.ulb.MainActivity");
mainActivity.rootCheck.implementation = function(v) {

console.log("[*] MainActivity.a called");
};
console.log("[*] MainActivity.a modified");

});
});

In the above example, the function setImmediate calls the function passed in parame-
ter as soon as possible on Frida’s Javascript thread. The function Java.perform() is
needed by Frida to interact with the JVM and Java methods. Then a wrapper for the
MainActivity class is created which allows the adversary to retrieve and manipulate
its methods. A reference to the methods performing the root check is retrieved with
mainActivity.rootCheck.implementation and its body is then overridden by a function
performing a simple console.log(), effectively bypassing the check implemented in the
initial method.

Let us name this script root_detection_bypass.js and run it with Fria:

$ frida -U -f ulb.com.vulnerable_application -l root_detection_bypass.js
--no-pause

Return value interception

With Frida, an adversary can intercept return values of specific methods. In the following
example we will consider an hypothetical class called DecryptionHelper that possesses a
method called decrypt(String encrypted_value, byte[] key) that takes two param-
eters: the value to decrypt and the decryption key. The value of this method is never
actually returned to the user but its return value is used to check if the provided pass-
word corresponds to the expected password. A straight forward approach to find the right
password would be to brute-force it or reverse engineer the decryption routine but both
approaches take time and effort. A better technique would be to intercept the return value
of the decrypt method and return it:

setImmediate(function() { //prevent timeout
console.log("[*] Starting script");

Java.perform(function() {
var decryptionClass = Java.use("com.ulb.DecryptionHelper");
decryptionClass.decrypt.implementation = function(arg1, arg2) {

var retval = this.decrypt(arg1, arg2);
var password = ’’;
for(var i = 0; i < retval.length; i++) {

password += String.fromCharCode(retval[i]);
}
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console.log("[*] Decrypted: " + password);
return retval;

};
});

});

In the above example, we first decrypt the value by calling the original decryptmethod,
then we convert it to a String object with the for loop and we finally return the decrypted
value which we can then use as our password.

An other example would be bypassing a root check. Let’s assume the target application
has a root detection mechanism which crashes the application if the device is rooted. Let
us consider an hypothetical application with package name com.example.target which
possesses a class Security which itself implements a rootcheck method. This security
mechanism can be bypassed with the following Xposed module.

package com.ulb.be;

import static de.robv.android.xposed.XposedHelpers.findAndHookMethod;
import de.robv.android.xposed.IXposedHookLoadPackage;
import de.robv.android.xposed.XposedBridge;
import de.robv.android.xposed.XC_MethodHook;
import de.robv.android.xposed.callbacks.XC_LoadPackage.LoadPackageParam;

public class DisableRootCheck implements IXposedHookLoadPackage {

public void handleLoadPackage(final LoadPackageParam lpparam) throws
Throwable {
if (!lpparam.packageName.equals("com.example.target"))

return;

findAndHookMethod("com.example.target.security.rootcheck",
lpparam.classLoader, "c", new XC_MethodHook() {
@Override

protected void beforeHookedMethod(MethodHookParam param) throws
Throwable {
XposedBridge.log("Caught root check!");
param.setResult(false);

}

});
}

}

An Xposed module can have several entry points. In this example, the en-
try point (or the moment this module is loaded if you will) is specified with the
IXposedHookLoadPackage interface which indicates that this module will trigger when-
ever an application is loaded. The first line of the handleLoadPackage checks whether the
package name of the loaded application corresponds to the package name of the target appli-
cation. The function findAndHookMethod is responsible for hooking the right method in the
target application. In our case, this method is com.example.target.security.rootcheck
and is passed as the first parameter of findAndHookMethod. The last argument to this
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method must be an instance of XC_MethodHook which, in this example, is instantiated as
an anonymous class. Inside that class, the beforeHookedMethod is overridden so that it
always returns false, bypassing the root check.

3.8 Summary

In this chapter different tools and techniques allowing to perform static and dynamic anal-
ysis were showcased. The reader should now have a clear understanding of the technical
details of the attacks discussed in this chapter and the damage they can do to Android
applications. Everything that was discussed in this chapter is used intensively by adver-
saries to bypass security measures implemented in applications or to develop malwares for
example. New tools and techniques are developed regularly and even though the presented
list is not exhaustive, it still represents a good overview of threats to Android applications.

Understanding this threat landscape helps us grasp what defense mechanisms should
be put in place to protect applications against those attacks. A state of the art description
of protections against those attacks will be discussed in the next chapter.



Chapter 4

Application security
4.1 Introduction

This chapter will present the different techniques used to protect against the threats dis-
cussed in previous chapter. For example, making sure that applications run in a safe
environment (i.e. not on an emulator or rooted device) is of prime importance as un-
safe environments give full control of the device to adversaries. Dynamic analysis through
debuggers and instrumentation tools is another powerful tool in the attackers’ toolkit.
Fortunately dynamic analysis utilities can be detected and sometimes even prevented from
working by a variety of different techniques that will be showcased. Even if static analysis
is the most basic technique an attacker could use, it is still very useful to understand the
behavior of an application. The different obfuscation techniques described in this chapter
mitigate static analysis by modifying the application’s code to make it less readable and
understandable. Finally, the ARMAND anti-tampering scheme will be presented.

All these security mechanisms are important to understand to implement them in an
application afterwards. An application extended with those security measures will be able
to respond accordingly if it detects a threat, and it will make sure to make as difficult as
possible any reverse engineering effort against it.

4.2 Rooting detection

4.2.1 SafetyNet

SafetyNet is a Google API that offers a set of different services as APIs. The SafetyNet
attestation API checks the integrity of a device. The documentation [26] states that this
API "should be used as a part of your abuse detection system to help determine whether
your servers are interacting with your genuine app running on a genuine Android device".
It works by creating a profile of the device which correlates hardware and software infor-
mation. The profile is then compared to a list of device profiles that have passed Android
compatibility testing. A response is then sent back to the application that indicates if the
device successfully passed the test. The following response example is taken directly from
Google’s documentation:

{
"timestampMs": 9860437986543,
"nonce": "R2Rra24fVm5xa2Mg",
"apkPackageName": "com.package.name.of.requesting.app",
"apkCertificateDigestSha256": ["base64 encoded, SHA-256 hash of the

certificate used to sign requesting app"],
"ctsProfileMatch": true,
"basicIntegrity": true,
"evaluationType": "BASIC",

}

30
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The two most relevant fields in this response are basic integrity and
ctsProfileMatch. BasicIntegrity is set to true if the general integrity of the device
and its API passed the SafetyNet test. Many rooted devices fail basic integrity as most
emulators or devices with signs of tampering are detected. CtsProfileMatch, on the other
hand, will be set to false to indicate devices that were not certified by Google. For example,
devices with a custom ROM, with an unlocked bootloader or with a system image that was
built from Android source files. Those two fields are complementary but ctsProfileMatch
offers a stricter indication on the device’s integrity.

4.2.2 Programmatic detection

File existence check

One of the most used techniques to determine if a device is rooted or not is to check for
common rooting scripts or apps presence on a file system.

For example, the Superuser APK is an Android application that roots the device when
installed. As a developer, you can check if this application is installed on the device; if it is,
the device is most probably rooted. Although this rooting detection technique is powerful
and efficient, the file list needs to be updated regularly to include new suspicious files to
look for.

/system/app/Superuser.apk

/system/etc/init.d/99SuperSUDaemon

/dev/com.koushikdutta.superuser.daemon/

/system/xbin/daemonsu

Once a device is rooted, those rooting utilities often import additional binaries which
you can look for additional evidence of rooting. You should look for busybox and the su
binary in multiple places as its installation path often changes.

/sbin/su

/system/bin/su

/system/bin/failsafe/su

/system/xbin/su

/system/xbin/busybox

/system/sd/xbin/su

/data/local/su

/data/local/xbin/su

/data/local/bin/su

Checking is su is on the PATH

Another way to look for su on a device is to programmatically check the PATH variable.
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public static boolean checkRoot(){
for(String pathDir : System.getenv("PATH").split(":")){

if(new File(pathDir, "su").exists()) {
return true;

}
}
return false;

}

Executing su and other commands

If you have concerns a certain rooting utility such as su might be installed on the device,
a straight forward way to verify that is to call the Runtime.getRuntime.exec method. If
the binary is not on the PATH an IOException will be thrown.

Checking running processes

On top of installing files or binaries, rooting tools often run daemon processes which
can be detected by inspecting what is running in memory. Running processes can be
inspected with the ps command, with the ActivityManager.getRunningProcesses and
manager.getRunningServices APIs or by browsing through the /proc directory. The
following example is taken from the open source project rootinspector [11]:

public boolean checkRunningProcesses() {

boolean returnValue = false;

// Get currently running application processes
List<RunningServiceInfo> list = manager.getRunningServices(300);

if(list != null){
String tempName;
for(int i=0;i<list.size();++i){

tempName = list.get(i).process;

if(tempName.contains("supersu") || tempName.contains("superuser")){
returnValue = true;

}
}

}
return returnValue;

}

Checking installed app packages

Another technique is to use the Android package manager to list all the installed packages
on the device. Following is a list of package names that belong to popular rooting tools:

com.thirdparty.superuser

eu.chainfire.supersu
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eu.chainfire.supersu

com.koushikdutta.superuser

com.zachspong.temprootremovejb

com.ramdroid.appquarantine

com.topjohnwu.magisk

Checking for writable partitions and system directories

Normally, system and data directories are mounted read-only so if you happen to find them
mounted read-write, that might be a sign the device is rooted. To test this, one can look
for the file systems mounted with the "rw" flag or try to create a file in data directories.

Checking for custom Android builds

When the Android kernel is compiled, the tags entry in the file /system/build.prop are
edited to indicate the type of compilation. If the kernel was compiled with an official
developer key, the entry will indicate a release-key. On the other hand, if the kernel was
compiled with a custom generated key, the entry will indicate a test-key. This entry can
easily be checked in Java like so:

private boolean isTestKeyBuild() {
String str = Build.TAGS;
if ((str != null) && (str.contains("test-keys"))) {

return true;
}

return false;
}

4.3 Debugging detection

As mentioned in section 3.5.1, there exist two debugging protocols on Android: JDWP
debugging and native level debugging. Debugging being a powerful tool for an attacker,
good debugging detection and prevention mechanisms can seriously impact the attacker’s
motivation to tamper with an application. In order to have strong debugging protection,
multiple defenses on the two types of debugging should be applied to an application.

4.3.1 JDWP anti-debugging

JDWP is the protocol used for communication between the debugger and the Java Virtual
Machine. Even if it is disabled by the application’s developer, an attacker can easily enable
it by patching its manifest file and changing the ro.debuggable system property which
enables debugging for every application.

Checking the debuggable flag in Application info

In the manifest file, the android.debuggable attribute determines whether the JDWP
thread should start for the application. It is possible to retrieve its value programmatically
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by using the ApplicationInfo object. If the flag is set, the manifest has been tampered
with and now permits debugging.

public static boolean isDebuggable(Context context){

return ((context.getApplicationContext().getApplicationInfo().flags &
ApplicationInfo.FLAG_DEBUGGABLE) != 0);

}

µ

Checking if a JDWP debugger is attached

The android.os.Debug class offers a method to determine if a debugger is connected.

public static boolean detectDebugger() {
return Debug.isDebuggerConnected();

}

It is possible to perform the same check on the native level by accessing DvmGlobals
global structure.

