
Tactical Solutions for Mobile Device Fo-

rensics in Military Operations

Strategies for Extracting Data in Any Situation

Leclef Thomas

Academic year
2023 – 2024

Research and Development project owner:
Cyber Command

Master thesis submitted under the supervision of
Debatty Thibault

the co-supervision of
Croix Alexandre

in order to be awarded the Degree of

Master in Cybersecurity
Cryptanalysis and Forensics

text

This is done in order to skip the first half of the page

I hereby confirm that this thesis was written independently by myself without the use of any sour-

ces beyond those cited, and all passages and ideas taken from other sources are cited accordin-

gly.

The author gives permission to make this master dissertation available for consultation and to

copy parts of this master dissertation for personal use. In all cases of other use, the copyright

terms have to be respected, in particular with regard to the obligation to state explicitly the source

when quoting results from this master dissertation.

The author transfers to the project owner any and all rights to this master dissertation, code and

all contribution to the project without any limitation in time nor space.

03/06/2024

Title: Tactical Solutions for Mobile Device Forensics in Military Operations

Author: Leclef Thomas

Master in Cybersecurity – Focus Cryptanalysis and Forensics

Academic year: 2023 – 2024

Abstract

During military operations, the need to extract critical intelligence from mobile devices is
of paramount importance. The use of this information can be made to determine if an
allied soldier’s phone has been infected with malware or to extract the maximum amount of
information from an enemy soldier’s phone. However, traditional forensics techniques are
not appropriate for the dynamic and resource-constrained environment of military field. It
is therefore necessary to develop an innovative solution to meet the unique challenges of
the military environment.

The aim of this master thesis is to provide a digital investigative solution for teams in
the field. To achieve this, three main objectives are identified: rapid isolation of mobile
devices, portable intrusion detection system and information discovery from a locked phone.

In order to meet these objectives, it is first necessary to have a research method. This
method begins with a state of the art that provides a comprehensive summary of mobile
device security. Then, in order to meet the various objectives of the project, the idea is
to use the content of the state of the art as a basis. In this way, it is possible to combine
several existing and widely used tools to meet our objectives. In order to assess the ef-
fectiveness of this solution, simulated usage scenarios will be studied in Chapter 5 of this
thesis. These scenarios are designed to simulate real situations in the field.

The results of the different scenarios are discussed in Chapter 5. These findings high-
light that determining whether a mobile device is free from malware is challenging if the
malware only modifies the device locally without engaging with the network. In addi-
tion, some very advanced malware are very difficult to detect. However, this master thesis
manages to detect most fairly basic malware despite the constraints of the military envi-
ronment. As far as extracting information from locked phones is concerned, probe requests
can be captured easily.

In short, the vast majority of malware can be detected by our solution. As always,
a category of very advanced malware cannot always be detected and will require a more
in-depth analysis. Despite this, by providing a significant advantage to teams in the field,
the result of this thesis is not just a piece of research but a product in its own right.

Keywords: Military digital forensics, secure isolation, portable intrusion detection.

I

Preface

"Smartphones are not just gadgets. They have become an extension of our being, a key

to the world we live in." - Jerry Yang, co-founder of Yahoo!

In our modern age, there’s no denying that mobile phones have become an omnipresent

extension of our being. They have become much more than simple communication tools;

they have become constant companions, windows onto the virtual world that coexist closely

with our physical reality. Indeed, these devices are constantly with us, to the point where

they almost become an additional member of our person, an extension of our identity and

existence. This fusion between the virtual and real worlds has created a new ecosystem

in which our physical possessions are extended into cyberspace, often without our minds

being fully aware of it.

In this context, the protection of our physical assets, now extended to the virtual world,

is of paramount importance. Just as the State has a responsibility to protect the physical

integrity of its citizens, it is imperative to guarantee the security of their digital posses-

sions, which have become essential extensions of their identity and their daily lives.

It is with this in mind that this master thesis is written. By focusing on improving

protection against mobile malware in military environment, it aims to address an urgent

need for security in a world where our lives are increasingly intertwined with technology.

By understanding and combating the threats that target our mobile devices, we can hope

to safeguard not only our physical assets, but also our autonomy, privacy and security in

this ever-changing digital world.

This work is not only an academic contribution, but also a contribution to the preser-

vation of personal integrity and freedom in an increasingly connected world. By exploring

the challenges and solutions associated with mobile phone security, we are working to

strengthen the foundations of a safe and equitable digital society for all.

II

Acknowledgements

I would also like to thank Cyber Command who proposed the project to RMA. I also

wanted to thank my roommates who kindly connected their phones to my access point to

build a whitelist. Thanks also to Mr Croix for being my academic supervisor throughout

this work. I hope that this work will be used for useful, ethical and practical purposes.

III

Table of Contents

Abstracts I

Abstract . I

Preface II

Table of Contents VI

List of Figures VII

List of Abbreviations VIII

1 Introduction 1

1.1 Motivations . 1

1.2 Project statement & contributions . 2

1.3 Organisation of this document . 3

2 State of the art 4

2.1 Mobile security . 4

2.1.1 Mobile malware taxonomy . 5

2.1.2 Mobile malware entry points 6

Malicious applications . 6

Web-based method . 7

Network-based methods . 7

Social engineering . 8

Physical access . 8

Zero click attack . 8

2.1.3 Mobile malware capabilities . 9

2.1.4 Mobile malware data exfiltration techniques 9

Web service . 11

Social engineering . 11

Covert channels . 11

Physical medium . 12

Network protocols . 12

Other network medium . 12

Steganography . 12

2.2 Malware detection . 12

2.2.1 Malware detection techniques 13

Intrusion Detection System . 13

Logging . 15

Honeypots . 15

SIEM . 15

Threat hunting . 16

Static malware analysis . 16

Dynamic malware analysis . 16

2.2.2 Malware detection applied to mobile malware 16

IV

HIDS for mobile devices . 16

NIDS for mobile devices . 17

Logging . 21

Dynamic malware analysis . 21

2.2.3 Developing a stand-alone solution 21

2.3 Locked mobile device data acquisition 23

2.3.1 Challenges in acquiring data from locked devices 23

2.3.2 Probe requests analysis . 23

3 Bridging research and application 25

3.1 Purpose and overview . 25

3.2 Tools and technologies used . 25

3.2.1 IoCs: Context and coverage . 25

3.2.2 Tool selection . 26

3.3 Validation of chosen approaches . 26

3.3.1 Pyramid of pain . 26

3.3.2 Data exfiltration prevention and detection 28

3.4 Summary . 28

4 Usage & Implementation 30

4.1 Global methodology . 30

4.2 Usage . 30

4.2.1 Launch the Raspberry Pi . 31

4.2.2 Mode selection . 31

Mode switching . 31

IDS mode particularity . 32

4.2.3 Launch the program . 32

4.2.4 Save the capture on the USB stick 33

4.3 Software design methodology . 33

4.3.1 Overview of software components 33

4.3.2 Installing the OS on the Raspberry Pi 34

4.3.3 Implementation methodology 35

4.3.4 Tools installation . 37

Create an access point . 37

Simulate Internet services . 38

Install and configure Snort . 39

Turn on monitor mode . 40

4.3.5 Python implementation . 40

main.py . 40

config.py . 41

captureTraffic.py . 41

captureProbes.py . 42

4.4 Fritzing diagram for hardware setup 42

4.5 Additional considerations and access 43

4.5.1 Generating whitelists for DNS, IP addresses and Snort 43

4.5.2 Image replication for Raspberry Pi deployment 45

4.5.3 Failed attempts and lesson learned 45

Evil twin . 45

V

Recovering AP BSSIDs from probes 45

4.5.4 Log in to the Raspberry Pi . 46

Resolve conflict between NetworkManager and hostapd config-

uration . 46

Connecting to Raspberry Pi via SSH 46

5 Case studies & applications 48

5.1 Case study 1: suspected malware infection 48

5.1.1 Mobile device not infected . 49

5.1.2 Mobile device infected by a basic reverse shell 50

Reverse shell creation . 50

Output analysis . 51

5.1.3 Mobile sevice is infected by an advanced persistent threat . . . 52

Output analysis . 53

5.2 Summary table of different malware analysed 55

5.3 Case study 2: seizure of mobile device in sensitive environment 56

5.4 Lessons learned and best practices . 56

6 Future work 59

7 Conclusion 60

Bibliography 67

Appendices 68

A Source code 68

A.1 Configuration files . 68

A.2 Python code . 69

A.3 Tools installation not in details . 69

B Quick Reference Guide 70

List of Figures

2.1 Mobile malware entry points taxonomy 7

2.2 Data exfiltration taxonomy . 11

2.3 Types of IDS . 14

3.1 Pyramid of pain . 27

3.2 Data exfiltration coverage . 28

4.1 Overview of the product . 30

4.2 Connect the Raspberry Pi plug . 31

4.3 Mode switching thanks to the button 31

4.4 Connects mobile device to the AP . 32

4.5 Launch mode thanks to the button . 33

4.6 Simple press on the button . 33

4.7 Kali Linux OS in Raspberry Pi Imager 35

4.8 Gitlab file tree . 36

VI

VII

List of Abbreviations

ADB Android Debug Bridge

AP Access Point

API Application Programming Interface

APT Advanced Persistent Threat

BIOS Basic Input/Output System

BYOD Bring Your Own Device

C2 Command & Control

C&C Command & Control

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

EAP Extensible Authentication Protocol

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IMSI-catcher International Mobile Subscriber Identity-catcher

IoC Indicator of Compromise

IP Internet Protocol

IPSec Internet Protocol Security

IRC Internet Relay Chat

LED Light-Emitting Diode

MAC Media Access Control

MD5 Message Digest Algorithm 5

NFC Near Field Contact

NIDS Network-based Intrusion Detection System

NIST National Institute of Standards and Technology

NTP Network Time Protocol

OS Operating System

OSI Open Systems Interconnection

PII Personally Identifiable Information

PIN Personal Identification Number

RSA Rivest–Shamir–Adleman

SHA-1 Secure Hash Algorithm 1

SIEM Security Information and Event Management

SIM Subscriber Identification Module

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

SSID Service Set IDentifier

TCP Transmission Control Protocol

VIII

TLS Transport Layer Security

URL Uniform Resource Locator

USB Universal Serial Bus

VPN Virtual Private Network

WPA Wi-Fi Protected Access

IX

Chapter 1

Introduction

1.1 Motivations

The ever-expanding battlefield necessitates efficient and secure methods for extracting crit-

ical intelligence from mobile devices. However, classical forensics techniques are impractical

for deployment in the dynamic and resource-constrained realities of the military field. This

lack of readily deployable solutions leaves digital forensic teams without essential tools to

handle situations. Two of these situations stand out.

