
P4 Language - A practical
introduction
Nathan Camiola

CYBER DEFENCE LAB

May 12, 2024

P4 Language - A practical introduction
Nathan Camiola
May 12, 2024

Cyber Defence Lab
https://cylab.be

BIBTEX citation:

@techreport{citekey,

title = {P4 Language - A practical introduction},

author = {Nathan Camiola},

institution = {Cyber Defence Lab},

year = {2024},

month = {5},

}

This work is licensed under a Creative Commons “Attribution 4.0 Interna-
tional” license.

https://cylab.be
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Abstract

Keywords: Programming Protocol-independent Packet Processors, P4, Software
Defined Networking, SDN, Network

Contents

1 Introduction 1
1.1 Getting Started . 2

2 Architecture 3
2.1 Some Well-known Architectures . 4

3 Programming a P4 Target 6

4 P4 Capabilities 8
4.1 Layers . 9

5 Some P4 Concepts 10
5.1 Header definition . 10
5.2 Parsing & Deparsing . 11
5.3 Headers operations . 14
5.4 Counter & Meter . 14
5.5 Register & Hashes . 16
5.6 Short summary . 17
5.7 Multicast & Cloning . 19
5.8 Compute Checksums . 20
5.9 Remarks . 22

6 Learning Materials 23
6.1 Cylab blog posts . 23
6.2 Documentation . 23
6.3 Slides . 23
6.4 Exercices . 24
6.5 Architectures . 24

1. Introduction

Programming Protocol-independent Packet Processors (P4) is a domain-specific
language for network devices, specifying how data plane devices (switches, NICs,
routers, filters, etc.) process packets.

P4 programs are designed to be implementation-independent: they can be com-
piled against many different types of execution machines such as general-purpose
CPUs, FPGAs, system(s)-on-chip, network processors, and ASICs.

When you start setting up a network, you need to look at all the features you want
to implement. To do this, we look at how the device’s packet-processing chip
works to best meet our needs, but there will be many features we don’t need.
The system will then be built according to what the chip allows us to do. This is
what we call bottom-up design. The drawback is that if we want a new feature,
we’ll have to change the chip or hardware, which can take a long time and/or cost
a lot of money [1].

P4 attempts a reverse, top-down design, allowing us to determine exactly how
the device does packet-processing using a P4 program compiled directly on the
device [1].

P4 does not define the mechanisms by which data is received and transmit-
ted to another system. This differs from system to system and is defined by the
system’s P4 architecture.

1.1. Getting Started 2

1.1. Getting Started

It’s very important to emphasize that the content described in this document re-
lates to the V1Model architecture. It is not entirely correct for the TNA (Tofino
Native Architecture) of the S9180-32X switch.

The code is basically identical, since they use the same language, but the stan-
dard metadata mentioned varies from one architecture to another (we’ll come
back to this point later). In addition, the TNA architecture requires additional Ingress
and Egress control blocks.

If you’re reading this documentwith a view to using TNA, please be aware that
it may not be fully adapted to your needs, but it will help you to understand
many of the concepts involved in the P4 language.

2. Architecture

The P4 architecture determines the P4-programmable blocks (e.g. Parser, Ingress,
etc.) and their data plane interfaces. In other words, the architecture determines
which part of the pipeline can be programmed. The P4 architecture can be seen
as a link between the program and the switch. It defines what can and cannot be
done, and how. The architecture definition must be supplied by each hardware
manufacturer (e.g. Intel Tofino), together with a P4 compiler [2].

Figure 2.1. P4 Architectures

2.1. Some Well-known Architectures 4

The package arguments indicate the programmable blocks that have to be instan-
tiated by the user:

Listing 2.1. V1Switch Architecture Example

package V1Switch< H,M >(Parser< H,M > p,

VerifyChecksum< H,M > vr ,

Ingress< H,M > ig ,

Egress< H,M > eg ,

ComputeChecksum< H,M > ck ,

Deparser< H > dep

);

2.1. Some Well-known Architectures

• V1Model : The V1Model architecture is commonly used with the BMv2 Sim-
ple Switch. It defines the programmable structure of the pipeline [2].

• PSA (Portable Switch Architecture) : The PSA architecture describes com-
mon capabilities of network switch devices that process and forward packets
across multiple interface ports [2], [3].

• TNA (Tofino Native Architecture) : This TNA architecture describes the struc-
ture used by the Intel Tofino switch ASICs (Application Specific Integrated
Circuits).