JNIEXPORT jboolean JNICALL
Java_com_test_debugging_DebuggerConnectedJNI(JNIenv * env, jobject obj) {

if (gDvm.debuggerConnected || gDvm.debuggerActive)
return JNI_TRUE;

return JNI_FALSE;
}

Timer checks

Since debugging slows down the application’s execution, debugging can be detected by mea-
suring the difference in execution time of the process. The Debug.threadCpuTimeNanos()
method indicates the amount of time that the current thread has been executing code and
can be used to perform such a check.

static boolean detect_threadCpuTimeNanos(){
long start = Debug.threadCpuTimeNanos();

for(int i=0; i<1000000; ++i)
continue;

long stop = Debug.threadCpuTimeNanos();

if(stop - start < 10000000) {
return false;

}
else {

return true;
}

}



CHAPTER 4. APPLICATION SECURITY 35

Tampering with JDWP-related data structures

In the Dalvik environment, the global virtual machine state is accessible via the DvmGlobals
structure. This structure is itself accessible via the gDvm variable which holds a pointer to
this structure. DvmGlobals contains multiple important variables and pointers needed for
JDWP debugging which can be tampered with.

struct DvmGlobals {
/*
* Some options that could be worth tampering with :)
*/

bool jdwpAllowed; // debugging allowed for this process?
bool jdwpConfigured; // has debugging info been provided?
JdwpTransportType jdwpTransport;
bool jdwpServer;
char* jdwpHost;
int jdwpPort;
bool jdwpSuspend;

Thread* threadList;

bool nativeDebuggerActive;
bool debuggerConnected; /* debugger or DDMS is connected */
bool debuggerActive; /* debugger is making requests */
JdwpState* jdwpState;

};

For example, to crash the JDWP thread one can set the
gDvm.methdDalvikDdmcServer_dispatch function pointer to NULL:

JNIEXPORT jboolean JNICALL Java_poc_c_crashOnInit ( JNIEnv* env , jobject ) {
gDvm.methDalvikDdmcServer_dispatch = NULL;

}

Since Android 5.0 (Lollipop), ART replaces the Dalvik virtual machines and the gDvm
variable is not accessible anymore but it is still possible to disable debugging through
similar techniques. ART exports some of the vtables of JDWP-related classes as global
symbols (in C++, vtables are tables that hold pointers to class methods). Amongst those
exported vtables, the JdwpSocketState and JdwpAdbState handle JDWP connections via
network sockets and adb, respectively. Overwriting the method pointers in the associated
vtables allows to manipulate the behavior of the debugging runtime.

For example, overwriting the address of the function jdwpAdbState::ProcessIncoming
with the address of JdwpAdbState::Shutdown will cause the debugger to disconnect im-
mediately.

extern "C"

JNIEXPORT void JNICALL Java_sg_vantagepoint_jdwptest_MainActivity_JDWPfun(
JNIEnv *env,
jobject /* this */) {
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void* lib = dlopen("libart.so", RTLD_NOW);

struct VT_JdwpAdbState *vtable = ( struct VT_JdwpAdbState *)dlsym(lib,
"_ZTVN3art4JDWP12JdwpAdbStateE");

if (vtable == 0) {
log("Couldn’t resolve symbol ’_ZTVN3art4JDWP12JdwpAdbStateE’.\n");

} else {
log("Vtable for JdwpAdbState at: %08x\n", vtable);

// Let the fun begin!

unsigned long pagesize = sysconf(_SC_PAGE_SIZE);
unsigned long page = (unsigned long)vtable & ~(pagesize-1);

mprotect((void *)page, pagesize, PROT_READ | PROT_WRITE);

vtable->ProcessIncoming = vtable->ShutDown;

// Reset permissions & flush cache

mprotect((void *)page, pagesize, PROT_READ);

}
}

4.3.2 Traditional anti-debugging

Traditional debugging differs from JDWP debugging by the fact that it is based on the
Linux ptrace system call. This system call is used to monitor and control the execution
of the process being debugged and to change that process’ memory and registers. ptrace
is the main way of implementing system call tracing and breakpoint debugging in native
code. Limiting the debugging checks to JDWP debugging is thus not enough as they won’t
catch classical debuggers based on ptrace.

Checking TracerPid

When an application is being debugged and a breakpoint is set on native code from Android
Studio, the needed files will be copied to the target device and lldb-server, which uses
ptrace under the hood, will be started and attached to the target process. At that point if
we inspect the status file of the debugged process, located at either /proc/<pid>/status
or /proc/self/status, we can see that the TracerPid field has a value different from 0,
indicating that the process is being debugged.

$ adb shell ps -A | grep com.example.hellojni
u0_a271 11657 573 4302108 50600 ptrace_stop 0 t com.example.hellojni
$ adb shell cat /proc/11657/status | grep -e "^TracerPid:" | sed

"s/^TracerPid:\t//"
TracerPid: 11839
$ adb shell ps -A | grep 11839
u0_a271 11839 11837 14024 4548 poll_schedule_timeout 0 S lldb-server
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Note that this check only works if the native part of the target app is being debugged;
if it does not contain any native code or if the native code is not being actively debugged,
the TracerPid field will be 0 and the check will not work.

Using Fork and ptrace

To prevent debugging of a process we can fork a child process and attach it to the parent
with ptrace. If someone tries to debug the parent process afterwards, they will be notified
that it is not possible because it is already being monitored. Below is an implementation
example:

void fork_and_attach()
{

int pid = fork();

if (pid == 0)
{

int ppid = getppid();

if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) == 0)
{

waitpid(ppid, NULL, 0);

/* Continue the parent process */
ptrace(PTRACE_CONT, NULL, NULL);

}
}

}

A simple bypass of this mechanism would be to kill the child and thus freeing the parent
from being monitored. To mitigate this trivial bypass, more elaborate schemes exist:

• forking multiple processes that trace each other.

• keeping track of running processes to make sure the monitoring children stay alive.

• monitoring the /proc values, such as TracerPID in /proc/pid/status.

It is possible to improve the first example with those ideas. After the fork, we launch
in the parent an other thread that checks the child’s status. The child’s behavior will
change depending on the type of build of the application; i.e. debug or release mode which
is indicated by the android:debuggable flag in the manifest:

Release mode: The call to ptrace fails and the child crashes with a segmentation
fault (exit code 11).

Debug mode: The ptrace call works and the child should run for ever. As a result,
a call to waitpid(child_pid) should never return. If it does return, this indicates
something abnormal and action should be taken.

The code of this protection is shown in appendix A.1.
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DETECTION

4.4 Reverse engineering and function hooking tools detection

Reverse engineering or function hooking tools always leave some kind of trace in the file
system. Some of those tools rely on the rooting of the device or the fact that the app is
debuggable. It is thus possible to detect them through various methods and take action
depending on the type of tool detected. In this section I will be focusing on detection of the
Frida tool. As discussed in section 3.7.1, in its injected mode, Frida needs the frida-server
binary to run on the target device. When it is attached to a target application, Frida
injects a frida-agent into the memory of the app. This is something that can be detected
by looking at /proc/<pid>/maps:

vbox86p:/ # cat /proc/18370/maps | grep -i frida
71b6bd6000-71b7d62000 r-xp /data/local/tmp/re.frida.server/frida-agent-64.so
71b7d7f000-71b7e06000 r--p /data/local/tmp/re.frida.server/frida-agent-64.so
71b7e06000-71b7e28000 rw-p /data/local/tmp/re.frida.server/frida-agent-64.so

Another common way of using Frida is through the embedding of the frida-gadget
shared library into the apk and making the application loading it as one of its native
libraries. Inspecting the app’s memory maps after starting the application shows the
embedded frida-gadget as libfrida-gadget.so

vbox86p:/ # cat /proc/18370/maps | grep -i frida

71b865a000-71b97f1000 r-xp
/data/app/sg.vp.owasp_mobile.omtg_android-.../lib/arm64/libfrida-gadget.so

71b9802000-71b988a000 r--p
/data/app/sg.vp.owasp_mobile.omtg_android-.../lib/arm64/libfrida-gadget.so

71b988a000-71b98ac000 rw-p
/data/app/sg.vp.owasp_mobile.omtg_android-.../lib/arm64/libfrida-gadget.so

Those two techniques are quite simple to implement and thus equally simple to bypass.
Detecting Frida effectively can get more complicated.

4.4.1 Checking the application’s signature

Description In its embedded mode of operation, Frida can be used by injecting the
library frida-gadget inside the target application. If the actual signature of the application
differs from the one pinned in the APK, this could indicate that the library was injected.

Bypass technique A trivial way to bypass this would be to patch the APK to replace the
pinned signature by the signature of the APK once it has been injected with frida-gadget.

4.4.2 Checking the environment for related artifacts

Description An artifact is an indicator that a reverse engineer tool was used on a device;
it can be a package file, a binary, a library, a process or any temporary file. With Frida, a
good example would be the frida-server binary running in the target device. It can be de-
tected by inspecting the running services (e.g. with the Java method getRunningServices)
and processes (e.g. with ps) and looking for one whose name is frida-server. Another
solution would be to walk through the list of loaded libraries and search for the ones with
"frida" in their names.
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Bypass technique Android 7.0 removed the ability for an app developer to access run-
ning services or processes which were not started by the app itself; it thus prevents us to
find daemons like frida-server. Even if we were able to access those daemons, bypassing this
technique would be as easy as renaming the Frida artifact (i.e. frida-server, frida-gadget
or frida-agent).

4.4.3 Checking for open TCP ports

Description By default, the frida-server process binds to TCP port 27042. The fact
that it is open on a device might indicate that Frida is being used.

Bypass technique 27042 is the default TCP port but any other port can be used instead
by specifying it in a command line argument.

4.4.4 Checking for ports reponding to D-Bus authentication

Description As frida-server uses the D-Bus protocol to communicate with other pro-
cesses, you can expect it to respond to the D-Bus AUTH message. We can thus detect
Frida by sending a D-Bus AUTH message to every open ports and wait for a reponse from
frida-server.

Bypass technique This technique is quite robust but does not work with other modes
of operation that do not use the frida-server daemon.

4.4.5 Scanning process memory for known artifacts

Description Some strings can be found in all Frida libraries and be a good indicator of
its presence on a device. For example, the string "LIBFRIDA" is present in all versions of
frida-gadget and frida-agent. We can look for this string by iterating through the memory
mappings listed in /proc/self/maps or /proc/<pid>/maps depending on the Android
version.

Bypass techniques Again, this technique is robust but can still be bypassed by patching
the Frida libraries and removing the "LIBFRIDA" strings.

4.5 Tampering detection

On top of signature validation which is trivial to bypass, two other types of checks can be
used to verify the integrity of the application’s files at runtime:

1. Code integrity checks. A CRC or hash can be computed on different types of files
included in the application: classes.dex, native libraries or resource files. Those
checks can implemented in both Java and native code. It is worth noting that this
specific type of check only moves the problem elsewhere. Indeed, in addition to
computing and replacing the app’s signature, the attacker now has to compute and
replace the CRC’s or hashes of all modified files. This is still doable for a motivated
attacker but adds an additional layer of security.