The first situation is when a soldier suspects that his phone has been infected by mal-

ware as a result of suspicious behaviour. In this case, the digital forensic team must isolate

the mobile device as quickly as possible and determine whether it is really infected.

The second possible situation is that the mobile device is seized in a sensitive environ-

ment such as from an enemy combatant or a captured enemy installation. In this case,

the priority is to gather as much information as possible from the phone to fulfil the main

intelligence mission. It is important to note that in this case too, the mobile device must

be placed in an isolated environment so as not to reveal any information about the soldiers

deployed.

At present, there is no effective solution that would enable a digital forensic team in

the field to handle correctly these two situations. Indeed, in the military field, there is no

isolated physical or network infrastructure into which the mobile device could be placed for

investigation. Therefore, there is currently a need to develop a solution that will enable a

digital investigation team to work in an isolated environment that can be rapidly deployed

and easily transported.

In short, we can take into account the 2 situations in which a digital forensic team may

find itself. On the other hand, we can also take into account the fact that this team needs

to work in an isolated environment. From this, it is possible to define 3 main objectives

that this project will endeavour to meet.

1. Implementing a mechanism for isolating a mobile device from any external commu-

nication that is both quick to deploy and easy to transport.

2. Developing a portable intrusion detection system that can be easily deployed any-

where on a military site. This situation arises when a soldier suspects that his phone

is infected. In this case, it is possible to unlock the phone because we have its PIN

code.

3. Establishing a system that allows to retrieve information from a phone that we do

not have the PIN code. This situation arises when a phone has been seized.

1

1.2 Project statement & contributions

The aim of this project is to fulfil the three above-mentioned objectives in relation to the

military context. To do this, we are developing 3 main solutions that will further be put

together in order to build a concrete project.

1. All mobile devices that need to be analysed by the digital forensics team will be

placed in a Faraday enclosure to prevent any external communication.

2. An intrusion detection system attached to this Faraday enclosure will enable malware

to be detected. This system will enable a digital forensic team to identify more easily

and quickly whether a mobile device is infected.

3. Some information sent by a locked mobile device within the Faraday enclosure will

be collected.

Firstly, given that the use of a Faraday enclosure is not commonplace, we give here 4

main reasons for choosing this innovation.

1. Protection of Classified Information: Military operations often involve handling

classified or sensitive information. A Faraday enclosure provides a secure environment

for forensic analysts to examine the devices, minimizing the risk of data leaks or

unauthorized access to classified materials.

2. Isolation from Remote Threats: Placing the seized devices inside a Faraday

enclosure ensures that they are shielded from external electromagnetic signals, pre-

venting any attempts by adversaries to remotely wipe data or initiate self-destruct

mechanisms.

3. Chain of Custody: Military legal proceedings require a meticulous chain of cus-

tody for digital evidence. A Faraday enclosure helps maintain the integrity of the

evidence by ensuring that the devices are protected from external influences during

transportation and analysis.

4. Operational Security: In military operations, maintaining operational security

is crucial. Using a Faraday enclosure helps in preventing unintentional signals or

emissions from the devices that could potentially reveal the location or activities of

the digital forensics team.

Then, the second solution attached to this project is to develop an intrusion detec-

tion system attached to this Faraday enclosure. This system will enable a digital forensic

team to identify more easily and quickly whether a mobile device is infected. To do this,

we’re going to use a Rapsberry Pi that we’ll install inside the box. Using this Raspberry

Pi, we will create a Wi-Fi access point to which we will connect the phone. This Wi-Fi

access point will then be used to analyse the requests sent by the phone to the Inter-

net. However, it is really important to remember that our context requires us to work

in a totally isolated environment so as not to reveal any sensitive information. Therefore,

all the responses sent by the access point will be the result of an Internet services simulator.

Finally, in the case of the third solution for which the phone cannot be unlocked, we

will still try to recover interesting artefacts from the mobile device we have seized. For

2

example, probe requests are among the interesting artefacts that can be recovered with-

out needing the phone’s PIN. A probe request is a frame sent by a Wi-Fi-enabled device

seeking available network access points to connect to [81]. In most cases, we can find the

SSIDs that the mobile device has already been connected to. In short, even if the mobile

device cannot be unlocked, probe requests can be recovered to find out more about the

movements of the person to whom it belonged, using tools such as WiGLE1.

1.3 Organisation of this document

In order to achieve these objectives, it was essential to introduce the subject and the context

in this first chapter. Chapter 2 will review the current literature on mobile device security,

current detection methods, and data acquisition from locked phones. This literature review

will identify all the existing tools in the field to understand their usefulness, advantages,

and areas of application. Once these various tools have been identified, the aim of Chapter

3 will be to select the relevant tools for the given context. In addition, this chapter will

enable the choice of approach to be validated through the use of recognised frameworks.

In short, this chapter will provide the link between the research and the implementation in

the following chapter. The aim of Chapter 4 will be to explain how to use the product and

how it has been implemented. This will provide users with an explanation of how to use

the product and will also serve as a basis for developers wishing to continue the project.

Additionally, Chapter 5 will highlight the use and effectiveness of the product in relation

to recent threats. It will also highlight Snort’s limitations in detecting mobile malware.

Furthermore, Chapter 6 outlines possible improvements in terms of research in relation to

this work. Finally, Chapter 7 presents a conclusion to this work, highlighting the research

that has been carried out in this work, the results obtained and the innovation in the given

context.

1https://www.wigle.net/

3

https://www.wigle.net/

Chapter 2

State of the art

First of all, before getting to the heart of the matter and explaining how to perform

network-based malware detection for mobile devices, it is important to review the sci-

entific literature. This is because it is vital to know why mobile device security is so

important, but also what solutions have already been explored by scientific research.

This chapter is therefore divided into several sections. The section 2.1 begins by re-

viewing the basics of smartphone security. It explains the importance of smartphones,

their vulnerabilities, the capabilities of malware, and how it exfiltrates data. Once mobile

device security has been reviewed, the section 2.2 looks at mobile malware detection. To

do this, the section first looks at the tools that exist today to detect malware in general.

It then highlights the current state of research by exploring the various scientific methods

developed to detect malware specifically for mobile devices. Moreover, it looks at the var-

ious tools available to simulate an Internet network. Finally, the section 2.3 presents the

different possibilities for extracting artifacts from locked phones.

2.1 Mobile security

Today, the adoption of smartphones by individuals continues to grow. More and more busi-

nesses and organisations are operating on the BYOD or Bring Your Own Device model.

Most of the time, the employees of these companies carry their mobile device with them

when they are within the organisation and even as soon as they leave it. These mobile

devices can even be used to access the organisation’s data or systems. Unfortunately, these

mobile devices are not as secure as traditional computers. Obviously, the user’s aim is not

to think about the security of their smartphone by installing anti-virus software or other

solutions as they might for a computer. All in all, the growing use of smartphones and the

lack of security vigilance on the part of users make them a perfect target for malware writ-

ers [41]. This same scenario of the increasing use of smartphones and the lack of security

vigilance on the part of users can also be transposed to the military world. Soldiers can

bring their own mobile devices during their missions. Therefore, the compromise of mobile

devices could reveal the location of troops, images or videos of situations on the ground,

operational plans, or even confidential communications.

The need to develop effective malware detection techniques is therefore evident. Of

course, before building this detection system, it is vital to understand the state of scientific

research into mobile security. To begin, it’s crucial to establish a taxonomy of the different

types of mobile malware that exist. This provides a foundational understanding before

delving into the loopholes through which they may infiltrate. Then, when the phone is

infected with malware, it is interesting to see what the malware can do, what actions it

can take. Finally, when considering the potential threat of malware attempting to extract

private information, it becomes imperative to categorize the various techniques used to

exfiltrate data. This approach will facilitate the identification of detectable data exfiltra-

4

tion techniques, those that can be prevented, and those that fall beyond the detection

capabilities explored in this study.

2.1.1 Mobile malware taxonomy

To fully understand what mobile malware means, it is important to define the different

categories of malware that can be found, as well as their behaviour. Not all malware have

the same goals or the same behaviour. It is therefore necessary to understand the different

possible behaviours in order to know what we might be dealing with and therefore possibly

detect it more effectively.

1. Virus: Virus is a type of malware with the ability to replicate itself and spread to

other programs or files on the system. As a result, when the user launches an infected

program, he or she will launch the virus without the user’s knowledge. Most of the

time, viruses use Command Control channels to communicate with a remote server.

Through these servers, attackers can exfiltrate information from the system or send

commands to control the virus remotely. This type of malware arrived very early

on mobile devices, so much so that we find traces of it in 2004 with the Dust virus,

which was a proof of concept seeking to demonstrate that it was possible to create a

virus for smartphones by propagating itself in various files on the device [62].

2. Rootkit: When a rootkit is installed on the user’s mobile device, the attacker can

gain remote access to the phone to control it. The difficulty with rootkits is that

they use obfuscation to hide their presence inside the system, making them harder

to detect [58].

3. Backdoor: This type of malware serves as a means to bypass authentication or

other security measures, providing unauthorized access to computer systems or the

data stored within. They may manifest at the system level, within cryptographic

algorithms, or embedded within applications [35].

4. Spyware: The purpose of spyware is to monitor what the user is doing on their

smartphone. It can therefore watch what is displayed to the user or retrieve the

keystrokes it records . For example, Flexispy1 is an application that can be installed

and hidden to retrieve text messages, emails, photos, GPS location, etc. This type

of malware is quite vicious. Indeed, developers of spyware try to commodify and

market their products to a general audience. While the consumers of spyware are

basically governments and law enforcement [66]. Currently, spyware is therefore sold

as security products, especially aimed at businesses, parents and intimate partners.

The article [53] highlights the contrast between the social significance attributed by

suppliers and the intrusive and potentially non-consensual aspects of these products,

as well as the lack of recourse for people monitored without their consent. So spyware

can therefore be considered as malware and not as software to increase security as

the developers try to claim.

5. Worm: This is a type of malware that is capable that can autonomously spread from

one computer to another without needing human intervention once it gains access to a

system. Usually, worms propagate through a network via internet connections local

1https://www.flexispy.com/

5

https://www.flexispy.com/

area networks. The difference between viruses and worms is that viruses require

human activation and rely on host systems for replication. Whereas worms can

propagate autonomously without human intervention or the need for a host system

[6].

