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Abstract
Nowadays, numerous applications incorporate machine learning algorithms due to
their prominent achievements. However, many studies in the field of computer vision
have shown that machine learning can be fooled by intentionally crafted instances,
called adversarial examples. These adversarial examples take advantage of the in-
trinsic vulnerability of machine learning models. This vulnerability raises many
concerns in the cybersecurity field since an increasing number of security systems
are powered by machine-learning algorithms.

In this thesis, we explored the effects of adversarial machine learning on cyber-
security systems driven by machine learning models, focusing on intrusion detection
systems. To do so, we implement and evaluate evasion attacks in both black-box
and white-box settings to generate adversarial network traffic able to fool the intru-
sion detection system. We also design and test novel evasion attacks and adversarial
defenses to improve the robustness of intrusion detection systems.

The experimental results demonstrated that machine learning-based intrusion
detection systems are vulnerable to adversarial attacks generated by adding minor
specially crafted perturbations to malicious network traffic, allowing the attacker
to evade detection and thus successfully perform his initial attacks. Adversarial
detection, on the other hand, provides an efficient way to mitigate the effect of
adversarial attacks at the expense of increasing model complexity by adding a second
line of defense.

Keywords: Intrusion detection system, Machine learning, Adversarial learning,
Evasion attack, Adversarial defense
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Introduction

Motivation

With the growth of information communication and in particular the growth of the

Internet, the concern to secure this information and related systems has become

increasingly important. Every day, massive amounts of sensitive information are

created, transferred, stored, or updated around the world. This sensitive information

can range from personal emails to banking transactions, from simple holiday photos

to military communication. This information has always been the target of malicious

entities wanting to steal, modify or delete it. To achieve these goals, hackers and

other malicious agents have discovered, exploited, and improved a wide range of

cyberattacks.

This new era of cyber security has required a paradigm shift from simple defense

mechanisms to sophisticated defense systems. While basic network protections,

such as firewalls, may have been sufficient in the past, the increasing complexity

of cyberattacks has made them insufficient if used alone. To guard against these

complex attacks, Intrusion Detection Systems (IDS) are now the cornerstone of

cyber security.

As the sophistication of attacks increases, weaknesses are also discovered and

exploited at an increasing rate. Attacks that exploit weaknesses almost as soon

as they are discovered are called zero-day attacks. With zero-day hacking attacks

breaking records year after year [5], it becomes necessary for IDSs to be able to detect

never-before-seen attacks. Machine learning-based IDSs are one of the solutions

to this problem. Indeed, numerous research papers have shown that the use of

machine learning provides new approaches and detection mechanisms against zero-

day attacks in all areas of cybersecurity [6–9].

As always in the ongoing rivalry between cyber-attacks and defenses, as machine

learning has become an important part of defense mechanisms, it has also become

the target of attacks. The field of adversarial learning studies various methods

of attack against machine learning (ML) and different ways of protecting models
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against these attacks. These new attacks take advantage of the fact that machine

learning models have a discontinuous input-output mapping. This means that hu-

manly imperceptible changes to the input of a model can cause a dramatic change

in the classification result. These changes or perturbations in the input are called

adversarial examples [10].

Research in the field of computer vision, where this vulnerability was first dis-

covered, has shown that adversarial images designed to fool a specific model can, to

some extent, fool other machine learning models [11]. This is known as the trans-

ferability property of adversarial attacks. By exploiting this property, an attacker

can build a surrogate intrusion detection system, create adversarial traffic for that

detector, and then attack another intrusion detection system without even knowing

the internal architecture of that detector, leading to a black-box attack.

This change in cyber-target has led to an equivalent change in cyber defenses,

as the focus has shifted to protecting IDSs themselves from attacks created to un-

dermine their effectiveness. While adversarial learning features some defenses, more

research is needed to refine these techniques. Some defenses have shown promising

results in the field of computer vision, but very limited work has been done regarding

these approaches in the field of intrusion detection systems.

In addition, a significant amount of research on the impact of adversarial learning

in computer vision has been transferred into intrusion detection. Initial results

have shown that the classifiers used in IDS are also vulnerable to these algorithms.

A typical approach used by researchers is to focus on the theoretical aspect of

the problem by setting simplifying assumptions and focusing only on the feature

space [12]. However, unlike computer vision where the created perturbations have

relatively few constraints, a valid network traffic perturbation must satisfy many

domain-specific constraints (both semantic and syntactic). These domain-specific

constraints ensure that the added perturbation will generate valid network traffic

enabling the transition from feature space to traffic space. Unfortunately, network-

specific constraints are often not considered or only to a limited extent. This means

that the feasibility of attacks from a realistic point of view is not fully considered.

2



Goal of this thesis

The goal of this thesis is to investigate the implications of adversarial machine

learning on cybersecurity systems powered by machine learning models, specifically

intrusion detection systems. Six main contributions are presented in this thesis:

• Since a considerable amount of research in the field of computer vision has

been translated for use in intrusion detection without addressing domain re-

strictions, we present a revised review of the state of the art based on the

feasibility of adversarial attacks and defenses. (Chapier 1)

• A novel intrusion detection system based on evidence theory is presented,

along with a novel contextual discounting method based on the reliability of

the sources. (Chapier 2)

• A study is conducted to determine how adversarial attacks affect deep learning-

based intrusion detection systems. In addition, the effectiveness of Adversarial

Training as a defense against adversarial attacks for intrusion detection sys-

tems is investigated. (Chapier 3)

• In a black-box setting, the transferability of adversarial network traffic between

multiple anomaly-based intrusion detection systems is investigated using vari-

ous machine learning techniques. Furthermore, the effectiveness of the ensem-

ble method and the detection and rejection method as a defensive mechanism

for mitigating the effect of adversarial transferability is investigated. (Chapier

4)

• Proposal of a novel adversarial defense in a white-box setting by designing

and testing the use of multiple strategically placed transfer learning-based

detectors of adversarial attacks. (Chapier 5)

• Investigate the actual feasibility of evasion attacks against network-based in-

trusion detection systems (NIDS), demonstrating that using our proposed ad-

versarial algorithm and as many constraints as possible in a black-box setting,

it is entirely possible to fool these ML-based IDSs. Furthermore, because

designing defense mechanisms to protect these ML-based IDSs is critical, a

defensive scheme is presented. (Chapier 6)
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Chapter 1

Literature review, state of the art, def-

initions and notations

1.1 Introduction

Today, problems related to the security of ML-based IDS are an active research

topic [13,14]. A significant amount of research on the impact of adversarial learning

in computer vision has been transferred into intrusion detection. Initial results

have shown that the classifiers used in IDS are also vulnerable to these algorithms.

A typical approach used by researchers is to focus on the theoretical aspect of

the problem by setting simplifying assumptions and focusing only on the feature

space [15–17]. However, unlike computer vision where the created perturbations

have relatively few constraints, a valid network traffic perturbation must satisfy

many domain-specific constraints (both semantic and syntactic). These domain-

specific constraints ensure that the added perturbation will generate valid network

traffic enabling the transition from feature space to traffic space. Unfortunately,

network-specific constraints are often not considered or only to a limited extent.

This means that the feasibility of attacks from a realistic point of view is not fully

considered. Some researchers [18–20] have decided to take a different approach

to deal with the problem by limiting the need for feature knowledge by directly

manipulating the traffic space.

This chapter is therefore a revised review of the state of the art providing a new

aspect based on the feasibility of adversarial attacks and defenses. We also provide

an update on new contributions that have been produced recently concerning the

feasibility of attacks in real settings:(i) we propose a complete analysis, for each

selected paper, on the real feasibility of the proposed attacks by demonstrating

whether or not the constraints of the domain are respected. In addition, (ii) we

propose an analysis of the defenses used in the papers studied to highlight the
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strengths and weaknesses of each. Finally,(iii) we identify some realistic aspects

that should be considered for future studies of the impact of adversarial attacks on

IDSs.

The rest of the chapter is structured as follows. Section 1.2 gives a theoretical

reminder introducing the key concepts used in the reviewed papers. Section 1.3

summarizes previous reviews that have been conducted on the subject. Section 1.4

describes the most commonly used state-of-the-art attacks in the literature. Section

1.5 shows the most popular defense mechanisms used in the literature to counter

the attacks described in Section 1.4 . Section 1.6 contains a detailed analysis of

the realism of the selected papers. Section ?? discusses the actual feasibility of the

attacks present in Section 1.6 and the challenges associated with them. Section 1.8

concludes the chapter by providing the key points that have been discussed.

1.2 Background

1.2.1 Anomaly-based IDS

The increasing development of new threats targeting network infrastructures world-

wide has pushed researchers to develop new defenses. Due to the huge number of

undiscovered attacks, most defense mechanisms are unable to cope with such threats.

To mitigate this problem, solutions such as Anomaly-Based IDS ( AIDS ), which can

detect some of these previously unknown attacks through the use of statistics and

machine learning algorithms, are gaining popularity. AIDS have many properties,

among which we note their ability to be deployed in a network (NIDS) or directly

on a host (HIDS). As far as NIDS are concerned, two different types can be found:

packet-based and flow-based. The data used by NIDS to collect this information can

come from different sources such as network protocols like NetFlow/IPFIX, SNMP,

or directly from an agent. NIDS can also use application logs from anti-virus or

firewalls. To measure the performance of NIDS, different metrics are used such as

true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), false

negative rate (FNR), accuracy, precision, F1 score, error rate, area under the curve

(AUC). All these metrics are derived from the confusion matrix shown in Table 1.1.
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Predicted Class

Actual Class Anomaly Normal

Anomaly True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)

Table 1.1: IDS confusion matrix

1.2.2 Threat model

Although there are several types of threats, an attacker often seeks to violate one of

the following properties: confidentiality, integrity, authenticity, and availability.

In terms of threat modeling, there are two important points to consider, namely

the knowledge restriction corresponding to the complexity of the attack and the

objective of the attack, corresponding to the capability of the attack.

Knowledge restriction As shown in Figure 1.1, attacks can be conducted in two

forms, black box or white box. The white box attack means that the adversary

knows everything about the training dataset and the model architecture, in partic-

ular all the parameters and meta-parameters which are for example the inputs, the

gradients (for DNNs), the tree depth (for decision trees) or the number of neighbors

(for K-nearest neighbors) as well as the chosen cost function or the type of optimizer

(e.g., ADAM or RMSProp) in case of neural networks. The black box refers to the

fact that the attacker knows nothing about the target model, i.e., the architecture

of the model and the dataset used. The attacker can only send requests to the tar-

geted model and receive answers in the form of decisions or probabilities (logits). He

must, therefore, without knowing any information about the model, approximate a

decision boundary similar to that of the target model to be able to craft adversarial

samples. Another option for black box attacks is exploiting transferability. An at-

tacker can create a surrogate model, similar in functionality to the targeted model,

craft adversarial instances to fool the surrogate model, and then transfer those in-

stances to the targeted model so that it will also be fooled. Black-box attacks are

more complicated to perform since less knowledge is available, but also because more

computational resources are needed to accommodate this accumulated knowledge

(queries).
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Attack objective Another relevant property of an attack is its objective. There

are two different types of objectives, the untargeted attack, and the targeted attack.

A non-targeted attack is easier to perform since all the attacker has to do is trick

the machine learning model without any particular considerations. Two possible

scenarios can be expected. The first is confidence reduction, which means that the

attacker simply wants to decrease the performance of the model while maintaining

the overall functionality. The second scenario is misclassification. In this case, the

adversary’s goal is to trick the model into misclassifying without specific constraints.

In a targeted attack, the adversary’s goal is to force an ML model to produce the

desired output by manipulating the input. This type of objective is therefore more

complicated to achieve because it requires manipulating the model in a specific di-

rection, unlike a non-targeted attack that is not limited to a certain target. There

are two variants of targeted attacks that can be highlighted. The first is targeted

misclassification, which means that an attacker wants to cause misclassification in

a certain target class with any input. The other variant is source/target misclassi-

fication, which means that an attacker wants to cause misclassification in a certain

target class with a certain input. This particular goal is the most difficult to achieve.

1.2.3 Adversarial examples

Adversarial learning refers to the problem of designing attacks against machine

learning as well as defenses against these attacks. Depending on the phase in which

the attack is carried out, adversarial attacks can be divided into poisoning and

evasion attacks. This thesis focuses on evasion attacks. This choice is due to the

fact that this review wants to focus on the most realistic aspects of adversarial

attacks against NIDS. The problem with poisoning attacks is that they require the

ability to directly manipulate the model training data. It is clear that in a realistic

scenario, the attacker’s knowledge will be limited, and it will be less possible to

manipulate the model before its training phase.

The creation of adversarial examples can be expressed as an initial problem
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formulation as defined in Eq. 1.1.

Minimize: D(x, x+ δ)

Such that: C(x+ δ) = t—- constraint 1

x+ δ ∈ [0, 1]n—- constraint 2

(1.1)

where we want to minimize the distance between the original element and the adver-

sarial element D(x, x + δ) respecting 2 constraints. The first is that the classification

C of x + δ must be classified as the target label t. The second is that x + δ must

be a valid element.

According to the work of Szegedy et al. [21], adversarial examples exploit the fact

that neural networks have "blind spots". The cause of this "blind spot" effect would

be due to the models being non-linear and trying to behave linearly as concluded by

Goodfellow et al. [22]. These adversarial examples have certain properties described

below.

LP norms To compute the distance between the original element x and the per-

turbed element xadv, an LP norm (i.e., distance metric) is used such as L0,L1, L2 and

L∞ allowing to define the boundary of adversarial examples. These norms are thus

used to minimize the perturbation rate used to generate the adversarial example.

The most common norms used by adversarial algorithms are:

L0: This distance metric counts the number of features of x modified in xadv.

This metric only takes into account the number of modified features regardless of

the perturbation rate introduced in each feature.

L1: This norm represents the Manhattan distance between x and xadv as defined

in Eq. 1.2.

L1 = |x1 − x1adv|+ ...+ |xn − xnadv| (1.2)

L2: This norm calculates the Euclidean distance or the mean-squared error be-

tween x and xadv as shown in Eq. 1.3.

L2 =
√

(x1 − x1adv)2 + ...+ (xn − xnadv)2 (1.3)

L∞: This norm gives the largest change among all features of xadv compared to
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x and it’s defined in the following Eq. 1.4.

L∞ = max(|x1 − x1adv|, ..., |xn − xnadv|) (1.4)

Attack frequency Attack frequency is a property that defines whether the attack

is executed in a one-step iteration or requires several. Thus, there are two types of

attacks: one-step attacks and iterative attacks. One-step attacks mean that the

adversarial examples are generated by an algorithm that executes only once, i.e., it

does not iterate multiple times to optimize the adversarial example. Thus, one-step

attacks are faster but less optimized. Iterative attacks on the other hand use iterative

functions to generate adversarial examples so that it maximizes their efficiency but

takes more time.

Adversarial examples

Attack frequency Domain constraintsKnowledge restriction Attack objective  Manipulation space

One-step Iterative Syntactic  Semantic  Black box White box Targeted Non-targeted Feature space Traffic space

Figure 1.1: Classification of adversarial examples

Domain constraints The feasibility of adversarial attacks is domain-specific and

is influenced by several constraints. These constraints can be divided into two main

categories: syntactic constraints and semantic constraints. The following syntactic

constraints were originally discussed by Merzouk et al. [23]. As for the semantic

links, the exact definition of these constraints is difficult since they are specific to

each domain and even to each type of feature used. However, we draw on the work

of Hashemi et al. [24], and Teuffeunbach et al. [25] in the IDS domain to provide a

generalization of three different groups with different semantic links.

Syntactic constraints concern all those related to syntax, e.g., out-of-range values,

non-binary values and multiple category membership. Out-of-range values are values

that exceed a theoretical maximum value that cannot be exceeded, for example, a

float between 0 and 1 or an integer between 0 and 255. Non-binary values are entries

that violate the binary nature of a feature and multiple category membership are

values that violate the one-hot encoding concept.

Semantic Links represent the links that certain features may have with each
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other. These features can be grouped into three distinct groups, each with different

semantic properties. The first set includes features that cannot be modified (e.g.,

IP address, protocol type). The second group includes features that can be directly

modified (number of forward packets, size of the forward packet, flow duration, ...).

The last group concerns the features that depend on the second group. They must

be recalculated based on the latter (number of packets/second or average forward

packet size).

This implies that the complexity of generating realistic adversarial examples

varies with the different types of data used to represent the domain, such as numer-

ical (continuous or discrete) or categorical data. It also depends on the context in

which the model is located (such as network traffic). The NIDS domain is therefore

strongly affected by both semantic and syntactic constraints as it uses heterogeneous

data types, and its context requires several semantic links most of the time unlike

other domains such as computer vision.

Manipulation space An essential property of a realistic adversarial instance is

the ability of an attacker to modify its characteristics. In theory, it is possible to di-

rectly modify the features of adversarial instances. However, in real-world scenarios,

this approach is considered unsuitable for certain domains such as IDSs that analyze

network traffic. This is mainly due to the fact that the feature extraction process

(i.e., from raw traffic to feature space) is not a fully reversible process, unlike other

domains such as computer vision. This means that features can be extracted, and

modified but not easily reintroduced into network traffic due to the semantic links

between features. Moreover, direct feature modification requires full knowledge of

the feature extraction process used by the IDS in order to respect the syntactic or

semantic constraints assigned to them. We can therefore deduce that working on the

feature space is not very realistic. For this reason, recent studies [18–20,24] propose

to manipulate directly the raw network traffic so that it is not necessary to know

the features used, nor to transform the feature values into traffic form. In this way,

we can distinguish two manipulation spaces, the feature-based and the traffic-based.
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1.3 Related work

Numerous research studies on the real impact of adversarial attacks have already

been extensively conducted in the compute vision field, which has also urged re-

searchers to study the issue in the cybersecurity field. Today, the number of papers

on this topic is rapidly increasing and the actual impact of these attacks in a real-

world scenario seems to be getting clearer. To help the community gain more insight

into the topic, we analyze the important aspects of the feasibility of adversarial at-

tacks by comparing the different research and reviews on the topic, especially those

related to IDS.

In the review proposed by Reza et al. [26], the authors focus on giving a better

understanding of adversarial examples in the computer vision domain. They propose

an analysis of numerous attacks and defenses dedicated to this domain. Among

these attacks, some are more realistic as they are directly applicable to a real-

world scenario. However, this review does not provide any information about the

implication of these attacks and defenses in the IDS domain. In addition, the review

does not address the topic of domain constraints, nor the attack manipulation space.

Vitorino et al. [27] took an interesting approach in their paper to analyze, from

the point of view of domain constraints, the suitability of adversarial attacks for

the IDS domain. They showed that most of the state-of-the-art attacks, initially

dedicated to computer vision, were not suitable for the IDS domain as they did not

comply with these constraints. However, the paper does not address the manipula-

tion space used, nor the problems related to the respect of semantic and syntactic

constraints found in papers dealing with attacks against IDSs. In addition, defenses

against adversarial examples in the IDS domain are also not addressed.

The study proposed by McCarthy et al. [28] proposes the analysis of several at-

tacks and defenses in different domains of cybersecurity, namely intrusion detection,

malware detection, and anomaly detection in industrial systems. They pointed out

some constraints related to adversarial algorithms. Our review further elaborates on

the manipulation space property, as well as a discussion of semantic and syntactic

constraints that are not discussed in detail in their paper. In addition, our work

surveys more recent papers.

The paper by Apruzzese et al. [12] provides interesting insights into the manip-
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Knowledge

restriction
Attack Advantages Disadvantages Norm

Attack

frequency

Attack

objective

Suitable

for IDS

White box

L-BFGS Efficient in generating adversarial instances highly computationally demanding L2 I T /

FGSM Calculation time efficiency
All features, including non-modifiable ones,

are perturbed.

L2

L∞

O T & NT /

PGD/BIM
More efficient than FGSM

due to its iterative nature

When compared to FGSM, it is

more computationally expensive

L2

L∞

I T & NT /

JSMA
Successfully deceive a model by

changing a few input features
More computationally demanding compared to FGSM L0 I T Could

DeepFool Produce significantly smaller perturbations than FGSM
Perturbations are sub-optimal

More time consuming than FGSM and JSMA
L2 I NT /

C&W
Empirically shown to be more effective than other attacks

Successfully circumvented many adversarial defenses
More computationally intensive than previous attacks

L0

L2

L∞

I T & NT /

EAD
Produce highly transferable instances

Successfully bypassed defensive distillation
More time-consuming than other attacks such as FGSM L1 I T & NT /

Black box

Substitute Model
Successfully defeats gradient masking-based defenses

Feasible against non-differentiable models
Not as effective as white box attacks / I T & NT yes

ZOO Its performance is comparable to that of C&W
Empirically slower than Substitute Model attack

Needs a significant amount of queries to the target classifier
L2 I T & NT /

Boundary
Knowledge of the victim’s model is not required

Deliver comparable results to white box attacks

Require a substantial number of queries

to find high quality adversarial examples
L2 I T & NT /

OPT Requires fewer queries compared to ZOO and Boundary Being a query-based attack, it can be easily detected
L2

L∞

I T & NT /

GAN/WGAN Can create samples that differ from those used in training This attack can be computationally heavy and highly unstable / I T & NT yes

Table 1.2: List of well-known state-of-the-art evasion attacks (I: iterative, O: one-
time, T: targeted, NT: non-targeted)

ulation space used in defining attacks as problem or feature-based. This work also

provides an in-depth analysis of the different learning phases of the model by artic-

ulating the feasibility at all levels of the machine-learning pipeline. Our work differs

by providing an analysis of more recent work on the topic and an explanation of

each paper based on the domain constraints analysis. In addition, their work does

not include an overview of possible defenses.

Martins et al. [29] provides a comprehensive overview of adversarial attacks

against IDS and malware classifiers. They also describe the state of the art of

defenses. However, this review does not include a discussion of the feasibility aspect

of adversarial attacks and defenses. In our contribution, an analysis of the realistic

aspect of the state-of-the-art defenses and attacks is introduced with an explanation

of their feasibility.

1.4 Adversarial strategies

In this section, we present state-of-the-art adversarial attacks, classified into white-

box and black-box algorithms. A list of these attacks can be found in Table 1.2.

13



1.4.1 White-Box algorithms

Limited-memory Broyden Fletcher Goldfarb Shanno (L-BFGS) The idea

of this iterative attack is to produce an instance xadv similar to the initial instance

x under the distance L2 but have xadv classified as another target class using the

L-BFGS box constraint. For this, Szegedy et al. [21] explain that it’s possible

to express the initial problem as a constrained minimization problem to generate

targeted adversarial examples as illustrated in Eq. 1.5.

Minimize: ||x− xadv||2

Such that: C(xadv) = t

xadv ∈ [0, 1]n

(1.5)

Since this problem is difficult to solve, they adapt it into an easier-to-handle variant,

as shown in Eq. 1.6.

Minimize: c.|x− xadv|+ J(xadv, t)

Such that: xadv ∈ [0, 1]n
(1.6)

where x is the input element, xadv is the adversarial element, c is a positive constant,

J is the loss function and t is the target label.

On the other hand, while L-BFGS is an effective attack, it can be time-consuming

due to the use of the linear search method to find an optimal c.

Fast gradient sign method (FGSM) This one-step algorithm was developed

by Goodfellow et al. in their 2014 paper [22]. The idea of FGSM is to generate

perturbation using gradient ascent to maximize the loss function. FGSM can be

used as a targeted or untargeted attack and originally runs under the L∞ norm but

is easily adaptable for the L2 norm. FGSM is a very fast algorithm for generating

adversarial instances even if the adversarial samples are not optimized because it

does not minimize the generated perturbation. This algorithm is very efficient, in

most cases, at creating adversarial perturbations in a time-efficient manner. It can
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be defined by the following Eq. 1.7.

xadv = x+ ϵ ∗ sign(∇xJ(x, y)) (1.7)

where ϵ is the variable allowing control of the amount of perturbation, y is the

desired label, and the input x. The main disadvantage of this attack from a network

traffic perspective is that all features are modified, making it less practical in real-life

scenarios.

Basic Iterative Method/Projected Gradient Descent (BIM/PGD) This

is an improvement of FGSM where the algorithm iteratively increases the amount of

perturbation to cause misclassification. It is more efficient than the classical FGSM

in terms of misclassification, but on the other hand, this attack takes more time to

create adversarial examples. PGD is an algorithm proposed by Aleksander Madry

et al. [30] and BIM is proposed by Alexey Kurakin et al. [31]. Both attacks are quite

similar as they use, at each iteration, a projection function to project the adversarial

examples into the ϵ− ball which can be L2 or L∞, as shown in Eq. 1.8.

xt
adv = Proj[xt−1 + ϵ ∗ sign(∇xJ(x

t−1, y))] (1.8)

where x0adv = 0 and Proj is the projection function.

The main difference between the BIM and PGD versions of the attack concerns

the initialization of the attack. Indeed, BIM sets the value of the original point as

the initialization point while PGD starts the attack at a random point using the L∞

norm. Moreover, at each restart, a new random point is chosen. Since the results of

these two attacks are generally quite similar, it is common to use only one of them

when testing.

DeepFool This attack proposed by Moosavi-Dezfooli et al. [32] works as an untar-

geted attack and iteratively generates small perturbations to fool the classification.

This algorithm uses the L2 norm to generate these perturbations. To do so, this

attack determines the nearest hyperplane for an input element and projects it be-

yond this hyperplane. This method is primarily based on the assumption that the

model is completely linear. However, in most high-dimensional models, as in many
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deep neural networks, this is rarely the case. To overcome this problem, a linear

approximation is first performed. The main problem with this attack is the inability

to introduce domain-specific constraints and the significantly longer time required

to generate adversarial instances compared to the FGSM.

Jacobian-based Saliency Map Attack (JSMA) JSMA is an iterative and

targeted algorithm proposed by Nicolas Papernot et al. [33] that uses a saliency

map to tell which feature has the greatest impact on classification. This saliency

map is based on a jacobian matrix which is a matrix containing the first-order partial

derivatives as defined in Eq. 1.9

JF (x) =
∂F (x)

∂x
= [

∂Fj(x)

∂xi

]i× j (1.9)

This jacobian matrix, therefore, allows us to obtain the direction of sensitivity and,

therefore know what input element influences the most desired output. This algo-

rithm, based on the L0 norm, has the advantage that it can generate adversarial

samples using fewer features. It is therefore an interesting option for practical at-

tacks against IDS.