• PNA (Portable NIC architecture) : The PNA architecture describes the struc-
ture and common capabilities of network interface controller (NIC) devices
that process packets going between one or more interfaces and a host sys-
tem [2].

• SimpleSumeSwitch : The SimpleSumeSwitch architecture describes the struc-
ture of used by the NetFPGA SUME board and by the BMv2 Mininet.

• PISA (Protocol Independent Switch Architecture) : The PISA architecture de-
scribes a single pipeline forwarding architecture. P414 targeted PISA-like de-
vices but P416 outgrown PISA [2].

V1Model and TNA are two more or less similar P416 architectures but still different.
They both correspond to a switch architecture whose packet flow follows the same

2.1. Some Well-known Architectures 5

pattern Ingress, Traffic Manager & Egress, but they are not identical architectures.
Indeed, TNA has a Parser, Match-Action Pipeline and Deparser for the Ingress and
Egress pipeline [2], [4].

Figure 2.2. V1Model P4 Switch Architecture

On the other hand, architectures such as PNA (Portable NIC Architecture) are
even more different from V1Model and TNA, in that way, they are not designed
to model a switch ASICs, but a programmable NIC. It doesn’t follow the Ingress, TM
& Egress pattern at all [2].

In conclusion, P4 programs are not expected to be portable across different ar-
chitectures, the same program with the same behavior will be written differently
depending on its architecture. However, P4 programs written for a given archi-
tecture should be portable across all targets that implement the corresponding
model, provided there are sufficient resources [2].

3. Programming a P4 Target

P4 is initially based on the high-speed packet-processing device PISA. Basically,
P4 programming works as follows [1], [5]:

• A programmable Parser block which determines which packets headers will
be recognized by the data plane program.

• A Match-Action Tableprogrammable block that matches tables of entries and
executes actions based on matches.

• A Deparserprogrammable block that recomposes by serializing the last header
and metadata into a packet.

Figure 3.1. Protocol Independant Switch Architecture (PISA)

The target provides the hardware or software implementation framework, a P4
Architecture Model and a P4 Compiler. The programmer writes a P4 Program
to describe all the functionality required for each programmable block defined
by the Architecture Model provided by the target [2], [5].

The program is compiled by the vendor’s P4 Compiler and generates a data plane
configuration that implements the forwarding logic described in the input pro-
gram and an API for managing the state of the data plane objects from the con-
trol plane. The programmer also provides theControl Plane implementation. The

7

Control Plane can interact with the Data Plane via runtime mechanisms such as
P4Runtime [2].

A P4 program defines a packet-processing pipeline, but the rules within each ta-
ble are inserted by the control plane. When a rule matches a packet, its action is
invoked with parameters supplied by the control plane as part of the rule [2].

Figure 3.2. P4 Programming

4. P4 Capabilities

The language itself can do only the following things [4]:

• It can convert an external packet representation (usually a byte stream) into
a set of parsed headers and metadata using a standardized packet_in extern
and its methods.

• It can manipulate headers and metadata using assignments, standard arith-
metic and logical operations as well as standard methods defined on head-
ers, like .setValid() or .setInvalid().

• It can perform match-action operations using tables.

• It can further convert some of the headers or metadata into output packets in
their external representation using the standardized packet_out extern and
its methods.

• It can call methods of the architecture-specific externs (or call architecture
specific extern functions).

• It can interact with the architecture-specific fixed-function components us-
ing intrinsic metadata, using the same methods as are available to the reg-
ular header and metadata fields (variables).

Note, that the language provides no standard way to even drop a packet or to
send it to an output port, not to mention sending a packet to several ports (mul-
ticasting), creating independent copies of a packet (cloning/mirroring), counting
bytes in a packet, enqueueing a packet into a specific queue, etc., etc. (In fact,
the language does not have a concept of “port” to begin with). All these and a lot
more truly “interesting” things are accomplished using architecture-specific facil-
ities, be they either fixed-function devices and their intrinsic metadata or externs
and extern functions [2], [6].

4.1. Layers 9

4.1. Layers

The concept of Layers (L2, L3, ...) for P4 switches doesn’t really make sense any
more as soon as any functionality can be developed insofar as possible. As men-
tioned above, all possible functionality will be determined by the architecture more
than by the capabilities of the language since the language itself can’t do much.
When we characterise a P4 switch as L2, it means that it doesn’t have any L3 func-
tionality implemented, not because it is not possible to implement them from
scratch.