6. Trojan horse: This type of malware takes its name from the famous Greek myth

of the Trojan horse. A Trojan is any application that masquerades as a legitimate

application when it is in fact malware. Like other malware, it can therefore exfiltrate

the user’s private data and interact with the files on the mobile device [5].

7. Adware: The purpose of adware is simply to display advertisements to a user. Some

adware also takes advantage of this to steal private information from the user [1].

2.1.2 Mobile malware entry points

Despite the fact that there are many different types of malware, as we have just described,

it is interesting to go back to basics and look at the weaknesses and gaps in the mobile

devices that can be used by an attacker to infect a device. When dealing with an attacker

with sophisticated tools and a complex strategy, one can identify a multi-stage chain of

events called the Cyber Kill Chain. Looking at this set of steps, this subsection describes

the third step which is delivery stage [89]. Indeed, the goal is to analyse the various pos-

sible delivery methods that an attacker can use when conducting an attack.

This point may seem a bit long in a work dedicated to malware detection. Nevertheless,

this master thesis is part of the digital forensics discipline. Therefore, if we look at the

different steps of the incident response process as defined by the SANS institute [61], it is

important to consider all the points. This process includes preparation, eradication and

lessons learned. This subsection makes it possible to provide significant support to digital

forensics analysts for these three key elements. Indeed, this work is not only intended

to improve detection techniques but also to be a stepping-stone of knowledge in order to

follow the incident response process.

Most of the time, entry points are due to human error allowing malware to enter a

system. However, here we try to focus on loopholes that are particularly present on mobile

devices. In view of the fact that there is no paper clearly highlighting a taxonomy of all

entry points specific to mobile malware. The taxonomy of the resources here comes from

well-established frameworks such as the MITRE ATT&CK framework or reliable websites

relating to computer security topics. To understand the different entry points, the defined

categories contain several elements. This allows the information to be sorted correctly. We

can therefore define 6 categories on the Figure 2.1. Nevertheless, we detail each element

within the different categories to give a complete explanation of each entry point.

Malicious applications

It is possible that the user downloads applications from his own interaction. There are two

possible infection vectors in this category.

• Official app stores: These include platforms like Google Play Store for Android

and the Apple App Store for iOS. Despite efforts to maintain security, malware can

sometimes bypass the cleaning process and end up on these stores [48,84, 85].

6

Figure 2.1: Mobile malware entry points taxonomy

• Third-party app stores: These are alternative app marketplaces not affiliated with

the official app stores of mobile platforms can be installed by users. These stores often

have less strict security measures, making them more susceptible to hosting malicious

apps [18].

Web-based method

• Drive-by Download: A drive-by-download attack is when the user downloads ma-

licious code unknowingly or unintentionally. Such an attack takes advantage of a flaw

in the web browser, application or operating system. The user still has to interact

with a website or application to be infected [9]. This is where the attack differs from

a zero-click attack.

• Watering hole attacks: This is a type of targeted attack where an attacker will

hack a site where the victim often goes. Once the site is hacked, the attacker will

upload malicious code that will be used to hack the victim [22].

Network-based methods

1. Wi-Fi: Mobile devices frequently connect to various networks, including public Wi-

Fi, which can be insecure. Attackers may set up rogue Wi-Fi hotspots to intercept

traffic and launch man-in-the-middle attacks [65].

2. Bluetooth/NFC: Malware spread through Bluetooth or Near Field Communica-

tion (NFC) connections between devices, often exploiting insecure device settings or

protocols [52, 62].

7

Social engineering

1. Phishing websites: An attacker attempts to extract sensitive information or has

the victim install malware by manipulating it. This can, for example, involve fake

login pages for banking applications [8]. There are different ways of reaching these

phishing websites, which we describe here:

(a) Malicous links: Links shared via email, text messages, or social media plat-

forms that lead to websites hosting malware or initiating downloads.

(b) Smishing: The word simply derives from a combination of the words phishing

and Short Message Service (SMS). It simply means sending a phishing attack by

SMS. To deceive the user by SMS into doing something with malicious intent.

Obviously, this loophole affects mobile devices more than traditional computers

[91].

(c) Email attachments: Attackers often send emails with malicious attachments

disguised as legitimate files. When these attachments are opened on a mobile

device, they can execute malware that compromises the device.

(d) Malicious QR Codes: There may be QR codes that link to malicious sites

asking the user to download an application. Combined with a repackaging

technique, it’s easy to get users to install malware by making them believe they

are installing a real application [60].

Physical access

1. Human interaction: Attackers can physically manipulate or deceive users into

installing malware on their devices through techniques like social engineering, ex-

ploiting trust or user’s lack of vigilance.

2. USB connections: Malware can be spread through USB connections when mali-

cious devices are connected to malicious computers or cables2, transferring the mal-

ware to the connected mobile device.

3. Supply chain compromise: In the case of highly advanced attackers, opponents

can modify product distribution mechanisms or the product itself. This is done prior

to the receipt made by the end user in order to compromise the system [17].

Zero click attack

This type of loophole is a sophisticated attack that allows malware to be installed on a

device without any action from the user. In order to do so, they exploit zero-day vulner-

abilities in software or protocols. These attacks are highly targeted and can have great

consequences, often leaving minimal traces, making them difficult to detect and defend

against [10]. One popularised example of such malware is Pegasus. Pegasus is spyware

developed by the Israeli cyber intelligence firm NSO Group, capable of infiltrating smart-

phones to access messages, emails, microphones, cameras, and other sensitive data. It has

been controversially used by governments to monitor journalists, activists, and political

people [67,76].

2https://shop.hak5.org/products/omg-cable

8

https://shop.hak5.org/products/omg-cable

2.1.3 Mobile malware capabilities

Just like on a personal computer, once the malware is installed, it can perform a whole range

of operations. For an overall understanding, it is useful to draw up the broad categories of

these different operations.

• Data theft: Classically, malware can try to steal data present on the user’s mobile

device. For example, the RedDrop malware was able to steal contacts, photos, Wi-Fi

information and even record audio. A rather interesting artefact, which is harder to

obtain than on a computer, is the phone’s location, making it possible to track an

individual [4, 16] . This category of malware therefore poses many problems for the

privacy of its victims.

• Disruption of service: The attacker can also block use of the phone by making all

resources inaccessible to the user [42].

• Incurring costs: It is also possible for the malicious person to incur costs for the user

and thus extract money from them. The malware can therefore send text messages

or make calls to premium rate numbers without the user’s knowledge [54].

• Botnet: An attacker can also use the phone as a bot. In this way, the mobile

device becomes an integral part of a botnet that can be used to carry out distributed

denial of service attacks on target computer systems. In order to control the bot, the

attacker needs to set up a Command & Control channel where he can send all sorts

of instructions [88].

In short, malware can do an enormous amount of things once it has been installed on the

victim’s phone. One thing to note is that in the majority of cases, network traffic is used to

establish and communicate with a Command & Control (C&C) channel. This channel can

be used to exfiltrate data or receive commands from the attacker. We can therefore already

understand that when a phone is infected, the traffic generated will be very interesting

to analyse in order to detect the malware. However, it would be inappropriate to limit

ourselves to the mere fact that we know that there is network traffic that could be indicative

of malicious activity. It is also important to understand the different techniques used by

malware writers to exfiltrate sensitive data.

Command & Control server A C2 or C&C server is a server that the attacker owns

and to which the malware-infected machine can connect. The malware may try to

communicate with the server to exfiltrate data, receive commands from the attacker,

or launch DDoS attacks. In order to connect to these servers, malware has domain

names or IP addresses registered within their code. To avoid detection, the malware

mainly communicates using commonly used protocols such as HTTPS. In this way, it

is difficult to differentiate malicious traffic from that of a legitimate user [13,34,90].

Definition

2.1.4 Mobile malware data exfiltration techniques

This Subsection therefore presents the various data exfiltration techniques. Formally speak-

ing, data exfiltration is the movement, theft or deletion of any data from a device. Most of

9

the time, this data is private to a person or a company and therefore represents a significant

market value for an attacker. This data exfiltration can lead to huge financial costs when

it comes to a company or a risk to national security when the data comes from government

institutions.

Data exfiltration techniques are very similar for both smartphones and laptops. There

are therefore few papers reporting on data exfiltration specific to mobile devices. How-

ever, the work of [38] presenting the possibility of exfiltration by SMS and inaudible

audio transmission for Android phones and [39] demonstrating the potential for data

exfiltration through the pairing function of iOS devices makes an important contribu-

tion. This highlights that there are different means of exfiltration for mobile devices

compared with computers. Nevertheless, the Table 1 of the article [38] presents a

taxonomy of the different data exfiltration techniques from Android phones. On the

whole, very few scientific articles present a taxonomy of these different techniques.

This lack of scientific analysis is easily explained by the fact that data exfiltration

remains similar. Nevertheless, malware writers could potentially take advantage of

the fact that defenders assume that data exfiltration is similar to a conventional com-

puter. In short, there may well be other avenues to explore regarding certain data

exfiltration techniques that would be possible on smartphones and not on conven-

tional computers.

At first glance, to find data exfiltration techniques possible on smartphones and

not viable on computers, it could be interesting to compare the different function-

alities. For example, a smartphone has a vibrate function that is not present on a

computer. The vibrator could therefore be used to exfiltrate sensitive data. This is

just one example of the many possibilities that could be explored to discover data

exfiltration from mobile devices.

Future work

In any case, the same data exfiltration techniques classically used on computers can

also be found on mobile devices. So it’s worth exploring the different categories. To draw

up a correct taxonomy of what is possible, it is interesting to look at what is described in

the MITRE ATT&CK framework describing the different exfiltration methods that have

already been used by malware in the past [3]. The choice to rely on this framework to

make a taxonomy is not insignificant. Indeed, this framework is developed and maintained

by the MITRE corporation, a non-profit organisation that focuses on research in cyber-

security. It is widely recognised by many professionals in the field as shown by different

use cases [20, 31, 45]. Moreover, it also provides a specific matrix for mobile malware [15].

In addition to the framework, it’s worth looking at the various tutorials available on the

internet to see what methods attackers could learn [2, 57].

As a result, it is thanks to these different sources that we can draw up a taxonomy of

existing techniques. This taxonomy is illustrated in Figure 2.2, but the different categories

are also explained below. This figure will then be used in the Section 3.3.2 to identify how

the different means of data exfiltration are covered by this project.