Carlini and Wagner (C&W) Carlini and Wagner [34] proposed an optimization

algorithm to generate adversarial examples under the L0, L2, and L∞ norms. This

attack is different from L-BFGS because it uses a different loss function to escape

box constraints. They redefine the initial problem of adversarial examples previously

defined in Eq. 1.1. This redefinition is given in Eq. 1.10

Minimize: D(x, x+ δ) + c.f(x+ δ)

Such that: x+ δ ∈ [0, 1]n—– constraint 2
(1.10)

This attack is one of the most successful since it was able to break several defenses

such as defensive distillation (see section 1.5.1). This attack can be used in a targeted

and non-targeted version. Nevertheless, even if C&W is very efficient, it should also

be noted that this algorithm takes significantly more time to generate adversarial

instances.
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Elastic-Net Attacks to Deep Neural Networks (EAD) This iterative algo-

rithm proposed by Pin-Yu et al. [35] introduces the use of the L1 norm to generate

perturbations to create adversarial examples. The authors transformed the problem

into an elastic network regularized optimization problem. The elastic network reg-

ularization takes advantage of Lasso (using the L1 norm) and Ridge (using the L2

norm) regularization. EAD uses an iterative attack under L2 using a L1 regularizer.

The original Elastic-Net regularization defined in Eq. 1.11 is redefined for EAD as

shown in Eq. 1.12.

Minimizez∈Z f(z) + λ1||z||1 + λ2||z||22 (1.11)

Minimizex c.f(x, t) + β||x− x0||1 + ||x− x0||22

Such that: x ∈ [0, 1]n
(1.12)

The experimental results [35] show that the attack is as effective as other state-

of-the-art attacks. It is important to note that the results of this attack showed

that it was the most effective in terms of transferability, which makes it interesting

both for attackers using substitute models (black-box attack) and also for defenders

using the adversarial training defense. In addition, the authors showed that this

attack, like C&W, can break the defensive distillation defense. However, due to its

optimization problem, it takes more time to execute than FGSM.

1.4.2 Black-Box algorithms

Zeroth-Order Optimization (ZOO) It’s a black-box and score-based algorithm

inspired by the C&W attack. As the name suggests, instead of using First-Order

Optimization, it employs Zeroth-Order Optimization. It uses the logit values thanks

to a zeroth order oracle to estimate the gradients. To estimate the gradients and

Hessian, the authors [36] use the symmetric quotient difference.

To avoid detection by other defenses, Oracle queries must be reduced. To this

end, ZOO employs three techniques, importance sampling, hierarchical attacks, and

attack space reduction. The results of the experiments suggest that this attack is

effective against ML models in black-box settings.
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It is important to note that while this technique has comparable performance to

C&W and yields a better attack success rate than substitute model attack, it is much

more resource intensive than white-box algorithms, and even than the substitute

model attack.

Boundary This iterative targeted/non-targeted decision-based attack created by

Wieland Brendel et al. [37] is notably effective as it does not require gradient infor-

mation and succeeds in defeating many existing defenses like defensive distillation

and gradient masking defenses. Moreover, it is more realistic with respect to the

other attacks as it doesn’t rely on probabilities, but rather on the decision, which is

what Machine Learning APIs typically provide. According to the authors, despite

being a black-box attack, the Boundary attack produces a similar misclassification

efficiency as other white-box attacks such as FGSM, C&W, and DeepFool.

Boundary uses a relatively simple and flexible algorithm. This attack uses a

simple rejection sampling algorithm to track the decision boundary from the adver-

sarial classification region to the non-adversarial region. The main drawback of this

attack is that it uses an excessive number of iterations to find adversarial examples

due to its brute-force nature.

OPT The OPT attack, proposed by Minhao Cheng et al. [38], is an iterative

decision-based black-box attack that can be targeted or untargeted. Being a decision-

based attack means that it just needs the decisions rather than logits or probabilities.

This optimization-based attack uses the Randomized Gradient-Free (RGF) method

to estimate the gradient at each iteration rather than using the zeroth-order co-

ordinate descent method, which provides lower performance. The RGF method is

defined in Eq. 1.13 to estimate the gradient:

ĝ =
g(θ + βu)− g(θ)

β
.u (1.13)

where g is the search direction, g(θ) is the distance from x0 to the nearest adversarial

example along the direction θ, β > 0 is a parameter and u is a random Gaussian

vector.

This attack uses the L2 and L∞ norms to determine the perturbation rate to be

18



applied and the binary search to evaluate the objective function. The results showed

that the OPT attack was more efficient in terms of the number of queries required

than the boundary attack, a similar attack in that it also uses only the model decision

to be able to generate adversarial perturbations. In terms of performance, OPT was

shown to be as efficient as many other state-of-the-art algorithms.

Despite this, it requires performing a large number of queries, which can be

detected by the victim’s model if defense mechanisms are in place.

Substitute Model attack This method, used to perform adversarial attacks in

a black box setting, was designed by Papernot et al. [11]. It allows extracting the

architecture of the model, the decision boundaries, and its functionalities. The goal

is to try to mimic the original model using several queries to obtain y = F s(x),

i.e., the given prediction of the original model must be equal to the prediction of

the copied model. Once the model has similar behavior, state-of-the-art white-

box attacks are used to generate adversarial examples. Using the transferability

property, which is intrinsic to machine learning models, the original model can be

fooled. This type of attack is less effective than white-box attacks but since it

does not rely on gradient information, this attack is indeed feasible against non-

differentiable models. In addition, it has been shown that the Substitution Model

attack also defeats defenses based on gradient masking and defensive distillation.

(Wasserstein) Generative Adversarial Network (GAN/WGAN) GAN is

an algorithmic architecture created by Goodfellow et al. [39] in 2014 and used to

generate synthetic instances that resemble the original real instances. GAN uses two

neural networks called discriminator and generator, both of which play a zero-sum

adversarial game. The generator will try to create fake instances using a random

normal distribution to fool the discriminator. The discriminator’s goal is not to

be fooled and to try to identify the false instances by learning from real instances

contained in a dataset. As it goes along, the generator will try to learn to create

more real instances.

WGAN [40] uses a different method than GAN to compute the probability

distance between the two distributions. Instead of using the Jensen-Shannon di-

vergence [41], which is based on the Kullback–Leibler divergence [42], it uses the
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Defenses Advantages Disadvantages Type of defense Efficiency
Applicable

for IDS

Adversarial Training
Effective against all attacks

Easy to implement

Not effective against attacks different from those used

during the training phase and

there is a trade-off between robustness and accuracy

Proactive Could Yes

Adversarial Detection Keeps the accuracy of the model Some detection methods are proven ineffective Reactive Could Yes

Obfuscated Gradients Effective against gradient-based attacks
Different method to bypass this defense

and not effective against transferability
Proactive / Yes

Defensive Distillation Distilled model is less sensitive to small perturbations Shown to be ineffective Proactive / Yes

Feature Squeezing Good performance for image classification domain Not suitable for tabular data Proactive / /

Ensemble Defense Combines several defense methods Not efficient if the defenses used are broken Reactive / Could

Feature Removal Decreases the attack surface Decreases the general performance of classification Proactive Yes Yes

Adversarial Query Detection Don’t modify the performance of the model Applicable only for black-box attacks Reactive / Yes

Table 1.3: List of well-known state-of-the-art evasion defenses

Earth-Mover’s distance [43]. The main advantages of WGAN are that it solves the

vanishing gradient and mode collapse problems through more stable training. How-

ever, even if this mitigates the stability problem, the attack remains unpredictable

and therefore unstable.

1.5 Defense strategies

The following defenses are designed to mitigate the effect of adversarial examples,

such as those generated by the adversarial attacks discussed in Section 1.4. One

could divide defenses into two different types: proactive, where the idea is to

prevent the model to be fooled by adversarial examples, and reactive, where the

defense tries to detect adversarial examples during attacks. A list of the well-known

defenses is in Table 1.3.

1.5.1 Proactive defenses

Adversarial Training The purpose of this defense proposed by Ian J. Goodfellow

et al. [22] is to strengthen the model against adversarial attacks by taking them into

account during the learning phase. This defense can be seen in two ways. One can

either provide the adversarial examples directly to the model with the training data

or incorporate them into the loss function of the model which acts as a regularizer.

This kind of defense is easy to implement and can be used very well in the IDS

domain.
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A variant, called Ensemble Adversarial Training [44] allows to improve robustness

against attacks. The effectiveness of this defense can be improved by taking into

account adversarial examples generated with different algorithms rather than using

only one. If the model is trained with adversarial examples generated based on

some adversarial attacks, an attacker could use other attacks to fool the classifier

by exploiting the lack of generalization.

Although the models become more robust to adversarial examples, they are not

completely immune because some adversarial examples may go undetected. More-

over, this defense is limited by a trade-off between robustness and accuracy, as the

more, the model is trained with adversarial examples, the more its overall perfor-

mance decreases. Athalye et al. [45] also showed that, if the model is trained with

adversarial examples generated using the L∞ norm, the model is less robust as

compared to training based on other norms (L0, L1 and L2)

Obfuscated Gradients This technique is based on a gradient masking method

so as to disrupt the descent of the gradient and, in this way, prevent gradient-based

attacks from being able to successfully exploit the gradient by trying to make the

model non-differentiable.

Gradient masking was broken by several attacks. One of them is in a white-box

setting by using a random step and then switching to a gradient-based algorithm like

FGSM for example. It was also broken in the black-box setting via transferability,

which ensures the effectiveness of adversarial examples against other models than

the one on which they were generated. Papernot et al. [46] show in particular that

black box attacks are more effective than white box attacks when gradient masking

defense is used. Furthermore, Athaye et al. [45] have shown how to bypass three

types of obfuscated gradients, namely: shattering gradients, stochastic gradients,

and vanishing/exploding gradients.

It can be noted that this defense could be used in the IDS domain but may not

be as effective since, in theory, an attacker has limited knowledge of the defender’s

model, which limits the possibility of using white box attacks directly.

Defensive Distillation Initially used to reduce the dimensionality of DNN, a

defense based on distillation is proposed by Papernot et al. [33] defensive distillation
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aims to smooth the decision surface of the model. The distillation method uses two

neural network models. An initial network, taking as input the training data and

the corresponding labels. The model provides predictions in a probability vector

and transfers this knowledge to the second network, called the distilled network.

This network, therefore, takes the same training data as the initial network, but the

corresponding labels are taken from the probability vector of the initial network,

then new predictions are made. The authors showed that defensive distillation is

less sensitive to small perturbations.

This defense could be used in the IDS domain, however, Carlini and Wagner [47]

have shown that this defense is broken by their attack. Therefore, it is not wise to

use defenses that have already been shown to be broken when protecting a model.

Feature Squeezing This defense technique, proposed by Weilin Xu et al. [48],

compresses the features of the instances and classifies them. Then a comparison is

made between this classification and the classification of the original samples. If the

results are different, then the instance is considered adversarial. Of the compression

methods used by the author, such as bit depth compression, median smoothing, or

non-local means, none consistently gives the best results, all need to be evaluated

collectively as performance differs depending on the dataset used.

This defense is not suitable for the IDS use case because network traffic is often

represented in tabular form and these compression techniques result in significant

information loss for the underlying data.

Ensemble Defense This technique is expected to be effective by assuming that

several different defense techniques improve the robustness of the model. Such a

defense can be either proactive or reactive, or a mixture of both, in case the different

defense mechanisms used are both reactive and proactive. It can therefore be used

in the IDS domain and is potentially effective against various types of attacks.

This technique is ineffective because an attacker can exploit any of the defenses’

flaws to bypass them all. In addition, Warren He et al. [49] demonstrated that

employing multiple weak defenses does not result in a stronger defense.
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Feature Removal This defense consists of identifying the most vulnerable fea-

tures and removing them from the data used to train the model. These vulnera-

bilities often come from the complexity of the model with high dimensions. This

defense will therefore reduce the complexity of learning the model and remove some

dimensions that are too vulnerable to escape the attack. The removal of features will

reduce the attack surface by reducing the possible vectors that can be perturbed.

However, the work of Apruzzese et al. [50] shows that feature removal decreases

the performance of an IDS. It results in a loss of precision that increases the number

of false positives.

1.5.2 Reactive defenses

Adversarial Detection This attack mechanism uses different methods to detect

adversarial examples, based on statistical tools such as principal component analysis

(PCA), distributions, and normalization.

One example of this method is the defense proposed by Feinman et al. [51] which

is based on two techniques: density estimates and Bayesian uncertainty estimates.

The general idea of the first method is to check whether the density estimates of the

last hidden layer for an input instance are significantly different from those associated

with the training set containing the benign examples and, if so, the instance will be

considered adversarial. Density estimates are made in the feature space of the last

hidden layer because it is considered more linear than that of the input. Bayesian

uncertainty estimates can be used to overcome situations where density estimates

cannot detect adversarial examples. This method allows detection in low-confidence

regions in the input space.

The main advantage of this reactive defense is that it does not change the initial

accuracy of the model. It could also be used in the IDS domain because it has no

particular restrictions. However, it has two main problems: The first one is that

it provides many false positives, which makes it less effective. The second problem

is that most of these detection methods have been proven to be broken by Carlini

and Wagner [52]. Tianyu et al. [53] proposed a more robust alternative to detect

adversarial examples using kernel density estimates and the reverse cross-entropy

training procedure.

23



Adversarial Query Detection Introduced in the Titi-taka framework proposed

by Zhang et al. [54], this defense consists of detecting the number of abnormal queries

that signal that an attack is being conducted. This defense reduces the number of

possible queries sent to the model, making it more difficult to exploit for attacks

using a large number of queries, while maintaining the initial accuracy. The main

drawback is that this defense is only effective against black-box attacks that use

large numbers of queries.

1.6 Adversarial attacks against IDS

In recent years, many researchers have been interested in the implications of adver-

sarial learning in the context of IDS by proposing several studies. We have selected

several of them for their contributory aspect, and more precisely their contribution

in terms of feasibility, a very important topic for IDS. These contributions are all

listed in Table 1.4.

In 2017, Maria Rigaki et al. [55] demonstrated in their work that adversarial

examples can be generated by adversarial algorithms to fool an IDS using a DNN

trained on the NSL-KDD dataset. They showed that not all algorithms are suitable

for fooling an IDS and pointed out the fact that FGSM is incompatible with this goal,

but JSMA may be suitable. Furthermore, they showed that adversarial examples are

capable of transferring to several machine learning models such as Decision Trees,

Random Forests, Linear SVM, and Ensemble Voting. In addition, they showed that

creating a feature-based adversarial instance requires knowing the mapping between

features and network traffic and how the data is preprocessed because, unlike images,

features extracted from network traffic are highly correlated.

Zilong et al. [56] proposed to study the effectiveness of adversarial examples with

a WGAN using the NSL-KDD dataset. The performances of several classifiers were

studied, namely decision tree, Random Forest, SVM, MLP, Naive Bayes, logistic

regression, and KNN. The results showed that adversarial examples can fool all

trained classifiers. They also showed that the attack remains effective even when

using a limited feature space.

Warzyński and Kołaczek [57] proposed a study on using FGSM to generate adver-
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Paper Year Adversarial attack Target ML model Datasets Metrics Defense used
Network

type

Manipulation

space

Domain

constraints

[55] 2017
FGSM

JSMA

Decision Tree, Random Forest

Linear SVM, Voting Ensemble

DNN

NSL-KDD

Accuracy

F1-score

AUC

/ Classical Features /

[56] 2018 WGAN

Decision Tree, Random Forest

SVM, DNN, Naive Bayes

Logistic Regression, KNN

NSL-KDD Detection Rate / Classical Features /

[57] 2018 FGSM DNN NSL-KDD

Accuracy

FPR, FNR

Precision

/ Classical Features /

[15] 2018

FGSM, JSMA

DeepFool

C&W

DNN NSL-KDD

Accuracy, F1-score

FPR, Precision

Recall, AUC

/ Classical Features /

[16] 2018

WGAN

ZOO

Substitute Model

Random Forest

SVM

DNN

Naive Bayes

NSL-KDD

Accuracy

F1-score, FPR

Precision, Recall

/ Classical Features /

[58] 2018 Manual perturbations Random Forest CTU-13

Accuracy

F1-score

Precision, Recall

/ Classical Features /

[17] 2019

FGSM, JSMA

DeepFool

C&W

Decision Tree, Random Forest

Naive Bayes, SVM, DNN

Denoising Autoencoder

NSL-KDD

CICIDS-2017
AUC Adversarial Training Classical Features /

[59] 2019

FGSM, JSMA

C&W

EAD

KitNET (Kitsune) Kitsune
Success Rate

AUC
/

Classical

IoT
Features /

[60] 2019

FGSM

BIM

PGD

DNN BOT-IoT Accuracy Feature Normalization IoT Features /

[50] 2019
Manual perturbations

modifying up to 4 features

Decision Tree, Random Forest, SVM

DNN, Naive Bayes, Linear Regression, KNN

ExtraTrees, AdaBoostBagging,

Gradient Boosting, SGD Linear Classifier

CTU-13

CICIDS-2017

CICIDS-2018

UNB-CA Botnet

F1-score

Precision, Recall

Attack Severity

Feature Removal Classical Features /

[24] 2019

Manual perturbations for packet-based IDS

A proposed optimization

attack for flow-based IDS

KitNET (Kitsune)

DAGMM

BiGAN

CICIDS-2017
TPR

FPR
/ Classical Traffic Yes

[25] 2019

Manual perturbations based on modification

of the payload size, packet

rate and bidirectional traffic

Random Forest

SVM, KNN

Logistic Regression

CICIDS-2017

Accuracy, F1-score

Success Rate

TPR, FPR

/ Classical Traffic Yes

[61] 2020
Adapted JSMA (AJSMA)

Histogram Sketch Generation (HSG)

Decision Tree, SVM, DNN

Logistic Regression, KNN

NSL-KDD

UNSW-NB15
Success Rate / Classical Features /

[20] 2020
GAN

OPT

Random Forest, OCSVM ,

DNN, Stacking Model

Naive Bayes

Simulation of real ICS environment.

Real traffic captured

on the implemented infrastructure

F1-score

Precision

Recall

Success Rate

Adversarial Training ICS Traffic Yes

[19] 2020

Adversarial Pad (AdvPad)

Adversarial Payload (AdvPay)

Adversarial Burst (AdvBurst)

CNN ISCXVPN2016

F1-score

Precision

Recall

/ Classical Traffic Yes

[18] 2021
Adversarial Features Generation with GAN

+ Malicious Traffic Mutation with PSO

Decision Tree, SVM

KitNET, DNN

Logistic Regression

Isolation Forest

CICIDS-2017

(evasive metrics)

MER, DER, PDR, MMR

(performance metrics)

F1-score, Precision, Recall

Adversarial Training

Feature Removal

Adversarial Feature Reduction

Classical

IoT
Traffic Yes

[14] 2022

NES, Boundary, Pointwise

HopSkipJumpAttack

Opt-Attack

MLP, CNN

C-LSTM

Stacking Model

CICIDS-2017

CICIDS-2018

Accuracy, F1-score

Precision, Recall

Success Rate

Tiki-Taka

(Adversarial Training,

Adversarial Query Detection

and Ensemble Voting)

Classical Features /

[23] 2022
FGSM, BIM

JSMA, DeepFool, C&W
MLP NSL-KDD

Detection Rate

Lp norms mean and max
/ Classical Features /

[13] 2022
FGSM, PGD

DeepFool, C&W

KitNET (Kitsune)

DNN

CICIDS-2017

NSL-KDD

Detection Rate

Precision, Recall, F-score

Adversarial detection

based on Transfer learning
Classical Features /

Table 1.4: List of recent evasion attacks against anomaly-based IDS
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sarial examples to fool a neural network-based classifier trained with the NSL-KDD

dataset. The results showed that this attack is effective. It may be noted that this

study does not address the feasibility of adversarial attacks in a realistic scenario

and is limited to the study of a particular dataset and a particular attack.

Zheng Wang [15] provides an in-depth analysis of the NSL-KDD dataset by

investigating feature importance when generating adversarial examples against a

multilayer perceptron (MLP) based IDS. He showed that the feasibility of adversarial

attacks against IDSs is different from that of image classifiers by illustrating that

not all adversarial algorithms are suitable for creating adversarial attacks against

IDSs. Among these algorithms, JSMA seems to be the most suitable as it does

not modify all features to create adversarial examples but only those it considers

most important. This is particularly relevant since adversaries are usually limited

in their ability to manipulate features due to restricted access or the complexity of

manipulating them all at once. Feature importance shows that some features are

more vulnerable than others in that they are more often selected by the algorithm

during adversarial examples generation.

Yang et al. [16] proposed a more realistic approach to the problem by using

three black-box attacks that assume no knowledge of the target model information.

These three attacks are WGAN, ZOO, and Substitute Model. To analyze their

performance, they took 5 classifiers, namely Random Forest, SVM, MLP, and Naive

Bayes trained with the NSL-KDD dataset. The results showed that ZOO was the

most efficient, the Substitute Model was the least efficient while WGAN provided

good performance but was unstable due to its intrinsic properties. However, the

paper does not discuss the feasibility of these attacks in real-world settings besides

the black-box perspective.

Instead of using state-of-the-art attacks, Apruzzese et al. [58] proposed an at-

tack that iteratively produces manually defined perturbations. They studied the

performance of this attack on a Random Forest classifier trained on the CTU-13

dataset which is based on a collection of Botnet attacks. This attack follows a fairly

simple strategy, it clusters specific features and applies an iterative perturbation.

The features are not chosen trivially, they are the ones that are easiest to manipu-

late, namely time, packet size, and the number of packets. The results showed that
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changing only a few features can lead to a decrease in classifier performance. From

a feasibility point of view, this work is interesting because the modified features are

at most four, and chosen in advance, which can be adjusted to modify only those

features we have access to.

To generate adversarial examples, Martins et al. [17] chose to work on the NSL-

KDD dataset and a more realistic and recent dataset, namely CIC-IDS 2017. They

also used adversarial training, first described in the image classification literature,

to see if it could be applied to the IDS domain. The results showed that among the

attacks used, JSMA is the least effective but disrupts the fewest features. They also

showed that Adversarial Training improves the overall robustness of all classifiers,

namely Decision Tree, Random Forest, Naive Bayes, SVM, DNN, and Denoising

Autoencoder. Nevertheless, we can note that the feasibility of adversarial attacks

has not been addressed in this work, except for the use of a more realistic dataset.

Joseph et al. [59] used Kitsune’s classifier called KitNET, and its dataset, to

evaluate its robustness to adversarial examples generated based on four attacks

(FGSM, JSMA, C&W, EAD) using different norms (L0, L1, L2, L∞). In a white box

setting, the results showed that the classifier was vulnerable to all four attacks.

The study provided by Olakunle et al. [60] analyzed the impact of adversarial

examples generated with FGSM, BIM, and PGD against two DNNs trained with

the Bot-IoT dataset containing network attacks such as DOS or DDOS. The re-

sults showed that these adversarial attacks performed well in the IoT domain. In

addition, they proposed feature normalization as a defense mechanism. The results

showed that this defense was not effective as it increased the accuracy of the classifier

however it also made the model more vulnerable to adversarial examples.

According to Apruzzese et al. [50] on evaluating the effectiveness of adversarial

attacks against botnet detectors, their results show that it is possible to fool this

type of NIDS detector based on machine learning algorithms. They found that

all the machine learning algorithms studied in this paper, namely Random Forest,

Decision Trees, AdaBoost, Multi-Layer Perceptron, K-Nearest Neighbor, Gradient

Boosting, Linear Regression, Support Vector Machines, Naive Bayes, ExtraTrees,

Bagging, and Stochastic Gradient Descent Linear Classifier are susceptible to be

fooled. In this study, the experiments are conducted from a more realistic perspective
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by taking into account some important domain constraints and assuming the gray

box parameters, and using known realistic datasets containing botnet attacks to

train their models. These datasets are as follows: CTU-13, IDS2017, CIC-IDS2018,

and UNB-CA Botnet. To generate adversarial examples, the authors manually

add small perturbations to a maximum of 4 features of each malicious instance

keeping a realistic perspective. These features are duration, sent bytes, received

bytes, and exchanged packets. Furthermore, they showed that using the defense

called "feature removal" (see Section 1.5.1) does not guarantee robust protection for

botnet detectors.

Hashemi et al. [24] propose a bottom-up approach by first analyzing the char-

acteristics of the IDS datasets to understand their domain constraints. Once these

constraints were identified, they showed that it is possible to fool different IDS

models (Kitsune, DAGMM, and BiGAN) trained on the Kitsune and CICIDS2017

datasets, respectively, under these domain constraints for both packet-based and

flow-based IDSs. To approach the problem more realistically, they proposed two

algorithms for each of these network traffic types. For packets, the algorithm is

divided into three parts: one function that generates delays between packets, an-

other one that splits packets to have more packets, and the last one used to generate

new packets. For flows, the algorithm uses a system of groups, only one of which

can be modified and on which the attacker can apply perturbations. Recent work

by Teuffenbach et al. [25] building on this work, also uses this grouping method to

modify only relevant features. However, these groupings are slightly different from

those proposed by Hashemi. Their results also showed that their method, involving

domain constraints directly in their optimization problem, was effective in fooling

the models (DNN, DBN, and AE) trained on CIC-IDS2017 and NSL-KDD.

In their paper, Aiken et al. [62] investigated the effectiveness of a novel adversarial

example generation method focused on a SYN Flood DDoS attack. The results

showed that the proposed algorithm is effective in fooling the classifiers (Random

Forest, SVM, Logistic Regression, and KNN) trained on the SYN Flood attack

present in the CIC-IDS 2017 dataset. The accuracy of the model fell to 0% using the

proposed algorithm. However, some characteristics of the instances are manipulated

when they are not supposed to be since they are not easily modified in reality, such
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as the traffic from the victim.

Sheatsley et al. [61] study showed that, even when several NIDS-related domain

constraints are considered, limiting the number of features that can be modified,

it is possible to create realistic adversarial examples capable of fooling attack de-

tectors using the AJSMA (Adapted JSMA) and HSG (Histogram Sketch Genera-

tion) adversarial algorithms. The experiments were conducted on the NSL-KDD

and UNSW-NB15 datasets. They showed that domains with more restrictive con-

straints, such as NIDS, are no more robust than those with fewer constraints, such

as image recognition. They also showed that these attacks were effective because of

their transferability.

Jiming Chen et al. [20] studied the impact of adversarial examples on the domain

of Industrial Control Systems (ICS). They took a more realistic approach by limiting

their knowledge of the models used by the defender. They reproduced an ICS

system to create a realistic environment and trained their MLP model directly on

the extracted traffic. They then used two attack algorithms, GAN and OPT, to

produce adversarial instances while taking into account domain constraints such as

constraints related to the protocols used during the attacks. Their results showed

that the ICS domain was also vulnerable to adversarial examples. In this study,

several models were tested, namely, Random Forest, OCSVM (One-Class SVM),

DNN, Stacking Model, and Naive Bayes. They proposed to use adversarial training

and they found that this defense improved the robustness of the models studied.