40 4.6. EMULATOR DETECTION

2. File storage integrity checks. This kind of check protects the integrity of files stored
on an SD card or public storage and the integrity of key-value pairs that are stored
in SharedPreferences by the application.

private void crcTest() throws IOException {
boolean modified = false;
// required dex crc value stored as a text string.
// it could be any invisible layout element
long dexCrc = Long.parseLong(Main.MyContext.getString(R.string.dex_crc));

ZipFile zf = new ZipFile(Main.MyContext.getPackageCodePath());
ZipEntry ze = zf.getEntry("classes.dex");

if ( ze.getCrc() != dexCrc ) {
// dex has been modified
modified = true;

}
else {

// dex not tampered with
modified = false;

}
}

This example calculates a CRC over the classes.dex file and compares it to the expected
value which is stored in the class R which contains strings used in the application.

4.6 Emulator detection

Running an application on an emulator gives the adversary a lot of capabilities and advan-
tages compared to running it on a physical device. Often emulators are rooted by default
and it is easier to make changes to the Android operating system as it removes the risk
of bricking a real and costly device. If an application can detect it is being run on an
emulator, it can then act accordingly by simply exiting or sending an alert to a remote
server for example.

4.6.1 Build.prop inspection

The file build.prop is a system file that contains build properties and settings. Some
of its contents are specific to the device or the device’s manufacturer while others vary
depending on the Android’s version.

Some strings might indicate the device is being emulated:
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API Method Value Meaning
Build.ABI armeabi possibly emulator
BUILD.ABI2 unknown possibly emulator
Build.BOARD unknown emulator
Build.Brand generic emulator
Build.DEVICE generic emulator
Build.FINGERPRINT generic emulator
Build.Hardware goldfish emulator
Build.Host android-test possibly emulator
Build.ID FRF91 emulator
Build.MANUFACTURER unknown emulator
Build.MODEL sdk emulator
Build.PRODUCT sdk emulator
Build.RADIO unknown possibly emulator
Build.SERIAL null emulator
Build.USER android-build emulator

Looking for those strings in this file is not a reliable detection technique as this file can
be edited if the device is rooted or if the Android system was compiled from the source.

4.6.2 TelephonyManager

Another detection method is to use Android’s TelephonyManager API. Dif-
ferences can be found between values returned by some methods of the
API when running on an emulator and when running on a physical device:
API Value Meaning
getDeviceId() 0’s emulator
getLine1Number() 155552155 emulator
getNetworkCountryIso() us possibly emulator
getNetworkType() 3 possibly emulator
getNetworkOperator().substring(0,3) 310 possibly emulator
getNetworkOperator().substring(3) 260 possibly emulator
getPhoneType() 1 possibly emulator
getSimCountryIso() us possibly emulator
getSimSerialNumber() 89014103211118510720 emulator
getSubscriberId() 310260000000000 emulator
getVoiceMailNumber() 15552175049 emulator

It is important to note that those values can still be tampered with by hooking frame-
works such as Frida or Xposed.

4.7 Obfuscation

Wikipedia defines obfuscation as [...] the deliberate act of creating source or machine code
that is difficult for humans to understand. Obfuscation is a complex, ever-evolving topic
that is still ongoing research. I will therefore give only an overview of the different software
obfuscation techniques following the taxonomy proposed in [40] by Hui X. et al.
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Figure 4.1 – Obfuscation taxonomy by Hui X. et al

4.7.1 Techniques taxonomy

Code element layer

This type of obfuscation modifies the instructions while keeping the original syntax intact.
For example changing variable, classes and methods names for meaningless ones is an
effective way to obfuscate source code. Another popular solution is the addition of junk
code in the source. Junk code are instructions that are not functional and therefore have
no real purpose in the source code to make adversarial program analysis harder.

Software component layer

As opposed to code element layer obfuscation, software element layer obfuscation does not
focus on obfuscating code syntax or elements. For example code virtualization converts
the original machine instructions into opcode for a specific virtual machine. To interpret
this opcode at runtime, a lightweight VM is embedded in the program. DexGuard [27], a
popular RASP solution by GuardSquare uses this technique to obfuscate Android applica-
tions.

Another example of this type of obfuscation is decompilation prevention. Reverse en-
gineering non-scripting language such as C or C++ requires a disassembler. Disassembly
of the binary can be prevented by introducing decompilation errors in the software.

Inter-component layer

As modern software engineering relies heavily on third party libraries and frameworks,
released software often contains code that cannot be modified directly by developers. Such
third party code can be reverse engineered by adversaries and leak important information
about the piece of software being analyzed. Inter-component layer obfuscation is thus the
process of obfuscating the released software as whole, including resources and libraries. For
example, resource encryption encrypts every file that is not source code to hide its content
to an attacker.

Application layer

Application layer obfuscation focuses on obfuscating specific types of software characterized
by common features with ad-hoc mechanisms. For example, the structure of machine
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learning models can leak information about them which is an issue for private ones. A
solution is to train the target model all the way then reload the same well-trained model
into a shallow network. This new network will be able to perform the same computations
as the previous one but won’t have the same learning capabilities. This defense mechanism
is effective at preventing attackers from learning anything useful about the original network
from the shallow one.

4.7.2 Tools

Proguard

Proguard [22] is an open-source project which shrinks, optimizes and obfuscates Android
applications source code. It is shipped as part of the Android SDK and has its own
Gradle module. Proguard operates at compile time on the Javabyte code level and ouputs
optimized Davlik bytecode. It offers three distinct type of features:

• It shrinks the code by detecting and removing unused classes, fields, methods and
attributes.

• It optimizes the bytecode and removes unused instructions.

• It obfuscates the code by renaming the classes, fields and methods using short and
meaningless names.

Configuration of the tool is done through .proguard files which contain Proguard rules.
For example, a project might have some data classes that are serializable and renaming
their fields might break the application at some point; to prevent Proguard from renaming
that class, a developer can add the following rule to its proguard file:

-keep class com.ulb.ac.model.Example

To use it in an Android Studio project, the build.gradle file must be modified to
include the following build instructions:

buildTypes {
release {

minifyEnabled true
proguardFiles getDefaultProguardFile(’proguard-android.txt’),

’proguard-rules.pro’
}

}

This tool works in a white-box fashion because a developer can’t use it once the appli-
cation is packaged and ready for deployment.

Obfuscapk

Obfuscapk [16] is an open-source CLI tool that works in a black box fashion on an APK
file. Its focus is on obfuscation of the Davlik bytecode through a set of multiple different
obfuscation techniques:

Debug removal. This technique removes debug information from the source code.
Those debug information consist in the line numbers, types or method names for
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example. Removing those meta-data effectively reduces the amount of useful infor-
mation for the reverse engineering process.

Call indirection. This technique modifies the control flow graph of the application
without modifying the code semantics. To achieve that, it wraps method calls in new
methods; for example given method m1, it creates method m2 which invokes m1 and
replaces call to m1 by a call to 2.

Goto. Given a method, a goto instruction is inserted in the code which points to
the end of the method and another goto pointing to the instruction is inserted right
after the first goto.

Reorder. This technique changes the order of basic code blocks. When an if state-
ment is found in the code, its condition is inverted e.g. if x < 10 becomes if x
>= 10 and the code is reorganised to accommodate this change while keeping the
initial logic.

Arithmetic branch. The goal of this technique is to insert useless code to make
static analysis harder without introducing performance overhead. In practice, the
inserted code is composed of arithmetic operations and of branch instructions which
depend on the result of those operations but are crafted in such a way that those
branches are never actually taken.

Nop. No-operation instructions are instructions that do nothing. Inserting such
instructions makes static analysis harder.

Method overload. This technique takes advantage of the method overloading
mechanism in Java. Given a method, it will create a new void method with the same
name and arguments, but it will also add new arguments and fill the body of that
method with random arithmetic computations.

Reflection. This technique complexifies the method call process by using the reflec-
tion feature of Java. It analyzes the code looking for candidate method calls (i.e. not
a constructor, public visibility, ...) and replaces it with a call to a custom method that
will invoke the original one through Java’s reflection APIs. This technique avoids all
calls to the Android framework.

Advanced reflection. This technique follows the same logic as the previous one
but it specifically targets calls to dangerous Android APIs.

When Obfuscapk starts, it automatically generates a random secret key of 32 ASCII
characters that is used to encrypt the following resources:

• Native libraries.

• Asset files (videos, photos, text files, ...).

• Strings contained in the strings.xml resource file.

• Constant strings in the source code.

Encrypting those resources can effectively complexify static analysis but has the dis-
advantage of adding significant performance issues because the encrypted resources must
be decrypted to be used.
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4.8 Anti-repackaging

4.8.1 Common techniques

The goal of an anti-repackaging protection is to prevent an application from being modified,
repackaged and redistributed by protecting the application’s code from being tampered
with. The application is protected by a set of detection nodes injected in some particular
locations in the code. Those detection nodes perform integrity checks (aka anti-tampering
controls) when executed at runtime. More specifically, those checks compare the signature
of a specific part of the APK (i.e. either its code base or its resources) with a value
pre-computed during the building of the application. If the check fails, a repackaging is
detected and the detection node usually exits the application, preventing it from being
effectively run if modified.

The main task of an attacker when trying to repackage a protected application is to
identify and remove detection nodes. To protect them, most repackaging solutions hide
them in logic bombs. A logic bomb protects a detection node by encrypting it using state-
of-the-art encryption schemes. The key used to encrypt and decrypt those detection nodes
is derived from a constant value used in the program. In order to get a fully working APK
with no protections, the attacker must find and remove all logic bombs using a combination
of static and dynamic analysis.

Logic bomb implementation

Logic bombs are placed in the code at specific locations called qualified conditions. Those
conditions are if statements of the following form:

if (v == C) {

}

where v is a variable and C is a constant. The original condition is modified to compare
the pre-computed hash value of C with the result of the hash function applied to v plus
some salt. The detection nodes are embedded in the body of that condition and encrypted
using the original value of C as the encryption key. The fact that cryptographic hashing
functions are one way by nature protects the logic bombs; in order to find the key needed
to decrypt them, the attacker must first recover the original value of C which takes a long
time when brute forcing. Inside those logic bombs different checks are implemented either
in Java or native code to improve reliability.

It is important to note that following this scheme, an attacker could easily remove
encrypted logic bombs by patching the corresponding smali file as it would not influence
the normal behavior of the applicaion; a solution to this issue will be discussed in the
next subsection. Also, the decryption at runtime introduces a performance overhead to
the protected application.

4.8.2 ARMAND

ARMAND, for Anti-Repackaging through Multi-pattern Anti-tampering based on Native
Detection, is a novel anti-tampering approach based on the embedding of logic bombs and
anti-tampering detection nodes directly in the APK file. Its aim is to provide solutions to
current limitations in the state-of-the-art techniques by offering the following features:
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1. Use of multiple patterns to place and hide logic bombs at multiple locations in
the application. Current techniques use a single common pattern making detection
and deactivation of logic bombs easier. To solve this issue, ARMAND uses multiple
distinct patterns for logic bombs and anti-tampering checks to harden the detection
and removal phase.