5. Some P4 Concepts

5.1. Header definition

Since P4 is protocol-independent, it does not recognize any incoming header. It
is therefore necessary to describe each field with their size of the protocol header.
So, each different protocol used in the program must be declared.

Listing 5.1. IPv4 header definition

header ipv4_t {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

bit<8> protocol;

bit<16> hdrChecksum;

bit<32> srcAddr;

bit<32> dstAddr;

}

But since it does not recognize any incoming header, it is also possible to declare
custom headers which do not correspond to any existing protocol.

Here an example for a basic tunneling p4 program where a new header type is
used to encapsulate the IP packet.

5.2. Parsing & Deparsing 11

Listing 5.2. Custom header definition

header myTunnel_t {

bit<16> proto_id;

bit<16> dst_id;

}

It will also sometimes be necessary to declare headers of variable size, in which
case we use varbit. The varbit type cannot be used in a header with bit fields.

Listing 5.3. Variable TCP options definition

header tcp_opt_t {

varbit<320> options;

}

5.2. Parsing & Deparsing

5.2.1. Parser

All parsers start with a state start pointing to the first header to be extracted.
Then, based on extractions, we transition to other states.

Listing 5.4. Parser definition

parser MyParser(packet_in packet ,

out headers hdr ,

inout metadata meta ,

inout standard_metadata_t standard_metadata)

{

state start {

transition parse_ethernet;

}

state parse_ethernet {

5.2. Parsing & Deparsing 12

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;

default: accept;

}

}

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition accept;

}

}

The parser tries to extract the fields included in the header definition. Extractions
are performed in the same order as defined in the code. If it succeeds, it sets a
validity bit for this header [2], [6].

The select keyword is used here to create an if else condition (the if else as, we
know it, cannot be used in parsers but only in the match-action pipeline) [2], [6].
The condition is the etherType; if it is equal to TYPE_IPV4 (which of course had to
be declared in the code and equal to 0x0800), we transition to the parse_ipv4 state
until we accept or reject the packet.

Parsing variable-size header

Variable size headers must also be extracted. It’s a bit different for this than for
fixed-size headers. An extraction "condition" will need to be provided, i.e. a way of
calculating the precise bits to be extracted.

state parse_tcp {

packet.extract(hdr.tcp);

verify(hdr.tcp.do >= 5, error.InvalidTCPpacket);

packet.extract(hdr.tcp_opt , (((bit<32>)hdr.tcp.do - 5) *

32));

transition accept;

}

The first line checks if the Data Offset (do) field in the TCP header is greater than

5.2. Parsing & Deparsing 13

or equal to 5. Note that a data offset is minimum 5 and maximum 15. If the
condition is not met, it triggers an error InvalidTCPpacket. The verify statement is
a mechanism to enforce certain conditions on the packet headers during parsing.

The next line extracts the TCP options field from the packet. The size of the TCP
options field is determined based on the value of the Data Offset (do) field in the
TCP header. The formula (((bit<32>)hdr.tcp.do - 5)* 32) calculates the size of
the options field in bits. The cast (bit<32>)hdr.tcp.do converts the do field to a
32-bit value, and subtracting 5 represents the minimum size of the TCP header in
32-bit words. Multiplying by 32 converts the size from words to bits. The extracted
options are stored in the hdr.tcp_opt structure.

5.2.2. Deparser

Nothing could be simpler than deparsing. By calling the emit method, we serialize
the header only if it is valid (validity bit set to true), inserting all the fields of the new
header into a packet. As with extraction, emit writes the fields in the order defined
in the code [1].

Listing 5.5. Deparser definition

control MyDeparser(packet_out packet , in headers hdr) {

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

packet.emit(hdr.tcp);

packet.emit(hdr.tcp_opt);

packet.emit(hdr.udp);

}

}

5.3. Headers operations 14

5.3. Headers operations

There are very simple operations that can be performed on headers to influence
their validity. The method isValid() verifies the value of the validity bit by return-
ing its value. The methods setValid() and setInvalid(), as their names suggest,
they set the header’s validity bit to true and false respectively. These methods can
only be applied to l-values.

In P4, "l-values are expressions that may appear on the left side of an assignment
operation or as arguments corresponding to out and inout function parameters.
An l-value represents a storage reference".

5.3.1. Encapsulation & Decapsulation

Encapsulating and decapsulation headers is very easy with these methods. As
mentioned above, a header will only be "added" if its validity bit is set and removed
if the validity bit equal 0 (invalid).

Once a header has been "added", the next step is to assign values to the header
fields.