In their paper, Sadeghzadeh et al. [19] proposed a problem-based approach as

opposed to a feature-based approach [63]. The authors used three new attacks to

manipulate network traffic called Adversarial Pad (AdvPad) which adds the per-

turbation to the packet, Adversarial Payload (AdvPay) which adds perturbation to

the payload and Adversarial Burst (AdvBurst) which adds newly crafted packets.

They propose to manipulate traffic concerning different types of services such as

VoIP, mail protocols, file transfer, or P2P present in the ISCXVPN2016 dataset.

The results showed that the classifier used (CNN) decreased its robustness due to

the use of the three attacks.

Han et al. [18] proposed a novel attack using a GAN and a Particle Swarm

Optimization (PSO) technique to directly manipulate the traffic under a black-
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Dataset Year of publication Description Reliability

NSL-KDD 2009
Due to the problems related to attacks inside the KDDCUP’99 dataset,

this dataset has been proposed with more up-to-date attacks.

It is old and not adapted to train classifiers today

because it contains old attacks not used today

CTU-13 2013
It’s a dataset that contains different botnet and benign

network traffic provided by different datasets.

This dataset, almost 10 years old, is less interesting

than some more recent and semantically correct ones.

UNB-CA Botnet 2014
This dataset was developed to provide a focus on the realism,

generality, and semantics of botnet attacks.

Since it is synthetically constructed and is an aggregation

of several datasets with Botnet attacks (real or not), it has some bias,

although it provides a good training ground given its many attack instances.

UNSW-NB15 2015

This synthetic dataset, created by the Cyber Range Lab of UNSW Canberra, provides

several types of network attacks such as DoS, Exploits, Reconnaissance or Backdoors.

Its diversity of attacks makes it an interesting data source.

from a reliability point of view, it contains biases due to its synthetic profile

(as for most public datasets) and is relatively old,

thus less interesting than more recent ones with similar attacks.

ISCXVPN2016 2016
It’s a realistic dataset that provides different types of traffic such as VoIP,

file transfers, P2P, and email protocol usage.

It is reliable because all the traffic generated is real.

It also provides traffic from different services with the use of VPNs in some cases.

CIC-IDS2017 2017
Implement different network attacks like Bruteforce, DoS, Web, Botnet, Infiltration

and DDOS against machines in a simulated enterprise architecture.

This dataset respect the 11 minimum requirements to have a reliable dataset [64].

Semantic logic is respected, and the list of attacks is relatively useful for classifiers today.

Some semantics flaws in attacks are solved in an update done by [65]

CIC-IDS2018 2018
Implement different network attacks like Bruteforce, DoS, Web,

Botnet, Infiltration, and DDOS against machines in an AWS network.
More recent than CIC-IDS2017 and follows the same requirements.

Kitsune 2018

The authors of Kitsune used a dataset specifically for the development of their IDS.

This dataset contains different types of attacks against a surveillance system.

These include reconnaissance attacks (OS Scan, Fuzzing),

MitM (ARP cache poisoning), DoS (SYN DoS), and Botnet (Mirai).

This dataset is based on an implementation that mixes traffic

from a classical network and an IoT network.

The attacks are recent and therefore relevant.

BOT-IoT 2019
Designed by the Cyber Range Lab of UNSW Canberra.

It contains different botnet attacks like DOS, DDOS, and Reconnaissance

This dataset is more recent than previous ones and provide

good reliability in term updated attacks.

Table 1.5: List of the most popular datasets for training state-of-the-art IDS

box assumption. This approach is more realistic because the feature space is not

easily reversible in the IDS domain, which means that the change in feature value

cannot be transferred directly into the network traffic due to the numerous domain

constraints. The attack process is divided into two parts, the GAN is used to

generate adversarial features first, and then the PSO is used to add mutations to

the malicious traffic. To evaluate the effectiveness of their attack, the authors used

three new metrics to test the evasion effectiveness, namely the Detection Evasion

Rate (DER), the Malicious Traffic Evasion Rate (MER), and the Probability Drop

Rate (PDR) of the malicious traffic. They also proposed a new metric to provide

an interpretability indicator called Malicious features Mimicry Rate (MMR) which

provides a measure of how far the adversarial features are from the malicious features

during mutation. The results showed that the attack was able to fool packet-based

IDSs trained with the Kitsune dataset, as well as flow-based IDSs trained with the

CIC-IDS2017 dataset. However, the effectiveness of the attack varies depending on

the knowledge of the extracted features. If the substitute model does not know any

of the features extracted by the extractor, it will still be able to generate adversarial

traffic capable of fooling the classifiers by randomly choosing less effective features.

Despite the black-box assumption, the authors assumed that the extractor used by
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the IDS is known, which is not always the case in real settings.

Zhang et al. [14] proposed a new version of their original paper [54]. Their goal

was to evaluate their framework’s performance in terms of improving IDS protec-

tion against evasion attacks subject to limited defense knowledge. In particular,

they used multiple decision-based black-box algorithms to provide a more realistic

representation of the problem. The results showed that the classifiers, using MLP,

CNN, and C-LSTM, trained on the CIC-IDS2018 dataset were all vulnerable to the

used black-box algorithms, namely NES, Boundary, Pointwise, HopSkipJumpAt-

tack, and Opt-Attack. To improve the robustness of the classifiers, the authors

propose to use their Tiki-Taka framework combining several defenses, Adversarial

Training, Ensemble Voting, and Adversarial Query Detection. Thus, the authors

combined two proactive defenses and a reactive one respectively. The results indi-

cate that this combination of defenses is effective against the attacks studied on the

CIC-IDS2017 and CIC-IDS-2018 datasets.

In their paper, Mohamed Amine Merzouk et al. [23] provide an in-depth analysis

of the feasibility of state-of-the-art attacks against an IDS trained with NSL-KDD.

The adversarial algorithms studied are FGSM, BIM, DeepFool, C&W, and JSMA.

They showed that these adversarial algorithms produce invalid Adversarial Examples

(AEs) if applied directly without taking domain constraints. For example, some of

the generated values were negative or out of bounds, exceeding their feasible limit.

These AEs must meet certain criteria to be valid. In particular, they show four

constraints, namely out-of-range values, non-binary values, membership in multiple

categories, and semantic links.

Debicha et al. [13] proposed an adversarial detector design based on transfer

learning. They evaluated the effectiveness of using multiple strategically placed

adversarial detectors versus a single adversarial detector for intrusion detection sys-

tems. Their experiments were conducted on two IDS architectures: a serial architec-

ture and a Kitsune-inspired parallel architecture. They chose four evasion attacks to

generate adversarial traffic, namely FGSM, PGD, DeepFool, and C&W. Although

the attacks are feature-based and not traffic-based, the author has taken into ac-

count the domain constraints to make them more feasible. Their defense is based

on the implementation of multiple adversarial detectors, each receiving a subset of
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the information passed by the IDS and using a suitable fusion rule to combine their

respective decisions. Using this defense, they were able to improve the detection

rate over adversarial training.

1.7 Discussion

This literature review has demonstrated that the feasibility of existing evasion at-

tacks on intrusion detection systems in real network settings is restricted due to

certain limitations. The main limitations are related to the feature-space manip-

ulation and the assumptions about the attacker’s knowledge of the IDS. Most of

the reviewed papers do not consider the realistic aspect or only in a limited way.

As a result, future studies should take into account the following aspects: first, the

adversarial traffic generated should be valid, and problem-space projection should

be performed to ensure that the reverse feature-mapping is feasible. Second, the

attacker’s knowledge should be limited, and assumptions of full knowledge of the

IDS should be avoided. Finally, black box attacks can be easily detected by sim-

ple defenses, and querying the IDS like an oracle is not feasible. Therefore, future

studies should focus on developing new evasion attacks that take into account these

limitations and provide more realistic scenarios for evaluating the effectiveness of

intrusion detection systems.

1.8 Summary

Current research on the impact of using evasion attacks to bypass machine learning-

based NIDS has shown that a slight perturbation can allow the attacker to cir-

cumvent detection. This of course raises a security concern, as the use of machine

learning models is becoming more prevalent in the cybersecurity field. However,

while it is theoretically possible to exploit these models, their exploitation is a bit

different in a real-world setting. In this chapter, we have reviewed the most recent

attacks based on two possible adversarial strategies, namely the white-box and the

black-box settings. We then explored some popular defense mechanisms. For each

of the attacks and defenses, we elaborated on their suitability in the IDS domain.

Finally, a set of related research papers are highlighted to clarify the feasibility of
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adversarial attacks in a more realistic context in the cybersecurity domain, specifi-

cally in the IDS domain. Concerning feasibility, we have provided several criticisms

regarding recently published work by identifying their manipulation space. Thus,

future research should focus on manipulating the traffic space by limiting the at-

tacker’s knowledge. We believe that this review has highlighted various points that

may have been overlooked in some previous research, and that it will allow future

research in this area to better address the various realistic constraints.

Intrusion Detection Systems are now an essential component of computer and

network security. Despite massive research efforts in the field, dealing with source

reliability remains an open issue. More information on how to address this issue can

be found in the following chapter.
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Chapter 2

Efficient Intrusion Detection Using Ev-

idence Theory

2.1 Introduction

As computer network usage grows rapidly along with the significant increase in

the number of applications running on it, the importance of network security is

increasing. As dedicated tools designed to identify anomalies and attacks on the

network, Intrusion Detection Systems (IDS) are becoming more valuable. Detection

techniques based on anomalies and misuse have long been the principal subject of

research in the field of intrusion detection [66].

Misuse-based IDSs operate quite similarly to most antivirus systems. Maintain-

ing a signature database that could identify specific types of attacks and checking

all incoming traffic against these signatures. Overall, this approach performs well,

although it does not work properly when dealing with new attacks, or those that

were specifically crafted to mismatch existing signatures.

On the other hand, anomaly-based IDSs operate generally on a baseline of normal

activities and network traffic. This allows them to assess the current state of network

traffic against this baseline so that abnormal patterns can be identified. While such

an approach could be quite effective in detecting new attacks or those that have

been intentionally crafted to evade IDSs, it can also result in a higher number of

false positives compared to misuse-based IDSs.

Dempster-Shafer Theory (DST), also known as evidence theory [67] is one of the

most versatile mathematical frameworks, extending Bayesian theory by (i) providing

each source with the ability to integrate information at various scales of detail, thus

addressing uncertainty; and (ii) offering a robust decision-making tool to make a

consensus-based decision. This theory was later widely applied in several domains

[68] [69] [70]. Regardless of this popularity, mass function generation and source
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reliability estimation remain an ongoing challenge.

Probabilistic frameworks for mass generation take advantage of the extensive

research literature of the traditional probabilistic classifiers. These approaches usu-

ally represent the information associated with each attribute through Probability

Density Functions (PDF), typically Gaussian [71] [72]. Such densities are then

transformed into beliefs that can subsequently be merged to form a joint decision.

One can attribute masses to the compound hypotheses by subtracting the mass

values related to the simple hypotheses involved [71] or by mixing the distributions

associated with these hypotheses [72]. It should be noted that for most applications,

Gaussian densities have been widely assumed due to their simplicity. Nevertheless,

in the case where this assumption fails, the decision-making performance may be

influenced considerably. More sophisticated approaches can be used to surmount

this limitation by transforming data attributes into an equivalent normal space [73].

This work offers a more effective way to overcome this disadvantage by con-

structing PDFs that are better suited to the original data histograms instead of

projecting them into a new Gaussian-like space. On a more explicit level, a kernel

smoothing estimation [74] is used on the training data to derive an approximate

PDF for each data attribute and each simple hypothesis. These PDFs may be of

any shape. Notably, they might be non-Gaussian. During the classification phase, a

given datum is associated with a set of masses that are generated in an elaborated

way from the aforementioned densities. Using the proposed contextual discounting

method, mass functions are then weakened differently depending on the ability of

each source to discriminate between classes. Mass functions of the different sources

are then merged to have a consensual mass function using a suitable fusion rule. A

final decision is then deduced using the so-called "pignistic transform" [75].

The rest of this work is organized as follows: Section 2.2 recalls the theoretical

tools used in the proposed approach. Section 2.3 describes the NSL-KDD dataset. A

description of Boosted PR-DS architecture is introduced in Section 2.4. Section 2.5

discusses the experimental results by comparing them with those of some previous

studies using the NSL-KDD dataset. Final remarks and further suggestions for

improvement are given in Section 2.6.
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2.2 Related background

We succinctly outline some fundamentals of Dempster-Shafer theory, Parzen-Rosenblatt

density estimation and contextual discounting.

2.2.1 Dempster-Shafer theory

Suppose that Ω = {ω1, ..., ωK}, and P(Ω) = {A1, ..., AQ} is its power set, where Q =

2K . A defined mass function M ranging from P(Ω) to [0, 1] is named a "basic belief

assignment" (bba) if M(∅) = 0 and
∑

A∈P(Ω)M(A) = 1. A bba M therefore defines

a “plausibility” function Pl ranging from P(Ω) to [0, 1] by Pl(A) =
∑

A∩B ̸=∅M(B),

and a “credibility” function Cr ranging from P(Ω) to [0, 1] by Cr(A) =
∑

B⊂AM(B).

In addition, the two functions mentioned above are bound by Pl(A) + Cr(Ac) = 1.

Moreover, a probability function p could be regarded as a particular case wherein

Pl = Cr = p.

In case where two bbas M1 and M2 denote two elements of evidence, we can

combine them together using the “Dempster-Shafer fusion” (DS fusion), which results

in M = M1 ⊕M2 that is defined by:

M(A) = (M1 ⊕M2)(A) ∝
∑

B1∩B2=A

M1(B1)M2(B2) (2.1)

Lastly, through Smets’ technique [75], an evidential bba M can be converted into

a probabilistic one, whereby every belief mass M(A) is evenly distributed over all

elements of A, resulting in the so-called “pignistic probability”, Bet , given by:

Bet(ωi) =
∑

ωi∈A⊆Ω

M(A)

|A|
(2.2)

where |A| is the number of elements of Ω in A.

It is worth mentioning that there are various evidential fusion rules in the liter-

ature that deal differently with the issue of conflicting sources [76] [77] [78].

2.2.2 Parzen-Rosenblatt density estimation

As a statistical tool, the Parzen-Rosenblatt window technique [79] [80], otherwise

known as kernel density estimation, is a way to smooth data by making population
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inferences based on a finite sample. This technique can be perceived as a non-

parametric method to construct the PDF f , of an unknown form, linked to a random

variable X. Suppose (x1, x2, ..., xN) an example of the realizations of such a random

variable. The challenge is to estimate the f values at multiple points of interest.

The smoothing of the kernel can then be seen as a generalization of the histogram

smoothing where a window, of a predetermined shape, centered at every point is

utilized to approximate the value of density at the given point. This is done by

using the following estimator:

f̂h(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
(2.3)

where K(·) is the kernel - a zero-mean non-negative function that integrates to one

- and h > 0 is a smoothing parameter known as “kernel width”. Furthermore, it is

possible to use a variety of kernel functions like Uniform (Box), Gaussian (Normal),

Triangle, Epanechnikov [81], Quartic (Biweight), Tricube [82], Triweight, Logistic,

Quadratic [83], and others.

2.2.3 Discounting methods

Such methods can be used to estimate the weakening coefficients assigned to a source

in order to correct its decision. These adjustments differ depending on whether it is

a classic or contextual weakening.

Classical discounting

The weakening of mass functions makes it possible to model sources’ reliability by

introducing a coefficient αs where for each source s we have:m′s(A) = αs.ms(A) ∀A ∈ 2Ω, A ̸= Ω

m′s(Ω) = (1− αs) + αs.m(Ω)

(2.4)

αs is the weakening coefficient of the sth source. Among the classical weakening

methods, we find [84] and [70].
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Contextual discounting

The idea behind the contextual weakening is that the reliability of a source can vary

depending on the truth of the object to be recognized (the context). For example, a

sensor responsible for recognizing flying targets may be more or less able to discern

certain types of aircraft. The method we propose belongs to this category and is

described below.

Weakening using F-score In this method, we evaluate the ability of each at-

tribute (source) to classify elements belonging to different hypotheses -simple or

composite-. This is done by considering each attribute separately to classify a new

element. Using a cross-validation process, a confusion matrix is obtained. From

this matrix, the "F-score" performance is calculated for all the hypotheses. These

measures will be used as weakening coefficients and the equation 2.5 is applied to

weaken the mass function of each source s.
m′s (A) = αs

Am
s (A) A ∈

{
2Ω/Ω

}
m′s (Ω) = ms (Ω) +

∑
A∈{2Ω/Ω}

(1− αs
A)m

s (A)

(2.5)

αs
A is the weakening coefficient of hypothesis A for the sth source.

2.3 NSL-KDD dataset description

In addition to the fact that attack patterns are constantly evolving and changing,

the challenge in building a robust Network Intrusion Detection System (NIDS) is

that a real-time pattern of network data consisting of both intrusions and normal

traffic is out of reach. This is why many recent works are still using the NSL-KDD

dataset to evaluate the performance of their approaches [85] [86].

One of the most frequently used datasets for intrusion detection tests is the NSL-

KDD dataset which was released in 2009 [87]. In addition to addressing efficiently

redundant records’ issue in the KDDCUP’99 dataset, NSL-KDD is designed by

reducing the number of records in the training and test sets in a sophisticated

manner to prevent the classifier from biasing towards frequent records.
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There are three datasets within NSL-KDD. One for training which is KDDTrain+

and two for testing with an increasing difficulty respectively KDDTest+ and KDDTest-

21, all of which having normal records as well as four distinct types of attack records,

as shown in Table 2.1. KDDTest-21 which is a subset of the KDDTest+ is designed

to be a more challenging dataset by removing the often correctly classified records.

For more details about how KDDTest-21 was conceived, the reader may refer to [87].

Table 2.1: Different classes of the NSL-KDD dataset.

Normal Dos Probe R2L U2R
KDDTrain+ 67343 45927 11656 995 52
KDDTest+ 9711 7458 2421 2754 200
KDDTest-21 2152 4342 2402 2754 200

Each record has 41 attributes and a class label as well. These attributes are

divided into basic features, content features, and traffic features. Attacks in the

dataset are grouped into four categories based on their characteristics: DoS (denial

of service attacks), Probe (Probing attacks), R2L (root-to-local attacks) and U2R

(user-to-root attacks). Some specific types of attacks are included in the test set

but are not included in the training set. This makes it possible to provide a more

realistic testing ground.

2.4 Boosted PR-DS

This section describes the theoretical basis of the proposed intrusion detection

scheme called Boosted Parzen-Rosenblatt Dempster-Shafer (Boosted PR-DS). To

do this, suppose we have a sample of N pre-tagged multiattribute data (Z1, ..., ZN)

where each datum Zn = (Xn, Yn) with Xn ∈ Ω = {ω1, ..., ωK} being the tag, and

Yn = (Y 1
n , ..., Y

P
n ) ∈ RP being the P -attribute observation. The challenge is then to

determine the tag of any new observation Yn′ .

As shown in Figure 2.1, we begin by briefly outlining the training process carried

out on the pre-tagged data sample (Z1, ..., ZN). Next, we illustrate the way our

approach assigns a new observation Yn′ to one of the K classes (tags).
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Figure 2.1: Proposed Boosted PR-DS framework

2.4.1 Training phase

Consider the pre-tagged multi-attribute data above (Z1, ..., ZN). Under our Boosted

PR-DS scheme, the training phase involves two steps. The first is model adjustment

which consists of determining the optimal kernel and fusion rule for the data along

with the computing of weakening coefficients for each hypothesis. The second step

is density estimation where the previously chosen kernel is used to estimate the

Probability Density Functions (PDF) of each class for all attributes.

Model adjustment

In the first step, while changing kernels and fusion rules, basic PR-DS is used in

a cross-validation process on the training data. The kernel and fusion rule giving

the highest accuracy are then selected. To compute the weakening coefficients, we

propose to use the F-score measures obtained from classifying each attribute (taken

alone) as explained in paragraph Section 2.2.3.

Density estimation

In this step, we use the kernel chosen during the previous step to estimate densities

using the Parzen-Rossenblatt method as described in Section 2.2.2 instead of consid-

ering that they follow a normal distribution as in the classical case. We thus obtain,

for each class ωk ∈ Ω and for each attribute p (1 < p < P ), a Parzen-Rosenblatt

density f̂p
k .

Eventually, in addition to the estimated densities, the trained model includes

the weakening coefficients and the best-fit fusion rule.
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2.4.2 Classification phase

Given a new observation Yn′ , a mass function Mp for each attribute is constructed

based on the estimated densities. The proposed contextual discounting mechanism

is then applied using the previously calculated weakening coefficients. Subsequently,

the weakened mass functions are combined to obtain a consensual report M . The

final decision is made using the so-called Pignistic Transform. In what follows, we

describe these different steps.

Generation of mass function

In order to determine the massMp assigned to the attribute p, we will consider the

rank function δp which is defined from {1, .., K} to Ω so that δp(k) is the k−ranked

element of Ω in terms of f̂p, i.e. f̂p
δp(1)

(Y p
n′) ≤ f̂p

δp(2)
(Y p

n′) ≤ ... ≤ f̂p
δp(K)(Y

p
n′). Then,

Mp is determined as follows:


Mp(Ω) ∝ f̂p

δp(1)
(Y p

n′)

Mp({ωδp(k), ..., ωδp(K)}) ∝ f̂p
δp(k)

(Y p
n′)− f̂p

δp(k−1)(Y
p
n′)

(2.6)

Contextual discounting

To fine-tune the ultimate mass assigned to the p attribute, a weakening process

based on the proposed contextual discounting mechanism mentioned in paragraph

2.2.3 is applied.

Fusion of mass functions

Mass Functions assigned to different attributes are then merged into a single con-

sensus mass M =
⊕P

p=1M
p using the fusion rule selected on the training phase.

Decision making

The final decision is made based on the Pignistic transformation of M :

X̂n′ = argmax
ωk

∑
A∋ωk

M(A)

|A|
(2.7)
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It is worth noting that the novelty of Boosted PR-DS with respect to those using

similar architectures is based on the steps of model adjustment, generation of mass

function, and contextual discounting.

2.5 Experimental results

To assess the performance of the proposed boosted PR-DS method, experimental

tests are conducted on the NSL-KDD dataset containing two test sets of increasing

difficulty, KDDTest+ and KDDTest-21 respectively, as described in Section 2.3.

A comparative analysis is made with regard to nine methods: J48 decision tree

learning [88], Naive Bayes [89], NBTree [90], Random Forest [91], Random Tree [92],

Multi-layer Perceptron [93], Support Vector Machine (SVM) [94], and Recurrent

Neural Networks (RNN) [86], Parzen-Rosenblatt Dempster-Shafer (PR-DS) [95].

J48 Naive Bayes NB Tree
Random
Forest

Random
Tree

RNN
Multi-layer
Percepron

SVM PR-DS
Boosted
PR-DS

KDDTest+ 81.05 76.56 82.02 80.67 81.59 83.28 77.41 69.52 73.28 80.62

KDDTest-21 63.97 55.77 66.16 63.26 58.51 68.55 57.34 42.29 49.48 81.84
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Figure 2.2: Performance of Boosted PR-DS and the other models on KDDTest+
and KDDTest-21.

While giving a comparable accuracy on the KDDTest+ dataset, Boosted PR-DS

outperforms the other state-of-the-art methods on the KDDTest-21 testing set as

shown in Figure 2.2. This is mainly due to taking the estimated reliability into

account by using the contextual discounting mechanism along with adjusting the

model by selecting the most suitable kernel and fusion rule for a given training

dataset.

To demonstrate the effect of kernel selection, we assess our approach on the

KDDTest-21 dataset by changing the kernel each time, while maintaining the other

parameters. Figure 2.3 shows that three kernels at least are getting better results
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Figure 2.3: Boosted PR-DS on the KDDTest-21 dataset using different kernels

than the Normal kernel which confirms the relevance of choosing an adapted kernel

to suitably constructing our densities instead of using the normality assumption.

2.6 Summary

As a conclusion, we can consider Boosted PR-DS as a combination of multiple clas-

sifiers where each attribute (source) is a classifier. By using contextual discounting,

one may prioritize the decision of an individual classifier regarding those classes in

which its accuracy was high in the training phase and be doubtful regarding those

classes it did not classify well. Furthermore, Boosted PR-DS choose a suitable fu-

sion rule to take advantage of each individual classifier’s knowledge to achieve a

consensus decision. Experimental results validate the interest of this approach with

respect to other state-of-the-art intrusion detection models. As a possible future di-

rection, it would be interesting to consider handling conflicting sources with a more

sophisticated fusion rule.

Nowadays, Deep Neural Networks (DNN) report state-of-the-art results in many

machine learning areas, including intrusion detection. Nevertheless, recent studies

in computer vision have shown that DNNs can be vulnerable to adversarial attacks

that are capable of deceiving them into misclassification by injecting specially crafted

data. In security-critical areas, such attacks can cause serious damage; therefore, in

the following chapter , we examine the effect of adversarial attacks on deep learning-

based intrusion detection.
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Chapter 3

Adversarial Training for Deep Learning-

based Intrusion Detection Systems

3.1 Introduction

Several research studies have examined the use of different Machine Learning (ML)

techniques to improve the accuracy of anomaly-based IDS [96] [97]. Nevertheless,

the lack of transferability and the dependence of traditional machine learning on

domain knowledge (feature engineering) have been among the main reasons for sub-

stituting them with DNNs which not only solved these problems but also yielded,

in most cases, the highest accuracies, making them the state-of-the-art in the field

of anomaly-based intrusion detection [15].

Despite their popularity, DNNs have proven to be vulnerable to adversarial at-

tacks in computer vision where, by introducing imperceptible changes in an image,

an adversary can mislead the classifier. When applied to machine learning-based

security products, these attacks can lead to a critical security breach. Although a

considerable amount of studies has been conducted on adversarial attacks in com-

puter vision, there are very few studies on this issue in intrusion detection. There-

fore, the contribution of this work is double: (1) we study the effect of adversarial

attacks on deep learning-based intrusion detection systems. For that, three adver-

sarial attacks are tested: Fast Gradient Sign Method (FGSM) [22], Basic Iterative

Method (BIM) [31] and Projected Gradient Descent (PGD) [30] showing that ad-

versarial attacks are able, given enough strength, to mislead the IDS significantly.