10

Figure 2.2: Data exfiltration taxonomy

Web service

The very first category highlighted here is the use of web services. It is important to note

that malware writers want to avoid detection when stealing data. The best way to do this

is to mimic traffic that could be generated by the user. By using common web services, the

malware can exfiltrate data without it looking suspicious. For example, we could imagine

malware using the discord application to send sensitive data it has recovered to a target

machine. In this way, if the user uses discord every day, the traffic will appear legitimate

and go undetected by defence systems. A blog post [23] written by Utkhedkar A. shows

how this exfiltration can be implemented in practice.

Social engineering

Secondly, another technique that we introduced earlier when talking about loopholes is

social engineering. A slightly naive user could give out confidential information by tele-

phone or e-mail if the attacker manipulates him well enough. So this is really a case of

data exfiltration using humans as a vulnerability [55].

Covert channels

Covert channels can also be used to recover sensitive data. A covert channel refers to a

form of attack in which a capability is established to clandestinely transfer information

objects between processes that, according to IT security policy, should not be allowed

to communicate. An example of a covert channel attack on Android was studied in the

article [38], which highlights the possibility of using an inaudible audio transmission to

exfiltrate data.

11

Physical medium

Another technique that may be more obvious or even simpler is to use a physical medium.

If we have full physical access to the mobile device, we can simply plug in a USB stick and

download the sensitive information.

Network protocols

Next, the most widely used and simplest technique for data exfiltration is to use classic

protocols such as HTTP, TCP sockets, and so on. This category can be linked to the use

of web services when the attacker does not implement the service himself. For example,

the HTTP protocol can be used as a web service if the exfiltrated data is sent directly to a

forum [14]. As things stand, we can assume that malware will use encrypted protocols to

exfiltrate data. However, it would be pointless to give up on analysing unencrypted traffic.

We therefore need a hybrid approach in which we analyse both encrypted and unencrypted

traffic if we want to detect malware on the network.

Other network medium

In the same way, other network media can be used to exfiltrate data. These can include

Bluetooth, radio frequency and cellular connections. An example of data exfiltration meth-

ods by frequency bands is GSMem. The paper presents how it is possible to build a system

exfiltrating data on different frequency bands such as GSM, UMTS or LTE [51]. They ob-

viously require more creativity on the part of attackers and are therefore less widespread.

Steganography

Finally, the last category we are highlighting is steganography. Steganography involves

concealing information within another message or object in a way that makes the presence

of the hidden information imperceptible to human observation. It is used by malware to

extract data discreetly by hiding it in an image, for example. This category can actually

be included in all the other categories in the diagram. For example, we could post an

image on a forum containing confidential information. In this case, we use a web service

with steganography [56].

2.2 Malware detection

By way of context, this is a case where no matter what defence systems have been put in

place, the mobile device has been infected and the attacker has managed to get into the

system. Once we start from that premise, we have to prepare for the inevitable. In the

world of cyber security, when we try to prepare for the inevitable, we try to build systems

that are cyber resilient. The aim of a so-called cyber resilient system is to keep essential

services running despite the fact that the system is under attack. But that’s not exactly

the context in which we find ourselves. Our aim here is twofold:

1. Limit information leakage

2. Identify whether the system is infected with malware

To achieve the first objective, we are using a Faraday enclosure to isolate the mobile device

from any means of data exfiltration that we have identified. With regard to the second

12

objective, we can use a pillar of cyber resilience. This pillar on which we will focus in order

to achieve this objective is the detection pillar.

Cyber resilient system A system is said to be cyber resilient if it is built in such a

way that it can continue to provide essential services despite the presence of incidents.

To achieve cyber resilience in a system, there are 5 pillars: identify, protect, detect,

respond and recover [87]. As a reminder, our context means that we are focusing on

the detection pillar that we define here.

Detection pillar Given that we know we’re going to have to deal with threats,

the idea is to be able to identify them so that we can respond to them and recover

from any damage they may have caused to our assets. To do this, there is a whole

range of tools available, which we cover in the following Section 2.2.

Definition

2.2.1 Malware detection techniques

In general, in a computer system, when we need to determine whether a machine is infected

with malware, it is possible to implement several techniques. These techniques therefore

include logging, intrusion detection systems, honeypots, SIEMs and threat hunting [87].

In addition to malware detection, malware analysis can also be considered even though

it does not have the same objective. Indeed, malware analysis aims to understand the

behaviour of the malware quite accurately in order to document and eradicate the threat.

The will is really to understand how the malware works. One cannot therefore overlook

the fact that malware analysis contributes significantly to its detection.

The concepts of malware detection and analysis are therefore not dissociable and can

significantly help the work of a digital forensic analyst. Whether in malware detection or

malware analysis, these two disciplines have a common goal: the search for indicators of

compromise (IoCs) to prove the presence of an intrusion. In short, in addition to con-

ventional detection techniques, dynamic and static malware analysis techniques must be

considered in malware detection. This subsection describes all techniques of both disci-

plines in detail. Both in terms of pure detection and malware analysis. Later in this work,

some techniques will be chosen according to the imposed context.

Indicator of Compromise IoC is an artifact that can be found in a system or

network that indicates the intrusion of a threat. Typical IoCs are signatures, malware

files, URLs, domain names or IP addresses. Once discovered, they can be integrated

into IDS to prevent some attacks from happening again [19].

Definition

Intrusion Detection System

Today’s organisations are increasingly equipping themselves with different IT components

to manage their assets and employees. Absolute security does not exist, given that it is

impossible to close all security loopholes, so system auditing is seen as the last line of

defence. To this end, as mentioned in the article [64], intrusion detection systems (IDS)

have been in place since the early 1990s by the IT security community.

13

Intrusion Detection System (IDS) It is a security mechanism designed to identify

and respond to suspicious activities occurring within a monitored environment. Based

on this monitored environment, there is two mains categories of IDS: NIDS and HIDS.

Network-based Intrusion Detection System (NIDS) In this case, the IDS

is a separate device that is connected to a network in such a way that it sees all of

the traffic passing by at that location of the network.

Host-based Intrusion Detection System (HIDS): In this case, the IDS con-

sists of an agent that is installed on a specific host and is monitoring everything that

is happening on that host [87].

Definition

In addition to the different categories of IDS, we can also distinguish between different

approaches to intrusion detection. Either a so-called signature based approach or a so-

called anomaly based approach.

Signature-based detection involves employing a predefined set of patterns or signa-

tures, which can vary from straightforward byte sequences indicative of specific malicious

activities or objects to intricate templates with non-contiguous sequences and wildcards.

This method is utilised by Intrusion Detection Systems (IDS) to compare and identify

these signatures within monitored data, such as network traffic or system files [87].

Anomaly-based Intrusion detection systems involve creating a model of what is con-

sidered normal activity and identifying anything deviating from this model as suspicious.

One method to establish the "normal" model is by initially placing the IDS in a "learning"

mode, where it observes and learns the typical behaviour of the specific host or network

to be protected. After this learning phase, the system transitions to an "alerting" mode,

flagging any deviations from the learned normal behaviour as potentially suspicious. Alter-

natively, another approach to learning normal behaviour involves using machine learning

techniques on large, more generalised datasets. In this method, the IDS learns typical

"normal traffic profiles" by analysing common applications and protocols found in various

office networks. This broader approach aims to capture generic patterns of normal be-

haviour that can be applied across different environments [87].

It is therefore easy to draw a diagram (Figure 2.3) showing the different categories of

intrusion detection systems that exist today.

Figure 2.3: Types of IDS

14

Logging

Monitoring an IT environment involves compiling a comprehensive record of events from

diverse sources such as applications, services, hosts, network components and security

devices. To achieve this, logging data generated by these sources must be aggregated,

converted into a standardised data format and subjected to analysis.

A rather naive approach to the logging method would therefore be to record all the

events from all the applications and services. Unfortunately, it’s easy to see that such an

approach has its limits in terms of storage and analysis. Especially if we focus on network

logging, we could have terabytes of data in just one day. So it’s vital to first identify

the type of event we want to record, and then only record things that are of interest for

malware detection purposes. All logging information retrieved must be stored in a log file,

which must be structured correctly. Respecting a defined structure means that log file

entries can be analysed easily and efficiently. To meet all the requirements of a logging

system. The paper written by Kent and Souppaya and published by NIST provides a good

explanation of how to manage such a logging system. Explaining how to set up an infras-

tructure, how to plan logs and also how to have an operational log management process [59].

Finally, the last point that can be highlighted for this mechanism in relation to intrusion

detection systems is that it enables activity traces to be analysed afterwards. Whereas an

intrusion detection system acts automatically and directly on the system being analysed,

the logging mechanism allows the data to be analysed by a human expert or a machine

learning algorithm. For example, we could imagine collecting logs from a host over a

certain period of time and then saving them for analysis at a much later date.

Honeypots

A honeypot is a deliberately deployed asset in an information environment, devoid of any

actual operational use, with the explicit purpose of luring and potentially attracting attack-

ers. This strategic placement allows for minimal false alarms, as the absence of legitimate

production activity makes every interaction with the honeypot a significant event from a

security standpoint.

One of the popular implementations of honeypot was proposed by Provos N. [71]. The

article introduces Honeyd, a virtual honeypot framework designed to deceive fingerprinting

tools like Nmap and Xprobe. Applications in security include network decoys, worm detec-

tion, countermeasures, and spam prevention. The framework’s ability to mimic different

operating systems is highlighted.

SIEM

There are therefore a huge number of different sources of data for intrusion detection in

systems. It is therefore necessary to set up systems to retrieve all this information and

manage it centrally. Such systems are called Security Incident and Event Management or

SIEM systems.

There are plenty of SIEM solutions available on the market today. They all have their

technical and commercial advantages and disadvantages. Various solutions such as RSA,

15

SolarWinds, ArchSight, QRadar, McAfee, USM-OSSIM, Splunk and LogRhythm were

analysed by [47]. One interesting conclusion drawn by the authors is that most of these

tools have a pleasant graphical interface, but are not particularly effective at processing

the large number of events collected. It is therefore necessary for SIEMs today to develop

visualisation and analysis extensions that allow users to have a correct overview of the

state of the system and the various events in order to react as effectively as possible.

Threat hunting

Finally, no matter how many detection measures we put in place through logging, IDS,

SIEM, there will always be malware that will not be detected by our systems. That’s why

we sometimes go on a malware hunt to find out what has slipped through the internal

network. Once we’ve done that, we can improve our intrusion detection systems so that

these threats can no longer cause an incident on our network. This process of actively

looking for threats in our system is called threat hunting [7].