Warning: assigning values before setting the valdity bit will not work. If you want
to add a header, be sure to set it before assigning values.

5.4. Counter & Meter

5.4.1. Counter

Counters provide a choice of whether to maintain only a packet count (CounterType
.packets), only a byte count (CounterType.bytes), or both (CounterType.packets_and_bytes
).

The direct counter is associated with at most one table. Every time the table is ap-
plied and a table entry is matched, the counter state associated with the matching
entry is read, modified, and written back.

Note: counters can only be read from the control plane.

5.4. Counter & Meter 15

Listing 5.6. Counter and Direct Counter examples

counter (64, CounterType.packets_and_bytes) mycounter;

direct_counter(CounterType.packets_and_bytes) mydirectcounter

;

action monitoring () {

mycounter.count ((bit<32>) standard_metadata.ingress_port

);

mydirectcounter.count();

}

A more detailed demonstration can be found on Gitlab.

5.4.2. Meter

In P4, a metadata (often meta.meta_tag& meta.direct_meta_tag) now holds the color.

The regular meter allows you to specify the number of meter states, where the
number of meter states is specified by the size parameter and the type of mea-
surement; based on the number of packets, regardless of their size (MeterType.
packets), or based upon the number of bytes the packets contain (MeterType.bytes
).

The direct meter is associated with at most one table. It allows in this case to mea-
sure the rate of a flow of a table. Every time the table is applied and a table entry
is matched, the meter state associated with the matching entry is read, modified,
and written back.

We will set the rates of the CIR and PIR from the controller using P4Runtime [1] :

meter_array_set_rates <name> <rate_1>:<burst_1> <rate_2>:<

burst_2>

If the meter type is MeterType.bytes, the rate unit is bytes/microsecond and burst_size
in bytes. If the meter type is MeterType.packets, the rate unit is packets/microsec-
ond and burst_size is the number of packets.

Listing 5.7. Meter and Direct Meter examples

5.5. Register & Hashes 16

meter (16384 , MeterType.packets) acl_meter;

direct_meter<bit<32>>(MeterType.packets) direct_acl_meter;

action color_packets(bit<32> meter_index) {

acl_meter.execute_meter<bit<32>>(meter_index , meta.

meter_tag);

direct_acl_meter.read(meta.direct_meter_tag);

}

A more detailed demonstration can be found on Gitlab.

5.5. Register & Hashes

At first glance, the registers don’t seem obvious, or at least that was my impression.
However, once understood, registers are very easy to use and very useful.

Registers are often used in conjunction with hashes, usually 5-tuple hashes, to
identify sessions [1].

register<bit<REGISTER_ENTRIES_BIT_WIDTH>>(REGISTER_ENTRIES)

my_register;

Hashes (CRC-16 and/or CRC-32) are generally used as indexes in the register. And
it is to this index that we will associate a value.

Listing 5.8. 5-tuple hash

hash(meta.hash , HashAlgorithm.crc16 , (bit<32>)0,

{

hdr.ipv4.srcAddr ,

hdr.ipv4.dstAddr ,

hdr.tcp.src_port ,

hdr.tcp.dst_port ,

hdr.ipv4.protocol

},

(bit<32>)REGISTER_ENTRIES);

5.6. Short summary 17

The metadata meta.hash is where the hash will be stored. At the moment, the
hash isn’t in the register.
As explained, we usually use the hash as an index in the register. In the example
below, we assign the value "1" to the index meta.hash :

my_register.write(meta.hash , 1);

A second metadata meta.value_associated_with_the_hash will be needed to read
the content of the register :

my_register.read(meta.value_associated_with_the_hash , meta.

hash);

Note: Reading the contents of an index that doesn’t exist (or doesn’t exist yet) will
output the value 0. In this case, avoid assigning 0 for particular conditions.

5.6. Short summary

5.6.1. Counter

• Function: Counters are used to count and store statistics on the number of
events or packets that have satisfied a specific condition. Note that counters
can only be read from the control plane.

• Data Type: Counters can store packet count and byte count.

• Modifiability: Counter values can be incremented or decremented during
packet processing.

• Typical Use: Counters are often used to gather statistics on specific events,
such as the number of received packets, lost packets, etc.

5.6.2. Meter

• Function: Meters are used to measure and control packet flow rates. They are
commonly employed for traffic control and rate limiting.

5.6. Short summary 18

• Data Type: Meters store "rate" data (e.g., number of packets per unit of time).