In addition, (2) this is the first study, to the best of our knowledge, to examine

the effectiveness of adversarial training as a defense against adversarial attacks for

intrusion detection systems.

In what follows, we briefly recall the concept of DNNs in Section 3.2. The exper-

imental approach is explained in Section 3.3. Results and discussions are presented
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in Section 3.4. Concluding remarks and suggestions for possible follow-up work are

given in Section 3.5.

3.2 Background

3.2.1 Deep Neural Network (DNN)

DNN refers to a machine learning algorithm made up of multiple interconnected

layers where each layer is composed of several nodes - called neurons. Within each

neuron, an activation function operates as a basic computing unit. The activation

function input on a neuron is the parameter-weighted output of the immediately

preceding layer, whilst each layer’s output is at the same time the next layer’s

input.

Frequently described as an end-to-end machine learning process, DNN is capa-

ble of learning complex patterns based on limited prior knowledge of input data

representation. As a result, deep learning models are widely applied to address

large-scale data problems that are frequently inadequately handled by traditional

machine learning algorithms. DNN layers fall into three categories: the input layer,

the output layer, and, in between, the hidden layer. For large-scale input data, it

may be necessary to use several hidden layers so as to learn the subjacent correlation.

DNN can be seen as a function f (·), f ∈ F : Rn → Rm. let Θ be the DNN

parameters. Training the model involves finding the optimal parameters Θ where

the loss function J (e.g., cross-entropy) is minimal.

For the classification task, the outputs of the last layer in DNN are called logits.

The softmax function is added after the last layer in order to transform these logits

into a probability distribution, i.e., 0 ≤ yi ≤ 1 and y1 + . + ym = 1 where yi is

interpreted as the probability that input x has class i. The label with the highest

probability C(x) = argmax yi is assigned as the class of the input x.

Let Z(x) = z be the output of all layers excluding Softmax, thus the full DNN

is F (x) = softmax(Z(x)) = y. At the neuron level, the input is first linearly trans-

formed using weights θ̃ and baises θ̂ , and then subjected to a non-linear activation
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function σ (e.g., ReLU). The DNN model is a chain function :

F = softmax ◦ Fn ◦ Fn−1 ◦ · · · ◦ F1 (3.1)

Where:

Fi(x) = σ(θ̃i.x+ θ̂i) (3.2)

3.3 Experimental Approach

In this section, a state-of-the-art intrusion detection system based on deep learning is

built to study the effectiveness of adversarial attacks. We focus on untargeted "white

box" type evasion attacks, i.e., the attacker has prior knowledge of the internal

architecture of the DNN used for detection and carries out his attacks during the

prediction process in order to lead the system into misdetection. Subsequently,

adversarial training [22] [30] is thoroughly assessed as a defense against adversarial

attacks by mixing adversarial samples with clean training data during the training

process to enhance the robustness of the DNN against these attacks.

3.3.1 Dataset description

This dataset covers several attacks organized into four classes according to their

nature: denial of service (DoS) attacks, probe attacks (Probe), root-to-local (R2L)

attacks, and user-to-root (U2R) attacks. The records in the NSL-KDD dataset

have 41 features in addition to a class label. These features are grouped into three

categories: basic features, content features, and traffic features. For the experimental

part, we use KDDTrain+, which contains 125973 records, as follows: 80% of the

records are training data and 20% are test data. Table 3.1 provides a summary of

the data.

Table 3.1: Different classes of the dataset.

Normal DoS Probe R2L U2R
Training data 53875 36742 9325 796 42

Test data 13468 9185 2331 199 10
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3.3.2 Preprocessing

The preprocessing of the NSL-KDD dataset involves two steps: numericalization

and standardization. Neural networks are unable to handle categorical values di-

rectly. Numericalization is the process of transforming these categorical values into

numerical values. The features that contain categorical values in this dataset are

"protocol_type", "service" and "flag". Standardization is an important step to pre-

vent the neural network from malfunctioning because of large differences between

features’ ranges. That is why we transform each feature into standard normal distri-

bution. In this work, we focus on binary classification; therefore we qualify all attack

records as "anomaly" and normal traffic as "normal". We use one-hot encoding to

transform the class labels into numerical values.

3.3.3 Building deep learning-based IDS

In order to detect intrusions, a deep binary neural network with two hidden lay-

ers, each containing 512 hidden units, is implemented using TensorFlow 1. Recti-

fied Linear Unit (ReLU) is used as an activation function within each hidden unit

so as to introduce non-linearity in these neurons’ output. Following each hidden

layer, a dropout layer with a dropout rate of 0.2 is employed to prevent Neural

Networks from over-fitting. ADAM is set as an optimization algorithm and "cate-

gorical_crossentropy" as a loss function to be minimized. softmax layer is added at

the end to convert the logits into a normalized probability distribution. the class

with the highest probability is considered as the predicted class.

3.3.4 Generating adversarial samples

We use Adversarial Robustness Toolbox (ART) [98] to implement adversarial attacks

as well as the adversarial training. ART is an open-source python library for ML

security developed by the International Business Machines corporation (IBM).

The generation of adversarial samples can be explained in a simple way. One

can consider it as the inverse process of gradient descent where, given a fixed input

data x and its label y, the goal is to find the model parameters θ that minimize the

1https://www.tensorflow.org/
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loss function J . Now, to generate an adversarial sample x′, we proceed inversely,

given fixed model parameters θ, we differentiate the loss function J with respect

to the input data x in order to find a sample x′ - close to x - that maximizes the

loss function J . FGSM [22] uses a specific factor ϵ to control the magnitude of the

introduced perturbation where ∥x′ − x∥< ϵ. The ϵ factor can be considered as the

attack strength or the upper limit of the distortion amount. The adversarial sample

x′ is then generated as follows:

x′ = x+ ϵ ∗ sign[∇Jx(x, y, θ)] (3.3)

BIM [31] is another attack and is basically an iterative extension of the FGSM

applying the attack repeatedly. Similar to BIM, another iterative version of the

FGSM is PGD [30]. However, unlike BIM, the PGD is relaunched at each iteration

of the attack from many points on the ϵ-norm ball around the original input.

3.3.5 Adversarial training

The idea behind adversarial training is to inject adversarial examples with their

correct labels into the training data so that the model learns how to handle them.

To do this, we use the PGD attack to generate adversarial samples before mixing

them with the training data set. Here, we want to study two parameters of this

defense: first, the effect of attack strength ϵ used to generate adversarial samples for

the training, let’s call it ϵdefense to avoid confusion with the strength of adversarial

attack ϵattack in the attack phase. Second, the proportion of adversarial training

samples compared to clean training samples in the training data.

3.4 Experimental results

In this section, we first evaluate the effect of adversarial attacks on a deep learning-

based intrusion detection system. then, in the second part, we examine the effective-

ness of adversarial training as a means of making the system more robust against

these attacks. we conclude this section by discussing and analyzing the results ob-

tained.
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Figure 3.1: Effect of adversarial attacks on deep learning-based intrusion detection
system.

3.4.1 Effect of adversarial attacks on deep learning-based IDS

After training our DNN model, we test its accuracy (the proportion of correct pre-

dictions among the total number of cases examined) on unmodified test data. The

model gives an accuracy of 99.61%, we then proceed to generate adversarial test

data using FGSM, BIM, and PGD respectively. For each attack, the experiment is

repeated, intensifying the attack by increasing ϵ value each time. Figure 3.1 shows

that all three attacks deteriorate significantly the performance of the intrusion de-

tection system. The FGSM attack lowers the accuracy of the system from 99.61%

to 14.13%, while the BIM and PGD attacks decrease it further to 8.85%.

This demonstrates that, with sufficient distortion, adversarial attacks are able to

defeat intrusion detection systems based on DNNs and lead them into misdetection.

3.4.2 Adversarial training effect

As mentioned in Section 3.3.5, we examine two parameters of adversarial training:

1) ϵdefense which represents the attack force used to generate adversarial training

samples that are mixed with clean training samples. 2) the percentage of adversarial

training samples, compared to clean training samples, in the training data. Note

that all the adversarial examples used are generated via the PGD attack.
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(a) Percentage of adversarial training sam-
ples in the training data = 30%

(b) Percentage of adversarial training sam-
ples in the training data = 50%

(c) Percentage of adversarial training sam-
ples in the training data = 70%

(d) Percentage of adversarial training sam-
ples in the training data = 90%

Figure 3.2: Effect of adversarial training on the robustness of deep learning-based
intrusion detection system

We begin by setting the percentage of adversarial training samples in the training

data to 30%, giving a fixed value of ϵdefense. After training the model with this mixed

training data, we apply PGD attack by increasing the value of ϵattack each time. We

repeat the experiment by increasing the value of ϵdefense used for adversarial training

as shown in Figure 3.2a. The whole process is repeated by setting the percentage of

adversarial training samples to 30%, 50%, 70%, and 90% respectively.

Figure 3.2 illustrates that compared to using only clean training data, adver-

sarial training improves the robustness of the intrusion detection system against

adversarial attacks. Although with sufficient attack force, the accuracy of the detec-

tor decreases considerably. We also note that increasing strength of the adversarial

examples ϵdefense used for the training helps to improve the robustness of the detector

to some extent, making it more difficult for the attacker to create adversarial samples

with a small distortion that can mislead the intrusion detection system. The same

cannot be said for the impact of the percentage of adversarial training examples on

the robustness of the intrusion detection system because while for ϵdefense = 0.7,

higher percentages improved the robustness of the detector against adversarial at-
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tacks as shown in Figure 3.3, this improvement is not observed for the other values of

ϵdefense. Thus, it is safe to say that the percentage of adversarial training examples

doesn’t have a direct link to the robustness of the intrusion detection system using

adversarial training. This could be explained by the fact that the added dropout

layers are designed to reduce overfitting effect on DNN, so as long as the model is

fed with enough adversarial samples in the training phase, its performance won’t

change much by adding data with similar information.

Figure 3.3: Effect of the percentage of adversarial training samples in the training
data, ϵdefense = 0.7 .

Another important aspect is the effect of adversarial training on the performance

of the intrusion detection system when tested on clean test data. While results of

the previous experiments indicate that adversarial training increases the robustness

of deep learning-based intrusion detection systems, Figure 3.4 shows that adversarial

training slightly decreases the accuracy of the detector when tested on clean test

data. This indicates that there is a trade-off between robustness and accuracy. The

decrease in accuracy of the intrusion detection system on clean test data could be

explained by the fact that as the model is trained with adversarial samples, its

decision boundary would change in comparison to clean data training.

From a practical point of view, given malicious network traffic, such as HTTP

traffic that wants to connect to bad URLs, such as command and control servers,

the attacker can use adversarial generation techniques to transform this malicious
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Figure 3.4: Effect of adversarial training on the performance of the intrusion detec-
tion system on clean test data.

network traffic into normal traffic for the intrusion detection system while maintain-

ing its maliciousness, for example by adding small amounts of specially crafted data

to the network traffic as padding. This allows the attacker to mislead the intrusion

detection system. Adversarial training, on the other hand, is a defensive technique.

It seeks to make the attacker’s task more difficult by making small distortions in-

sufficient to bypass the intrusion detection system.

3.5 Summary

In conclusion, adversarial attacks are a real threat to intrusion detection systems

based on deep learning. By generating samples using adversarial attacks, an at-

tacker can lead the system to misdetection and, given sufficient attack strength, the

performance of the intrusion detection system can deteriorate significantly. As a

defense against such attacks, the adversarial training was examined in depth. The

results show that this method can improve to some extent the robustness of deep

learning-based intrusion detection systems. However, it comes with a trade-off of

slightly decreasing detector accuracy on unattacked network traffic. An interest-

ing future work would be to propose new defense mechanisms against adversarial

attacks by exploring uncertainty handling techniques.
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The use of Machine Learning techniques in anomaly-based intrusion detection

systems has seen much success. However, recent studies have shown that Machine

learning in general and deep learning specifically are vulnerable to adversarial attacks

where the attacker attempts to fool models by supplying deceptive input. Research

in computer vision, where this vulnerability was first discovered, has shown that ad-

versarial images designed to fool a specific model can deceive other machine learning

models. In the following chapter, we investigate the transferability of adversarial

network traffic against multiple machine learning-based intrusion detection systems.
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Chapter 4

Detect & Reject for Transferability of

Black-box Adversarial Attacks Against

Network Intrusion Detection Systems

4.1 Introduction

Research in the field of computer vision, where this vulnerability was first discovered,

has shown that adversarial images designed to fool a specific model can, to some

extent, fool other machine learning models [11]. This is known as the transferability

property of adversarial attacks. By exploiting this property, an attacker can build a

surrogate intrusion detection system, create adversarial traffic for that detector, and

then attack another intrusion detection system without even knowing the internal

architecture of that detector, leading to a black-box attack.

To avoid this kind of vulnerability, we are conducting this research and the

following are our contributions in this work:

• To the best of our knowledge, this is the first study to examine the transfer-

ability of adversarial network traffic between multiple anomaly-based intrusion

detection systems with different machine learning techniques in black-box set-

tings.

• In addition, we construct an ensemble intrusion detection system to exam-

ine its robustness against the transferability property of adversarial attacks

compared to single detectors.

• Finally, we investigate the effectiveness of the Detect & Reject method as a

defensive mechanism to mitigate the effect of the transferability property of

adversarial network traffic against machine learning-based intrusion detection

systems.
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4.2 Proposed Approach

Previous work has shown that the accuracy of a DNN-based IDS can be signifi-

cantly reduced when exposed to adversarial attacks [15, 99, 100]. In this section,

we construct a DNN-based IDS and five other ML-based IDSs to examine whether

the same adversarial instances designed for a DNN-based IDS can be transferred to

other ML-based IDSs, which are trained on a different data set, without knowing

anything about their internal architectures. We also build an ensemble intrusion

detection by clustering the five ML-based IDSs to study whether having multiple

classifiers voting prediction can be a defense against the transferability property of

adversarial attacks. Finally, we implement the Detect & Reject method as a de-

fense mechanism for the intrusion detection system and evaluate its robustness to

transferable adversarial examples.

4.2.1 Dataset partitioning

The NSL-KDD dataset contains 41 network traffic characteristics, covering three as-

pects: basic characteristics, content characteristics, and traffic characteristics. Many

attacks are covered in this dataset; they can be further classified into four families of

attacks: denial-of-service (DoS) attacks, probe attacks (Probe), root-to-local (R2L)

attacks, and user-to-root (U2R) attacks. We use KDDTrain+ in our experiments

by dividing it into 80% and 20% for training and test data respectively. The train-

ing data is divided into two almost equal parts A and B to train the DNN-based

IDS separately from other ML-based IDSs so as to examine the transferability prop-

erty. The data used in the experimental part are summarized in Table 4.1 and their

partitioning is illustrated in Figure 4.1 .

Table 4.1: Summary of the network traffic dataset.

Normal DoS Probe R2L U2R
Training data A 26938 18371 4663 398 21
Training data B 26937 18371 4662 398 21

Test data 13468 9185 2331 199 10
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Figure 4.1: The partitioning of the dataset for training and testing of IDS

4.2.2 Preprocessing

The network traffic included in this dataset is heterogeneous and contains both

numerical and categorical values. Many machine learning algorithms do not support

categorical values, hence the need for the numericalization step that transforms these

categorical inputs into numerical values. In the case of the NSL-KDD dataset, the

categorical features are "flag", "protocol type" and "service". Another important

aspect is feature scaling, which consists of converting all features to the same scale

to ensure that all features contribute equally to the result and also to help the

gradient-based ML algorithms converge faster to the minima. We restrict our study

to a binary classification where we consider any type of attack as "intrusion" and

the rest as "normal" traffic.

4.2.3 Building Anomaly-based Intrusion Detection Systems

TensorFlow is used to build the DNN-based IDS, it consists of two hidden layers

with 512 units each. As an activation function, we use Rectified Linear Unit (ReLU)

to increase the non-linearity. To prevent overfitting, a dropout layer with a 20%

dropout rate is placed after each hidden layer. ADAM and categorical cross-entropy

are used as an optimization algorithm and loss function respectively. In the end,

the logits are converted to probabilities using a softmax layer. The final prediction

is assigned to the highest probability class.

We acknowledge the use of Scikit-learn [101] to build five ML-based IDSs. The

default settings were maintained. These five ML algorithms were selected due to

56



their popularity in the ML community: Support Vector Machines (SVM), Decision

Tree (DT), Logistic Regression (LR), Random Forest (RF), and Linear Discriminant

Analysis (LDA). We also construct an ensemble IDS by grouping these five ML

algorithms where the final prediction is made using the majority voting rule.

4.2.4 Transferability of Adversarial Attack in Black-box Set-

tings

In order to test the transferability property of adversarial attacks, we build a DNN-

based IDS where we generate adversarial network traffic records in a white-box

setting and then test them against five different ML-based IDSs. Note that the

five ML-based IDSs are trained on a different dataset (Training data B) and the

adversary records were generated without assuming any knowledge of the internal

architecture of these five ML-based IDSs, which means that we are working under

a black-box setting assumption.

Two adversarial attacks were implemented to generate adversarial network traffic

records: FGSM and PDG. For this, we use Adversarial Robustness Toolbox (ART)

[98]. The experiments are repeated by increasing the attack strength ϵ to investigate

the amount of perturbation required for the adversarial attack to be transferred from

the DNN-based IDS to the other five ML-based IDSs in black-box settings.

4.2.5 Defenses against the Transferability of Adversarial At-

tacks

Since the ensemble technique is known to increase accuracy over a single classifier

[102], we want to examine whether it can also increase its robustness against the

transferability of adversarial attacks in a black-box setting. To do so, we construct

an ensemble IDS based on the previous five ML-based IDSs and use the majority

voting rule to obtain the final decision.

The second defense we consider is the Detect & Reject method [103], which

involves training our IDSs to detect not only "abnormal" and "normal" traffic,

but also a third class called "adversarial". Thus, whenever the IDS decides that

a network traffic record is adversarial, it is rejected. We implement this method
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on the five ML-based IDSs and examine their robustness to the adversarial attack

transferability property.

4.3 Experimental Results

In this section, we present the results of experimenting our appraoch. Subsection (A)

illustrates the effect of the transferability property of adversarial attacks on the five

ML-based IDSs. In subsection (B), we examine the robustness of the ensemble IDS

against these attacks in black-box settings. Subsection (C) illustrates the robustness

improvement of all IDSs after adding the detection and rejection mechanism to the

five ML-based IDSs.

4.3.1 Transferability of Adversarial Attacks in Black-box Set-

tings

In this study, we use two adversarial attacks: FGSM and PGD to generate ad-

versarial network traffic records from "Test data". These adversarial records are

specifically designed to fool DNN-based IDSs since both attacks have access to the

internal architecture of DNNs. As mentioned earlier, we train the DNN-based IDS

using "Training data A", while the other 5 ML-based IDSs are trained using "Train-

ing data B". Adversarial traffic records are used at test time to attempt to mislead

the IDSs. As shown in Figure 4.2, increasing the attack strength (ϵ) further degrades

the accuracy of the DNN-based IDS. When testing these adversarial network traf-

fic records on the five ML-based IDSs, we find that their accuracy decreases, even

though the attacks do not have access to their internal architectures. We also note

that although the accuracy of the ML-based IDSs did not deteriorate as much as the

DNN-based IDSs, some models were more vulnerable than others. This may be due

to their differentiability property, i.e., they are composed of differentiable elements,

since the decision tree and the random forest, whose accuracies were least affected,

are non-differentiable models that are not amenable to gradient descent due to their

Boolean nature, unlike SVM or logistic regression for example.
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Figure 4.2: Transferability of adversarial attacks against ML-based intrusion detec-
tion systems in black-box settings

4.3.2 Ensemble Intrusion Detection System Robustness

Since the ensemble technique is known to improve accuracy over a single model, we

investigate whether it could also improve robustness. To this end, we construct an

ensemble IDS based on the five ML-based IDSs using the majority voting rule. The

same setup as in the previous experiment is maintained, which means that the 5

ML models used to build the ensemble model are trained using the "Training data

B". The adversarial traffic records are generated from the "Test data" using the

FGSM and PGD attacks. These adversarial records are designed to fool DNN-based

IDS since both attacks can only access the internal architecture of the DNN model.

As shown in Figure 4.3, the ensemble IDS is not able to resist the transferability
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Figure 4.3: Adversarial attack transferability from DNN-based IDS to Ensemble
IDS

property of adversarial attacks, even though no information about the ensemble IDS

was used to generate these adversarial records. This shows the ease of an evasion

attack against an intrusion detection system without even knowing its internal ar-

chitecture, simply by building a surrogate IDS (DNN-based IDS in our case) and

generating adversarial network traffic for this surrogate model.

4.3.3 Detect & Reject for Adversarial Network Traffic

In order to limit the effect of adversarial attacks in a black-box context, we imple-

ment the Detect & Reject method in each of the five ML-based IDSs. This method

consists of re-training the model to detect not only "abnormal" and "normal" traffic

but also "adversarial" traffic. PGD is used against "Training data B" to generate

"Adversarial data". After that, the ML model uses a combination of "Training data

B" and "Adversarial data" during the training phase to learn to distinguish the

three classes. During the prediction phase, any network traffic record recognised as

"adversarial" will be rejected. As shown in Figure 4.4, all five ML-based IDSs have

improved their robustness against adversarial attacks. Decision Tree and Random

Forrest, which is an ensemble version of Decision Tree, have the highest detection

rates of adversarial network traffic compared to the other IDSs.
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Figure 4.4: Detect & Reject as a defense against the transferability property of
adversarial network traffic

4.4 Summary

From an intrusion detection system perspective, adversarial attacks are a serious

threat, as a small intentional perturbation of network traffic can mislead the sys-

tem. To generate these adversarial records, the attacker must have access to the

internal architecture of the machine learning model. However, by exploiting the

transferability property of adversarial attacks, he can mislead other intrusion detec-

tion systems without having any knowledge about them. Ensemble IDSs, although

known to improve model accuracy, are vulnerable to these attacks and thus cannot

improve model robustness. On the other hand, Detect & Reject has shown through

our experiments to be a suitable built-in defense for intrusion detection systems

against adversarial attacks. An interesting future work would be to design more ef-

fective defenses to limit the effect of adversarial attacks against intrusion detection
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systems.

Nowadays, intrusion detection systems based on deep learning deliver state-of-

the-art performance. However, recent research has shown that specially crafted

perturbations, called adversarial examples, are capable of significantly reducing the

performance of these intrusion detection systems. The objective of the following

chapter is to design an efficient transfer learning-based adversarial detector and then

to assess the effectiveness of using multiple strategically placed adversarial detectors

compared to a single adversarial detector for intrusion detection systems.
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Chapter 5

TAD: Transfer Learning-based Multi

Adversarial Detection of Evasion At-

tacks against Network Intrusion De-

tection Systems

5.1 Introduction

The change in cyber-target has led to an equivalent change in cyber defenses, as the

focus has shifted to protecting IDSs themselves from attacks created to undermine

their effectiveness. While adversarial learning features some defenses, it is clear that

more research is needed to refine these techniques. Adversarial detection has shown

promising results in the field of computer vision, but very limited work has been

done regarding this method in the field of intrusion detection systems.

The main objective of this work is to design and study the use of multiple

strategically placed transfer learning-based detectors of adversarial attacks. The

use of multiple detectors could lead to significantly better detection rates against

adversarial attacks, as the information is distributed among them and the logical

links between these pieces of information can be discovered independently. In our

experimental work, the results show that the use of multiple adversarial detectors

is more advantageous in parallel IDS than in serial IDS. This is mainly due to

the fact that the detectors are more diversified in the parallel architecture. Our

four main contributions are the following: (1) Implementation of two IDS models

based on deep learning (one in serial form and the other in parallel form) and

evaluation of the effect of four adversarial attacks on their performance. (2) Proposal

of a new adversarial detection scheme based on transfer learning to allow a better

information flow between the IDS and the adversarial detectors. (3) Assessment of
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the performance of the proposed approach when exposed to evasion attacks that

were not seen in the training phase to simulate the zero-day attack scenario. (4)

Performance evaluation of the use of multiple adversarial detectors versus a single

detector in both serial and parallel IDS designs.

The remainder of the work is organized as follows. Preliminaries and related

works are presented in Section 5.2. We present our evaluation methodology in

Section 5.3. We present our performance evaluation in Section 5.4. We conclude in

Section 5.5.

5.2 Preliminaries

This section first presents a brief description of the concepts of adversarial learning,

as well as the metrics used to evaluate the performance of adversarial attacks. This

section also presents the transfer learning techniques used in our detection mecha-

nism. Furthermore, when considering multiple detectors, it is necessary to find a

way to combine their respective evaluations into a final decision. Thus, this section

presents the three fusion rules used in this work.

5.2.1 Adversarial Learning

Adversarial learning is the name given to the problem of devising attacks against

machine learning as well as the defenses against those attacks [10]. There exists a

large number of attacks against machine learning models that are often classified

with regard to their respective goals [104]. Depending on the phase in which the

attack is conducted, adversarial attacks can be divided into either poisoning or

evasion attacks.

One of the main differences between poisoning and evasion attacks is the timing

of the attack. In the case of the poisoning attack, the adversary targets the IDS

during the training phase, whereas for the evasion attack, the adversary launches

its attack on the IDS during the testing phase (i.e., only after the IDS has been

trained and deployed). Clearly, the poisoning attack is more difficult to execute in

a real-world setting, as it requires the attacker to re-train the IDS with its poisoned

data. Evasion attacks, on the other hand, allow the attack to be performed without
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modifying the IDS.

Since evasion attacks are more practical and therefore more widely used against

IDSs, our work will focus on evasion attacks and defenses against them. In particu-

lar, this work will only consider evasion attacks against Deep Neural Network-based

IDS (DNN-IDS). Although DNNs seem to be the most promising research area in

terms of IDS performance [105], these models also seem to be the most vulnerable

to adversarial attacks [10].

Assumption of adversary knowledge

When attacking a system in a controlled environment, the first thing to decide is

the adversary’s knowledge. Indeed, we distinguish between an attacker with the full

knowledge of the to-be-attacked model as well as any defenses in place (white-box)

and an attacker with no prior knowledge of the attacked system (black-box).

In the case of IDSs, knowledge of the initial classifier is plausible because most

IDSs use state-of-the-art models and learning methods. Knowledge of the defenses,

on the other hand, is less plausible because there is no clear consensus on the best

defense mechanism to implement in this case. In this work, we assume a kind of

gray-box situation where the attacker has full knowledge of the IDS but no prior

knowledge of additional defenses that are employed to defeat it.