2. Rely on native code to hide anti-tampering protections. Native code being harder
to reverse engineer than Java code, it makes the detection and removal of security
controls difficult. It is thus a suitable location to include logic bombs and anti-
tampering checks.

3. Optimize the effectiveness of the detection nodes. Current approaches strug-
gle to find the right balance between inserting too many logic bombs and checks
which will not be triggered at runtime and inserting too few of them to avoid per-
formance decrease. ARMAND solves this issue by adopting an efficient deployment
technique of logic bombs by making sure that they won’t be included in unused code.

4. Use honeypot bombs. Honeypot bombs are fake logic bombs designed to increase
the complexity of the detection and removal phases.

5. Hide the anti-repackaging protection. Stealth was often overlooked in the design
of anti-repackaging mechanisms leading to obvious indicators that the end applica-
tion was protected. Increased stealthiness of such mechanisms makes it hard for an
attacker to understand that the target application is protected.

Multi-patterning logic bombs

As discussed in the logic bombs implementation subsection, the currently described logic
bomb implementation pattern allows easy detection and removal by an attacker. To solve
this issue, ARMAND adopts six different types of logic bombs:

1. Java bomb. In this type of logic bomb shown in figure 4.2, one or multiple anti-
tampering checks are added in Java to the body of the if statement and encrypted
using the value of C as the key.

Figure 4.2 – Java bomb implementation
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2. Native key bomb. The body of the if statement of the qualified condition is
encrypted using the return value of an anti-tampering check implemented in native
code as the key as shown in figure 4.3.

Figure 4.3 – Native-key bomb implementation

Once a qualified condition is identified, its if statement is transformed into a hash
comparison of hash(V, salt) and hash(C, salt) as described in Step 1. In the body
of the qualified condition, a call to a native function performing an anti-tampering
check is made (Step 2), which returns the key to encrypt the original code (Step
3) if no tampering is detected. Step 4 shows the behavior of the bomb at runtime;
if no tampering is detected, the encrypted original code is decrypted using the key
returned by the native function call and the decrypted original code is then executed
normally.

3. Native anti-tampering bomb A call to a native function performing anti-
tampering checks is injected to the body of the qualified condition which is then
encrypted. In contrary to the native key bomb, the original code is not encrypted
with the return value of the native function but with the value of V instead.

4. Java anti-tampering & native key bomb This bomb uses the same scheme as the
native key bomb but adds anti-tampering checks in Java to the body of the qualified
condition. The body is then encrypted following the same mechanism as the native
key bomb.

5. Java & native anti-tampering bomb This logic bomb is a combination of the
Java anti-tampering and native anti-tampering logic bombs. The anti-tampering
checks are placed both in Java in the body of the qualified condition and in the
native function. The entire body is then encrypted with the value of V as the key.

6. Honeypot bomb There is no anti-tampering checks included in the encrypted orig-
inal code; this bomb is only here to delay the attacker in their reverse engineering
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efforts.

On top of all those logic bombs, some anti-tampering checks are distributed in random
locations in the code of the application, meaning that they are not protected by a logic
bomb. To detect and remove them, the attacker will have to manually inspect the entire
code base.

Bypass mitigations and hiding strategies

In state-of-the-art anti-tampering schemes, all anti-tampering checks of the same nature
share a single implementation written either in Java or in native code. This creates a single
point of failure that an attacker can exploit by rewriting the check’s implementation by
leveraging static analysis and performing Smali code patching for example. By doing so,
the attacker would successfully bypass all anti-repackaging checks using the rewritten im-
plementation. ARMAND mitigates this issue by replicating the code of the anti-tampering
check in each detection node to make sure that it can’t be easily bypassed.

On top of that, ARMAND introduces the concept of nested logic bombs, i.e. one
logic bomb can contain one or more logic bombs. This mechanism forces the attacker to
decrypt each and every nested logic bomb in order to remove the included anti-tampering
checks. ARMAND also randomizes what sort of logic bomb will be included in qualified
condition and which sort of anti-tampering check will be included inside them to make
their identification harder for the attacker.

4.9 Summary

The wide range of security protections described in this chapter represent the state-of-
the-art in defenses against static and dynamic analysis and application tampering. The
reader should now have a good understanding of those threats and what can be done to
mitigate them. To increase the security of an Android application, a set of defenses should
be chosen and implemented in the target application. To ensure maximal security, the
defense in depth principle should be applied, each security measure acting as an additional
security layer. Those defenses should therefore be as varied as possible and should be
implemented in such a way that they all work together flawlessly.

In next chapter, I will showcase how I used some defense mechanisms described previ-
ously to increase Android applications security. The chapter will also describe the technical
details of the ARMANDroid project, as doing so is important to understand how such a
software can be augmented with additional protections and how their implementation is
done in practice.
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Implementation
5.1 Introduction

This chapter will provide an overall description of the implementation of ARMANDroid,
the implementation of the ARMAND scheme for Android. After that global overview,
I will explain more in details the Java and native code injection process. Lastly, I will
showcase the different security measures I implemented and how I integrated them with
ARMANDroid so that they are effectively injected in the target application to protect it.

5.2 Current state of ARMANDroid

5.2.1 Overview

ARMANDroid is shipped in different forms: a docker image and a jar. The tool works
directly on a packaged application, i.e. an application in APK format. It takes multiple
inputs as arguments : PJava_AT , Pnative_key and Pnative_AT and a package name (PN).
The three first arguments specify the probability to include Java security checks and one
of the six types of logic bombs as described in section 4.8.2. The last parameter PN specifies
the package name in which to include those logic bombs / security checks. If PN is not
specified, the tool defaults to the entire application.

The tool uses the soot [13] library extensively to make its changes to the target ma-
nipulation. Its powerful API is used throughout the project to perform the bytecode
manipulation technique described in section 3.6.3 that allows to modify the target appli-
cation’s behavior as we want by modifying classes or methods bodies or inject new classes
for example.

ARMANDroid is composed of the following packages:

bin Contains the native-build.sh script which compiles all the c++ files containing
native checks into a single shared library.

embedded Contains the different Java classes that will be injected as is in the target
APK.

Mafefiles Contains the file CMakeLists.txt that is needed by the utility cmake to
compile the c++ files.

models Contains all the classes representing an object needed by the program (e.g.
Method or StatisticContainer). This package also contains all the Java checks that
will be included in logic bombs during the protection phase.

NativeFunctions Contains all the native checks separated in several c++ files.

sootTransformer Contains all the classes that will transform the target application
in one way or another.

util Contains miscellaneous classes needed for processing the target APK.

49
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The protection process can be divided in three main steps:

1. Application pre-processing. During this phase, ARMANDroid upnacks the APK
to extract its classes.dex file(s). Soot then converts it to Jimple for easier ma-
nipulation of the code. Finally, ARMANDroid scans the code looking for qualified
conditions for later use and injects a set of Java anti-tampering checks.

2. Bomb injection. For each qualified condition found during the pre-processing phase,
the tool includes one of the six types of logic bombs described in section 4.8.2.

3. Application packaging. During this last phase, the tool converts the Jimple code back
to Dalvik bytecode, adds the native libraries, updates the AndroidManifest.xml file
and outputs the protected APK file ready to be signed and deployed.

Application pre-processing

The role of this step is to :

1. Unpack the application and prepare it for processing.

2. Process the application’s codebase to look for qualified conditions.

3. Inject Java security controls.

Application unpacking and processing preparation The tool unpacks the apk and
extracts its classes.dex file. The bytecode of the app is then converted to Jimple with
Soot.

Qualified conditions identification The Jimple code is scanned for instructions that
would qualify to integrate logic bombs. The structure of such qualified conditions is de-
scribed in section 4.8.1. Two different types of qualified conditions are currently searched
for in the code: if and switch statements. In the case of a switch statement, each of its
cases is considered as a separated qualified condition.

An AST (Abstract Syntax Tree), called transformation tree in the code, is built for
each qualified condition discovered with the qualified condition at the top of the tree, used
as the root node. If nested qualified conditions are discovered, those are added to the AST
as leaves to indicate a hierarchy.

During this phase, the tool also stores references to the first and the last instruction of
the block being encrypted and put inside a logic bomb.

Java security controls injection The security controls injected in Java during this
phase are not included in a logic bomb but are injected at random places in the code. For
each parsed instruction, the tool has a probability of PJava_AT to include a Java security
control before it. The resulting probability to add at least one Java security control in a
set of n instructions is PJava_AT_embedded = 1− (1− PJava_AT )

n

Bomb injection

Each transformation tree created during the pre-processing phase is iterated through to
process all their qualified conditions. During this phase, every qualified condition is going
to be transformed into a logic bomb as shown in figure 5.1.
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Figure 5.1 – Logic bomb injection

First (step 2.1), the condition is transformed into hash(V, salt) == HASH where V
is the variable to be hashed, HASH is the result of the hashing algorithm applied on the
constant and salt is a pseudo-random value. Then (step 2.2), the tool processes the
original code contained within the qualified condition to make sure it will be correctly
executed after the transformation. The important thing to understand is the execution
flow once the original code has been executed. Once the original code has been executed,
four distinct scenarios are possible:

1. The original code may jump to the next set of instructions

2. The original code may throw an exception

3. The original code may jump to a different block

4. The original code may terminate the execution by returning an object.

During step 2.3, the tool injects a native call implementing either a Native-key or a
Native AT function, depending on the content of the original code. The type of logic
bomb to be implemented depends on the content of the original code but also on the input
parameters Pnative_key and Pnative_AT . To be more specific, if the original code contains
at least one or more Java AT (with probability PJava_AT_embedded), the logic bomb will be
a Java AT & Native-key bomb with a probability of Pnative_key, while the probability of
having a Java & Native AT bomb is of Pnative_AT |¬native_key. In the case where no native
functions are injected, the qualified condition will contain a Java bomb with a probability
of PJava_bomb=1−Pnative

, where Pnative equals the join probabilities of having a logic bomb
with a native or a native AT control: Pnative = Pnative_key ∪ Pnative_AT |¬native_key.

In step 2.4 the modified body of the qualified condition is encrypted with AES-128
using the value of the constant to derive the key and compressed using base64 encoding.
ARMANDroid then adds the instructions needed to decrypt and invoke the body of the
condition. To do so, it embeds two Java classes in the target APK; EncryptHelper and
InvokeHelper. EncryptHelper is used to decrypt the encrypted body of the condition
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Figure 5.2 – Example of a logic bomb injected in a target application

using the decryption key. Once the decryption is done, InvokeHelper loads the byte
array resulting from the decryption and invokes the execute method. This class uses
InMemoryDexClassLoader to load and execute the code in the form of a byte array, those
bytes being bytes from the DEX file. Finally during step 2.5, ARMANDroid invokes the
ResultWrapper object to recover the original execution flow.

Figure 5.2 shows a logic bomb injected in a method called onOptionsItemSelected at
line 296. Notice how the comparison between the constant and the variable is done with
the class HashHelper. It also shows a security check injected in plain Java that checks
for the presence of a Debugger at line 310. This screenshot was taken from the JadxGui
decompiler on a modified application.