Static malware analysis

When we talk about static malware analysis, it is when we analyse the malware without

running it. We will therefore look at the code or different artifacts that could have been

modified on the exploitation system. For example, looking at the presence of certain

strings or checking the functions imported into the code. On Windows, we could also look

at the windows registry to determine if something interesting is present. Unfortunately

malware writers use several techniques such as obfuscation or packing to make the work

more complex. This is why malware analysis is not only static but also requires a dynamic

component [40].

Dynamic malware analysis

Despite all the obfuscation that a malware code can have, when a malware runs, it will

inevitably have some behaviour. So we will try to run the malware in a controlled environ-

ment and try to analyse it. For instance, we will be able to investigate if it has modified

some elements on the operating system to maintain persistence. We can also analyse the

network behaviour to look if it is trying to communicate with the outside world. To do this,

we can use sandbox that will isolate the malware and be sure that it does not propagate

in the network. A study by Or-Meir et al. [69] makes a comprehensive survey of dynamic

malware analysis techniques in the modern era.

2.2.2 Malware detection applied to mobile malware

Now that we know how it is possible to detect malware in a system in general, it is worth

presenting a review of the latest work on malware detection applied to mobile devices.

To do this, we can draw a parallel with intrusion detection systems. Accordingly, this

subsection will first present a review of the various HIDS that have been developed for

mobile devices. Then, it will be interesting to talk about NIDS.

HIDS for mobile devices

HIDS for mobile devices perform 3 main types of analysis. Firstly, detection by signature

verification. To do this, the HIDS has a list of malware signatures that it compares with

16

the applications installed on the phone. Secondly, anomaly based detection is often carried

out using models that have been trained on malicious application datasets. Finally, the

last analysis method, which is specific to mobile devices more than any other system, is the

analysis of the permissions given to the mobile application [92]. An application requesting

full permissions can be suspect.

So host-based intrusion detection systems do exist for mobile devices, and can offer

different levels of performance. However, given our context, the use of such an intrusion

detection system is not ideal. To do so, an application would have to be installed on

the phone, which is not always possible. Despite the fact that the HIDS do not apply to

our context, we can cite some papers that tried to go in this direction [11, 46, 72, 73]. In

addition, many anti virus companies offer a version for mobile devices like AVG3.

NIDS for mobile devices

Network traffic capture point When it comes to detecting malware by analysing net-

work traffic, there are a huge number of solutions proposed in the literature. Most of the

proposed methods use machine learning or deep learning algorithms to analyse network

traffic and detect the presence of malware. One thing that most scientific papers do not

take into account, and which can have an impact on the tool used, is the point of cap-

turing. There are several possible points of capture for recovering and analysing network

traffic. Sensibly, the traffic captured will not change, but given that the algorithm or tool

is running on a different system, this implies that it has different computing resources.

It is therefore difficult to train a deep learning algorithm on an embedded system, for

example, but inference becomes possible on small devices. That’s why it’s worth looking

at this point first, before talking about the different tools that can be used. For this, we

base ourselves on a comprehensive survey by Conti et al. [36] highlighting these different

capture points in several situations.

To talk about the different points where the traffic is captured, we can simply mention

the different points:

1. On device: Network traffic is captured directly on the phone via an application.

2. Off-device

(a) Wired network equipment: All traffic is redirected to a server where it is anal-

ysed.

(b) Access point: The phone is connected to an access point and everything is

analysed directly on the AP.

In the first case, where network traffic is recorded directly on the phone, the capture

point is directly in the mobile device. This means that an application is installed directly

on the phone to retrieve all the network traffic. This approach, like the others, has a

number of advantages and disadvantages. There are 2 major advantages to this method:

• Easy identification of traffic origin: All the traffic is retrieved from the mobile

device, so it is easy to identify that the traffic belongs to that phone. This is not the

3https://www.avg.com/en-us/antivirus-for-android#pc

17

https://www.avg.com/en-us/antivirus-for-android pc

case with network approaches, where traffic is captured from several mobile devices

at the same time, and when we want to analyse the traffic, we have to re-identify

which phone the traffic comes from.

• Easy to focus on specific applications or interfaces: So it’s easy to see that

we can easily choose to capture traffic from just one application or from an interface.

It is therefore easier and cheaper in terms of hardware costs to capture cellular data

where, with external equipment, we would have to use an IMSI-catcher.

Despite its advantages, this point of capture has a significant disadvantage that is important

to highlight.

• Lightweight application: Such an application must be lightweight, i.e. it must

not be too greedy in terms of computing demand, must occupy little memory space

despite the amount of traffic to be stored and must not consume a lot of battery

power.

With this point of capture, several methods have been presented in the literature.

One example is Shatbai et al. [79] who used machine learning algorithms on cellular/Wi-Fi

packets per application in order to detect a malicious application. These algorithms proved

to be very useful for logistic regression and the J48 decision tree with an accuracy of over

0.999. Interestingly, Su et al. [83] also used a J48 decision tree algorithm but only achieved

0.916 accuracy. The difference with the work of Shatbai et al. is that they used data from

the second layer of the OSI model. This clearly shows that even if the point of capturing

is interesting, the choice of content on which to base the results is very important. Finally,

more recent work includes that of Arora et al. [24] who focused on IP packets to run super-

vised machine learning algorithms. The results in terms of accuracy are fairly poor, with

an accuracy of 0.873 for the best case.

In short, this capture point will be useful if we want to focus on mobile malware that

exfiltrates private data from the mobile device via cellular data. Otherwise, it still has the

significant disadvantage of having to be lightweight and manually installed on the phone.

Most of the time these NIDS are also HIDS since they will take advantage of being on the

machine to look at more precise stuff like different files, permissions, etc

Then, in the second case (2a), network traffic is captured using a network device lo-

cated between the access point to which the mobile device is connected and the Internet.

These different network devices can be VPN servers, Internet gateways or simply comput-

ers whose task is to be dedicated to the recovery and analysis of network traffic. The main

disadvantage of this method is that if we find ourselves in a configuration where machines

other than telephones are connected, it will be necessary to sort out the network traffic

coming from the telephones if we want to concentrate solely on them. Nevertheless, this

method has a significant advantage that we don’t have in other cases. This important

advantage is the fact that we have greater computing power. By redirecting the network

traffic to a machine with more power, we will be able to run more demanding machine

learning algorithms for traffic analysis.

Thanks to this, some papers in the scientific literature have developed different detec-

tion methods based on this capture point. Wei et al. [28] for example used an Independent

18

Component Analysis algorithm on DNS query data with an accuracy of almost 100%.

Clearly, the algorithm can be easily bypassed by malware writers using DNSSEC or IPSec,

but it is rarely used. Apart from this work, there is also that of Wang et al. which uses

a C4.5 decision tree algorithm that focuses on the content of HTTP requests and TCP

headers to estimate whether traffic is malicious or not. This algorithm gives an accuracy

of 99.7% in the best case. Unfortunately, when focusing on HTTP traffic, the algorithm

can be easily bypassed if the adversary uses an HTTPS channel to exfiltrate the data.

Finally, the article [43] by Fend et al. does not identify exactly which capture point they

are using, but they present an approach that incorporates deep learning. So, if we want to

take advantage of the fact that we have a server with good computing power, this is the

kind of algorithm we prefer.

Finally, the last capture point (2b) is directly on the access point to which the phone is

connected. Generally speaking, in the context of capturing network traffic from a mobile

device, this capture point has been used for PII (Personally Identifiable Information) leak-

age detection [82] or user action identification [86]. However, among the scientific papers

focusing on malware detection for mobile devices, there don’t seem to be any papers taking

advantage of this capture point for malware detection. Thus, it is interesting to see what

advantages and disadvantages this capture point could bring to malware detection. The

first advantage is the mobility of such a NIDS. Unlike the other points mentioned above,

moving the NIDS means that it can be used in all circumstances, even when the mobile

device is not connected to a network. In emergency situations where it is necessary to

know whether the mobile device is infected and there is no network nearby, this point of

capture directly on the AP is the ideal situation.

When we talk about an access point, we think directly of a Wi-Fi router. However,

other solutions with embedded systems can be considered, such as the Raspberry Pi. A

Raspberry Pi has the advantage of being mobile, easy to deploy, inexpensive and easy to

configure, unlike a router. This makes it easy to deploy portable NIDS. On the other hand,

it is true that one of the disadvantages that we had in the first case, where the capture

point is on the phone, is partly present: a Raspberry Pi does not have very high computing

power, which limits the malware detection algorithms that could be deployed.

In short, there are 3 main capture points for harvesting network traffic: on-device, with

wired network equipment or directly on the access point. These different points don’t really

offer any advantages in terms of traffic captured, since we can see the same network packets

in all 3 situations (except in the first case, where we have access to cellular data). Where

certain parameters come into play is when we want to choose which machine learning

algorithm to use. If we want something more powerful like deep learning or something

with a lot of features, we’re going to favour harvesting and analysing traffic on the server.

In another case, where we want to prioritise mobility and the speed of deployment of a

NIDS, we will favour the capture point over the access point. In short, the choice of capture

point depends on the specific context and objectives [36].

Review of existing tools for Network Intrusion Detection Systems Now that

we’ve considered the various possible points of capture, it’s worth comparing the various

existing malware detection tools to understand what they do and what advantages they

19

have over each other. A list of the various NIDS software tools is provided by NIST [77].

This list includes several commercial NIDS and three better-known open source IDSs: Zeek,

Snort and Suricata. To review what exists in terms of tools and to be able to compare

them and be sure of what they implement, it is necessary to focus on these open source

tools in view of the fact that the tool implementation is freely available.

Snort [74] is a lightweight open source network intrusion detection system (NIDS) that

can also be used as an intrusion prevention system (IPS). To fulfil its role as an intrusion

detection system, Snort is capable of logging and analysing traffic in real time. In its NIDS

role, Snort can identify buffer overflows, stealth port scans, SMB probes, semanting URL

attacks, and so on. To do this, Snort has a list of rules to which it compares network

traffic, and if one of the rules it has matches what it finds, an alarm is sounded. It is also

capable of deep packet inspection (DPI), i.e. examining the data content of each packet,

which is crucial for detecting threats that could be hidden at application level. Finally,

Snort is quite extensible, with the option of installing third-party modules and plugins.

Zeek (formerly Bro) [70] is also an open source network intrusion detection software,

but it focuses more on in-depth network analysis than Snort. Where Snort’s approach is

essentially based on signatures, Zeek provides logs that are richer in detail, including the

protocols used, domain names, IP addresses and HTTP headers. All these details can then

be used to carry out a more in-depth analysis of traffic by implementing anomaly-based

detection algorithms.