Metrics

When performing adversarial attacks, several metrics can be considered to assess the

results. Indeed, one of the commonly used metrics is the success rate of the attack:

the difference between the performance of the model before and after the attack.

The other commonly considered metric is the strength of the attack. Some attacks

allow a strength metric to be defined, which increases the success rate but also

potentially the detectability of the attack. The strength often refers to the maximum

perturbation that can be applied to the initial sample. In this work, we evaluate the

model performance using the standard machine learning metrics: Precision, Recall,

and F1-score to evaluate the performance of the IDSs and Detection Rate (Recall)

to assess the performance of the adversarial detectors. These metrics are calculated
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as follows:

Precision =
tp

tp+ fp
(5.1)

Recall =
tp

tp+ fn
(5.2)

F1-score = 2 · Precision ∗Recall

Precision+Recall
(5.3)

5.2.2 Transfer Learning

Many real-world deep learning configurations involve the need to learn new tasks

without compromising the performance of existing tasks. For instance, an object

recognition robot may be shipped with a default range of abilities, but additional

object models that are specific to the given environment need to be considered. In

order to achieve this, new tasks should ideally be learned by sharing the parameters

of old tasks without degrading the performance of the latter [1].

Given θs a set of shared parameters for a DNN and θo task-specific parameters for

previously learned tasks, three typical approaches exist for learning new task-specific

parameters, θn, while leveraging previously learned θs as shown in Fig. 5.1:

• Feature Extraction (FE): when learning θn, we keep θs and θo unaltered, and

the outputs of the shared layers are used as features for the new task learning.

• Fine-Tuning (FT): in this case, θs and θn are tuned for the new task, whereas

θo is unchanged.

• Duplication + Fine-Tuning (DFT): it is possible to mirror the original deep

neural network and fine-tune it for each new task to build a dedicated neural

network.

5.2.3 Fusion Rules

In order to combine the individual decisions of each detector involved in our proposed

design, we will use three fusion rules: majority voting, Simple Bayes averaging, and

Dempster-Shafer combination [106].

The majority vote rule is a simple fusion rule and will serve primarily as a

reference for the other two rules in our work. With this rule, the final decision will
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simply be the individual decision made by the majority of the detectors. The main

limitation of this fusion rule is that it processes all models equally, meaning that all

models contribute equally to the prediction. This poses a problem if certain models

perform well in some situations and poorly in others.

When performing a Bayesian average, the activation score for each class will

be summed over all the detectors and then divided by the number of detectors.

The highest resulting average will be chosen as the final classification by the sys-

tem. Using this method helps to account for the confidence of each detector in its

classification.

The final fusion rule used in this work is the Dempster-Shafer rule of combination

[107]. This rule combines evidence elements from different sources (e.g., detectors)

to achieve a degree of belief for each hypothesis (classification decision in our case).

let Ω = {ω1, ..., ωK}, and P(Ω) = {A1, ..., AQ} is its power set, where Q = 2K .

A mass function M :P(Ω)→ [0, 1] is a basic belief assignment (bba) if M(∅) = 0 and∑
A∈P(Ω)M(A) = 1.

In case where two bbas M1 and M2 denote two elements of evidence (e.g., informa-

tion from two detectors), we can combine them together using the Dempster-Shafer

fusion rule, which results in M = M1 ⊕M2 that is defined by Eq. 5.4.

M(A) = (M1 ⊕M2)(A) ∝
∑

B1∩B2=A

M1(B1)M2(B2) (5.4)

random initialize + train
fine-tune
unchanged

new task 
ground truth

new task 
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(b) Fine-tuning
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new task 
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Figure 5.1: An illustration of two transfer learning techniques:Fine-Tuning and Fea-
ture Extraction, from [1]
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5.3 Evaluation methodology

Anomaly detection is one of the key defenses proposed against adversarial learning

in intrusion detection systems. Indeed, to perform any variant of evasion attacks on

a trained model, the original features used by the model are modified to maximize

the classification error. These modifications can be detected in a variety of ways,

including using another neural network trained specifically to recognize the modified

input packets. These new neural networks are called adversarial detectors (AdD).

This work aims to investigate the effectiveness of multiple adversarial detectors

working together to detect adversarial perturbations during the inference phase.

Each of these detectors is placed under a sub-network to receive different levels of

information from the DNN-IDS. By combining their respective decisions, we could

obtain a final classification affirming the legitimacy of each sample. The hypothesis

here is that due to the added level of granularity, multiple detectors could help

detect a wider range of perturbations and thus a wider range of evasion attacks. In

addition, the use of transfer learning techniques would allow adversarial detectors to

learn some important patterns from the IDS (since the two tasks are similar) while

augmenting their knowledge based on the adversarial patterns.

To do this, we build two DNN-IDS in both serial (DNN-IDS-serial) and par-

allel (DNN-IDS-parallel) architectures, perform multiple attacks against these two

IDSs, and then design our adversarial detectors by following several transfer learning

techniques to finally combine their decisions as shown in Figures 5.3 and 5.5. This

defense technique is then compared to adversarial learning.

5.3.1 Network traffic datasets

The experimental evaluation considered in our work is performed on two public

network traffic datasets, NSL-KDD [87] and CIC-IDS2017 [108]. NSL-KDD is chosen

in this work because of its frequent use in the literature as a benchmark to compare

different intrusion detection methods. CIC-IDS2017, on the other hand, is chosen

because of its recency, which ensures that it can be considered a good representation

of large modern network environments. Each dataset was randomly sampled to

include over 50,000 records, with equal representation of both the "normal" and
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"attack" classes in terms of network records.

5.3.2 Adversarial examples generation

To craft adversarial samples, we use four different evasion attacks against each

model. For this, the set of adversarial attacks that we use in the experiments is

Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Carlini

& Wagner (CW), and DeepFool (DF).

To train and evaluate the adversarial detectors, we create multiple training and

testing datasets based on the network traffic dataset as shown in Fig. 5.2. We create

an attack-specific dataset for each of the adversarial attacks, comprising the original

dataset re-labeled as clean and of the same dataset altered by the chosen attack

and labeled as adversarial. This results in balanced datasets between non-altered

and altered samples. The final dataset that is created is a balanced version of the

attacks. Indeed, while the balanced dataset still contained the original dataset, the

altered part is equally shared between the four adversarial attacks.

Figure 5.2: Balanced and attack-specific datasets composition

It bears mentioning that our attacks are applied directly to feature vectors

(feature-space attacks) as opposed to raw traffic (problem-space attacks) [63]. There-

fore, adversarial perturbations may not resemble truly realistic adversarial traf-

fic [12, 18]. However, in an attempt to preserve the functionality of our adversarial

samples, certain semantic and syntactic constraints are taken into consideration [23].

A set of features are kept unmodifiable, such as protocol type, service, or flags. We

also limit the maximum perturbation rate to 10% to ensure that the generated

adversarial samples are close to the original samples.
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5.3.3 Serial DNN-IDS design

The first step in this work is to design the DNN-IDS-serial. Its objective will be to

classify benign and malicious traffic. Several design choices have to be tested before

settling on an optimal design of the DNN: the number of hidden layers, the number

of neurons per hidden layer, and the activation function.

The first design choice that was tested was the number of hidden layers to use.

Indeed, while it was known that several hidden layers would be used in this DNN,

the exact number of hidden layers is a tested parameter. We decided to test between

two and four hidden layers. To test each configuration, we trained ten models of

each configuration for fifty epochs each. During the training phase, we evaluated

each model on our test dataset every ten epochs. This allowed us to keep only the

best-performing model and avoid overfitting. We then averaged the performance

obtained by each configuration. We found that using three ReLu-activated hidden

layers was sufficient to achieve state-of-the-art performance on this dataset and that

adding additional layers did not improve performance further.

Based on these results, we decided to use three ReLu-activated hidden layers.

We also varied the number of neurons in each hidden layer between forty and two

hundred and fifty-six. This variation in the number of neurons resulted in almost

no change in overall performance. It was therefore decided that each hidden layer

would have two hundred and fifty-six neurons.

5.3.4 Adversarial detectors design for DNN-IDS-serial

The choices made in this stage regarding our adversarial detectors revolved around

the design of the detectors and their architecture. Regardless of these choices, we

decided to give each detector the information of all layers placed before it in the

DNN-IDS-serial. This means that AdDn∈[1,N ] will be composed by the [1, N ] layers

of DNN-IDS-serial in addition to the chosen detector design.

The design of the detectors refers to the number of layers as well as the number

of neurons on each layer. We decided to test either one or two ReLu-activated layers,

and either forty or two hundred and fifty-six neurons, as we did for our DNN-IDS-

serial design. The architecture itself refers to the transfer learning technique used

to train our adversarial detectors. The tested architectures are the following:
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Figure 5.3: An illustration of the adversarial detectors in a serial DNN-IDS design

• Features Extraction: For AdDn∈[1,N ], layers [1, N ] of the DNN-IDS-serial are

shared with the adversarial detector. Those layers are made untrainable by

freezing the weights and biases. To that set of layers are added our detector’s

layers. Those new layers are then trained to detect the attacks. Theoretically,

this method allows faster training of the detectors. Indeed, since the shared

layers are already trained on a similar task, the provided weights and biases

should help to find optimal values for the detector’s parameters faster than

starting with random values.

• Fine-Tuning: For AdDn∈[1,N ], layers [1, N ] of the DNN-IDS-serial are shared

with the adversarial detector. To that set of layers are added our detector’s

layers. The ensemble is then trained to detect the adversarial attacks. Since

this method changes the DNN-IDS-serial’s weights and biases, there is a non-

zero risk of changing the DNN-IDS-serial’s performance. Since both tasks

are quite similar, this change might be beneficial for the original detection

performance. But it is also possible that we observe a drop in IDS performance

after training our adversarial detectors.

• Duplication + Fine-Tuning: For AdDn∈[1,N ], layers [1, N ] of the DNN-IDS-

serial are duplicated and their copy is passed to the adversarial detector. To

those layers are added our detector’s layers. We then train the whole set of

layers to detect adversarial attacks. This method benefits from the advantages

of a Fine-Tuning architecture without risking a performance change for the
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DNN-IDS-serial. Indeed, since the layers are duplicated and not shared, the

weights and biases of the original DNN-IDS-serial remain unchanged. This

architecture would be a suitable solution if the performance change observed

while using the Fine-Tuning architecture is detrimental to our DNN-IDS-serial.

To test the design and architecture of our adversarial detectors, we trained them

for thirty epochs each and evaluated them in the same way as we evaluated the

initial DNN-IDS-serial. The whole experiment was repeated 3 times to average out

the results. FGSM attack was used to craft adversarial samples from the NSL-KDD

dataset.

MeanAdD3AdD2AdD1NeuronsLayersArchitecture
IDS F1-score 

change

97,12%256 97,26%97,50% 97,16%

40 96,94%97,00% 96,79% 97,05%

256 97,75% 96,81%97,12% 95,56%

40 97,03%97,01% 97,00% 97,09%

-1,04%96,29%96,80% 95,93% 96,14%256

-0,57%40 96,57%96,31% 96,69% 96,72%

-0,69%256 96,13%95,62% 96,52% 96,26%

-4,80%40 96,90%97,20% 97,36% 96,13%

83,55%83,56% 82,02% 85,08%256

40 84,62%84,98% 83,49% 85,38%

256 84,94%84,24% 84,84% 85,73%

40 86,09%86,42% 85,37% 86,48%

DFT
(this paper)

No change

FT

No change

2

1

2

1

2

1

  
FE

Table 5.1: Comparaison of the detection rate of the adversarial detectors (AdD) in
different design choices. For DFT and FE architectures, the IDS is not re-trained,
hence no change in its performance. Note that FE is the architecture used in [3]

As shown in Table 5.1, we can see that the architectures allowing the re-training

of the initial layers performed better at detecting the evasion attacks. This result

is attributed to the fact that both tasks (detecting intrusion and evasion attacks)

are quite similar. This means that the architecture allowing to fine-tune the DNN-

IDS-serial benefits from its training and can capitalize on it. Unfortunately, an

accuracy drop was observed in the DNN-IDS-serial when using the Fine-Tuning

architecture. We notice also that the design choices of the adversarial detectors are

of little influence on the detection rate. This is not surprising as it was already

observed with the design of DNN-IDS-serial. We decided to use the Duplication +
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Fine-Tuning architecture with a design of 2 ReLu-activated layers of two-hundred

and fifty-six neurons each for our adversarial detectors.

5.3.5 Parallel DNN-IDS design

In their original paper, the authors present Kitsune as a new IDS generation using an

ensemble idea to split the learning process between multiple sub-models each train-

ing faster and using less computational and memory resources during the training

process. To split the training process, the feature vector extracted from the train-

ing samples are first clustered together using their correlation to each other. Once

clusters are decided, each cluster of features will be passed to one of the sub-models

comprising the ensemble layer of Kitsune. The ensemble layer is comprised of a

certain number of auto-encoders each taking one cluster of features and outputting

the root-mean-square error (RMSE) between the original feature cluster and the

one returned by the auto-encoder. Those RMSE are then used as input to another

auto-encoder, the output layer, to compute the final RMSE which is then compared

to a fixed threshold to perform a classification between benign and malicious sam-

ples. The Kitsune feature mapping, as well as ensemble & output layers are shown

in Fig. 5.4. The reason we chose this architecture is to add a deep inspection layer

to better detect adversarial perturbations by increasing the granularity.

RM
SE

RM
SE RM

SE RM
SE
RM

SE

RM
SE RM

SE RM
SE

Map

Ensemble Layer Output Layer

score

Figure 5.4: An illustration of Kitsune’s anomaly detection algorithm, from [2]
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Feature clustering

As in the original Kitsune implementation, the network traffic features were split

into multiple clusters. The number of clusters K obtained during this step is bound

by an arbitrarily fixed parameter (K is fixed to nine (09) for NSL-KDD and five

(05) for CIC-IDS2017). Since the features present in our datasets are not the same

as the ones used in the original Kitsune paper, the relationship between them is not

as direct, and using the original Kitsune clustering method yielded unusable feature

clusters. We decided to propose two clustering methods.

The first method, referred to as the distribution method, first performs the same

clustering as the original Kitsune version. With highly uncorrelated features, the

original Kitsune feature map may contain clusters containing only one feature. As

passing only one feature to any neural network from the ensemble layer is not in-

tended, the features belonging to those clusters are distributed between the other

smaller clusters. This method will always yield clusters comprising a minimum of

two features as well as a number of clusters inferior or equal to K.

The second method, referred to as the cut method, will first compute the number

of features in each cluster by dividing the total amount of features by the number

of clusters given by K. The features will then be ordered with regard to their

correlation before being distributed between the clusters. This method will always

yield K clusters of approximately the same size (plus or minus one feature).

By training the DNN-IDS-parallel with the two clustering methods, we observed

that the distribution method performed better than the cut method. Therefore, the

distribution method was chosen as the reference method throughout the rest of the

work.

In the original Kitsune implementation, the ensemble and output layers were

composed of auto-encoders. we decided to replace those with deep neural networks

similar to the DNN-IDS-serial used in the first part of this work. Each model in our

ensemble and output layers is composed of three hidden ReLu layers of two hundred

and fifty-six neurons and a bi-neuronal SoftMax layer. Each model of the ensemble

layer was then trained for thirty epochs with a performance evaluation every ten

epochs, keeping the best-performing model as the final trained model. From the

predictions of those trained models for each instance, a new dataset was created.
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Figure 5.5: An illustration of the adversarial detectors in a parallel DNN-IDS design

This new dataset was then used to train the model composing the output layer in

the same manner as the models of the ensemble layer. Using this configuration, the

final model achieved state-of-the-art performance on our tested datasets.

5.3.6 Adversarial detectors design for DNN-IDS-parallel

For the adversarial detector design, we decided to follow the same choices as for the

DNN-IDS-serial. In Section 5.3.4, we compared three architectures: Fine-tuning,

Features extraction, and Duplication + Fine-tuning. The obtained results showed

that being able to re-train any part of the DNN-IDS re-used or shared by the ad-

versarial detectors led to a better detection rate. Since we also observed that using

a Fine-Tuning architecture without duplication also led to a drop in accuracy for

the DNN-IDS, we decided to use the Duplication + Fine-Tuning architecture. The
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multi adversarial detectors architecture in a parallel DNN-IDS design is illustrated

in Fig. 5.5. Each adversarial detector is composed of:

• A copy of the input layer of the corresponding ensemble layer model.

• A copy of the hidden ReLu layers of the corresponding ensemble layer model,

as well as their weights and biases.

• Two additional two hundred and fifty-six neurons hidden ReLu layers, ran-

domly initialized.

• A mono-neuronal sigmoid output layer

The obtained array of detectors will then be trained in the same way as the

ensemble layers: thirty epochs with an evaluation every ten epochs and keeping the

best-evaluated detector.

5.4 Performance evaluation

This section presents the performance evaluation of the experimental settings. We

first investigate the effect of the four adversarial attacks on the performance of the

two DNN-IDSs. The adversarial detectors are then assessed by a cross-detection test.

The final step is to evaluate the effectiveness of the three fusion rules. The results

are then compared to another adversarial defense technique (adversarial training).

5.4.1 Serial DNN-IDS

Adversarial attacks effect on DNN-IDS-serial

In order to evaluate the impact of the four adversarial attacks, namely FGSM, PGD,

CW, and DF on the performance of DNN-IDS-serial, we test the model with the

four attack-specific datasets crafted as mentioned in Section 5.3.2.

The results presented in Fig. 5.6 confirm the effect of adversarial attacks on

DNN-IDS-serial. Indeed, we notice a significant drop in the IDS performance once

the samples are altered by any of the adversarial attacks. For example, using PGD

on the NSL-KDD dataset resulted in a decrease in F1-score from 83% to 38%, while
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using FGSM on the CIC-IDS2017 dataset resulted in a decrease in F1-score from

98% to 48%. These results are compatible with those found in the literature [23,109].
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Figure 5.6: IDS performance difference between clean and adversarial network traffic
in a serial DNN-IDS design

Adversarial detectors performance

To evaluate the performance of adversarial detectors, we conduct a cross-detection

test. For this test, we train a set of adversarial detectors on one of our adversarial

training datasets and then evaluate it against all adversarial testing datasets. This

allows us to see how an adversarial detector trained on a specific attack or a specific

subset of attacks would perform against an unknown attack. We also compare the

results between detectors to analyze any differences in performance among them.

As shown in Table 5.2, the first notable observation that can be made is that

the detection rate differences between each detector in a set are minimal. If these

minimal differences reflect the fact that every detector gives the same answer as the

others for a vast majority of the samples, the fusion rules will yield results similar

to those of any single detector. On the other hand, if those differences are only

the results of the overall proportion of correctly identified samples, the fusion rules

should yield better results than any single adversarial detector.
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Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.57% 84.06% 50.95% 70.61% 76.35% 76.31% FGSM 99.80% 78.91% 54.61% 71.54% 76.20% 76.21%
PGD 71.84% 83.79% 50.89% 70.02% 69.18% 69.14% PGD 93.78% 86.46% 55.21% 74.76% 77.72% 77.58%
CW 53.62% 64.09% 58.82% 63.07% 60.12% 59.94% CW 62.70% 66.27% 72.84% 68.25% 67.18% 67.45%
DF 71.90% 80.57% 51.13% 70.42% 68.47% 68.50% DF 91.23% 81.99% 54.69% 78.63% 76.92% 76.69%

Balanced 94.38% 82.12% 58.13% 69.48% 76.13% 76.05% Balanced 98.96% 85.10% 71.87% 77.76% 83.56% 83.45%
69.99% 76.28%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.50% 84.37% 50.88% 70.60% 76.37% 76.34% FGSM 99.75% 78.88% 54.28% 71.54% 76.10% 76.11%
PGD 66.74% 81.87% 51.02% 67.87% 66.94% 66.89% PGD 85.28% 85.50% 53.45% 68.28% 73.38% 73.18%
CW 53.21% 63.66% 60.26% 63.72% 60.40% 60.25% CW 80.45% 78.44% 72.05% 67.78% 74.70% 74.69%
DF 70.38% 80.04% 50.77% 69.87% 67.76% 67.77% DF 86.74% 80.26% 51.93% 75.76% 73.87% 73.71%

Balanced 94.45% 83.00% 57.98% 70.05% 76.32% 76.36% Balanced 92.64% 82.70% 64.32% 76.93% 79.39% 79.20%
69.52% 75.38%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.43% 85.07% 51.04% 70.74% 76.58% 76.57% FGSM 99.82% 79.03% 54.59% 72.07% 76.43% 76.39%
PGD 64.24% 83.37% 50.98% 68.19% 66.78% 66.71% PGD 88.27% 84.72% 53.77% 67.90% 73.98% 73.73%
CW 59.64% 73.45% 60.02% 64.23% 64.34% 64.34% CW 76.22% 75.24% 67.36% 65.51% 71.19% 71.11%
DF 67.12% 77.38% 52.19% 69.85% 66.61% 66.63% DF 85.39% 78.87% 55.67% 75.89% 74.31% 74.03%

Balanced 92.22% 83.70% 56.35% 69.60% 75.54% 75.48% Balanced 95.46% 83.82% 65.65% 76.04% 80.44% 80.28%
69.94% 75.11%

AdD2AdD2

Grand Mean

AdD3

Grand Mean

Grand Mean

AdD3

Grand Mean

CIC-IDS2017NSL-KDD

AdD1

Grand Mean

AdD1

Grand Mean

Table 5.2: Detection rate of the individual adversarial detectors in a serial DNN-IDS
design on NSL-KDD and CIC-IDS2017

The detection rate results themselves reflect the fact that the CW attack is harder

to detect than the other attacks. The detection rate difference could be amplified

by the fact that our attack set comprises two FGSM-based attacks, FGSM itself and

PGD, and that both could be detected similarly, resulting in a virtually unbalanced

attack set. This hypothesis is also supported by the fact that the DF attack yields

worst detection rates than both FGSM-based attacks.

Fusion rules

The final step is to implement the three fusion rules we decided to use: Majority

Voting, Bayes Simple Average, and Dempster-Shafer Combination rules. To test

these fusion rules, we use the same method as when testing the cross-detection

of individual adversarial detectors. The only difference is that the decisions of

each adversarial detector are now combined using the chosen rule to obtain a final

decision.

As shown in Table 5.3, the three fusion rules produced similar results to those of

the individual detectors. This confirms our previous hypothesis that each detector

is probably giving the same response as the other detectors for most samples. Even

though each detector has access to the information of an additional layer compared to
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Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.80% 84.58% 50.93% 70.76% 76.57% 76.53% FGSM 99.88% 78.90% 54.53% 71.61% 76.22% 76.23%
PGD 68.65% 83.13% 50.98% 69.26% 68.11% 68.03% PGD 89.09% 85.62% 53.89% 69.32% 74.81% 74.54%
CW 52.87% 64.71% 60.43% 62.94% 60.38% 60.26% CW 79.61% 78.04% 72.12% 67.48% 74.41% 74.33%
DF 69.62% 79.71% 50.98% 70.04% 67.53% 67.58% DF 92.91% 81.44% 54.20% 77.05% 76.71% 76.46%

Balanced 96.41% 84.12% 57.59% 70.60% 77.19% 77.18% Balanced 96.36% 84.54% 68.83% 77.23% 81.95% 81.78%
69.92% 76.67%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.80% 84.60% 50.93% 70.77% 76.58% 76.54% FGSM 99.89% 78.92% 54.50% 71.57% 76.22% 76.22%
PGD 70.22% 83.57% 51.06% 69.32% 68.59% 68.55% PGD 94.20% 86.42% 55.34% 75.09% 77.93% 77.80%
CW 53.20% 68.62% 60.16% 64.88% 62.02% 61.78% CW 82.15% 78.75% 73.29% 70.90% 76.36% 76.29%
DF 74.24% 81.10% 51.24% 70.41% 69.20% 69.24% DF 93.16% 82.47% 54.65% 77.93% 77.38% 77.11%

Balanced 96.70% 83.20% 58.44% 70.22% 77.20% 77.15% Balanced 99.02% 85.10% 71.35% 77.57% 83.35% 83.28%
70.65% 78.14%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.83% 84.64% 50.94% 70.78% 76.61% 76.56% FGSM 99.90% 78.82% 54.39% 71.54% 76.13% 76.16%
PGD 70.67% 83.63% 51.09% 69.17% 68.69% 68.65% PGD 94.32% 86.45% 55.38% 75.26% 78.03% 77.89%
CW 53.33% 68.64% 60.16% 64.96% 62.07% 61.83% CW 82.30% 78.94% 73.30% 72.34% 76.87% 76.75%
DF 74.91% 81.22% 51.25% 70.44% 69.43% 69.45% DF 93.19% 82.97% 54.89% 78.11% 77.61% 77.35%

Balanced 96.58% 83.00% 58.47% 70.10% 77.10% 77.05% Balanced 99.00% 85.16% 71.64% 77.61% 83.44% 83.37%
70.71% 78.30%

CIC-IDS2017NSL-KDD

Dempster-Shafer Combination Rule

Grand Mean

Majority Vote Rule

Grand Mean

Simple Bayes Average Fusion Rule

Grand Mean

Dempster-Shafer Combination Rule

Grand Mean

Majority Vote Rule

Grand Mean

Simple Bayes Average Fusion Rule

Grand Mean

Table 5.3: Detection rate of the fusion of the adversarial detectors in a serial DNN-
IDS design on NSL-KDD and CIC-IDS2017

its predecessor, it seems that all detectors are obtaining similar levels of information

about the tested instances and therefore giving the same results. This means that the

use of multiple adversarial detectors in a serial DNN-IDS design does not represent a

significant improvement over the use of a single detector in our experimental setting.

5.4.2 Parallel DNN-IDS

Adversarial attacks effect on DNN-IDS-parallel

To perform each adversarial attack on our DNN-IDS-parallel, we decided to craft

adversarial input for each model in the ensemble layer. To do this, each attack was

performed against each specific subset of features used as input by that model.