5.2.2 Java code injection

The classes containing the security controls are placed in the package javaChecks which
is a subpackage of the model package. Each class of javaChecks is loaded and converted
to Jimple by the initJavaAntiTamperingMap method:

SootClass checkClass = new SootClass("models.javaChecks.JavaChecks");
File inputFile = new File("/tmp/" + UUID.randomUUID().toString());
InputStream inputStream =

ApplicationHelper.class.getClassLoader().getResourceAsStream("models/
javaChecks/JavaChecks.class");
try {

FileUtils.copyInputStreamToFile(inputStream, inputFile);
} catch (Exception e) {

e.printStackTrace();
System.exit(1);

}
new CoffiClassSource("JavaChecks", new

FoundFile(inputFile)).resolve(checkClass);

The method starts by loading the class className as a SootClass. Then
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the content of the class file corresponding to className is dumped in a
temporary file. Finally, the line: new CoffiClassSource(className, new
FoundFile(inputFile)).resolve(checkClass) converts the class to Jimple to fa-
cilitate further manipulation and analysis.

Once the class containing methods to be injected is transformed to Jimple, it is possible
to extract it with the wanted methods:

SootMethod originMethod = checkClass.getMethod("void
checkAppSignature(android.content.Context,byte[])");

Body body = originMethod.getSource().getBody(originMethod, "jtp");
AT_METHODS.put("checkAppSignature", new

JavaCheckWrapper(originMethod.getName(), body,
ApplicationHelper.getKey(), true, true));

This block of code takes the signature of the method to be injected as a parameter and
uses it to load it from the checkClass SootClass. Then the method’s body is extracted
and a JavaCheckWrapper object is added to the AT_METHODS HashMap containing all the
methods to be injected in the target application. The JavaCheckWrapper object represents
a Java security control and takes as parameters the name of the method, its body, the
expected value to be returned if the security control is an anti-tampering check and two
Booleans that specify if the method takes a Context object as a parameter and if it throws
an exception. This block of code is repeated for each method to be injected.

Next, the body of the injected method is merged with the body of the original method
which contains the qualified condition. To keep this explanation concise I won’t be ex-
plaining the injection process further.

5.2.3 Native code injection

The connection between Java code and the JNI is done as follows (as explained in the
documentation [33]):

1. Load the library from Java. Let’s assume the native library we want to use in
our project is called native-lib. Then we have to use the following line of code to load
it: System.loadLibrary("native-lib"). Usually this is done in a static block to
ensure it is loaded before doing anything else.

2. Declare the native function in the calling class. This is done by declaring a
native method without body like so: public native void nativeFunction().

3. Declare the function in a native file properly. The signature of the native
function must follow a strict convention to be callable from Java: JNIEXPORT void
JNICALL Java_com_example_ulb_be_nativeFunction().

4. Create a CMakeList.txt file for compilation using cmake. I won’t detail
every compilation step here but the CMakeList.txt is responsible for the dynamic
linking of the different libraries used.

In the project, each native file contains only one protection. If another method is
needed by a protection, it has to be placed in the source file utils.cpp and declared in the
header file utils.h. Since every method’s signature must follow the convention described
above, their names are dynamically generated at compile time. Every native protections
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is then placed in the same file, vendor.cpp which is then compiled to a library that is
injected and called from the injected logic bombs. As for Java code injection, the actual
process of injective calls to the native library with Soot is quite lengthy, which is why I
won’t explain this process further.

5.2.4 Java security checks

In its current state, ARMANDroid already provides a set of Java anti-tampering checks
and and some detection methods against debuggers and emulators in an early attempt at
mitigating such threats:

• checkAppSignature(Context context, byte[] expectedValue). This method checks if
the application’s signature is equal to the expectedValue passed in parameter.

• checkEmulator(). This method uses the technique described in section 4.6.1 to try
to detect if the applications is running on an emulated device.

• checkDebuggable(Context context). This method uses two different techniques to
check if the debuggable flag is set in the manifest.

5.2.5 Native security checks

The project also contains a set of native anti-tampering controls:

• SignatureCheck.cpp: This check computes the signature of the application and re-
turns it.

• PackageName.cpp: This method will convert the package name of the application to
bytes and returns it.

• FileChecksum.cpp: This method will compute a checksum over the files given in
parameters, e.g. resource files and return it.

The return values from all those anti-tampering methods are used in the logic bomb mech-
anism as encryption / decryption keys.

5.3 Contribution

In this section I will describe each of the implemented security measures and explain how
they work. Most of them were already covered in chapter 4, so in this section I will
explain the differences with their original implementation if any. The security measures
that were implemented were chosen because of their efficiency and their relative simplicity
to integrate with the ARMANDroid project. The reader should keep in mind that because
of the wide variety of topic addressed in this thesis and the time constraint associated with
such a work, I couldn’t dive deep into each of the subjects.

There are four distinct types of checks that were added to ARMANDroid:

1. Root detection: checking if the device rooted.

2. Debug detection & prevention: checking if the application is being debugged and
preventing it from being debugged if possible.
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3. Emulator detection: checking if the device is in fact an emulator.

4. Frida detection: checking for the presence of the Frida tool on the device.

Those security measures are distributed in both the Java layer and the native layer to make
reverse engineering harder. To prevent all the following protections from being removed
thanks to Smali code patching, they are all added to logic bombs in order to fully benefit
of the tampering protection offered by the ARMAND scheme.

5.3.1 Java protections

To integrate Java protections with ARMANDroid, I created one Java class per
type of check, namely: RootDetection, EmulatorDetection, DebugDetection and
REToolsDEtection. Each of those files are placed in the package models.javaChecks.
In those classes, each method represents a check. Each method must be declared as static
to be recognized by soot.

The initJavaAntiTamperingMap in its current state did not allow to add new checks
easily. Therefore I decided to refactor it to break it down in two smaller methods:
getCheckClass and addMethod.

Shutting down the application

For each security measure implemented in Java, the application fails silently if a threat is
detected. To do so, each protection method throws a RuntimeException when the check
fails. The exception is then caught and the ActivityManager API is then used in the
catch block to shut down all activities leading to shutting down the app entirely. In order
to not leak any technical information to an attacker, no error messages are displayed in
the logs, so that the application fails silently:

catch (RuntimeException e) {
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE))
.getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

Root detection - checking for suspicious files presence

This check iterates over an array containing every suspicious file name and checks if they
exist on the file system. The complete code for this check is show in appendix A.2

Root detection - checking for suspicious package names

In a similar fashion to the precedent check, this one iterates over an array containing every
suspicious package names and uses the PackageManager API to check if they are installed
on the device. The complete code of this check is shown in appendix A.3.
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Root detection - checking if su is on the PATH

To check if the su binary is on the PATH environment variable, the PATH is retrieved with
the method System.getenv("PATH"). Then the directories on the PATH are iterated and
checked for the presence of su.

for (String pathDir : System.getenv("PATH").split(":")){
if (new File(pathDir, "su").exists()) {

Log.d("ROOT_DETECTION", "su is on the PATH");
throw new RuntimeException("ROOT_DETECTION: su is on the PATH");

}
}

The complete code of this check is shown in appendix A.4.

Root detection - checking for test key

To check if the ROM was built by a certified Android developer or not, the TAGS entry is
retrieved from the build.prop file and looks if it contains the string "test-keys":

String tags = Build.TAGS;

if (tags != null && tags.contains("test-keys")) {
throw new RuntimeException("ROOT_DETECTION check test key failed");

}

The complete code of this check is shown in appendix A.5.

Emulator detection - checking suspicious package names

While working with the Genymotion emulators, I noticed some packages installed on the
device indicating it is in fact a Genymotion device. Indeed, multiple packages contain the
word "genymotion" or the shorter "geny" in their names; this indicator can then be used
to detect a Genymotion emulator. This check uses the packageManager API from Android
to get the list of installed packages and check if any of them contains the string "geny" in
their names.

PackageManager packageManager = context.getPackageManager();
List<ApplicationInfo> installedPackages =

packageManager.getInstalledApplications(PackageManager.GET_META_DATA);

for (int i = 0; i < installedPackages.size(); i++) {
ApplicationInfo packageInfo = installedPackages.get(i);
if (packageInfo.packageName.contains("geny")) {

throw new RuntimeException("EMULATOR_DETECTION: Package detected " +
packageInfo.packageName);

}
}

The complete code of this check is shown in appendix A.6.
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Emulator detection - checking for artifacts in build.prop

The file build.prop was already checked for artifacts by the ARMANDroid team in a first
emulator detection attempt but more indicators can be checked as described in section
4.6.1. I thus added the ones that weren’t already used for a more complete and effective
emulator detection. Additional properties used for this check include looking at the type
of board used or the radio version among others. The check works by getting a reference
to the Build API and looking for suspicious values:

boolean ABIS_artifacts = false;

for (String supported_abi : Build.SUPPORTED_ABIS) {
if (supported_abi.contains("unknown") || supported_abi.contains("armeabi"))

ABIS_artifacts = true;
}

boolean isEmulator = ABIS_artifacts
|| Build.BOARD.equals("unknown")
|| Build.HOST.equals("android-test")
|| Build.ID.equals("FRF91")
|| Build.MANUFACTURER.equals("unknown")
|| Build.MODEL.equals("sdk")
|| Build.getRadioVersion().equals("unknown")
|| Build.getSerial() == null
|| Build.USER.equals("android-build");

The complete code of this check is shown in appendix A.7.

Emulator detection - checking the TelephonyManager API

In order to use the TelephonyManager API, the READ_PHONE_STATE permission must be
set in the manifest of the application like so:

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

If the permission is set in the manifest and the user of the application already accepted
it, the check will work normally. On the contrary, if the user refused the app’s request
to access the phone state or if the permission is not set in the manifest, an error will be
thrown then caught and the check won’t work.

TelephonyManager telephonyManager = (TelephonyManager)
context.getSystemService(Context.TELEPHONY_SERVICE);

@SuppressLint("MissingPermission") boolean isEmulator =
telephonyManager.getDeviceId().equals("0’s")

|| telephonyManager.getLine1Number().equals("155552155")
|| telephonyManager.getNetworkCountryIso().equals("us")
|| telephonyManager.getNetworkType() == 3
|| telephonyManager.getNetworkOperator().substring(0, 3).equals("310")
|| telephonyManager.getNetworkOperator().substring(3).equals("260")
|| telephonyManager.getPhoneType() == 1
|| telephonyManager.getSimCountryIso().equals("us")
|| telephonyManager.getSimSerialNumber().equals("89014103211118510720")
|| telephonyManager.getSubscriberId().equals("310260000000000")
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|| telephonyManager.getVoiceMailNumber().equals("15552175049");

For this check I get a reference to a TelephonyManager object then check all suspicious
values of the API.

The complete code of this check is shown in appendix A.8.

Debug detection - checking if a JDWP debugger is attached

It is possible to easily check if a JDWP debugger is connected to the application by calling
the method Debug.isDebuggerConnected().

The complete code for this check is shown in appendix A.9.