• Modifiability: Meters measure packet flow rates, and based on defined rules,
packets can be marked, allowed to pass, or dropped.

• Typical Use: Meters are used to implement traffic control policies, such as rate
limiting for a specific service class.

5.6.3. Register

• Function: Registers are used to store information, indices, or maintain spe-
cific states during packet processing. The values associated with registers are
kept from one packet to the next.

• Data Type: Registers can store data of various types depending on the spe-
cific declaration.

• Modifiability: Register values can be modified during packet processing.

• Typical Use: Registers are used to store information or states necessary for
decision-making in packet processing.

5.6.4. Metadata

• Function: Metadata is used to store additional information associated with a
packet, and this information can be shared among different control blocks
and processing stages. The values associated with metadata are not kept
from one packet to the next.

• Data Type: Metadata can store data of different types, including bits, integers,
and other user-defined types.

• Modifiability: Metadata values can be modified during packet processing.

• Typical Use: Metadata is used to store information relevant to the context of
packet processing, such as network state information, routing details, VLAN
tags, etc.

5.7. Multicast & Cloning 19

5.7. Multicast & Cloning

5.7.1. Multicast

For packet mutlicasting, the simple standard metadata can be used to assign a
group to the packet being processed. The multicasting configuration is then de-
tailed in the control plane.

action multicast () {

standard_metadata.mcast_grp = 1;

}

In the control plane, you first need to define a multicast group. As explained
above, it is this group that will be assigned to the packet processed in the data
plane.

mc_mgrp_create 1

Next, we configure the multicast node. This node takes the replication id (rid),
which will be directly associated with the packet metadata, as well as the port
numbers to be included in the group. It is from these ports that the packet will be
multicast.

So, multicast packets can be identified by the standard metadata egress_rid.

mc_node_create 0 1 2 3 4 5

Finally, we simply associate the multicast group with the node.

mc_node_associate 1 0

5.8. Compute Checksums 20

5.7.2. Cloning

When you clone a packet with cloneduring ingress or egress processing, the packet
will be cloned and sent to egress processing. A cloned packet cannot be modified
during ingress processing. The original packet will continue its "normal" process-
ing [1].

action clone_packet () {

const bit<32> REPORT_MIRROR_SESSION_ID = 500;

// Clone from ingress to egress pipeline

clone(CloneType.I2E , REPORT_MIRROR_SESSION_ID);

}

The control plane has also have to be configured :

mirroring_add 500 1

The cloned packet will be identifiable from the original, as its standard metatada
instance_type will be assigned the value 1.

5.8. Compute Checksums

The architecture provides functions for recalculating checksums in the case of
modifications.

5.8.1. IPv4 Checksum

Depending on the protocol you want to recalculate the checkum, you need to
check what it needs. IPv4 checkums require all header fields.

Listing 5.9. IPv4 Checksum calculation

update_checksum(

hdr.ipv4.isValid (),

{ hdr.ipv4.version ,

5.8. Compute Checksums 21

hdr.ipv4.ihl ,

hdr.ipv4.diffserv ,

hdr.ipv4.totalLen ,

hdr.ipv4.identification ,

hdr.ipv4.flags ,

hdr.ipv4.fragOffset ,

hdr.ipv4.ttl ,

hdr.ipv4.protocol ,

hdr.ipv4.srcAddr ,

hdr.ipv4.dstAddr },

hdr.ipv4.hdrChecksum ,

HashAlgorithm.csum16);

5.8.2. TCP Checksum

For the TCP protocol, calculating the checksum requires a little more information,
but also requires the entire payload. This kind of information can be found in the
RFC related to the protocol. The architecture also provides a function for including
the payload.

Listing 5.10. TCP Checksum calculation

update_checksum_with_payload(

hdr.tcp.isValid (),

{ hdr.ipv4.srcAddr ,

hdr.ipv4.dstAddr ,

8w0 ,

hdr.ipv4.protocol ,

meta.tcpLength ,

hdr.tcp.src_port ,

hdr.tcp.dst_port ,

hdr.tcp.seq_number ,

hdr.tcp.ack_number ,

hdr.tcp.do,

hdr.tcp.rsv ,

hdr.tcp.cwr ,

hdr.tcp.ece ,

hdr.tcp.urg ,

5.9. Remarks 22

hdr.tcp.ack ,

hdr.tcp.psh ,

hdr.tcp.rst ,

hdr.tcp.syn ,

hdr.tcp.fin ,

hdr.tcp.window ,

hdr.tcp.urgPointer ,

hdr.tcp_opt.options },

hdr.tcp.checksum ,

HashAlgorithm.csum16);

You can directly perform the TCP length computation during the IPv4 parsing
state.