As shown in Fig. 5.7, similarly to the DNN-IDS-serial, we observe a significant

drop in the IDS performance after performing adversarial attacks against our DNN-

IDS-parallel. For example, using CW on the NSL-KDD dataset resulted in a decrease

in F1-score from 81% to 15%, while using PGD on the CIC-IDS2017 dataset resulted

in a decrease in F1-score from 98% to 10%. These results are compatible with those

found in the literature [59].
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Figure 5.7: IDS accuracy difference between clean and adversarial network traffic in
a parallel DNN-IDS design

Adversarial detectors performance

When training the detectors on the various datasets, we observed greatly varying

detection rates between the detectors as shown in Table 5.7. Indeed, some detec-

tors achieve an accuracy as low as 50% while others can often reach as high as

100% detection rate. We notice also that many individual detectors are having low

detection rate against CW and DF attacks compared to FGSM and PGD. The dif-

ferences in detection rate observed between the detectors are believed to come from

the fact that most attacks alter specific features and disregard others. This would

lead to some detectors rarely seeing any altered features, thus classifying almost

every sample as legitimate and achieving only a 50% detection rate. On the other

hand, some detectors would receive the often-altered features and thus be able to

detect an adversarial attack. As the best-performing detector will vary depending

on the training dataset used, we expect that the use of multiple detectors will be an

improvement over the use of a single detector.

Fusion rules

Considering the results obtained on individual detectors, it is now obvious that the

way in which we will combine those individual classifications will be of great impor-
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tance for the overall detection rate of our system. Indeed, from the three proposed

fusion rules (cf. 5.2.3), the majority vote rule is expected to be the least effective.

Since some attacks only alter a small number of features, it is to be expected that

only a few adversarial detectors will be able to detect these attacks while the major-

ity will only see unaltered legitimate features, thus resulting in a false classification.

While the Dempster-Shafer combination rule also uses the multiplicity of belief as a

decisive factor, we believe that the effect will be less important than for the majority

vote rule. The Dempster-Shafer combination rule only eliminates outcomes if they

are absent from the possible outcomes decided by one of the detectors. This means

that for this effect to eliminate one of the outcomes, it is required that one of the

detectors returns a classification with a 100% confidence. As the Dempster-Shafer

combination rule is a more sophisticated rule and takes the detector uncertainty into

consideration, it is expected that this rule will outperform both other rules.

The same cross-detection rate as before was computed, but this time combining

the different classifications with each tested fusion rule. This method allows us to

compare the different fusion rules but also to observe the possible generalization of

detection through multiple attacks.

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 90.48% 73.53% 50.57% 50.37% 50.98% 63.19% FGSM 100.00% 91.19% 50.68% 52.98% 76.15% 74.20%
PGD 75.21% 50.02% 50.00% 50.00% 74.05% 59.86% PGD 98.75% 99.99% 50.07% 57.56% 74.70% 76.21%
CW 63.44% 50.76% 57.42% 51.83% 61.67% 57.02% CW 93.63% 89.41% 92.92% 82.98% 66.03% 84.99%
DF 57.24% 58.35% 50.27% 93.63% 59.99% 63.90% DF 90.79% 99.47% 52.14% 76.42% 77.24% 79.21%

Balanced 99.38% 86.66% 55.10% 87.25% 80.29% 81.74% Balanced 99.98% 99.94% 77.71% 68.80% 82.34% 85.75%
65.14% 80.07%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.88% 95.19% 51.01% 87.85% 76.11% 82.01% FGSM 100.00% 99.70% 50.57% 69.24% 77.66% 79.43%
PGD 92.86% 98.00% 50.93% 78.21% 81.98% 80.40% PGD 99.94% 100.00% 51.17% 68.91% 75.79% 79.16%
CW 58.17% 56.55% 91.92% 74.43% 70.30% 70.27% CW 98.11% 89.02% 95.59% 82.97% 92.29% 91.60%
DF 75.88% 66.40% 53.85% 99.99% 77.11% 74.65% DF 99.88% 99.29% 67.42% 96.58% 89.77% 90.59%

Balanced 98.96% 99.91% 84.13% 99.75% 94.65% 95.48% Balanced 99.91% 99.87% 77.90% 83.54% 95.06% 91.26%
80.56% 86.41%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.91% 95.38% 50.99% 86.83% 75.25% 81.67% FGSM 100.00% 99.99% 51.11% 69.37% 80.05% 80.10%
PGD 93.52% 99.13% 51.07% 79.23% 84.82% 81.55% PGD 99.96% 100.00% 51.29% 70.05% 79.26% 80.11%
CW 61.36% 54.28% 93.12% 80.00% 74.24% 72.60% CW 99.35% 95.89% 96.41% 89.08% 94.93% 95.13%
DF 80.81% 72.30% 52.69% 100.00% 78.42% 76.84% DF 99.79% 99.49% 75.43% 97.97% 91.55% 92.85%

Balanced 98.18% 99.79% 88.93% 99.73% 96.21% 96.57% Balanced 99.87% 99.84% 88.38% 91.69% 95.99% 95.16%
81.85% 88.67%

Dempster-Shafer Combination Rule

Grand Mean

Dempster-Shafer Combination Rule

Grand Mean

Grand Mean

Simple Bayes Average Fusion Rule

Grand Mean

NSL-KDD

Majority Vote Rule

CIC-IDS2017

Majority Vote Rule

Grand Mean

Simple Bayes Average Fusion Rule

Grand Mean

Table 5.4: Detection rate of the fusion of the adversarial detectors in a parallel
DNN-IDS design on NSL-KDD and CIC-IDS2017

From Table 5.4, we notice that the fusion of the adversarial detectors using the
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Dempster-Shafer combination rule is outperforming the individual detectors in terms

of detection rate. This confirms the relevance of using multiple, strategically placed

adversarial detectors.

The contrast in observed results could come from the differences in the way

every attack is performed. Indeed, both the CW and DF attacks approach the

feature alteration in a way that is different from the two other, more similar, attacks

(i.e., FGSM and PGD). The fact that using the Dempster-Shafer fusion rule or the

Simple Bayes Average fusion rule leads to overall better results than the Majority

Vote fusion rule confirms the importance of taking the contextual information into

account.

5.4.3 Comparison with existing defensive strategies

Our proposed defense falls into the category of anomaly detection, as explained in

Section ??. There are other detection methods, some of which use robust classi-

fiers as detectors. Indeed, it is possible to detect adversarial samples by comparing

the classification of two models: a baseline model, trained only on non-adversarial

samples, and a robust adversarial model trained on both non-adversarial and adver-

sarial samples. When subjecting a sample to the two models, one can assume that

if the two models classify it differently, the sample is adversarial. In theory, if the

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 74.58% 75.61% 52.62% 77.21% 70.95% 70.19% FGSM 99.91% 95.38% 50.99% 86.83% 75.25% 81.67%
PGD 72.40% 75.87% 58.65% 70.54% 71.74% 69.84% PGD 93.52% 99.13% 51.07% 79.23% 84.82% 81.55%
CW 67.33% 61.68% 86.19% 68.00% 71.05% 70.85% CW 61.36% 54.28% 93.12% 80.00% 74.24% 72.60%
DF 70.68% 67.37% 57.59% 80.69% 67.91% 68.85% DF 80.81% 72.30% 52.69% 100.00% 78.42% 76.84%

Balanced 73.29% 76.40% 83.97% 81.72% 78.21% 78.72% Balanced 98.18% 99.79% 88.93% 99.73% 96.21% 96.57%
71.69% 81.85%Grand Mean Grand Mean

NSL-KDD
Adversarial training detection method Our defense

Table 5.5: Detection rate comparison between adversarial training and our defense
in a parallel DNN-IDS design on NSL-KDD dataset

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 71.90% 75.73% 70.62% 66.55% 67.48% 70.46% FGSM 100.00% 99.99% 51.11% 69.37% 80.05% 80.10%
PGD 60.83% 87.31% 70.24% 68.63% 74.49% 72.30% PGD 99.96% 100.00% 51.29% 70.05% 79.26% 80.11%
CW 62.38% 66.38% 89.08% 68.71% 73.07% 71.93% CW 99.35% 95.89% 96.41% 89.08% 94.93% 95.13%
DF 64.32% 70.80% 78.89% 80.79% 74.80% 73.92% DF 99.79% 99.49% 75.43% 97.97% 91.55% 92.85%

Balanced 70.29% 86.58% 88.39% 82.66% 80.35% 81.65% Balanced 99.87% 99.84% 88.38% 91.69% 95.99% 95.16%
74.05% 88.67%

CIC-IDS2017
Our defense

Grand Mean

Adversarial training detection method

Grand Mean

Table 5.6: Detection rate comparison between adversarial training and our defense
in a parallel DNN-IDS design on CIC-IDS2017 dataset
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Train\Test FGSM PGD CW DF Balanced Mean
FGSM 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

Train\Test FGSM PGD CW DF Balanced Mean PGD 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
FGSM 77.69% 68.22% 52.14% 96.74% 84.20% 75.80% CW 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
PGD 72.50% 68.24% 50.39% 74.34% 78.70% 68.83% DF 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
CW 61.55% 58.22% 67.70% 71.56% 67.84% 65.37% Balanced 50.00% 50.00% 50.00% 50.00% 55.66% 51.13%
DF 75.22% 69.08% 52.84% 98.20% 74.71% 74.01% 50.23%

Balanced 77.91% 68.48% 65.77% 95.73% 85.27% 78.63%
72.53%

Train\Test FGSM PGD CW DF Balanced Mean
FGSM 99.79% 50.00% 50.59% 64.47% 69.16% 66.80%

Train\Test FGSM PGD CW DF Balanced Mean PGD 50.00% 51.36% 50.34% 52.64% 50.00% 50.87%
FGSM 50.00% 50.00% 50.00% 55.66% 51.13% 51.36% CW 68.51% 50.10% 51.43% 56.79% 60.83% 57.53%
PGD 71.44% 50.00% 50.00% 55.70% 51.47% 55.72% DF 50.02% 61.52% 51.18% 59.50% 67.52% 57.95%
CW 50.17% 50.19% 54.08% 55.26% 55.49% 53.04% Balanced 99.00% 71.90% 62.41% 67.48% 78.05% 75.77%
DF 59.60% 50.00% 50.50% 56.45% 61.99% 55.71% 61.78%

Balanced 50.00% 53.33% 50.00% 58.04% 55.71% 53.42%
53.85%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 50.00% 50.00% 50.00% 87.04% 50.00% 57.41% FGSM 99.98% 99.67% 60.36% 75.10% 84.09% 83.84%
PGD 52.90% 91.60% 50.00% 50.00% 50.01% 58.90% PGD 99.30% 99.98% 61.80% 76.48% 84.44% 84.40%
CW 60.27% 68.05% 50.00% 89.66% 73.03% 68.20% CW 91.11% 92.41% 93.97% 79.16% 90.04% 89.34%
DF 72.59% 75.79% 59.22% 95.56% 75.80% 75.79% DF 89.67% 90.69% 66.68% 90.90% 84.44% 84.47%

Balanced 81.55% 76.28% 64.36% 94.91% 76.48% 78.72% Balanced 99.26% 99.62% 84.35% 88.63% 91.85% 92.74%
67.80% 86.96%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 50.00% 50.00% 50.08% 84.83% 83.93% 63.77% FGSM 99.62% 76.28% 50.93% 59.52% 71.64% 71.60%
PGD 58.81% 50.00% 50.00% 50.31% 55.39% 52.90% PGD 98.88% 99.68% 50.90% 56.59% 75.34% 76.28%
CW 62.79% 51.28% 87.94% 51.96% 58.69% 62.53% CW 50.00% 50.00% 50.89% 51.22% 52.11% 50.84%
DF 50.00% 62.59% 70.68% 52.01% 50.66% 57.19% DF 98.64% 75.05% 52.46% 59.30% 75.34% 72.16%

Balanced 50.00% 72.15% 86.26% 84.57% 87.31% 76.06% Balanced 99.41% 75.60% 51.21% 62.05% 71.48% 71.95%
62.49% 68.57%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 50.00% 50.00% 66.27% 50.00% 50.96% 53.45% FGSM 99.82% 99.67% 54.14% 72.49% 80.99% 81.42%
PGD 50.00% 93.50% 51.32% 94.95% 84.05% 74.76% PGD 99.81% 99.78% 51.31% 71.61% 81.26% 80.76%
CW 64.81% 51.20% 73.59% 68.51% 67.01% 65.02% CW 98.77% 89.84% 67.97% 74.00% 81.79% 82.47%
DF 84.32% 86.75% 67.58% 98.24% 81.82% 83.74% DF 99.22% 99.79% 57.49% 89.24% 85.23% 86.20%

Balanced 97.33% 97.16% 74.34% 97.97% 91.03% 91.57% Balanced 99.74% 99.71% 72.70% 78.97% 90.41% 88.31%
73.71% 83.83%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 81.70% 90.87% 50.00% 50.00% 51.56% 64.83% FGSM 97.05% 51.70% 53.80% 52.24% 70.16% 64.99%
PGD 74.14% 50.00% 50.00% 50.00% 75.33% 59.89% PGD 50.00% 50.00% 60.06% 50.00% 50.15% 52.04%
CW 53.34% 60.66% 78.06% 66.00% 66.12% 64.84% CW 50.00% 49.99% 84.13% 51.01% 59.41% 58.91%
DF 74.74% 65.10% 77.42% 99.45% 71.84% 77.71% DF 50.00% 50.00% 60.62% 52.54% 55.35% 53.70%

Balanced 89.15% 96.63% 80.38% 92.05% 90.36% 89.72% Balanced 93.45% 97.29% 50.00% 53.67% 50.00% 68.88%
71.40% 59.71%

Train\Test FGSM PGD CW DF Balanced Mean Train\Test FGSM PGD CW DF Balanced Mean
FGSM 50.00% 50.00% 50.00% 50.00% 50.54% 50.11% FGSM 94.03% 72.39% 53.77% 60.39% 68.18% 69.75%
PGD 50.00% 50.00% 50.00% 51.83% 49.33% 50.23% PGD 92.40% 93.97% 53.23% 63.51% 74.45% 75.51%
CW 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% CW 50.62% 75.77% 53.93% 59.06% 59.17% 59.71%
DF 50.11% 50.00% 50.00% 86.56% 51.28% 57.59% DF 61.08% 85.08% 62.35% 84.64% 71.57% 72.94%

Balanced 77.48% 73.02% 50.00% 54.04% 51.26% 61.16% Balanced 92.89% 93.78% 67.77% 67.32% 84.80% 81.31%
53.82% 71.85%

Grand Mean

Grand Mean

Grand Mean

AdD4

AdD4

CIC-IDS2017

AdD1

AdD1

Grand Mean

Grand Mean

AdD2

AdD2

NSL-KDD

Grand Mean

Grand Mean

AdD3

AdD3

Grand Mean

Grand Mean

AdD5

AdD5

Grand Mean

Grand Mean

AdD6

AdD9

Grand Mean

AdD7

Grand Mean

AdD8

Grand Mean

Table 5.7: Detection rate of the individual adversarial detectors in a parallel DNN-
IDS design on NSL-KDD and CIC-IDS2017

submitted sample is non-adversarial, the base model and the robust model should

classify it correctly. On the other hand, if the sample is adversarial, the base model

should classify it incorrectly, while the robust model should classify it correctly.

We implemented this defense by training a second parallel DNN-IDS model on a
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dataset consisting of equal amounts of adversarial and non-adversarial samples. We

then submitted a likewise test dataset to both models and recorded their predictions.

By comparing these two sets of predictions, we obtained a final set of predictions

classifying each sample as adversarial or non-adversarial. As shown in Table 5.5 and

Table 5.6, this method yielded a detection rate of 71.69% and 74.05% for NSL-KDD

and CIC-IDS2017 respectively. As we demonstrated earlier, our proposal using the

Dempster-Shafer combination rule obtained a strictly higher detection rate on both

datasets.

These differences in results can be explained by the contrasting objectives of the

two strategies. Our proposed defense is specifically aimed at detecting adversarial

samples. On the other hand, the adversarial training detection method is a by-

product of training a robust classifier which should remove the need for detection

(in theory, at least). In addition, the difference in result could stem from the fact

that our proposed defense has a higher level of granularity by inspecting each subset

of features separately and then reaching a consensus decision using an appropriate

fusion rule.

5.5 Summary

In this work, we proposed a new defense approach for evasion attacks against

network-based intrusion detection systems. To evaluate it, we implemented two

deep learning-based IDS models (one serial and one parallel) and assessed the effect

of four known adversarial attacks on their performance, namely: Fast Gradient Sign

Method, Projected Gradient Descent, Carlini & Wagner, and DeepFool. A transfer

learning technique was employed in the design of the adversarial detection scheme

to enable a better information flow between the IDS and the adversarial detectors.

Simulation of zero-day attack scenarios allowed for a more reliable evaluation of the

performance of the proposed defense when exposed to evasion attacks that were

not seen in the training phase. To further improve the detection rate, we proposed

and investigated an alternative to a single detector by using multiple strategically

placed detectors combined with a sophisticated fusion rule. We show that combining

multiple detectors can further improve the detection rate over a single detector in
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a parallel IDS design. The reported results confirm the relevance of the proposed

defense with respect to existing techniques in the literature.

In future work, we would like to improve the fusion rules used in our design. In-

deed, while the use of the Dempster-Shafer fusion rule gave some promising results,

it was not fully successful in all cases, which could mean that a more sophisticated

fusion rule is needed to model the complex relationship between detectors classifi-

cation. In addition, we would like to further investigate the relationship between

detectability and the strength of adversarial attacks.

Adversarial attacks take advantage of inherent vulnerability of ML algorithms.

This raises many questions in the cybersecurity field, where a growing number of

researchers are recently investigating the feasibility of such attacks against machine

learning-based security systems, such as intrusion detection systems. The major-

ity of this research demonstrates that it is possible to fool a model using features

extracted from a raw data source, but it does not take into account the real imple-

mentation of such attacks, i.e., the reverse transformation from theory to practice.

The real implementation of these adversarial attacks would be influenced by various

constraints that would make their execution more difficult. As a result, the purpose

of the following chapter is to investigate the actual feasibility of adversarial attacks

against network-based intrusion detection systems.
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Chapter 6

Adv-Bot: Realistic Adversarial Bot-

net Attacks against Network Intrusion

Detection Systems

6.1 Introduction

Sophisticated methods of cybercrime, such as botnets, are becoming increasingly

rampant. Given the severity of the threat, it is essential to have a defense mechanism

that can detect all types of botnet traffic. Among these mechanisms, the use of

intrusion detection systems dedicated to network analysis, known as NIDS, is gaining

popularity. And given the difficulty of some signature-based NIDSs in detecting new

botnet attacks or even variants of known botnet attacks, NIDSs based on machine

learning algorithms have become more prevalent. These machine learning-based

NIDS can detect not only variants of known attacks, but also novel attacks, also

known as zero-day attacks [7, 8].

Despite this encouraging achievement, many recent studies have shown that it

is possible to fool the ML algorithms used in these detection methods [24, 50], as

has been discovered previously in other application areas, such as computer vision

[21, 31]. These ML algorithms have been shown to be vulnerable to a variety of

adversarial attacks, including poisoning, extraction, and evasion. Evasion attacks

are studied in this work because they are more realistic in cyber security scenarios

than the other two types of attacks [12]. Evasion attacks can fool any ML model

during its inference process by adding slight, often imperceptible, perturbations to

the original instance sent to create so-called adversarial instances.

The literature study shows that there has been considerable research on the im-

pact of adversarial attacks on machine learning models [10,110,111]. However, their

feasibility in domain-constrained applications, such as intrusion detection systems,
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is still in its early stages [27–29]. Adversarial attacks can be performed in either

white-box or black-box settings. Many white-box adversarial attacks, originally de-

veloped for computer vision applications [22, 30, 112], have been applied directly to

network traffic without addressing domain constraints properly [13,23,113].

Aside from the issue of functionality preservation, white-box attacks necessitate

knowledge of the target system’s internal architecture. It is unlikely that an attacker

would have access to the internal configuration of the ML model [10], making a white-

box attack in a realistic environment less likely [12]. As a result, recent research

[14, 114] has focused on designing adversarial network traffic in a black-box setting

where the attacker has little or no knowledge of the defender’s NIDS. Model querying

[36] and transferability [22] are two methods for launching black-box attacks.

An attacker can extract useful information such as the classifier’s decision by

sending multiple queries to the target NIDS, allowing the attacker to craft adversar-

ial perturbations capable of evading the NIDS [114–116]. Although this approach

achieves high success rates, it has two limitations. The first is that NIDSs are not de-

signed to provide feedback when queried, unless side-channel attacks are used [117].

The second limitation is that it requires a relatively high number of queries to func-

tion properly, exposing the attacker to detection by a simple query detector [14,54].

As a result, for a realistic attack, the IDS querying approach is less feasible [12].

The transferability property of adversarial examples is used as an alternative

black-box approach. Goodfellow et al. [22] were the first to investigate this property

in computer vision, demonstrating that adversarial examples that fool one model

can fool other models with a high probability without the need for the models to

have the same architecture or be trained on the same dataset. An attacker can

use the transferability property to launch black-box attacks by training a surrogate

model on the same data distribution as the target model [118]. Sniffing network

traffic is a simple way to accomplish this, especially in a botnet scenario where the

attacker already has a foothold in the corporate network [119]. To the best of our

knowledge, this paper represents the first proposal that exploits the transferability

property to design a realistic black-box evasion attack by considering the constraints

of the NIDS domain to create adversarial botnet traffic.

This work provides a dedicated framework for leveraging evasion attacks to mis-
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lead the NIDS into classifying botnet traffic as benign under realistic constraints.

Three contributions are included in this work:

• An in-depth analysis of the feasibility constraints required to generate valid

adversarial perturbations while preserving the underlying logic of the network

attack.

• A new black-box adversarial algorithm that can generate valid adversarial

botnet traffic capable of evading botnet detection without any knowledge of

the target NIDS.

• A defense that allows the proposed botnet evasion attack to be mitigated. This

defense is inspired by adversarial detection and an ensemble method known as

bagging.

The remainder of the chapter is organized as follows. Background and related

work are presented in Section 6.2. The proposed method is explained in Section

6.3. Results and discussions are presented in Section 6.4. Concluding remarks and

suggestions for possible follow-up work are given in Section 6.5.

6.2 Background

With the increasing research on evasion attacks, the feasibility of such attacks in the

real world is gaining more and more attention, regardless of the application domain.

It is possible to distinguish three criteria that influence the realism of such attacks,

namely: knowledge restriction, domain constraints, and manipulation space. The

focus of this work is on the analysis of these criteria in the domain of network-based

intrusion detection system.

Knowledge Restriction

Adversarial attacks come in three varieties: white-box, grey-box, and black-box.

White-box attacks mean that the adversary knows everything about the model archi-

tecture and training dataset, in particular all the parameters and meta-parameters,

which are, for example, the inputs and gradients in the case of neural networks, or
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the tree depth for decision trees. In addition, the adversary may also know the cho-

sen cost function or the optimizer type in the case of neural networks. The gray-box

attack, on the other hand, implies that the attacker has some limited knowledge

of the target model. He may, for instance, know what data was used to train the

model without knowing the type of model used or its internal architecture. A black-

box attack occurs when the attacker does not know the architecture of the target

model and the dataset used. Nevertheless, even without knowing anything about the

model, it could still approach a decision boundary similar to that of the target model

and thus fool it by querying the target model and receiving responses in the form

of decisions or probabilities. An alternative black-box approach is known as "trans-

ferability" where the attacker can create his own model (i.e. surrogate model) with

similar functionality to the target model in order to fool it by creating adversarial

instances based on his surrogate model and then transferring these instances to the

target model to fool it as well. Obviously, black-box attacks are more complicated

to perform, not only due to lack of knowledge but also because they require more

computational resources to accommodate these accumulated knowledge biases.

Domain constraints

Regarding the feasibility of adversarial attacks, it varies according to the domain

in question as it is strongly limited by several constraints. Such constraints can be

divided into two main categories: syntactic constraints and semantic constraints.

Syntactic constraints refer to all constraints related to syntax. In their work,

Merzouk et al. [23] identified three syntactic constraints that an adversarial instance

must respect, namely out-of-range values, non-binary values, and multi-category

membership. Out-of-range values are values that exceed a theoretical maximum

value that cannot be exceeded. Non-binary values are entries that violate the binary

nature of a feature, and multi-category membership are values that violate the

concept of one-hot encoding.

Semantic links represent the connections that various features may have with

each other. It is challenging to identify precisely such constraints since they are

specific to each application and to each particular feature used. Nevertheless, the

work of Hashemi et al. [24], and Teuffeunbach et al. [25] suggest an intuitive approach
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in the NIDS domain by categorizing the features into roughly three different groups

with different semantic links. The first group includes features that can be directly

modified by the attacker (e.g., the number of forwarding packets, the size of the

forwarding packets, and flow duration). The second group concerns features that

depend on the first group. They must be recalculated on the basis of the latter (e.g.,

number of packets/second or average forward packet size). The third group includes

features that cannot be changed by the attacker (e.g., IP address, protocol number).

Manipulation Space

An essential property of a realistic adversarial instance is the ability of an attacker to

modify its characteristics. In theory, it is possible to directly modify the features of

adversarial instances. However, in real-world scenarios, this approach is considered

unsuitable for certain domains, such as IDSs that analyze network traffic. This is

mainly due to the fact that the feature extraction process (i.e., from raw traffic to

feature space) is not a fully reversible process, unlike in other domains such as com-

puter vision. This means that features can be extracted, modified, but not easily

reintroduced into network traffic due to the semantic links between features. More-

over, direct feature modification requires full knowledge of the feature extraction

process used by the IDS in order to respect the syntactic or semantic constraints

assigned to them. We can therefore deduce that working on the feature space is not

very realistic. For this reason, recent studies [18–20] propose to directly manipulate

the network traffic, so that it is not necessary to know the features used, nor to

transform the feature values into traffic form. In this way, we can distinguish two

manipulation spaces, the feature-based and the traffic-based.

6.3 Proposed method

6.3.1 Threat scenario

With the increasing use of machine learning-based NIDS, some research has fo-

cused on the possibility of evading these NIDS using adversarial attacks already

well known in the field of computer vision, which have shown various weaknesses

inherent in machine learning algorithms. In order to overcome these weaknesses, it
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is therefore essential to focus on the robustness of machine learning techniques in

the cybersecurity domain.

As shown in Figure 6.1, our work is based on a realistic scenario involving a

connected computer device in an enterprise network infected with malware, making

it part of the botnet controlled by a dedicated centralized server called Command

and Control (C&C), which is designed to command a multitude of bots. Within

this network, a NIDS using a neural network-based model is present to detect any

form of attack on the network. In high-speed networks environment and considering

the difficulties of analyzing each individual packet, it is realistic to consider that the

NIDS is a flow-based system rather than a packet-based system. This NIDS therefore

analyzes the flow data generated by the router based on the traffic outgoing/entering

the network. All flows first pass through a flow exporter, which extracts the network

features, as described in Table 6.1, containing the information of each network flow

and sends it to the NIDS for preprocessing and classification. In this table, three

groups can be highlighted:

• The first one, with a green color, contains all the features that can be directly

manipulated by an attacker.