5.3.2 Native protections

In its current implementation, ARMANDroid only uses native checks that return an ex-
pected value that is used as an encryption and decryption key in the logic bomb process.
To be able to add native security protections that do not return an expected value (i.e.
debugging prevention), I needed to modify the Native AT logic bomb implementation. I
applied the following modifications to the project to achieve this result:

1. Added the hasExpectedValue flag to the NativeWrapper class. This is used to
make a distinction between native functions which return an expected value and the
others.

2. Created a new function addNativeInvocationOnlyToMethod to the
TransformHelper class. This new function is heavily inspired by the
addNativeInvocationToMethod function of the same class. This function is re-
sponsible for adding a native invocation to a specific method and store its re-
turn value in a variable. Since the new native checks do not return anything,
addNativeInvocationOnlyToMethod will only invoke the given native function with-
out storing its return value.

3. Modified the return value of the native functions declaration in the calling
classes to void. To be able to call a native function from Java, we need to declare
it in its calling class like so: private native void String native_function().
Formerly, all native functions had the byte[] return type and it needed to change
to void to match the return type of the new native checks.

Shutting down the application

For protections implemented on the native layer, a call to _exit() is made. A call to
_exit() doesn’t shut down the entire app nut closes the current activity. The Activity-
Manager then restarts the last activity that was open before the one that closed. If the
activity that closed was the first activity, then the application is turned off entirely.

Frida detection - checking if default port is open

The utility frida-server listens by default on port 27042. Even though this port can be
changed easily, checking if it is open could indicate Frida’s presence on a device. This check
opens a connection to that port on the native layer thanks to a socket. If the connection
succeeds, the port is open and Frida might be installed on the device.
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The complete code of this check is shown in appendix A.12.

Frida detection - checking for loaded libraries

When Frida is used to trace an application, it injects it with libraries that can be detected.
The file /proc/self/maps contains a list of all the libraries loaded in the application. By
reading this file it is therefore possible to look for the presence of a library containing
the keyword "frida" to check if the application has been injected with a Frida library.
Berdhard’s Mueller [31] implementation of this check was reused here.

The complete code of this check is shown in appendix A.13.

Debug detection - checking tracer Pid

For the implementation of this check I reused code of the gperftools project [5] which im-
plements an isDebuggerAttached method. As explained in section 4.3.2, when gdbserver
is attached to a process, the status file of the debugged process is updated to show a value
different than 0 in the field TracerPid.

This checks opens up the status file of the application’s process, then reads it. If the
value of the TracerPid differs from 0, a log message is shown to indicate that the debugger
was detected.

The complete code of this check is shown in appendix A.10.

Debug prevention

The initial code used to prevent debugging described in section 4.3.2 needed to be modified
to be integrated with the project. This protection is divided in two methods: the main
one, void antiDebug() and void* monitorPid(void* arguments). The later is placed
in utils.cpp while antiDebug is placed in its own file, DebugPrevention.cpp.

The complete code of this check is shown in appendix A.11.

5.4 Summary

This chapter showed how different types of defense mechanisms could be integrated with
the ARMANDroid project to provide increased security to Android applications. The
reader should now have a clear understanding of the implementation details of each of
those checks and how they were added to ARMANDroid. An anti-tampering solution such
as ARMAND was of prime importance to make it as hard as possible for an attacker to
remove every security check. Without it, it would have been trivial or at least easier to
disable or simply remove every injected security measure. The fact that the protection
mechanisms are spread between the Java and native layer is another important aspect of
this work. Indeed, it increases the effort needed by an adversary to effectively bypass or
remove every type of logic bombs and defense mechanisms.

In the next chapter I will showcase the methodology I used to check that every sin-
gle protection showcased in this chapter are fully functional as well as potential bypass
techniques that attackers could use to attack the proposed scheme.
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Effectiveness Assessment
6.1 Introduction

This chapter will present the experimental results I got from using the different protections
showcased in previous chapter. To get those results I followed a methodology that will also
be discussed in this chapter. To verify that every implemented security protection works
properly I needed to trigger them one by one and make sure that they had the expected
effect on the application. This verification process allowed me to remove some security
checks that didn’t work or didn’t have the expected behavior. For each tested defense
mechanism I will also briefly introduce theoretical bypass techniques that could make
those security checks ineffective. This chapter will serve as a proof that the protections
added to an unprotected application can effectively detect and prevent the desired threats.

6.2 Testing environment and methodology

Since I have less control on security protections once injected in an application and the AR-
MANDroid’s protection process takes a long time I tested the different security protections
following a two step process:

1. Each protection is implemented directly in a test project using Android Studio. That
way I was able to debug and test them more easily. If the implementation of a
protection works fine during this step I move on to the step 2.

2. The protection is integrated within ARMANDroid and injected in the target ap-
plication. I then use various techniques to trigger the protection and see if it still
works as the injection process can sometimes have unpredicted side effects if not done
properly.

For step 1 of my testing process, I used the insecure bank [23] and the damn inse-
cure and vulnerable app [29] open-source projects as target applications, which are both
Android applications riddled with common vulnerabilities developed for testing and edu-
cation purposes. Since they are both open-source I can import them in Android Studio
and modify them as I wish. To run the protected application, I used a Google Nexus 6
emulator running on a x86 architecture that I downloaded with Genymotion.

After using ARMANDroid to protect the target application, I used the Jadx-Gui de-
compiler [36] to explore the modified APK and check if the different pieces of code and
files to be injected were indeed present in the protected application.

Since I used the ARMANDroid tool in its jar form, I ran the following command to
modify a target APK:

$ java -jar anti-repackaging-framework.jar -k
"PKCS12:rasp.keystore:<password>:rasp" -a ~ /Android/Sdk/platforms/ -i
InsecureBankv2.apk

I then signed it with apksigner as seen in section 3.6.6:

60
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$ apksigner sign --ks ulb.keystore --ks-key-alias signkey aligned_target.apk

and installed it on the emulator with adb install.
Once the modified application is correctly installed on the emulator, I used the logcat

utility provided with the Android SDK to check the logs of the application looking for
the log traces I put in the different methods I implemented. Those logs are present in
each method and indicate that a security measure has been effectively triggered by the
application. Logcat is a powerful tool that allows us to specify the pid (process id) of the
application we want to monitor to filter out unnecessary logs. To get that pid, I use adb
to run the ps command inside a shell initiated inside my virtual device:

$ adb shell "ps -e | grep insecure*"

The output looks like this:

u0_a67 3905 655 1443212 136320 ep_poll f00ccbb9 S com.android.insecurebankv2

3905 being the pid of the application com.android.insecurebankv2. I can now attach
logcat to that particular process like so:

$ adb logcat --pid=3905

6.3 Root detection

6.3.1 Checking for test key

The TAGS entry of the build.prop file of the emulator does contain the string "test-keys":

vbox86p:/ # find / -type f -name build.prop -exec cat {} \; 2>> /dev/null | grep
tags

ro.build.tags.geny-def=test-keys

Possible bypass The build.prop file can be edited and the value of the TAGS entry can
thus be changed to any arbitrary value.

6.3.2 Checking running processes

Since Android API 26 (Android Oreo), applications don’t have access to other application’s
status. This means that several methods became unusable with this version. For example,
getRunningServices only returns the caller’s own services.

As a bypass to this restriction I tried iterating over the files in /proc/<pid> and to look
for their status file. The status file contains a lot of interesting information including the
process’ name which could have been used to check if su or frida-server were running.
Unfortunately, the kernel authorized reading only the application process’ file and other
system files but forbid me to access other processes’ files.
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6.3.3 Checkig if su is on the PATH

Since emulators provided by Genymotion are all rooted by default, su is already installed on
the device and can be found in the directory /system/bin that is on the PATH environment
variable:

vbox86p:/ # echo $PATH
/sbin:/system/sbin:/system/bin:/system/xbin:/vendor/bin:/vendor/xbin
vbox86p:/ # ls /system/bin | grep -w "su"
su

Possible bypass This check could be bypassed by renaming the su utility.

6.3.4 Check files presence

Since emulators provided by Genymotion are all rooted by default, some files from the list
depicted in section 4.2.2 are already installed on the device. To be more specific, the files
/system/bin/su, /system/xbin/su and /system/xbin/busybox are present on the test
emulator.

Possible bypass This check relies on an up-to-date list of suspicious file names. Re-
naming those files on the target device could effectively bypass this check.

6.4 Debug detection and prevention

6.4.1 Checking the debugger presence

This check works as expected in detecting if a JDWP debugger is attached to the applica-
tion. To trigger this check I attached a JDWP debugger to the target app:

$adb forward tcp:7777 jdwp:1826
$jdb -attach localhost:7777
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...

In this example 1826 is the pid of the target application.

Possible bypass This protection can be bypassed with a dynamic instrumentation tool
such as Frida or Xposed. Hooking the Debug API and changing the return value of the
isDebuggerConnected to false would bypass this check.

6.4.2 Checking TracerPid

To verify the efficiency of this check the target application had to be actually debugged. To
do so I pushed the gdbserver utility shipped with the Android NDK on my test emulator:

$ adb push $NDK/prebuilt/android-arm/gdbserver/gdbserver /data/local/tmp

Then I attached gdbserver to the application’s process:
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$ adb shell "/data/local/tmp/gdbserver --attach localhost:12345 17566"

Here 12345 is the port on which gdbserver will wait for incoming debugging traffic
and 17566 is the pid of the process being debugged.

Now gdb can be used on my host machine to debug the attached process:

$ $TOOLCHAIN/bin/gdb
GNU gdb (GDB) 7.11
(...)
(gdb) target remote 192.168.57.1:12345
Remote debugging using :12345
(gdb) continue
Continuing.

From the moment gdbserver is attached, the application is paused and we cannot interact
with it. In order to resume it and be able to navigate the app to trigger the right logic
bomb, it is important to use the continue command in gdb to resume the app’s execution.

Possible bypass This check relies on the libc library and its methods. Methods be-
longing to libc such as read or open could be hooked by Frida to modify their return
value and effectively hide the fact that the application is being debugged.

6.4.3 Debug prevention

This checks works as expected and prevents the application from being debugged as shown
in figure 6.1. One downside to the implementation of this check with the ARMANDroid
project is that to be the most effective, this protection should be triggered as soon as
possible when the application is started. Unfortunately, the ARMAND scheme does not
provide a lot of control over the placement of the logic bombs by design. That means that
this check fails if an attacker attached a debugger before this protection was triggered,
making it ineffective.

Figure 6.1 – Gdbserver fails to attach to the main thread of the application

Possible bypass Besides the fact that this check should be triggered as soon as possible
in the application lifecycle to be the most effective, this mechanism is still very powerful.
An attacker wanting to bypass it would have to patch the call to exit() in the libc library
to make it ineffective.