Listing 5.11. TCP Length field calculation

state parse_ipv4 {

packet.extract(hdr.ipv4);

meta.tcpLength = hdr.ipv4.totalLen - (bit<16>)hdr.ipv4.

ihl * 4;

transition select(hdr.ipv4.protocol){

TYPE_TCP: parse_tcp;

TYPE_UDP: parse_udp;

default: accept;

}

5.9. Remarks

There are other functions and metadata (enq_qdepth, enq_qdepth, ingress_global_timestamp,
...) that I haven’t covered here, or simply haven’t had the opportunity to use. It’s
worth reading all the functions and metadata available in the V1Model architec-
ture source code.

https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

6. Learning Materials

In this section, you’ll find a multitude of what I consider to be interesting links
concerning the P4.

6.1. Cylab blog posts

• The P4 language - The basics of P4 language

• The P4 language - Overview of P4 programming

6.2. Documentation

• NSG-Ethz - Wiki

• NSG-Ethz - P4-Learning

• NSG-Ethz - BMv2 Simple Switch

• NSG-Ethz - Control Plane

• P4.org - Specifications

• Andy Fingerhut - P4 Guide

6.3. Slides

• NSG-Ethz - 2022 Slides

• P416 Programming for Intel® Tofino™ using Intel P4 Studio™

https://cylab.be/blog/314/the-p4-language-the-basics-of-p4-language
https://cylab.be/blog/317/the-p4-language-overview-of-p4-programming
https://github.com/nsg-ethz/p4-learning/wiki/
https://github.com/nsg-ethz/p4-learning
https://github.com/nsg-ethz/p4-learning/wiki/BMv2-Simple-Switch
https://github.com/nsg-ethz/p4-learning/wiki/Control-Plane
https://p4.org/specs/
https://github.com/jafingerhut/p4-guide
https://polybox.ethz.ch/index.php/s/c8J26zp8MdmS51s
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf

6.4. Exercices 24

6.4. Exercices

• Cylab - Examples (V1Model)

• P4Lang - Tutorials (V1Model)

• NSG-Ethz - Exercices (V1Model)

• Zhaoyboo - P4 Tofino Examples (TNA)

6.5. Architectures

• V1Model Source code

• TNA Source code

• P416 Intel® Tofino™ Native Architecture - Public Version

https://gitlab.cylab.be/cylab/p4-project
https://github.com/p4lang/tutorials
https://github.com/nsg-ethz/p4-learning/tree/master/exercises
https://github.com/zhaoyboo/p4-tofino-examples/tree/main
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/barefootnetworks/Open-Tofino/tree/master/share/p4c/p4include
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf

Bibliography

[1] p4lang, Education/gettingstarted.md at master · p4lang/education. [Online].
Available: https://github.com/p4lang/education/blob/master/GettingStarted.
md.

[2] P416 language specification. [Online]. Available: https://p4.org/p4-spec/
docs/P4-16-v1.2.3.pdf.

[3] Open networking foundation 2023, Oct. 2023. [Online]. Available: https://
opennetworking.org/p4/.

[4] P4 programming language. [Online]. Available: https://forum.p4.org/.

[5] F. Hauser, M. Häberle, D. Merling, et al., “A survey on data plane programming
with p4: Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, vol. 212, p. 103 561, Mar. 2023. doi: 10.1016/j.
jnca.2022.103561.

[6] S. Laki, Programmable Networks Lecture 2 – P4 basics & lookups.

https://github.com/p4lang/education/blob/master/GettingStarted.md
https://github.com/p4lang/education/blob/master/GettingStarted.md
https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf
https://opennetworking.org/p4/
https://opennetworking.org/p4/
https://forum.p4.org/
https://doi.org/10.1016/j.jnca.2022.103561
https://doi.org/10.1016/j.jnca.2022.103561

	Introduction
	Getting Started

	Architecture
	Some Well-known Architectures

	Programming a P4 Target
	P4 Capabilities
	Layers

	Some P4 Concepts
	Header definition
	Parsing & Deparsing
	Headers operations
	Counter & Meter
	Register & Hashes
	Short summary
	Multicast & Cloning
	Compute Checksums
	Remarks

	Learning Materials
	Cylab blog posts
	Documentation
	Slides
	Exercices
	Architectures