• The second one, highlighted in yellow, contains the features depending on the

first group, and can therefore be manipulated indirectly.

• The last group, with a red background, contains features that cannot be ma-

nipulated by an attacker.

Concerning the temporal aspect of the execution, the processing of the network

flow is done in real time on the NIDS, which processes the information online while

its learning phase has been carried out offline.

Concerning the knowledge assumptions, it is considered that the attacker has

limited access to network data and has no information about the model and param-

eters of the NIDS used by the company. This means he can only intercept traffic

that passes through his machine and gathers limited information about the benign

traffic that passes through the bot’s machine. In terms of requirements, our sce-

nario assumes that the attacker has previously breached the network by infecting

a machine with malware in order to connect to the C&C server. As a result, the
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Figure 6.1: An illustration of the considered threat scenario

attacker will be able to gather information about the benign traffic. Regarding

the flow exporter, the attacker does not need to have knowledge about it or about

the extracted features used by the NIDS since he acts directly on factors that he

can manipulate in the traffic space. Given the recurring use of certain network

factors (in particular, packet duration, number, and size) in botnet detection by

state-of-the-art NIDSs, the attacker can assume that these factors are part of the

set of features used by the NIDS. The attacker can retrieve these feature lists from

known exporters such as Argus 1, CIC-FlowMeter 2 or nProbe 3 and from scientific

papers [50, 120, 121] explaining the features used by NIDS models. The attacker

has the ability to communicate with and target the infected computing device. It

is therefore also considered that the attacker can manipulate, in both directions of

communication, the duration of packet transmission, the number of packets sent and

received, as well as the number of bytes sent and received, as shown in Table 6.1,

respecting the semantic and syntactic constraints related to the network protocols

used and maintaining the underlying logic of his malicious communications. In order

to maintain the malware’s full behavior, the attacker cannot directly act on certain

features, such as the source and destination IP addresses or the type of service. In

1https://openargus.org/
2https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
3https://www.ntop.org/products/netflow/nprobe/
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Table 6.1: Common features description used by flow-based NIDS for botnet attacks
[4]

Features Name Description Type Category
Dur Duration of the flow Float

Out/InBytes
Bytes outgoing/entering the 

network
Integer

TotPkts Total of exchanged packets Integer
TotBytes Total of exchanged bytes Integer

BytesPerPkt Total bytes by packet Float
BytesPerSec Total bytes by second Float
PktsPerSec Total packet by second Float

RatioOutIn
Ratio between outgoing and 

entering bytes
Float

ConnectionState The state of the connection Categorical
FlowDirection Direction of the flow Categorical

Src/DstPortType
The destination port is a private, 

registered or known port
Categorical

IPSrc/DestType
The network IP source or 

destination
Boolean

Src/DstTos
Source and destination type of 

service
Integer

Modifiable

Dependent

Unmodifiable

fact, the features highlighted in red in Table 6.1 cannot be modified by the attacker,

either directly or indirectly. Only the three green features: Dur, Out/InBytes, and

TotPkts can be manipulated by the attacker. It should be noted that modifying

the green features will result in some indirect changes to the yellow features. These

changes should be taken into account in order to properly address the respect of

semantic and syntactic constraints. To manipulate the network factors explained

just before, the attacker can use the following three approaches:

1. Time manipulation attack: with this approach, it is possible to act on two time-

related aspects during the attack. On the one hand, by reducing the frequency

of the attack packets by increasing the sending time between packets of the

same flow, as in the work of Zhijun et al. [122] which shows the implication of

this variant on DoS attacks. On the other hand, by accelerating the frequency

of attack packets in a moderate way by decreasing the time taken to send the

packets. These two variants allow to influence directly the "Duration" feature

and indirectly the "BytesPerSec" and "PktsPerSec" features.

2. Packet quantity manipulation attack: This attack can be carried out in two

different manners. The first is packet injection, which suggests injecting new
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packets into the network flow by creating them directly, with tools such as

Hping 4 or Scapy 5, or by breaking a packet into several fragments, using

packet fragmentation, so as to preserve the content and underlying logic of

the packet without damaging its overall behavior. Packet fragmentation is,

for example, used by some attacks such as the TCP fragment attack [123] or

a DoS attack. A variant suggested by this possibility would be to resend the

same packet multiple times using a tool like Tcpreplay 6. The other way to

do this is packet retention, which would be to not send a packet immediately,

but rather to send it after a certain amount of time, thus adding that packet

to the next flow, thus avoiding having more packets in a single flow. With the

same idea of retention, another suggested possibility could be a modification

of the general communication system used in the botnet attack to shorten the

number of packets sent between the botnet devices. In both cases, this attack

directly influences the "TotPkts" feature, and indirectly the "PktsPerSec" and

"BytesPerPkt" features.

3. Byte quantity manipulation attack: Similar to the previous approach, there

are two ways to perform this attack. The first is byte expansion. In the

case where the communication is not encrypted, a suggestion would be to di-

rectly modify the payload to obtain the desired number of bytes. In case it

is encrypted, it is assumed that the attacker knows the cryptographic suite

used to encrypt the two-way communication channel. This would allow him

to add padding using a tool like Scapy, calculate its encrypted version, and

then verify that the packet size is the desired one. The addition of padding

is known to both communicating parties, allowing the receiver to remove the

unnecessary part and thus recover the original payload. The second method

is byte squeezing. The idea is to reduce the number of bytes sent. To do this,

it would be possible to compress the data to directly reduce the size of the

payload using a tool like Zlib [124]. This is a common tool already used in

the IoT domain to reduce the bytes exchanged, as explained in [125]. Another

possibility would be to modify the general behavior of the botnet system by

4http://www.hping.org/
5https://scapy.net/
6https://tcpreplay.appneta.com/
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minimizing the content of the payload to be sent. This second possibility can

only be done before the machine is affected by the malicious bot software,

but can be proactively prepared by an attacker. Furthermore, whether it is

byte expansion or byte compression, the attack directly influences the "Out-

Bytes" and "InBytes" features, and indirectly the TotBytes, "BytesPerPkt",

"BytesPerSec" and "RatioOutIn" features.

Enterprise network

Defender NIDS
Attacker

Internet

Bot

4

Transferability

Attacker side Defender side

Surrogate models trained
with sniffed traffic

1 2

3

Figure 6.2: An illustration of the adversarial botnet traffic generation steps

As shown in Figure 6.2, There are four steps in the process of creating adver-

sarial botnet traffic. During step 1, the attacker generates adversarial traffic that

is specifically designed to bypass the surrogate models that the attacker previously

trained using sniffed traffic. The attacker then receives and analyzes the adver-

sarial traffic that managed to avoid detection by the surrogate models during step

2. During step 3, the attacker uses the transferability property to send adversarial

botnet traffic to the defender NIDS. In step 4, the adversarial botnet traffic that

successfully bypassed the defender NIDS will arrive at its final destination, the bot.

6.3.2 Datasets

To perform reproducible experiments, the CTU-13 [126] and CSE-CIC-IDS2018 [108]

datasets were used to provide results that could be comparable to multiple datasets

as well as a wider range of attacks.
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Other than botnets, CTU-13 and CSE-CIC-IDS2018 contain a variety of attack

types. Because our research focuses solely on botnet attacks, all other attack types

were removed to create a dataset containing only botnet attack records. To avoid

incorporating potential biases when creating these new datasets, we relied on the

work done by Venturi et al. [4]. Features were filtered to keep only those consistent

for the study of botnet attacks and common to both datasets used. These features

are those described in Table 6.1. Regarding CTU-13, the botnet attacks considered

in this work are Neris, Virut, and Rbot. Other attacks were not included because

they do not have enough malicious instances to provide consistent results. For CSE-

CIC-IDS2018, after initially being indistinguishable in the original dataset, the Zeus

and Ares botnet attacks were extracted into the same dataset (Zeus & Ares).

To ensure the practicality of the present work, the CTU-13 and CSE-CIC-

IDS2018 datasets were divided into two equivalent datasets and stratified according

to the labels. These datasets are equivalent in terms of size and distribution, which

represents more than 32,000 instances for each side. The first is used for training and

evaluation of the model used by the defender. The second is used by the attacker

to train the surrogate model independently. The attacker can obtain this data by

sniffing the network. This is particularly possible in the case of a botnet scenario,

as the attacker communicates bidirectionally with the infected device. The datasets

for each side (defender and attacker) are separated into a training dataset and a

test dataset with proportions of 75% and 25% respectively. Each training and test

data subset is evenly split in terms of malicious and benign traffic. The datasets are

separated in this manner to have the most balanced representation so as to avoid

the problem of unbalanced data given that it is out of the scope of this study. The

attacker and defender datasets thus follow similar but not identical distributions

since they are not the same datasets. The arrangement of the datasets is illustrated

in Figure 6.3.

6.3.3 Preprocessing

General preprocessing has already been performed on the dataset provided by Ven-

turi et al. [4], resulting in clean data where outliers, empty values, and non-TCP

traffic were removed. Data filtering and "one-hot encoding" of categorical features
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Figure 6.3: Partitioning of the datasets for experiments

were carried out. This encoding transforms the categorical data into a binary format

that can be exploited by the model. However, some inconsistencies are present in

the dataset provided by Venturi et al. [4]. By default, when the "OutBytes" and

"InBytes" features are set to 0, the "RatioOutIn" feature is set to the maximum

value present in the data set, simulating an infinite value. Since the ratio in this case

is 0/0, we chose to replace it with 0 instead of a pseudo-infinite value, representing

a zero byte exchange.

For training the neural network algorithms, some additional preprocessing was

applied to the training and test data. First, the data were normalized using a

minmax scaling method, transforming the data to be projected to a value between

zero and one, according to Eq. 6.1. Then, the labels undergo a one-hot encoding to

transform them to binary values so that they can be processed by the MLP.

X_scaled =
X −min(X)

max(X)−min(X)
(6.1)

where X is an instance and X_scaled is the normalized instance.
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6.3.4 ML-based NIDS

As neural networks are increasingly used in the context of NIDS based on machine

learning algorithms, a couple of them are chosen, as well as more classical ML

algorithms. On the defender side, the defender uses a Multilayer Perceptron (MLP),

Random Forrest (RF) and K-Nearest Neighbors (KNN) algorithm as a model for his

IDS. For the attacker, the same algorithms are chosen with different parameters and

hyperparameters and trained with a different dataset. These three ML models were

chosen in our work given their popular use in the IDS community [127–129]. All

these algorithms follow the same training and testing process, as shown in Figure

6.4.

Figure 6.4: Machine Learning pipeline for both attacker and defender

Meta-parameters are chosen randomly to avoid having the same model parame-

ters between the attacker and defender. Examples of meta-parameters are the the

number of neighbors k defined in the KNN algorithm, the number of hidden layers or

neurons in the DNN, or the number of estimators used in the RF. The choice to use

several algorithms allows for more comparable results, especially in the case of trans-

ferability. Having several ML models allows for a better understanding of the impact

of transferability of adversarial network traffic, both intra and cross-transferability.

The meta-parameters of all models can be seen in Table 6.2.

6.3.5 Proposed evasion attacks

In order to generate adversarial perturbations, which are added to the malicious

instances to make them benign, we propose two evasion attack variations formulated

in Eq. 6.2 and Eq. 6.3 .
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Table 6.2: Meta-parameters of the selected ML models

Classifier Attacker Parameters Defender Parameters

MLP

Hidden Layers (HL) = 3
Neurons by HL = 128

Activation = ReLU
Optimizer = Adam

Hidden Layers (HL) = 2
Neurons by HL = 256

Activation = ReLU
Optimizer = Adam

Random Forest
Nb estimators = 300

Criterion = Gini
Bootstrap = True

Nb estimators = 200
Criterion = Gini
Bootstrap = True

KNN Nb neighbors = 5 Nb neighbors = 3

xt
adv(f) = Proj[xt−1(f) + sign(benign_mean(f)

−x0(f)) ∗ (c ∗ t) ∗mean_ratio(f)]
(6.2)

where x0(f) is the initial value of the targeted network factor f in the instance, the

sign function specifies the direction of the perturbation, c is a multiplicative coeffi-

cient that regulates the perturbation rate generated at each step t, benign_mean

is the mean of the benign set of the targeted network factor f that the attacker can

obtain from sniffing network traffic, mean_ratio is the ratio between the mean of

the malicious set and the benign set of the targeted network factor f , and Proj

is a projection function that projects the values of modified features that violate

syntactic and semantic constraints into the space of valid values. These modified

features are only network factors that the attacker can manipulate directly or indi-

rectly, as represented by the green and yellow groups in Table 6.1. If the attacker

manipulates one of the modifiable features shown in Table 6.1 with green color, the

Proj function will make sure that the dependents features will change values accord-

ingly. For instance, changing the flow duration by the attacker will induce a change

in "total packet by second" feature which equals number of packets divided by the

flow duration. In nutshul, the projection function is what allows, when features are

modified, to ensure that the domain constraints are respected. This enables the

adversarial instances created to be valid and reversible in the targeted domain. In

this manner, the malware’s intended behavior is preserved.

xt
adv(f) = Proj[xt−1(f) + sign(benign_mean(f)

−x0(f)) ∗ (c ∗ t) ∗ |mean_diff(f)|]
(6.3)
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where mean_diff is the difference between the mean of the benign set and the ma-

licious set of the targeted network factor f . In this case, mean_diff is an absolute

value to avoid influencing the direction of added perturbations during adversarial

generation.

Although both methods yield similar results, we decided to use the second

method (i.e. mean difference method as in Eq. 6.3) to conduct the experiments.

This choice is purely for illustrative purposes, as the mean difference method is more

intuitive and can be illustrated by Figure 6.5 which shows how a malicious instance

tends to become benign, and thus adversarial. Mean is the average of the benign

data. The figure is shown in two dimensions for the sake of simplicity, but in reality

the manipulation space is much larger because many factors are being manipulated.

Decision boundary

Class 0 - Benign 

Class 1 - Malicious

Mean

10%

With Constant C = 0.1

Constrainted decision boundary

Proj()

Figure 6.5: 2D illustration of a malicious instance transformation with the mean
difference method
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6.3.6 Adversarial instances generation

To generate adversarial instances, the process illustrated in Figure 6.6 is followed.

During this process, the previously defined Eq. 6.3 is applied during the execution

of the adversarial generation step described in Algorithm 1.

Figure 6.6: Process to generate adversarial instances

Algorithm 1 Crafting adversarial examples for flow-based IDS
procedure CraftAdvEx(x) ▷ where x is a malicious flow

xadv ← x
t← 1
m← mean_difference() ▷ or mean_ratio()
repeat

for mask ← mask1, ...,mask15 do
ϵ← sign[benign_mean(f)− x0(f)] ∗ (c ∗ t) ∗m(f)
ϵ← ϵ ∗mask
xadv ← xadv + ϵ
xadv ← Proj(xadv)
if predict(xadv) == benign then

return xadv

end if
end for
t← t+ 1

until predict(xadv) == benign
end procedure

procedure Proj(xadv) ▷ applying domain constraints to xadv

xadv ← ApplySyntacticConstraints(xadv)
xadv ← ApplySemanticConstraints(xadv)
return xadv

end procedure

It is worth mentioning that this algorithm applies increasingly large perturba-
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tions to the initial malicious stream at each iteration, whenever the new adversarial

instance is not classified as benign. Both formulas guarantee small initial perturba-

tions and are modulated by the multiplicative constant c.

To select the combinations of attacks (presented in Section 4) that should be

applied to manipulate the network traffic flow, a method of masks is employed

where each corresponds to a combination of the manipulable factors (i.e., the total

number of packets, the transmission time of the packets, and the number of outgoing

or incoming bytes in those packets). At each iteration, the masks are applied in a

gradual manner by multiplying them by the previously generated perturbations

using Eq. 6.3 and Eq. 6.2. This ensures that only the perturbations needed at

that current stage are applied to the selected factors. These masks follow a binary

logic and represent 15 combinations. The representation of these masks with their

corresponding manipulable factors is shown in Table 6.3.

Table 6.3: Features used by combination with their corresponding mask

Combinaison Mask Target factor
1 0001 Duration
2 0010 TotPackets
3 0011 Duration, TotPackets
4 0100 InBytes
5 0101 InBytes, Duration
6 0110 InBytes, TotPackets
7 0111 InBytes, TotPackets, Duration
8 1000 OutBytes
9 1001 OutBytes, Duration
10 1010 OutBytes, TotPackets
11 1011 OutBytes, TotPackets, Duration
12 1100 OutBytes, InBytes
13 1101 OutBytes, InBytes, Duration
14 1110 OutBytes, InBytes, TotPackets
15 1111 OutBytes, InBytes, TotPackets, Duration

Once perturbations are applied at each stage, syntactic and semantic constraints

are enforced, through the Proj() function, to respect the underlying logic of the

malicious network communication. This projection function has a couple of actions:

it allows to apply semantic and syntactic constraints to make adversarial instances

valid. To do this, this function recalculates the dependent factors (i.e., the yellow

group in Table 6.1) that depend on the directly manipulatable factors (i.e., the green

group in Table 6.1). Furthermore, when a value obtained exceeds the maximum
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value listed in the entire test set, this value is projected to this maximum value to

ensure that it is transcribed in its appropriate scope. Given that each dependent

feature (in yellow) is linked to a modifiable feature (in green) via an easy and

intuitive formula explained in Table 6.1 (e.g., RationOutIn = OutBytes/InBytes),

We chose not to list all of the formulae in Algorithm 1, instead providing a list of the

corresponding dependent features as shown in Table 6.4, which are updated when an

attacker manipulates one of the modifiable features to ensure semantic constraints

are respected. This algorithm is feasible in that the attacker acts directly on the

network traffic and not on the features. This means that it follows a so-called traffic-

based methodology, which is more realistic than the feature-based one because the

attacker only needs limited information about the defender, such as information

about the network traffic he plans to attack. This allows us to assume black-box

knowledge, which is not the case with feature-based manipulation, which requires

white-box knowledge, such as access to the internal architecture of the intrusion

detection system, its parameters, and the dataset used to train the ML model. It

can be noted that our adversarial algorithm was designed to consider two objective

functions: one to minimize the amount of modification in each factor and the other

to minimize the number of modified factors.

Table 6.4: When an attacker manipulates one of the modifiable features, the cor-
responding dependent features are updated using the Proj() function to ensure se-
mantic constraints are respected.

Modifiable features Corresponding dependent features updated using Proj fucntion
Dur BytesPerSec, PktsPerSec

Out/InBytes TotBytes, BytesPerPkt, BytesPerSec, RatioOutIn
TotPkts BytesPerPkt, PktsPerSec

6.3.7 Strengthening adversarial robustness

Since ML algorithms are inherently vulnerable to adversarial examples, it is nec-

essary to find various approaches to defend them. After reviewing a range of de-

fenses found in the literature, we found that many of them are not fully adapted

to domain-constrained systems such as NIDS and that there is still room for im-

provement [47, 48], although some of them have the potential to reduce the impact
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of adversarial instances [22,103]. For this reason, a defense is proposed in this work.

Figure 6.7: Proposed defense process

As shown in Figure 6.8, the proposed reactive defense follows the process il-

lustrated in Figure 6.7. The defense itself is inspired by adversarial training [22],

adversarial detection [103], and bagging as an ensemble method. The role of this

defense is to act as an adversarial detector (filter) that is placed before the NIDS

to prevent adversarial instances from being able to reach and fool the NIDS. The

main idea of this defense is to train three MLP models in parallel, each taking as

input a specific group of features in order to detect adversarial instances. There

are thus three groups corresponding to features that can be directly manipulated by

the attacker, features that depend on the first group, and features that cannot be

modified. This arrangement corresponds to the manipulability of features in a real-

istic context, i.e., features that can be modified by the attacker. The instances used

to train the three sub-detectors are divided into two classes: the first one contains

benign and malicious instances, having been concatenated together and relabeled
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Figure 6.8: Proposed defense approach using MLP sub-detectors

as clean (i.e., non-adversarial), the second class contains adversarial instances pre-

viously created based on malicious instances exclusively. Table 6.5 illustrates the

different data types used to better understand this distinction.

Table 6.5: Description of datasets and labels used by the detectors

Dataset Type Description
Benign The network traffic that contain benign communications.

Malicious The network traffic that contain a botnet attack.
Clean The concatenation of benign and malicious traffic.

Adversarial The generated adversarial instances produced
with an adversarial algorithm using malicious traffic.

Each of the three feature groups is assigned a particular weight. These weights

are set during model training based on the overall detection rate of each detector.

Once the predictions have been made by each sub-model for each test instance, they

undergo a contextual discounting and then a Bayesian fusion, as defined in Eq. 6.4,

where the prediction matrix is multiplied by the corresponding weights, and then
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the three resulting matrices are summed. Once this step is complete, the new values

are normalized to obtain the final probabilities, where Pa represents the probability

that the instance is adversarial, and Pc is the probability that it is clean. The result

is a final prediction of whether an instance is adversarial or not, and thus is subject

to rejection by the detector.

Pa =

∑3
i=1(Pai ∗ wi)∑3

i=1(Pai ∗ wi) +
∑3

i=1(Pci ∗ wi)

Pc =

∑3
i=1(Pci ∗ wi)∑3

i=1(Pai ∗ wi) +
∑3

i=1(Pci ∗ wi)

(6.4)

Figure 6.8 illustrates the use of MLP as a sub-detector, but it should be noted

that these detectors can use different machine learning algorithms. This defense

could even be used in a stacking scheme involving detectors, each using some specific

machine learning algorithms.

6.4 Evaluation

This section discusses the findings of several experiments. First, those concerning

the performance of the initial attacker and defender models are discussed based on

different metrics, namely precision, recall and F1 score. These results concern the

models trained with the CSE-CIC-IDS2018 and CTU-13 datasets. In a second step,

results regarding the performance of the models in adversarial contexts are discussed.

A preliminary study of the models trained with the CSE-CIC-IDS2018 dataset is

investigated to see the impact of transferability between the same and different

models as well as the training data. A study of the time taken by each attack is

also considered, as well as an analysis of the differences in perturbation between the

initial malicious instance and the adversarial instance. Then, a general comparison

is made on the performance of the proposed adversarial generation algorithm across

the botnet attacks present in each dataset. The last section includes the results of

the proposed defense against the adversarial instances generated by the previously

proposed evasion attack algorithm.
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6.4.1 Initial performance of ML-IDS models in clean settings

To evaluate the initial performance of ML-IDS models trained in clean (i.e. non-

adversarial) settings on both the attacker and defender sides, several metrics are

used, namely: recall, precision, and f1-score. ML-IDS models are requested to

perform a binary classification to distinguish malicious from benign traffic in clean

settings.

As shown in Figure 6.9, the results for the initial performance of the attacker-

side trained ML models yield metrics of 100% for all models trained with CSE-CIC-

IDS2018. In the case of CTU-13, they are less significant. Nevertheless, all models

have metrics above 96%. These results regarding the performance of ML-IDS on

both datasets are comparable to those found in the literature [130–132].
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Figure 6.9: Performance of the attacker-side trained ML models on CTU-13 and
CSE-CIC-IDS2018 in clean settings

These initial results show good performance in general. Models trained with

CTU-13 perform somewhat less well than those trained with CSE-CIC-IDS2018.

This may be due to the fact that CSE-CIC-IDS2018 contains only two botnet

attacks, while CTU-13 contains five, forcing the models to expand their decision

boundary to try to correctly classify all types of attacks into a single class (i.e.,

malicious).

107



Regarding the performance of the defender-side trained ML models, presented

in Figure 6.10, we can see slight variations in the metrics for the models trained

with CTU-13. These variations are very small and of the order of 1% maximum.

We can note that the model using a random forest gives a metric of 100%. For

the models trained with CSE-CIC-IDS2018, the metrics are all at 100%, which gives

identical performance to that of the attacker-side trained ML models. In general, the

same observations can be made for the defender models, as the results are relatively

similar.
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Figure 6.10: Performance of the defender-side trained ML models on CTU-13 and
CSE-CIC-IDS2018 in clean settings

6.4.2 Performance of ML-IDS models in adversarial settings

To study the impact of adversarial instances generated by our algorithm 1, as well

as the effectiveness of transferring these adversarial instances created by the at-

tacker to the models trained by the defender, the first experiment focuses on the

CSE-CIC-IDS2018 dataset containing the Zeus & Ares botnet attacks. To measure

the impact of adversarial instances, the detection rate metric, also called recall, is

used ??. It measures the rate of adversarial instances detected by the ML-IDS as

malicious. To do this, the attacker first generates adversarial instances for each
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model trained on his side (i.e., MLP, RF, and KNN). The adversarial instances gen-

erated for one model will be sent to the other models to evaluate the transferability

property between the models trained by the attacker. The defender-trained models

are different from the attacker-trained models in two aspects: i) they have different

hyperparameters; ii) they are trained with different datasets. We test the effect

of using the same or different hyperparameters on the transferability of adversarial

instances from the attacker’s models to the defender’s models.

It should be noted that the results of the experiments in the various tables always

compare equal proportions for the defender and attacker with different data ( i.e.

different contents). As shown in Figure 6.3, the size of the training (75%) and test

data (25%) is the same for the attacker and defender because the original dataset

is divided in half. Since the size of the data is the same, by saying that the data is

different, we invariably mean its content.

Table 6.6a illustrates the performance of the adversarial transferability property

between the attacker’s trained models. It is worth mentioning that all the attacker’s

models are trained with the same data. As we can see, the diagonal values of

the table are all zeros. This is to be expected since the adversarial instances were

designed based on the decision boundary of this model, so testing on the same

model will give a detection rate of 0%. We also notice that the adversarial instances

generated based on MLP were able to drop the detection rate of RF and KNN to

0%, while the adversarial instances based on these two models were able to drop the

detection rate to about 50%. Finally, we can see that on average, the detection rate

dropped to 21.9%, which is a rather satisfactory result for the attacker.

Table 6.6b represents the impact of adversarial instances, generated using the

attacker’s model, against the defender’s models. The particularity is that the de-

fender uses, in this case, the same hyperparameters as the attacker’s models. Only

the dataset used during training changes. This allows, compared to Table 6.6a ,

to see the effect of intra-transferability through the same models and the same hy-

perparameters using a different dataset for training, but also of inter-transferability

through different models with the same hyperparameters. This gives concrete in-

formation about the impact of the training data and the model used on the trans-

ferability of adversarial instances. Compared to Table 6.6a, Table 6.6b shows slight
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changes in the effect of intra-transferability (i.e., the same model) as seen in the di-

agonal values ( 1% for RF and 3% for KNN) while the effect of cross-transferability

remains similar in both tables. These results indicate that the attacker does not

need to train his models with the same data as the defender, data with a similar

distribution will be sufficient to make the transferability property work effectively.