6.5 Frida detection

6.5.1 Checking loaded libraries

For this check, I used the latest version of frida-server (v15.0.8 at the time of writing)
which I downloaded from its release repository. I also installed the utilities needed to
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communicate with the instance of frida-server on the device, frida-tools:

$ pip install frida-tools

To install frida-server on the emulator, I used adb push:

$ adb push frida-server /data/local/tmp

Then I changed its rights to make it executable:

$ adb shell "chmod 755 /data/local/tmp/frida-server"

And finally I launched it in the background:

$ adb shell "/data/local/tmp/frida-server &"

In order for Frida to inject the frida-agent into the target application, I used the
frida-trace command to perform method tracing as discussed in section 3.7.1. To
do so I first need the device id of my emulator which I can get with the command
frida-ls-devices:

$frida-ls-devices
Id Type Name
------------------- ------ --------------
local local Local System
192.168.57.104:5555 usb Google Nexus 6
socket remote Local Socket

Next I run frida-trace with either the package name or the pid of the application I want
to instrument; in the following example I used its pid:

$ frida-trace - "read*" --attach-pid=9601 -D 192.168.57.104:5555

Here, read* means I am tracing all functions whose name starts with read and the option
-D specifies the device id of my emulator.

Possible bypass Since this check looks for library with the string "frida" in their names,
renaming the libraries would bypass this check.

6.5.2 Default port connection

The utility frida-server listens by default on port 27042. If this specific port is open,
that could signify that frida-server is installed on the device. To trigger this check, the
frida-server utility must be installed on the device and launched as shown in the previous
check.

Possible bypass The Frida tool allows the user to specify an arbitrary port as an argu-
ment which would make this check ineffective.
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6.6 Summary

My goal in this chapter was to show the effectiveness of the injected protections with log
messages. As showcased in the previous chapter, a mechanism to shut down the application
silently was also implemented and works effectively. Through the presented methodology,
the reader should now have the ability to recreate my experiments and trigger the security
checks the same way I did to verify that they are indeed working. The presented work
is not perfect though, and I also introduced bypass mechanisms that work in theory but
weren’t tested. Indeed, the presented checks are not the most elaborate there are, but
were the most accessible for a project of this size. Further work can definitely be done on
all the subjects discussed to improve the security measures and implement more complex
protections.

As always in information security, data protection is a cat and mouse game; for every
new threat a protection mechanism is developed that will eventually be bypassed by some
technique which in turn will be mitigated and so on. The next chapter will elaborate on this
principle, showing the current limitations of my work as well as potential improvements.



Chapter 7

Discussion
7.1 Introduction

The final chapter of this thesis will explore the limitations of my work and the different
aspects that could be improved. I focused my work on the implementation of a series of
security measures aimed at protecting against certain types of threats, but others exist
that could be mitigated using the mechanisms showcased in this thesis. Work can also
be done to better protect against the threats tackled in this document. More elaborate
defense schemes exist that can be used to protect further Android applications.

At the end of this chapter I will also provide closing words to this thesis and conclude
my work.

7.2 Possible Improvements

7.2.1 More protections granularity

In its current state, this project adds logic bombs at specific places in the code which
contain security measures. Those logic bombs are only injected in qualified conditions as
discussed in section 4.8.1, which means that no one has real control over their location.
A possible improvement scenario could be to add more control over the features which
are blocked in the event of a threat detection. From a more technical point of view, we
could create artificial qualified conditions at specific locations in the code that would then
get triggered when using specific features. This could work side by side with the current
implementation and improve it, not replace it.

For example, we could imagine that if the device is rooted some features might get
blocked but not others. This would allow the management team of the company that owns
the application to restrict the access to only some parts of their application to let users
who have a rooted device still use non-critical features and put controls only where it is
necessary.

7.2.2 Notification to a remote server

When a threat is detected, a notification could be sent to a monitoring server or SIEM
(Security Information and Event Management) of the company, that could use these data
to build statistics. This solution could then become part of a bigger infrastructure with
possibly a web application to allow easier management and monitoring of the applications
protected by this RASP.

7.2.3 Assets injection for better maintenance

Since the proposed scheme is signature-based, maintenance of the different signatures or
artifacts is of prime importance. At the moment, all those signatures are hardcoded in
the different checks for security reasons. Indeed, putting those signatures in a file, or,
even better, multiple files, (we could imagine one file for each signature type e.g. one for
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suspicious package names needed for root detection and one for the build.prop artifacts
needed for emulator detection) and reading this file from a security check could offer easier
maintenance but this would provide an attacker an easy bypass; all they would have to do
would be to empty it.

A better solution would then be to encrypt the file to prevent its tampering. The key
needed to decrypt and encrypt the file could be random and chosen at compile time and
then placed within each logic bomb that needs it. That way the random key would then be
encrypted with the rest of the code within that logic bomb and could be used to decrypt
it at runtime when needed by the security checks of that logic bomb.

A prototype of this solution without the encryption logic is shown in appendix A.14

7.2.4 Addition of modes

The project presented in this thesis had two main objectives: detecting and preventing
threats. Those two objectives could lead to an additional configuration option where the
company using this product could choose between only detecting threats or also prevent-
ing them. This distinction is reminiscent of various security technologies such as IDSs
(Intrusion Detection Systems) and IPSs (Intrusion Prevention Systems).

7.2.5 Protections improvements

As explained in the introduction of this chapter, my work in this thesis focused on miti-
gating dynamic analysis but there are other threats to Android applications. For example,
when protecting against hooking frameworks, I focused my work on the Frida tool but
Xposed is another powerful tool whose presence can be considered a threat. Work on
detecting magisk could also be done as it is the most popular rooting tool at the moment.
The debugging prevention feature I implemented in this project works only for native level
debugging but JDWP debugging could also be mitigated by other mechanisms. Shutting
down the application entirley from the native layer is also possible by recreating the same
process as the one in the Java layer with JNI methods. This would ensure that a debugging
effort with a native debugger would be fully mitigated.

At the moment and only in its public version, ARMANDroid uses the obfucapk project
to obfuscate the modified target application. This project only targets Java code and only
encrypts resources such as native libraries. Obfuscation of native libraries can be improved
further by using tools such as LLVM [8]. Using this tool, it is possible to modify bytecode
of native libraries to obfuscate them as wanted.

7.2.6 Using a complementary behavior based approach

The approach used in this thesis to check for a safe environment relies entirely on artifacts
to detect threats. Without an up-to-date list of known artifacts (or signatures), this
approach loses in efficiency. Such a technique could be completed by an anomaly based
approach where anomaly in the system are detected through machine learning algorithms
which indicate an unsafe environment.

For example, many researches have been conducted on the topic of root detection using
a behavioral approach through machine learning. Things like high number of installed
applications on a device, or an increased network traffic can be indicators that a device is
rooted [17]. Another example of such an approach is emulator detection; studies show that
emulators tend to call more methods from the libc library than physical devices or that
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real devices tend to make more system calls from other libraries than Bionic’s libc [32].
Those indicators can be fed to a machine learning algorithm and help detecting the use of
an emulator.

7.3 Conclusion

The motivation behind this work was the ever increasing number of Android applications
and the growth of their attack surface. Even if Google is working to improve security of
the platform with each release of their operating system, new attacks are emerging every
day and applications will need more and more defense capabilities. What I wanted to
demonstrate throughout this thesis is that even though Android’s design is open by nature
and thus prone to various attacks, defense mechanisms exist and can be combined to help
protect applications. I think RASP products have a future in Android security as they can
provide excellent security while reducing security stress in applications developers who can
focus on the actual features and design of their apps.

In this thesis I analyzed the different threats to Android applications in the form of the
tools and techniques used by adversaries to inspect the behavior of applications. This first
analysis helped me identify the key points that needed protection to increase the security
of applications. It then lead me to explore the numerous defense mechanisms against
those attacks that have been developed along the years by the community of Android
developers and security professionals. My contribution was then to select some of these
defense mechanisms and integrate them in the ARMANDroid project. The chosen defense
mechanisms include root and emulator detection as making sure that applications run
in a safe environment can mitigate a lot of attacks. I also worked on debug detection
and prevention as debuggers are powerful tools that can inspect and modify memory of
applications at runtime. Finally I worked on detecting the Frida tool as it is widely used
by attackers to perform dynamic analysis on applications. All those protections were
implemented and tested in an effort to produce a fully functional solution.

The challenge of my work was to provide strong security through a single, cohesive and
functional solution. The logic bomb mechanism and more broadly, the ARMAND anti-
tampering scheme are the keystone of this project as they ensure that the added protections
won’t be easily removed or bypassed by adversaries. Since work can still be done on the
subject of this thesis, I hope that this thesis will serve as a baseline to future students or
researchers that want to help build a safer cyberspace for Android applications.

The different security features I implemented all work towards the goal of security
protections that act as additional security layers in a bigger security scheme. Indeed, the
solution presented in this thesis is no silver bullet and is not to be used as a single protection
against attacks. It should be used as part of the defense strategy of a company developing
Android applications and therefore work together with other traditional security products
such as firewalls and so on.

It is important to keep in mind that security is a cycle and not a one shot effort. As
new threats arise, defenders will find mitigation to those threats. In return adversaries
will find counter measures and bypass techniques to those protections. Good security thus
relies on a perpetual effort to find vulnerabilities and mitigate them in a never ending
battle against adversaries.
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Appendix A

Source code
A.1 Ptrace debugging prevention

#include <jni.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <pthread.h>

static int child_pid;

void *monitor_pid() {

int status;

waitpid(child_pid, &status, 0);

/* Child status should never change. */

_exit(0); // Commit seppuku

}

void anti_debug() {

child_pid = fork();

if (child_pid == 0)
{

int ppid = getppid();
int status;

if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) == 0)
{

waitpid(ppid, &status, 0);

ptrace(PTRACE_CONT, ppid, NULL, NULL);

while (waitpid(ppid, &status, 0)) {

if (WIFSTOPPED(status)) {
ptrace(PTRACE_CONT, ppid, NULL, NULL);

} else {
// Process has exited
_exit(0);

}
}
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}

} else {
pthread_t t;

/* Start the monitoring thread */
pthread_create(&t, NULL, monitor_pid, (void *)NULL);

}
}

JNIEXPORT void JNICALL
Java_sg_vantagepoint_antidebug_MainActivity_antidebug(JNIEnv *env, jobject

instance) {

anti_debug();
}

A.2 Root detection - checking for suspicious files presence

public static void checkFilePresence(Context context) {
if (context == null)

return;

try {
Log.d("ROOT_DETECTION", "CHECK_FILE_PRESENCE");

String[] root_files = {
"/system/app/Superuser.apk",
"/system/etc/init.d/99SuperSUDaemon",
"/dev/com.koushikdutta.superuser.daemon/",
"/system/xbin/daemonsu",
"/sbin/su",
"/system/bin/su",
"/system/bin/failsafe/su",
"/system/xbin/su",
"/system/xbin/busybox",
"/system/sd/xbin/su",
"/data/local/su",
"/data/local/xbin/su",
"/data/local/bin/su",

};

for (String file_name : root_files) {
if (new File(file_name).exists()){

Log.d("ROOT_DETECTION", "Detected file: " + file_name);
throw new RuntimeException("ROOT_DETECTION: " + "Detected

file: " + file_name);
}

}
} catch (RuntimeException e) {

Log.d("ROOT_DETECTION", "Closing app");
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List<ActivityManager.AppTask> appTasks =
((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.3 Root detection - checking for suspicious package names

public static void checkInstalledPackages(Context context) {
if (context == null)

return;

try {
String[] package_names = {

"com.thirdparty.superuser",
"eu.chainfire.supersu",
"com.noshufou.android.su",
"com.koushikdutta.superuser",
"com.zachspong.temprootremovejb",
"com.ramdroid.appquarantine",
"com.topjohnwu.magisk",