Finally, Suricata4, like Zeek and Snort, is an open source intrusion detection system.

Its big advantage is that it has a multi-threaded implementation, enabling it to perform

well in intensive network environments. To fulfil its NIDS function, Suricata has both

rule-based and signature-based detection.

In short, Snort is advantageous in that it is not very performance-hungry, but on the

other hand, as it only works in single-thread mode, it is less powerful for networks with a

heavy load. As for Zeek, its main advantage is that it provides very detailed logs of network

activity, facilitating analysis through various algorithms. However, it has the disadvantage

of being geared more towards analysis than intrusion detection. It can therefore be slower

for real-time detection of specific attacks based on known signatures. Finally, Suricata

is multi-threaded, which gives it very good performance, but it has such a huge number

of functions that it can be complex to configure for non-expert users. It is more than

important to note that these tools do not feature machine learning algorithms for malware

detection, whereas most scientific papers seek to develop them. These machine learning

algorithms are very powerful for 2 main reasons. Firstly, because they can detect new

malware that is not listed in the IDS signature-based databases. But also because some

machine learning algorithms can classify traffic even when it is encrypted. Unfortunately,

most of the tools used at the moment focus on signatures, because despite the fact that

there are a huge number of machine learning algorithms presented in the papers, these

methods have too high a false positive rate.

4https://suricata.io/

20

https://suricata.io/

Logging

It is possible to choose to log events directly on the mobile device or from the network.

In our context, we are unable to log elements directly on the mobile device. However, the

ADB5 or Logcat6 tools can be used to analyse system logs on Android. To analyze network

logs from an access point multiple tools exist. Wireshark7 is a tool with a graphical user

interface to capture network packets and analyze them. Also, the tcpdump8 tool exists and

is used only on the command line. Finally, if we want to fulfill these objectives of network

packet capture and analysis with python code there are different libraries. Scapy9 is one

of the many libraries with which it is possible to do a lot of manipulation with network

packets.

Dynamic malware analysis

For dynamic malware analysis on mobile devices, various tools are available. Including

tools that allow direct interaction with the application that is investigated through a USB

connection. The context prevents us from working with these kinds of tools. Nevertheless,

it is still interesting to mention classic tools such as MobSF, JADX, Frida or Objection. A

very interesting tool that could be used for dynamic network analysis is Burpsuite. Indeed,

it is possible to install our own certificate from Burpsuite in order to read the encrypted

traffic that could be sent by the phone [30]. We could also bypass SSL pinning in order

to be able to analyze what a malware sends as data [12]. Unfortunately, these techniques

require to interact physically with the mobile device. However, this is not what it was in

the basic project and can be addressed in the future work. Finally, it can be noted that

there are a lot of tools to analyse the traffic of a network generated by malware. All these

tools are grouped by the community and available on Github10.

2.2.3 Developing a stand-alone solution

Once we know where we are going to capture the traffic and what tools are avaiblable,

it is worth remembering that we want to limit data extraction. With today’s solutions,

most NIDSs are just passive and only look at the traffic going out to the Internet. A more

effective solution to avoid data exfiltration at the same time as detection is to simulate a

network to isolate the mobile device. We can therefore conceptualise a fake access point

that, while not connected to the Internet, simulates internet services to deceive the mal-

ware into believing it has internet access. To do this, we can take an interest in the tools

that already exist, despite the fact that there aren’t many of them. Currently, the 2 main

tools used to simulate Internet services in order to set up a dynamic malware analysis

laboratory are FakeNet-NG11 and INetSIm12.

FakeNet-NG was developed by Andrew Honig and Michael Sikorski and the first version

was released in 2016. Its aim is to observe the characteristics of certain binaries in secure

5https://developer.android.com/tools/adb?hl=en
6https://developer.android.com/tools/logcat?hl=en
7https://www.wireshark.org/
8https://www.tcpdump.org/
9https://scapy.net/

10https://github.com/rshipp/awesome-malware-analysis?tab=readme-ov-file#network
11https://github.com/mandiant/flare-fakenet-ng
12https://www.inetsim.org/

21

https://developer.android.com/tools/adb?hl=en
https://developer.android.com/tools/logcat?hl=en
https://www.wireshark.org/
https://www.tcpdump.org/
https://scapy.net/
https://github.com/rshipp/awesome-malware-analysis?tab=readme-ov-file network
https://github.com/mandiant/flare-fakenet-ng
https://www.inetsim.org/

environments. By simulating the various services that the Internet comprises, the malware

awakens its network signatures by querying certain URLs, requesting certain command &

control domains, etc. More specifically, by default, the Internet services that FakeNet-NG

can simulate are DNS, HTTP, HTTPS and SMTP. One notable thing about this tool is

that it must be run on the same host as the malware. This has the main advantage that

fakenet is able to detect the name of the binary generating the network traffic. Unfor-

tunately, this means that fakenet is not applicable to the various capture points cited in

Subsection 2.2.2 about capture points. Finally, it should be noted that the tool is devel-

oped in Python, which makes it easy to implement new services and features.

INetSim (Internet Services Simulation Suite) is an open source tool developed by

Thomas Hungenberg and Matthias and written in Perl. The project was launched in

their spare time with the aim of quickly analysing the network behaviour of unknown

malware in a laboratory environment. Currently, the various Internet services simulated

by the software are HTTP/HTTPS, SMTP/SMTPS, POP3/POP3S, DNS, FTP/FTPS,

TFTP, IRC, NTP, Ident, Finger, Syslog. It should be noted that the implementation of

the HTTP and HTTPS protocols is quite advanced, since INetSim can respond to most of

the files requested by the malware. For example, if the malware requests access to a JPEG

file, the software will be able to send back a correctly formatted JPEG image. As a result,

the server will not return a 404 error and the malware will continue to run thinking it is

really connected to the Internet. Unlike Fakenet, INetSim does not need to be installed on

the same host as the malware in order to function correctly and redirect network traffic.

Most of the time, INetSim is installed on an initial virtual machine that will capture all

the network traffic generated by another virtual machine where the malware is running.

However, it seems possible to install it on a network component [75] to simulate an Inter-

net network. Finally, a considerable advantage of INetSim over FakeNet-NG is that it is

possible to interact with the malware. For example, one can listen on port 80 thanks to

netcat if one knows that the malware communicates in HTTP. In this way, one can pretend

to be the attacker’s C&C server and send commands that could have been found through

static analysis.

There are not many scientific papers on simulating Internet services. There is one

paper in the literature that develops a TRUMANBOX tool [49], but it does not seem

to be used in practice by malware analysts. INetSim seems to be the most widespread

solution at the moment, but it is written in Perl, the last update dates from 2020

and the developers do this in their spare time. It is therefore quite clear that the

tool may have limitations that have not been studied in the scientific literature and

that could improve the tool by anticipating malware behaviour more accurately. As

a result, there is an opportunity for research in this area where the idea would be

to build a powerful tool in a recent programming language that anticipates possible

malware escapes and uses current technologies to simulate Internet services.

Future work

22

2.3 Locked mobile device data acquisition

2.3.1 Challenges in acquiring data from locked devices

Acquiring data from locked mobile devices can be very difficult. Indeed, phones today

have several security mechanisms. First of all, some Android devices offer file-based en-

cryption since Android 10.013. This makes it difficult to recover data at rest without the

decryption key. Then it can be noted that there is a passcode protection used to prevent

the authorization of access to the phone. However, some PINs can be bruteforced. Bio-

metric authentications also provide an additional layer of security. Some software can be

used to bypass operating system or firmware security mechanisms. For instance, tools like

Cellebrite UFED14, GrayKey15 or Oxygen forensic detective16 can exploit vulnerabilities

to unlock devices without knowing the passcode. As phone technologies are constantly

evolving, experts must constantly maintain or current advanced products. In addition,

some reference papers such as the NIST guidelines or the Barmpatsalou et al. survey can

be consulted to understand the different methods [27,29].

In addition to software-based methods, some hardware-based methods can be applied

on the mobile device. For example, JTAG and chip-off methods involve accessing the

phone’s memory directly by physically connecting to it [33]. More sophisticated methods

allow to cold boot attacks to recover Android decryption keys by cooling the phone below

10 degrees [68].

Finally, we can do without software and hardware methods to focus on more conven-

tional investigation methods. First, we can simply ask the user for the code during an

interview. Then, we can analyse the seized material in order to know if the user has noted

the password on a piece of paper or something else. In addition, we can also analyse the

screen of the phone with a Smudge attack as [25] to guess the code of the phone. The

last investigative method is to ask the provider. It is indeed sometimes possible to ask the

PUK code to the provider in order to be able to reset the PIN code and have access to the

phone.

2.3.2 Probe requests analysis

Unfortunately, the different techniques available today do not really adapt to our context.

Indeed, it is either necessary to buy fairly expensive commercial products, or it is necessary

to disassemble the phone to be able to inspect it. So there is an artefact that the papers

we discussed did not receive, they are probe requests. The probe request is a type of

management frame for Wi-Fi connectivity of devices. When a device is not connected to

any network, it will send a series of probe requests to announce the names of the access

points it already knows. As said in the intro, this is an interesting artefact on the one

hand because it can be used with a tool like WiGLE but also because this data makes it

possible to uniquely identify the user. This is because the phone has a more or less unique

list of access point names. These probe requests make it possible to track the movement

of users in certain scenarios. This shows the interest of analysing probe requests even if

13https://source.android.com/docs/security/features/encryption/file-based
14https://cellebrite.com/en/ufed/
15https://www.magnetforensics.com/products/magnet-graykey/
16https://oxygenforensics.com/en/

23

https://source.android.com/docs/security/features/encryption/file-based
https://cellebrite.com/en/ufed/
https://www.magnetforensics.com/products/magnet-graykey/
https://oxygenforensics.com/en/

they do not seem to reveal private information at first [37,44,50].

24

Chapter 3

Bridging research and application

3.1 Purpose and overview

This short chapter aims to make the transition between the state of the art (covered in

Chapter 2) and the practical implementation of the project (to be detailed in Chapter 4).

Here, we summarise the findings from the state of the art review to inform our selection

of tools and methodologies for detecting mobile malware. First, we will highlight the key

elements of the state of the art in mobile malware detection. Following this, we will present

the different criteria for selecting appropriate tools depending on the IoCs and the specific

requirements of our context. Finally, we justify the choice of tools and discuss their appli-

cability in preventing and detecting data exfiltration. The advantage of such an approach

will allow a logical flow from theory to practice enabling the reader to correctly understand

the methodological choices as well as the implementation in the following chapter.