Table 6.6c again shows the adversarial performance against the defender models.

However, although the models use the same learning algorithms, this time they have

different hyperparameters. This allows us to show the effect of intra-transferability

and cross-transferability on different models with different hyperparameters as well

as different training data sets. This table is therefore the one that provides the closest

insight to the reality because, here, the attacker’s knowledge is extremely limited

since he neither knows the model used, nor the parameters or hyperparameters of

the model, nor the data used to train the defender’s model. This demonstrates the

effect of transferability in a realistic context. The results provide a fairly similar

detection rate between Table 6.6b and Table 6.6c, indicating that not using the

same hyperparameters as the defender does not have a significant impact on the

transferability of the adversarial instances.

From Table 6.6, we can see that not knowing the training data, hyperparameters,

or model used by the defender does not prevent the attacker from creating adversarial

instances and successfully transferring them to the defender’s ML-IDS.

The set of sub-tables in Table 6.7 represents the average and maximum pertur-

bation difference between the malicious instances and their adversarial counterparts

using the CSE-CIC-IDS2018 dataset. Each of these tables represents the ML model

used by the adversarial generation algorithm 1 to craft the perturbations to be added

to the manipulatable factors. Note that the duration factor "Dur" is expressed in

seconds.

The main observation that can be made from this set of tables is that the per-

turbations are rather small for all the manipulable factors and therefore feasible in

realistic scenarios. It should be noted that these perturbations are influenced by the

number of steps and the regulation coefficient c present in the adversarial generation

algorithm 1 and driven by the mean of each manipulable factor.

After confirming from Table 6.6 and Table 6.7, that the transferability property of
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Table 6.6: Performance of the adversarial transferability between ML-IDS models
in term of detection rate

(a) Performance of the adversarial transferability between the attacker’s trained models

Attacker\Attacker MLP RF KNN Mean
MLP 0% 0% 0% 0%
RF 50% 0% 48% 33%
KNN 50% 49% 0% 33%

21.9%Grand Mean

Attacker side

(b) Performance of the adversarial transferability from the attacker to the defender models
(having the same attacker’s hyperparameters)

Attacker\Defender MLP RF KNN Mean
MLP 0% 0% 0% 0%
RF 50% 1% 48% 33%
KNN 50% 49% 3% 34%

22.3%

Defender side (same as attacker's hyperparameters)

Grand Mean
(c) Performance of the adversarial transferability from the attacker to the defender models
(having different hyperparameters from the attacker’s ones)

Attacker\Defender MLP RF KNN Mean
MLP 0% 0% 0% 0%
RF 50% 1% 48% 33%
KNN 50% 49% 4% 34%

22.4%Grand Mean

Defender side (different hyperparameters)

adversarial instances allows the attacker to create an adversarial malicious instance

to evade the defender’s IDS without needing to know its internal architecture while

ensuring that the needed perturbations are small enough to be feasible in realistic

scenarios, we proceed to create adversarial instances for four botnet attacks, namely

Neris, Rbot and Virut from the CTU-13 dataset and Zeus & Ares from the CSE-

CIC-IDS2018 dataset. Note that the attacker and defender models are trained on

different data as shown in Figure 6.3 and have different hyperparameters as shown
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Table 6.7: The maximum and average perturbation difference between the malicious
and adversarial instance on CSE-CIC-IDS2018

Attacked model
Manipulated factor Dur  InBytes  OutBytes  TotPkts

Average Perturb Diff. 0.075 55.251 10.286 0.001
Max Perturbation Diff. 0.218 348.368 1126.160 0.498

Attacked model
Manipulated factor Dur  InBytes  OutBytes  TotPkts

Average Perturb Diff. 0.071 55.251 10.286 0.001
Max Perturbation Diff. 0.218 348.368 1126.160 0.498

Attacked model
Manipulated factor Dur  InBytes  OutBytes  TotPkts

Average Perturb Diff. 0.044 0.813 179.585 0.000
Max Perturbation Diff. 0.073 116.123 375.387 0.000

RF

KNN

MLP

in Table 6.2.

Table 6.8 represents the detection rate of the attacker’s models against adversar-

ial botnet attacks. For each botnet type, the attacker generates adversarial instances

corresponding to malicious botnets based on the decision boundaries of one of his

models using the adversarial generation algorithm 1, and then tests these generated

adversarial instances on other ML models. On average, we can see that the attacker

managed to reduce the detection rate to 15.8%, 5.3%, 22.2% and 21.9% for Neris,

Rbot, Virut and Zeus & Ares respectively.

On the other hand, Table 6.9 represents the detection rate of the defender’s

models against adversarial botnet instances generated previously by the attacker.

On average, we can see that the attacker managed to reduce the detection rate of the

models trained by the defender to 23.0%, 8.1%, 37.8% and 22.4% for Neris, Rbot,

Virut and Zeus & Ares respectively.

Using Neris as an example, the attacker generated adversarial instances corre-

sponding to this malware traffic using the decision boundaries of his trained RF

model. When testing the effectiveness of his generated adversarial instances on his

other trained ML models (i.e., MLP and KNN), he achieves a detection rate of 34%
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Table 6.8: Detection rate of the attacker’s models against adversarial botnet attacks

Attacker/Attacker MLP RF KNN Mean
MLP 0% 19% 7% 9%
RF 34% 0% 22% 19%
KNN 26% 34% 0% 20%

15.8%

Attacker/Attacker MLP RF KNN Mean
MLP 0% 5% 0% 2%
RF 18% 0% 16% 11%
KNN 2% 7% 0% 3%

5.3%

Attacker/Attacker MLP RF KNN Mean
MLP 0% 69% 1% 23%
RF 28% 0% 23% 17%
KNN 7% 72% 0% 26%

22.2%

Attacker/Attacker MLP RF KNN Mean
MLP 0% 0% 0% 0%
RF 50% 0% 48% 33%
KNN 50% 49% 0% 33%

21.9%

Grand Mean

Grand Mean
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Rbot

Zeus & Ares

Neris

Virut

Grand Mean

Grand Mean

and 22%, respectively, as shown in Table 6.8 and 0% when tested on RF, since

these instances are specifically designed to fool this particular trained model. The

attacker then sends these RF-based generated adversarial instances to the defender

IDS. The detection rates for the three ML models trained by the defender are 41%,

19%, and 23% for MLP, RF, and KNN, respectively, as shown in Table 6.9, resulting

in an average of 28% for the defender models. This is a relative success for the at-

tacker since their malicious traffic is only detected 28% of the time and has almost a

three-quarter chance of evading the defender’s installed intrusion detection systems

in a black box setting.

Comparing Table 6.8 and Table 6.9, we can observe that the adversarial in-

stances generated by the attacker are, on average, more efficient on his own models
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than on the models of the defender who uses different training data and hyper-

parameters. It can also be observed that intra-transferability has more impact than

cross-transferability. Even if this loss is not negligible, the results show good per-

formance on average, both through intra- and cross-transferability.

Table 6.9: Detection rate of the defender models against adversarial botnet attacks

Attacker/Defender MLP RF KNN Mean
MLP 18% 20% 8% 15%
RF 41% 19% 23% 28%
KNN 35% 35% 8% 26%

23.0%

Attacker/Defender MLP RF KNN Mean
MLP 1% 6% 0% 2%
RF 18% 22% 15% 18%
KNN 2% 8% 1% 4%

8.1%

Attacker/Defender MLP RF KNN Mean
MLP 25% 69% 2% 32%
RF 28% 90% 24% 47%
KNN 29% 71% 2% 34%

37.8%

Attacker/Defender MLP RF KNN Mean
MLP 0% 0% 0% 0%
RF 50% 1% 48% 33%
KNN 50% 49% 4% 34%

22.4%

Zeus & Ares

Grand Mean
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Neris

Grand Mean

Rbot

Grand Mean

Virut

Grand Mean

The time taken to generate an adversarial instance for each of the botnet attacks

and models is shown in Table 6.10. It seems that MLP is, for each of the attacks, the

algorithm that consumes the most time to generate adversarial instances, followed

by RF, which is an ensemble method. On the other hand, KNN seems to be the

fastest algorithm to generate adversarial instances for the four botnet attacks, which

would make it an interesting option if a trade-off between efficiency and time had

to be made.
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Table 6.10: Time taken (in seconds) to generate 3000 adversarial instances for all
botnet attacks using Algorithm 1

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 32.48 10.21 11.69 15.22 17.40
RF 16.95 5.48 9.55 6.85 9.71

KNN 3.17 1.92 1.95 0.14 1.79
9.63Grand Mean

6.4.3 Proposed Defense effectiveness

As we discussed in section 6.4.2, the attacker is able to evade the defender’s NIDS

with a high success rate (i.e., a low detection rate) by relying solely on the transfer-

ability property of adversarial instances. Our proposed defense aims to negate the

effect of the transferability property by adding an adversarial detector to filter out

adversarial instances, allowing the NIDS to process only clean traffic.

We first evaluate the performance of the proposed adversarial detector and its

sub-detectors by generating adversarial instances based on the CTU-13 and CSE-

CIC-IDS2018 datasets. During this analysis, each sub-detector is evaluated as shown

in Figure 6.7. To measure this performance, various metrics are used: recall as

defined in Eq. ??; precision as defined in Eq. ??; and F1-score as defined in Eq. ??.

As shown in Figure 6.11, we can see that the first two sub-detectors are per-

forming quite well, reaching more than 96% for each metric for CTU-13 and 99%

for CSE-CIC-IDS2018, while the last one seems to be less efficient, with perfor-

mances around 70%. We can also observe that the final detector performance after

Bayesian fusion provides good performances, reaching 97% for CTU-13 and 100%

for CSE-CIC-IDS2018.

The poorer performance of the third detector can be explained by the fact that it

is trained with the group of non-modifiable features. Since the value of these features

does not change, it seems that the detector is not able to distinguish adversarial

instances from clean instances, thus behaving randomly.

We also note that the fusion of the three detectors slightly improved the overall

performance of the proposed defense compared to the individual detectors. The

inferior performance of the third detector does not seem to diminish the performance
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of the proposed defense due to the contextual discounting mechanism, which allows

the performance of each individual detector to be taken into account during the

fusion stage.

Figure 6.11: Performance of our proposed defense against adversarial traffic
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After confirming that our proposed adversarial detector works as intended, we

integrate it into our threat scenario. The attacker creates adversarial instances of

the four adversarial botnet malware types, namely Neris, Rbot, Virut, and Zeus

& Ares, using the adversarial instance generation algorithm on three ML model

decision boundaries, namely MLP, RF, and KNN. The defender, on the other hand,

uses an MLP-based NIDS to detect the malicious traffic. In this experiment, attacks

are launched twice: the first with the defender’s NIDS protected by our proposed

adversarial defense and the second without protection. This is done to evaluate the

effect of using such a defense mechanism on the performance of the defender’s NIDS.

The detection rate metric, also known as recall, is used to measure the performance

of the NIDS in identifying malicious and benign traffic, but it is also used to assess

the performance of the proposed adversarial detector in identifying adversarial and

clean traffic. The results are presented in Table 6.11, consisting of three sub-tables:

Table 6.12a shows the performance results of the defender’s MLP-based NIDS

against adversarial instances with no adversarial defense. As already shown in Table
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6.9, we see that the attacker has successfully decreased the performance of the

defender’s NIDS by dropping the average detection rate to 24.8%.

Table 6.11b reports the results regarding the ability of our proposed adversarial

defense to detect the adversarial instances generated by the attacker. It can be seen

that, on average, the proposed adversarial defense was able to detect 93.4% of the

total adversarial botnet traffic sent by the attacker, thus protecting the NIDS from

getting evaded by these adversarial instances.

Table 6.11c represents the detection rate of the defender’s NIDS protected by our

proposed adversarial defense. In fact, it shows the impact of adversarial instances

that have made it through our adversarial detector and reached the NIDS. It can be

seen from this table that NIDS has, on average, a detection rate of 96.9% for any

type of machine learning model used for adversarial generation, across all botnet

attacks.

These results indicate that NIDS seems to be significantly more robust once

the adversarial detection method is used, going from an average detection rate of

21.3% without defense, as shown in Table 6.12a, to 96.9% when using the proposed

adversarial detector. This also shows that NIDS is hardly affected by adversarial

instances capable of passing the adversarial detector.

6.4.4 Comparison with existing defensive strategies

Several countermeasures against the evasion attacks have been proposed in the lit-

erature. However, many of them have been shown to be ineffective. Therefore, we

decided in this work to compare our proposed defense with adversarial training,

which is a state-of-the-art defense that has already demonstrated its effectiveness.

To prevent adversarial training from undermining the effectiveness of the IDS in its

primary task, we implement this defense in an anomaly detection manner, hence the

name adversarial training detection.

Indeed, adversarial data may be detected by comparing the classification of two

models: a baseline model trained solely on non-adversarial samples and a robust

adversarial model trained on both non-adversarial and adversarial samples. When

applying the two models to a sample, one may assume that if the two models cat-

egorize it differently, the sample is adversarial. In principle, if the provided sample
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Table 6.11: Proposed adversarial defense effectiveness

(a) Detection rate of the defender MLP-based NIDS against adversarial instances without
adversarial defense

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 18% 1% 25% 0% 11%
RF 41% 18% 28% 50% 34%

KNN 35% 2% 29% 50% 29%
24.8%Grand Mean
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Defender using MLP-based NIDS without adversarial defense

(b) Detection rate of our proposed adversarial defense

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 95% 99% 98% 100% 98%
RF 88% 94% 91% 84% 89%

KNN 90% 99% 97% 86% 93%
93.4%

Our proposed adversarial defense performance
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tt
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r

Grand Mean

(c) Detection rate of the defender MLP-based NIDS against adversarial instances with our
proposed adversarial defense

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 93% 97% 96% 100% 97%
RF 93% 98% 97% 100% 97%

KNN 94% 98% 97% 100% 97%
96.9%

Defender using MLP-based IDS with our adversarial defense
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r

Grand Mean

is not adversarial, the base model and robust model should correctly identify it. If

the sample is adversarial, the base model will categorize it wrong, but the resilient

model would classify it properly.

Adversarial training detection defense is built by training a second defense-side

MLP-based IDS on data sets with an equal mix of adversarial and non-adversarial

samples. We then use the same adversarial instances created by the attacker to

attack both models and record their predictions. We infer a final set of predictions by

comparing these two sets of predictions so as to classify each instance as adversarial

or non-adversarial.
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Table 6.12: Detection rate comparison between adversarial training detection and
our proposed adversarial defense

(a) Detection rate of our proposed adversarial defense

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 95% 99% 98% 100% 98%
RF 88% 94% 91% 84% 89%

KNN 90% 99% 97% 86% 93%
93.4%

Our proposed adversarial defense performance
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Grand Mean

(b) Detection rate of adversarial training detection

Model\Botnet Neris Rbot Virut Zeus & Ares Mean
MLP 94% 98% 96% 100% 97%
RF 87% 93% 90% 84% 89%

KNN 89% 98% 96% 86% 92%
92.6%

 Adversarial training detection

A
tt
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ke

r

Grand Mean

In Table 6.12, we can see that the achieved results are decent compared to the

other state-of-the-art defenses. Our proposed defense slightly outperforms adversar-

ial training detection with an average detection rate of 93.4% versus 92.6%.

Furthermore, compared to other state-of-the-art defenses, our proposed defense

is considered a reactive defense, as it does not change the overall performance of

the defender’s NIDS or general behavior. Therefore, this defense is a better choice

when it comes to preserving the general performance of the model, which is not the

case with adversarial training, for example, which reduces the performance of the

underlying model.

6.5 Summary

The potential of using NIDS based on machine learning algorithms raises intriguing

security issues. Indeed, despite their impressive performance, these ML models are

prone to various types of adversarial attacks, especially evasion attacks. Due to

their prevalence and feasibility among all adversarial attacks, evasion attacks were

considered in this work to generate botnet adversarial attacks capable of evading
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the intrusion detection system.

The proposed framework includes two main contributions. The first is a real-

istic adversarial algorithm capable of generating valid adversarial network traffic

by adding small perturbations, thus evading NIDS protection with high probabil-

ity while maintaining the underlying logic of the botnet attack. To the best of

our knowledge, this is the first complete black-box botnet attack that proposes to

evade NIDS by exploiting the transferability property, and without using any query

method, with very limited knowledge of the target NIDS, which acts on the traffic

space, while respecting the domain constraints.

The second component of the proposed framework is a reactive defense that limits

the impact of the proposed attack. This defense, inspired by adversarial detection,

capitalizes on the fact that it does not change the initial performance of the NIDS

since it provides an additional layer of security independent of the model. The

proposed defense is considered modular because it uses an ensemble method called

bagging yet can use any type of machine learning algorithm. In addition to this

ensemble method, it also includes a contextual discounting method that improves

the overall performance of the defense.

The results showed that the proposed defense is able to detect most adversarial

botnet traffic, showing promising results with respect to state-of-the-art defenses.

Since the proposed framework is easily adaptable to other domains, evaluating its

performance in other highly constrained domains would be an interesting future

work.
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Conclusions and perspectives

Conclusion

In this thesis, we explored the effects of adversarial machine learning on cyberse-

curity systems driven by machine learning models, focusing on intrusion detection

systems.

Chapter 1 is a revised review of the state of the art, focusing on the feasibility of

adversarial attacks and defenses. We also provide an update on recent contributions

to the feasibility of attacks in real-world settings: for each chosen paper, we propose

a comprehensive analysis of the real feasibility of the proposed attacks by demon-

strating whether or not the domain constraints are respected. Furthermore, we

propose an examination of the defenses employed in the studied papers to highlight

the advantages and disadvantages of each. Finally, we identify some realistic aspects

that should be considered in future studies of the impact of adversarial attacks on

intrusion detection systems.

Chapter 2 proposes a novel contextual discounting method based on the reli-

ability of sources and their ability to distinguish between normal and abnormal

behavior. An evidential classifier is built using the Dempster-Shafer theory, a gen-

eral framework for reasoning under uncertainty. The NSL-KDD dataset, which is a

significantly revised and improved version of the existing KDDCUP’99 dataset, is

used to evaluate the performance of our new detection method. While our approach

produced comparable results on the KDDTest+ dataset, it outperformed some other

state-of-the-art methods on the more challenging KDDTest-21 dataset.

Chapter 3 investigates the impact of adversarial attacks on deep learning-based

intrusion detection systems. Furthermore, the effectiveness of adversarial learning as

a defense against these attacks is investigated. The experimental results show that

with sufficient perturbation, adversarial examples are able to mislead the intrusion

detection system and that the use of adversarial training can improve the robustness

of intrusion detection.

In Chapter 4, we investigate the transferability of adversarial network traffic
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against several machine learning-based intrusion detection systems. In addition, we

analyze the robustness of the ensemble intrusion detection system, which is known

for its improved accuracy compared to a single model, against the transferability of

adversary attacks. Finally, we examine Detect & Reject as a defensive mechanism

to mitigate the effect of the transferability property of adversarial attacks against

machine learning-based intrusion detection systems.

In Chapter 5, we aim to design an efficient adversarial detector based on transfer

learning and then evaluate the effectiveness of using multiple strategically placed ad-

versarial detectors compared to a single adversarial detector for intrusion detection

systems. In our experiments, we implement existing state-of-the-art intrusion detec-

tion models. We then attack these models with a set of selected evasion attacks. In

an attempt to detect these adversarial attacks, we design and implement multiple

adversarial detectors based on transfer learning, each of which receives a subset of

the information transmitted by the IDS. By combining their respective decisions,

we show that combining multiple detectors can further improve the detectability of

adversarial attacks compared to a single detector in the case of a parallel IDS.

The objective of Chapter 6 is to study the actual feasibility of adversarial at-

tacks, especially evasion attacks, against network-based intrusion detection systems

(NIDS), by demonstrating that it is quite possible to fool these ML-based IDSs using

our proposed adversarial algorithm while assuming as many constraints as possible

in a black-box setting. Furthermore, since it is essential to design defense mecha-

nisms to protect these ML-based intrusion detection systems, a defensive scheme is

presented.

Perspectives

As demonstrated in this thesis, evasion attacks are indeed a threat to machine

learning-based intrusion detection systems, allowing malicious network traffic to

evade detection by adding a small adversarial perturbation. However, other types

of attacks are presented in the adversarial learning literature, namely exploratory

attacks and poisoning attacks.

Examples of exploratory attacks are model extraction and model inversion at-
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tacks. The model extraction attack focuses on parameter inference. The idea is to

create a copy of a target model without any information about the model architec-

ture or training data. Another important point is that an attacker could first create

a duplicate model in order to generate adversarial examples with the aim of exploit-

ing the transferability property to perform an evasion attack. On the other hand,

the model inversion attack focuses on input inference. The idea of model inversion

is to try to recover some confidential data from the original training dataset. This

attack can raise privacy concerns if an attacker is able to recreate the original model

through a model extraction technique, or by directly querying the original model, as

it could reveal sensitive information about the training data (e.g., medical records).

Poisoning attacks target the training data and thus occur during the training

phase of the machine learning model. They violate the integrity property by altering

the training data set. Several types of poisoning attacks can be distinguished, namely

data injection, logical corruption and data modification. In the case of data injection

attack, the adversary may add malicious data to the training data set without

modifying the original training data. This could influence the output result of the

model due to these additional inputs that shift the decision boundary of the target

model. In the case of a data modification attack, the adversary may modify or delete

some data or label in the original training dataset. An appropriate modification can

significantly reduce the detection performance of the IDS for some attacks that the

adversary intends to perform. For the logical corruption attack, the adversary has

access to the algorithm used by the ML model. This allows the attacker to modify

the logic of the algorithm (e.g., to create a backdoor in the intrusion detection

system).

Lessons learned : feasibility of the evasion attacks

From this thesis and the review of existing literature on adversarial attacks on intru-

sion detection systems, several important lessons have been learned. First, it is clear

that attacks based solely on feature-space manipulation may not provide a realis-

tic approach, as the features cannot be easily transcribed back into network traffic

once extracted and modified. Therefore, it is necessary to ensure that the generated
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adversarial network traffic is valid by performing a problem-space projection after

adding adversarial perturbations to the feature space.

Second, the attacker’s knowledge of the mapping of raw network traffic into

features, as well as the semantic and syntactic links that exist between these features,

should be limited. This is important for creating a truly realistic scenario for the

attacker, and assumptions of full knowledge of the IDS should be avoided.

Finally, it has been observed that black box attacks, such as those using Bound-

ary, NES, OPT, or ZOO, can be easily detected by simple defenses such as Query

Detection. Moreover, querying the IDS repeatedly is not feasible as IDSs are not

designed to provide feedback when queried, and the attacker could easily reveal

themselves.

Taken together, these lessons highlight the need to carefully consider the realistic

aspects of intrusion detection systems when developing and testing defenses against

adversarial attacks. Future studies should focus on addressing these limitations to

improve the robustness of intrusion detection systems against adversarial attacks.
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Appendix

Network traffic datasets

NSL-KDD

NSL-KDD dataset, which was introduced in 2009 [87], is a widely used dataset for

assessing the effectiveness of intrusion detection systems. It is an improved version

of the KDD CUP’99 dataset that faced two significant challenges: the presence of

numerous redundant records and the tendency of classifiers to favor frequent records.

NSL-KDD overcame these issues by eliminating redundant records and rebalancing

the dataset classes. Consequently, it facilitates the evaluation of various machine

learning algorithms in a comparative manner.

This dataset covers several attacks organized into four classes according to their

nature: denial of service (DoS) attacks, probe attacks (Probe), root-to-local (R2L)

attacks, and user-to-root (U2R) attacks. The records in the NSL-KDD dataset

have 41 features in addition to a class label. These features are grouped into three

categories: basic features, content features, and traffic features.

CIC-IDS2017

The network traffic data contained in the CIC-IDS2017 dataset was collected from

a real network, which was split into two parts: the first part consisted of 4 machines

launching attacks and the second part contained 10 machines being targeted. The

dataset includes 50 gigabytes of raw data in PCAP format and a set of 84 features

in CSV files. The network traffic was recorded for 5 days, resulting in a total

of 2,830,743 instances. The traffic was classified into 15 classes, with one class

representing normal traffic and the other 14 classes representing different types of

attacks. The features were extracted using a tool called CICFlowMeter, which can

generate up to 84 features related to bidirectional flows, including statistics on packet

length, interarrival time, and flags used in TCP connections. The source code for

CICFlowMeter is available, and the exhaustive list of features generated by the tool
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is presented in a paper by Rosay et al. [133].

CTU-13

This dataset, provided by the Czech Technical University in Prague, contains dif-

ferent labeled traffic from 13 different application scenarios. Each of them follows

the same process, including a different botnet attack variant (Neris, Rbot, Virut,

Murlo, Menti, NSIS.ay and Sogou). The process involves monitoring a network for

both benign network communications and malicious traffic executed by the botnet

attack. All of this traffic is extracted as PCAP files and then formatted as flows via

the Argus tool, which turns raw network data into flows.

CSE-CIC-IDS2018

This dataset contains a set of computer attack scenarios, such as Brute-force, Heart-

bleed, Botnet, DoS, DDoS, or Web attacks. There are two variants of botnet attacks:

Zeus and Ares. The network traffic for each scenario was extracted as a PCAP

file and formatted by CICFlowMeter to provide a set of 83 network features for

thousands of labeled network flows. This dataset, being relatively recent, provides

consistent data following the dataset creation methodology present in [64], allowing

to have a reliable and realistic network traffic representation.
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Source code

1st conference paper

Efficient Intrusion Detection Using Evidence Theory

https://github.com/PhD-Thesis2022/1st-conf-paper

2nd conference paper

Adversarial Training for Deep Learning-based Intrusion Detection Systems

https://github.com/PhD-Thesis2022/2nd-conf-paper

3rd conference paper

Detect & reject for transferability of black-box adversarial attacks against network

intrusion detection systems

https://github.com/PhD-Thesis2022/3rd-conf-paper

1st journal paper

TAD: Transfer learning-based multi-adversarial detection of evasion attacks against

network intrusion detection systems

https://github.com/PhD-Thesis2022/1st-journal-paper

2nd journal paper

Adv-Bot: Realistic Adversarial Botnet Attacks against Network Intrusion Detection

Systems

https://github.com/PhD-Thesis2022/2nd-journal-paper
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