};

Log.d("ROOT_DETECTION", "CHECK_INSTALLED_PACKAGES");

PackageManager packageManager = context.getPackageManager();
List<ApplicationInfo> installedPackages =

packageManager.getInstalledApplications(PackageManager.GET_META_DATA);

for (int i = 0; i < installedPackages.size(); i++) {
ApplicationInfo packageInfo = installedPackages.get(i);

for (String package_name : package_names) {
if (packageInfo.packageName.equals(package_name)) {

//Log.d("ROOT_DETECTION", "detected package name " +
package_name);

throw new RuntimeException("ROOT_DETECTION: detected package
name " + package_name);

}
}

}
} catch (RuntimeException e) {

//Log.d("ROOT_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();
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}
}

}

A.4 Root detection - checking if su is on PATH

public static void checkSuOnPath(Context context) {
if (context == null)

return;

try {
Log.d("ROOT_DETECTION", "CHECK_SU_ON_PATH");

for (String pathDir : System.getenv("PATH").split(":")){
if (new File(pathDir, "su").exists()) {

//Log.d("ROOT_DETECTION", "su is on the PATH");
throw new RuntimeException("ROOT_DETECTION: su is on the PATH");

}
}

} catch (RuntimeException e) {
//Log.d("ROOT_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.5 Root detection - checking for test key

public static void isTestKeyBuild(Context context) {
if (context == null)

return;

try {
String tags = Build.TAGS;

if (tags != null && tags.contains("test-keys")) {
//Log.d("ROOT_DETECTION", "CHECK_TEST_KEY");
throw new RuntimeException("ROOT_DETECTION check test key failed");

}
} catch (RuntimeException e) {

//Log.d("ROOT_DETECTION", "Closing app test key");
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {



APPENDIX A. SOURCE CODE 75

task.finishAndRemoveTask();
}

}
}

A.6 Emulator detection - checking suspicious package names

public static void packageCheck(Context context) {
if (context == null)

return;

try {
PackageManager packageManager = context.getPackageManager();
List<ApplicationInfo> installedPackages =

packageManager.getInstalledApplications(PackageManager.GET_META_DATA);

for (int i = 0; i < installedPackages.size(); i++) {
ApplicationInfo packageInfo = installedPackages.get(i);
if (packageInfo.packageName.contains("geny")) {

//Log.d("EMULATOR DETECTION", "Package detected " +
packageInfo.packageName);

throw new RuntimeException("EMULATOR_DETECTION: Package detected
" + packageInfo.packageName);

}
}

} catch (RuntimeException e) {
//Log.d("EMULATOR_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks = ((ActivityManager)

context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.7 Emulator detection - checking for artifacts in build.prop

public static void buildCheck(Context context) {
if (context == null)

return;

try {
boolean ABIS_artifacts = false;

for (String supported_abi : Build.SUPPORTED_ABIS) {
if (supported_abi.contains("unknown") ||

supported_abi.contains("armeabi")) ABIS_artifacts = true;
}
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boolean isEmulator = ABIS_artifacts
|| Build.BOARD.equals("unknown")
|| Build.HOST.equals("android-test")
|| Build.ID.equals("FRF91")
|| Build.MANUFACTURER.equals("unknown")
|| Build.MODEL.equals("sdk")
|| Build.getRadioVersion().equals("unknown")
|| Build.getSerial() == null
|| Build.USER.equals("android-build");

if (isEmulator) {
//Log.d("EMULATOR DETECTION", "Build check FAIL");
throw new RuntimeException("EMULATOR_DETECTION: Build check

FAIL");
} else {

Log.d("EMULATOR DETECTION", "Build check PASS");
}

} catch (RuntimeException e) {
//Log.d("EMULATOR_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.8 Emulator detection - checking the TelephonyManager
API

public static void telephonyCheck(Context context) {
if (context == null)

return;

try {
TelephonyManager telephonyManager = (TelephonyManager)

context.getSystemService(Context.TELEPHONY_SERVICE);

@SuppressLint("MissingPermission") boolean isEmulator =
telephonyManager.getDeviceId().equals("0’s")

|| telephonyManager.getLine1Number().equals("155552155")
|| telephonyManager.getNetworkCountryIso().equals("us")
|| telephonyManager.getNetworkType() == 3
|| telephonyManager.getNetworkOperator().substring(0,

3).equals("310")
||

telephonyManager.getNetworkOperator().substring(3).equals("260")
|| telephonyManager.getPhoneType() == 1
|| telephonyManager.getSimCountryIso().equals("us")
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||
telephonyManager.getSimSerialNumber().equals("89014103211118510720")

|| telephonyManager.getSubscriberId().equals("310260000000000")
|| telephonyManager.getVoiceMailNumber().equals("15552175049");

if (isEmulator) {
//Log.d("EMULATOR DETECTION", "Telephony check FAIL");
throw new RuntimeException("EMULATOR_DETECTION: Telephony check

FAIL");
}

} catch (SecurityException e) {
return;

} catch (RuntimeException e) {
//Log.d("EMULATOR_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks = ((ActivityManager)

context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.9 Debug detection - checking if a JDWP debugger is at-
tached

public static void detectDebugger(Context context) {
if (context == null)

return;

try {
if (Debug.isDebuggerConnected()) {

Log.d("DEBUG_DETECTION", "Debugger is connected");
}

} catch (RuntimeException e) {
//Log.d("DEBUG_DETECTION", "Closing app");
List<ActivityManager.AppTask> appTasks =

((ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE)).getAppTasks();

for (ActivityManager.AppTask task : appTasks) {
task.finishAndRemoveTask();

}
}

}

A.10 Debug detection - checking if a native debugger is at-
tached
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A.10. DEBUG DETECTION - CHECKING IF A NATIVE DEBUGGER IS

ATTACHED

#include <jni.h>
#include <string>
#include <android/log.h>
#include <dlfcn.h>
#include <bits/sysconf.h>
#include <asm/mman.h>
#include <sys/mman.h>
#include <unordered_map>
#include <link.h>
#include <elf.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include "libs/nativeutils/utils.h"
#define log(...) __android_log_print(ANDROID_LOG_DEBUG, "NATIVE", __VA_ARGS__);

%s
log("DEBUG DETECTION")
char buf[256]; // TracerPid comes relatively earlier in status output
int fd = open("/proc/self/status", O_RDONLY);

if (fd == -1) {
log("Could not read file");
return; // Can’t tell for sure.

}

const int len = read(fd, buf, sizeof(buf));
bool rc = false;

if (len > 0) {
const char *const kTracerPid = "TracerPid:\t";
buf[len - 1] = ’\0’;
const char *p = strstr(buf, kTracerPid);

if (p != NULL) {
rc = (strncmp(p + strlen(kTracerPid), "0\n", 2) != 0);

}
}

close(fd);

if (rc) {
log("Debugger is attached");

} else {
log("Debugger not detected");

}
}
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A.11 Debug prevention

A.11.1 Main method in DebugPrevention.cpp

#include <jni.h>
#include <string>
#include <android/log.h>
#include <dlfcn.h>
#include <bits/sysconf.h>
#include <asm/mman.h>
#include <sys/mman.h>
#include <unordered_map>
#include <link.h>
#include <elf.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include "libs/nativeutils/utils.h"
#define log(...) __android_log_print(ANDROID_LOG_DEBUG, "NATIVE", __VA_ARGS__);

%s
log("DEBUG DETECTION")
char buf[256]; // TracerPid comes relatively earlier in status output
int fd = open("/proc/self/status", O_RDONLY);

if (fd == -1) {
log("Could not read file");
return; // Can’t tell for sure.

}

const int len = read(fd, buf, sizeof(buf));
bool rc = false;

if (len > 0) {
const char *const kTracerPid = "TracerPid:\t";
buf[len - 1] = ’\0’;
const char *p = strstr(buf, kTracerPid);

if (p != NULL) {
rc = (strncmp(p + strlen(kTracerPid), "0\n", 2) != 0);

}
}

close(fd);

if (rc) {
log("Debugger is attached");

} else {
log("Debugger not detected");

}
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}

A.11.2 Secondary method in utils.cpp

void* monitor_pid(void* arguments) {
int child_pid = *((int *) arguments);

int status;

waitpid(child_pid, &status, 0);

kill(getpid(), SIGKILL); // Commit seppuku*/
}

A.12 Frida detection - checking if default port is open

void* check_default_port(void* ) {
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
inet_aton("127.0.0.1", &(sa.sin_addr));

int i;
int sock;
int ret;
char res[1024];
char buff[5];

if ((sock = socket(AF_INET , SOCK_STREAM , 0)) < 0) {
log("unable to create socket");
return NULL;

}

sa.sin_port = htons(27042);

if (connect(sock , (struct sockaddr*)&sa , sizeof sa) != -1) {
log("Default Fida port is open");

}

close(sock);
return NULL;

}

A.13 Frida detection - checking loaded libraries

#include <jni.h>
#include <string>
#include <android/log.h>
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#include "libs/nativeutils/utils.h"
#define log(...) __android_log_print(ANDROID_LOG_DEBUG, "NATIVE", __VA_ARGS__);

%s
char line[512];
FILE* fp;

fp = fopen("/proc/self/maps", "r");

if (fp) {
while (fgets(line, 512, fp)) {

if (strstr(line, "frida")) {
log("frida library detected !");
_exit(0);

}
}

fclose(fp);
log("frida library not detected");

} else {
log("could not open /proc/self/maps");

}
}

A.14 Assets injection prototype

public static void injectAssets() {
if (Options.v().process_dir().size() != 1) {

throw new IllegalArgumentException("Not a single APK was provided");
}

try {
Path sourceAPKPath = ManifestHelper.getAPKOutputPath(); // Path of the
transformed apk before injecting assets
String inputDir = "/tmp/test/assets/";
JarFile jf = new
JarFile(URLDecoder.decode(ApplicationHelper.class.getProtectionDomain().getCodeSource().getLocation().getPath(),

"UTF-8"));
for (Enumeration<JarEntry> it = jf.entries(); it.hasMoreElements();) {

// iterating through all the ARMANDroid jar’s entries
JarEntry entry = it.nextElement();
if (entry.getName().startsWith("bin/assets/") &&

!entry.isDirectory()) { // looking for the right files
InputStream inputStream =
NativeHelper.class.getClassLoader().getResourceAsStream(entry.getName());
File f = new File(inputDir + entry.getName().split("/")[2]);
FileUtils.copyInputStreamToFile(inputStream, f); // copying the files

to the temp directory
}
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}
// creating a temporary apk and adding the assets folder to it
File newTempApk = File.createTempFile("new-apk", ".apk");
FileOutputStream targetApkOutputStream = new
FileOutputStream(newTempApk.getAbsolutePath());
DexHelper.mergePathWithAPK(new ZipFile(sourceAPKPath.toString()),
Paths.get("/tmp/test"), new ZipOutputStream(targetApkOutputStream));
Files.delete(sourceAPKPath);
Files.move(newTempApk.toPath(), sourceAPKPath);
FileUtils.deleteDirectory(new File(inputDir));
} catch (Exception e) {

e.printStackTrace();
}

}
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