The state of the art begins with a first part on mobile security. This part is intended to

understand the domain before delving into malware detection. It is precisely in the mal-

ware detection section that we have highlighted some tools. First, for intrusion detection

systems by the network, we had seen several tell tools like Bro, Snort or Suricata. There

are also several experimental machine learning algorithms aimed at improving the detec-

tion of network patterns. Then, regarding logging tools, we approached Logcat machine

side. On the network side, we talked about tools like Wireshark, tcpdump and Scapy. On

the dynamic malware analysis, we talked about Burpsuite. Finally, regarding the emu-

lation of Internet services, we mentioned INetSim and FakeNet-NG. The advantages and

disadvantages of these different tools have already been compared in the state of the art.

Nevertheless, this section is intended to support the tools chosen and the reason for this

choice for the sake of clarity.

3.2 Tools and technologies used

3.2.1 IoCs: Context and coverage

In order to correctly choose the tools we have identified, it is important to highlight the

different IoCs that exist. Once these IoCs are highlighted, it is interesting to see which ones

we can find in our context. By combining the requirements of our context, the IoCs and the

tools we have identified, we can have a robust approach to knowing what we can identify

and what we cannot highlight. IoCs can be of different types. They can be host-based,

network-based, file-based, behavioral or metadata. Our context requiring us to identify the

IoCs by an access point, therefore directly implies to focus only on the IoCs passing through

the network. Cloudfare identifies these different IoCs networks as malicious IP addresses,

domain names, URLs, network traffic patterns, unusual use of ports, connections to hosts

known to be malicious or network exfiltration patterns [19]. It is therefore necessary that

the tools we select can identify as many of these IoCs as possible, while being able to meet

the requirements of our context. Finally, we note that our project will not allow us to

25

identify all IoCs. For more advanced malware detection, it will be necessary to investigate

the various artifacts left on the host.

3.2.2 Tool selection

First, regarding the intrusion detection systems by the network, we have discussed different

machine learning algorithms. There is indeed a lot of research that has been done to use

machine learning algorithms for intrusion detection. However, the detection of anomalies

for the network is not suitable for our project given the high rate of false positives and

the lack of robustness. This generation of false alarms would distract a digital forensic

analyst from the real threats. This high generation of false alarms and lack of robustness

is not unfounded. Indeed, the [26] and [80] papers highlight the success of such systems

in operating environments as very limited. Given that our system is supposed to feature

IoCs to help the work of a digital forensic analyst, it is easy to understand why no machine

learning algorithm will be used in our project. This highlights the distance that can exist

between research and practical application. Despite this, it is now interesting to highlight

the use of existing tools. For the project we will use Snort. This is explained by the fact

that, as identified, Snort is less resource-consuming than Zeek or Suricata. Since we use

a Raspberry Pi, it makes sense in view of the limited resources of such a device. So it

is thanks to Snort that we can cover the IoC of the suspicious network traffic patterns.

Then, at the level of network logging, we will choose Scapy. As mentioned before, using

python will allow a better scalability of the project. In addition, Scapy will allow to extract

important IoCs such as DNS domain names as well as suspicious IP addresses. Finally,

the tool will log all the network packets sent by the phone on the wireless interface. This

network log file will be saved in a pcap. This will allow a post-capture analysis to identify

IoCs such as URLs, data exfiltration patterns or unusual use of ports.

3.3 Validation of chosen approaches

Now that we have chosen which tools we will use in our project, it is necessary to justify

their usefulness. Indeed, we are trying to ensure that we can detect attackers thanks to

the chosen tools. If we can do malware detection, we will also justify to what extent we

can detect attackers. To do this, we will use the pyramid of pain from the discipline of

threat intelligence. Despite the fact that this discipline is quite far from digital forensics,

its use may be justified. Moreover, given the fact that we are in a sensitive environment,

it is necessary to highlight the exfiltration of data that we are able to block. In addition

to being able to block exfiltration of certain data, we can also detect certain types of data

extraction. This analysis is highlighted in the Subsection 3.3.2.

3.3.1 Pyramid of pain

The pyramid of pain comes from the discipline of cyber threat intelligence. The purpose

of this discipline is to collect as much information as possible about different existing or

emergent threats. These threat insights can contain their motivations, attack methods,

and targets. The goal of collecting this data for an organization is to better prepare for

its threats. This allows it to improve its detection and response systems against an at-

tacker [78]. A concept related to cyber threat intelligence is the pyramid of pain. The

different levels of the pyramid describe the difficulty for the origin of a threat to succeed

26

an attack when certain indicators are blocked by a defender. We can therefore understand

that the discipline of cyber threat intelligence is quite different from what can be found

in digital forensics. Nevertheless, we can see that these two disciplines have the common

point of improving the detection of a threat according to some indicators. In short, we

can use the pyramid of pain to understand what "pain" we can do to an attacker but also

what type of advanced attacker we cannot cover.

The pyramid of pain was conceived in 2013 by David J. Bianco following the release

of a report on APT1. This pyramid of pain was created because professionals struggled

to correctly apply indicators of compromise to block this threat. The pyramid of pain

illustrated in Figure 3.1 is as follows: inside the pyramid is the IoC and on the right side

is the pain that is done to the attacker. For example, if we manage to detect and block

the tools that the attacker uses then it will be challenging for the offender to infect us.

This form of pyramid allows us to evaluate the pain we do to the attacker but also to what

extent we are able to block an attacker. Also what type of attacker we can block [32].

Figure 3.1: Pyramid of pain

We can therefore highlight what we cover thanks to the tools we have selected for our

project. For the first level of the pyramid, it is difficult to recover the hash values of the

files since our context of does not allow us to have access to the mobile device. Regarding

the second and third level of the pyramid, we could use tcpdump. This would allow to

output IP addresses that are suspicious compared to the rest of our traffic. Nevertheless,

for reasons of scalability of the project, we will favor an approach with Scapy. Developing

the project in python will easily improve the project for future work. Then, concerning the

fourth level, it is partially covered thanks to the use of Snort and Wireshark. Snort will

track malware signatures. Wireshark will highlight URI patterns, server C&C information

and all network packets. The uncovered part of this fourth level are host artifacts. This is

because we do not have access to the host. Finally, the last two levels are not covered by

the tools that could be selected in this project.

In conclusion, the pyramid of pain is a very interesting framework for cyber threat

intelligence, which enables us to highlight the different levels of difficulty of attackers when

certain indicators are detected. In our project, given that we have limited access to hash

values, we are using tools such as Scapy, Snort and Wireshark to cover the different levels

of the pyramid of pain. However, some aspects such as host artifacts and advanced attacker

techniques remain beyond our current capabilities. This structured approach allows us to

27

understand the strengths and limitations of the implementation we are going to put in

place.

3.3.2 Data exfiltration prevention and detection

After assessing the complexity of the attackers we can detect, we can look at the coverage of

data exfiltration. This is important given our context. As highlighted in the introduction

of this context, the military context requires us to prevent the exfiltration of sensitive

data. It is therefore important to resume the taxonomy of data exfiltration that we had

put forward in the state of the art thanks to the advances of the field. A modified version

is given in Figure 3.2. In this figure, what is in blue describes the means of exfiltration

that we can block during malware analysis. The elements in green are those that we can

detect during an analysis thanks to the project. We can therefore note the usefulness of

the Faraday enclosure. Indeed, all means of data exfiltration are covered by the Faraday

enclosure.

Figure 3.2: Data exfiltration coverage

3.4 Summary

In short, we have succeeded in making a transition between the theoretical framework

of Chapter 2 and the practical implementation of Chapter 4. Additionally, we presented

arguments against the use of machine learning for our project due to its high rate of false

positives and lack of robustness in practical applications. Furthermore, we validated our

approach by aligning it with the pyramid of pain, illustrating the levels of detection and

prevention we can achieve against potential attackers. Finally, we examined the taxon-

omy of data exfiltration, highlighting how our chosen tools and methodologies can prevent

and detect various exfiltration attempts. Overall, this chapter sets a clear, logical transi-

tion from theory to practice, providing a solid foundation for the detailed implementation

28

strategies to follow in Chapter 4.

29

Chapter 4

Usage & Implementation

4.1 Global methodology

As a reminder, we have 3 solutions to develop in this project. Firstly, working in an iso-

lated environment thanks to the Faraday enclosure. Secondly, the purpose is to design an

intrusion detection system within this box, activated when a soldier suspects malware on

their mobile devices. Finally, to recover the probe requests from a captured mobile device

in order to recover interesting information.

To create an all-in-one product, the idea is to put a Raspberry Pi inside the Faraday

enclosure. This setup will enable to switch between two modes.

1. The first mode will be the intrusion detection system mode, which will make it

possible to estimate whether or not the phone is infected by malware.

2. The second mode will capture probe requests sent by the locked mobile device.

4.2 Usage

When the user wants to interact with the product, this is how it looks (Figure 4.1). The

Raspberry Pi is located inside the Faraday enclosure. To this Raspberry Pi is connected

3 LEDs and one button as shown in the Figure below. These elements make up the user

interface, enabling the user to interact with the various modes of the application.

Figure 4.1: Overview of the product

30

CHAPTER 4. USAGE & IMPLEMENTATION 31

When the user plugs the Raspberry Pi into the socket, the program will launch. For

the sake of clarity, we have divided the use of the program into 4 stages.

For simplicity’s sake, a quick reference guide has been included in the Appendix B.

The idea behind this guide is to create something simple and quick to understand. It

has been made in such a way that it can be stuck to the top of the Faraday enclosure.

Side note

4.2.1 Launch the Raspberry Pi

At the first launch, i.e. simply when you plug in the socket, the yellow LED will light up.

This indicates that the program has been launched and that you are now able to interact

with it.

(a) Power plug disconnected (b) Power plug connected

Figure 4.2: Connect the Raspberry Pi plug

4.2.2 Mode selection

Mode switching

Once the yellow LED is on, you can interact with the button to switch between the 2

modes. Pressing the button while the yellow LED is on will activate the red LED and turn

off the yellow LED. Conversely, pressing the button while the red LED is on will turn off

the red LED and illuminate the yellow LED.

(a) IDS mode selected (b) Probe requests mode selected

Figure 4.3: Mode switching thanks to the button

The meaning of these LEDs is quite simple. They indicate the mode in which the user is

going to run the program. In other words, it is possible to choose whether the Raspberry Pi

32 4.2. USAGE

will behave like an intrusion detection system or whether it will capture the probes requests.

When the yellow LED is selected, this means that the Raspberry Pi is in IDS mode.

When the red LED is selected, this means that the Raspberry Pi will capture probe re-

quests.

IDS mode particularity

As mentioned in the introduction, the idea to detect whether the phone is infected by

malware is to connect it to a Wi-Fi access point and capture the network traffic. As

soon as the program is launched, the Wi-Fi access point is created and the phone can be

connected to it. To connect, access Wi-Fi settings on the phone and search for available

access points. Look for the network name "MasterThesis", which is the default name of

the access point generated by the Raspberry Pi.

Figure 4.4: Connects mobile device to the AP

On the image provided, the name of the access point is "FreeWire". Obviously, the

name of the access point is subject to change. The default access point name is set

to "MasterThesis".

Side note

4.2.3 Launch the program

To select the desired mode, follow these simple steps:

1. Insert a USB key into the designated port on the side of the Faraday enclosure where

you wish to export the collected data.

2. Press and hold the button for approximately 5 seconds until the green LED illumi-

nates. This extended press will activate the program.

Once the green LED is on, the program is running. During the operation, the green

LED will remain illuminated, signalling that network capture is ongoing.

CHAPTER 4. USAGE & IMPLEMENTATION 33

(a) Long press on the button (b) Program launched

Figure 4.5: Launch mode thanks to the button

4.2.4 Save the capture on the USB stick

Regardless of the mode you’re in, stopping data capture is simple: just press the button.

After pressing the button, all three LEDs will blink five times before turning off. This

blinking indicates that the data is being saved onto the USB key. Once the LEDs are all

off, you can safely disconnect the USB key. The digital forensics team can then connect

the USB key to a laptop to analyse the extracted data in more details.

Figure 4.6: Simple press on the button

4.3 Software design methodology

4.3.1 Overview of software components

In order to develop our project, we need several components. First of all, the choice of OS

need to be carefully considered in order to capture the probes requests. Next, we need to

present the tool we are using to create a Wi-Fi access point. Once the access point has

been configured, we need to add the INetSIm tool in order to simulate an Internet network.

Finally, once our wireless access point has been configured to simulate an Internet network,

we need to detect potential intrusions. To do this, a python implementation is needed to

capture traffic, record the domain names and suspicious IP addresses. The Snort tool is

also installed to detect network traffic patterns.

The first thing that can be said about the software methodology is the OS chosen.

Indeed, the operating system chosen is Kali Linux 2024.1, whose kernel version is Linux

5.15.44-Re4son-V7l+. The choice of such an operating system is not trivial, but is neces-

34 4.3. SOFTWARE DESIGN METHODOLOGY

sary for a specific purpose. In fact, it is necessary to switch the Wi-Fi network card to

monitor mode. Without this mode, it would be impossible to capture probes. For this rea-

son, Kali Linux comes with the nexmon1 utility. Nexmon is a C-based firmware patching

framework for Broadcom/Cypress Wi-Fi chips that enables monitor mode. Monitor mode

allows to hear all the radio traffic on a specific channel, rather than just the traffic directed

to a specific device. Probe requests are broadcasted to all devices in range, not directed

to a single recipient. So, in monitor mode, the Raspberry Pi becomes like a radio scanner,

passively listening to all traffic on the designated channel.

Next, several tools are required to create our fake Wi-Fi access point. These tools are

dnsmasq2, dhcpcd3 , hostapd4 and INetSim5. The first 3 are used to create the access

point, while the last is used to create a simulation of an Internet connection. The first tool

is dnsmasq, which provides a DHCP server and does DNS caching. Dhcpcd will allow us

to configure a static IP address for our wireless interface. Hostapd is a daemon that allows

a network card to function as an access point. It implements the IEEE 802.11 standard for

managing access points and also provides the various conventional authentication methods

such as WPA, WPA2, WPA3, EAP, etc. So it’s thanks to this tool that we can also define

the name of the access point. Finally, INetSim is a software package written in Perl that

simulates common Internet services in a laboratory environment in order to analyse the

network behaviour of certain malware.

Finally, a python program will capture all the packets on the network and store them

in a pcap file. This same python program will also be used to collect all the domain

names consulted in the capture. In order not to overload this file of classic domain names,

a whitelist is set up to record only unusual domain names. The program also gathers

suspicious IP addresses, enhancing its capability to identify IoCs. These three artefacts

— PCAP files, domain names, and suspicious IP addresses — can then be analysed by

digital forensic experts. In addition, Snort can be used as an intrusion detection system by

analysing the network. This will detect suspicious traffic generated by the mobile device.

4.3.2 Installing the OS on the Raspberry Pi

Installing the OS on the microSD card is not a problem, thanks to the Raspberry Pi Imager

tool6. Once the tool is installed on the user’s operating system, simply open it and select

the microSD card. Finally, simply select the Kali Linux for Raspberry Pi 4 32-bit image

as shown in the figure below.

1https://github.com/seemoo-lab/nexmon
2https://thekelleys.org.uk/dnsmasq/doc.html
3https://roy.marples.name/projects/dhcpcd
4https://w1.fi/hostapd/
5https://www.inetsim.org/index.html
6https://www.raspberrypi.com/software/

https://github.com/seemoo-lab/nexmon
https://thekelleys.org.uk/dnsmasq/doc.html
https://roy.marples.name/projects/dhcpcd
https://w1.fi/hostapd/
https://www.inetsim.org/index.html
https://www.raspberrypi.com/software/

CHAPTER 4. USAGE & IMPLEMENTATION 35

Figure 4.7: Kali Linux OS in Raspberry Pi Imager

4.3.3 Implementation methodology

The following points describing the implementation make up the bulk of this chapter. They

aim to explain how the various tools have been installed, as well as explaining the code

behind them. This will give the reader a clear understanding of how the project was built.

Therefore, the subsection 4.3.4 is divided into 4 points. Firstly, we discuss the way in

which the access point is created and configured. Secondly, the installation and configura-

tion of the INetSim tool for simulating Internet services will be presented. Thirdly, there

will be a short explanation of how Snort was installed and what rules were put in place.

Fourth, the scenario where probe requests need to be captured will be addressed, with a

paragraph dedicated to activating monitor mode and explaining probe requests. Finally,

once all these tools have been installed and configured, it will be necessary to show in the

subsection 4.3.5 how they have been put together to create an all-in-one product using

python code.

To help the reader and developer, source code is provideda. We also provide the file

structure in Figure 3.8 for ease of reading.

ahttps://gitlab.cylab.be/cylab/mobile-case.git

Side note

https://gitlab.cylab.be/cylab/mobile-case.git

36 4.3. SOFTWARE DESIGN METHODOLOGY

mobile-case
conf

dhcpcd.conf
dnsmasq.conf
hostapd.conf
inetsim.conf
rules.v4

scripts
startup

whitelists
DNSWhitelist.txt
IPWhitelist.txt

main.py
config.py
captureTraffic.py
captureProbes.py
mountUSB.py
customExceptions.py
requirements.txt

Figure 4.8: Gitlab file tree

• conf : This folder contains a copy of the configuration files required for the various

tools. It allows a developer to use it as a basic reference for a default configuration.

• scripts: This folder contains all the scripts needed to run the project. For the

moment, it contains just one file containing all the commands to be executed at

start-up.

• whitelists: This folder contains all the domain names and IP addresses that an An-

droid or iOS phone can request for simple routine operations. This file was generated

from a capture where three Android phones and one iPhone were connected for 24

hours.

• main.py: This file contains the python code that will run the whole software. This

python file is called directly and imports the other python files.

• config.py: This file contains the python code used to set the basic configurations,

such as the pin numbers associated with the LEDs.

• captureTraffic.py: This file contains the python code needed to capture the net-

work traffic generated by the phone. It is not run directly but is called from main.py

file.

• captureProbes.py: This file contains the python code needed to capture probes

requests. It is not run directly.

• mountUSB.py: This file contains the python code needed to capture and mount

the USB key plugged into one of the Rapsberry Pi’s ports. It is not run directly.

• customExceptions.py: This file contains the exceptions specific to this project.

CHAPTER 4. USAGE & IMPLEMENTATION 37

4.3.4 Tools installation

Create an access point

In order to configure the Raspberry Pi as an access point, we need first to install the dns-

masq and hostapd packages thanks to apt package management tool. Next, we’ll need to

modify the configuration files for these tools. Finally, we need to add these tools to the

machine boot and reboot them for the configurations to take effect7.

Thus, we need to modify the dhcpcd configuration file if we want to give a static IP

address to our wlan0 interface. This is necessary for the Raspberry to act as a server.

We’re assuming here that we’re using the 192.168.x.x standard for our wireless network

and so assigning the IP address 192.168.4.1 to our Raspberry Pi. This can be done by

modifying the dhcpcd configuration file /etc/dhcpcd.conf.

interface wlan0
static ip_address=192.168.4.1/24
nohook wpa_supplicant

Listing 1: /etc/dhcpcd.conf

We also need to configure the dhcp service so that we can assign an IP address to the

devices that will be connecting to the access point. To do this, we need to edit the dnsmasq

configuration file to give it the range of IP addresses we want to give to the devices. The way

we configure our tool will allow us to give IP addresses between 192.168.4.2 and 192.168.4.20

to devices connected for 24 hours. This can be done by modifying the configuration file

/etc/dnsmasq.conf.

interface=wlan0
dhcp-range=192.168.4.2,192.168.4.20,255.255.255.0,24h

Listing 2: /etc/dnsmasq.conf

In addition, we need to configure the name of the access point itself. To do this it is

necessary to modify the hostapd configuration file /etc/hostapd/hostapd.conf and

add the below information to the file. The channel is used to specify the channel number

on which the access point will operate. This ensures that there is not too much interference

from other access points. In our case, we can set it to whatever we like, as there will be

no other access points in the Faraday enclosure.

country_code=BE
interface=wlan0
ssid=MasterThesis
channel=9

Listing 3: /etc/hostapd/hostapd.conf

We also need to tell hostapd where to find this configuration file. To do this, simply

modify the /etc/default/hostapd file and find the line with #DAEMON_CONF and

replace it like this.

7https://raspberrypi-guide.github.io/networking/create-wireless-access-point

https://raspberrypi-guide.github.io/networking/create-wireless-access-point

38 4.3. SOFTWARE DESIGN METHODOLOGY

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Listing 4: /etc/default/hostapd

Finally, it is necessary to enable the services when the Raspberry Pi boots. We also

need to restart all the services for changes to the configuration files to take effect.. To do

this, use the following command sequence.

kali@kali:~$ sudo systemctl unmask hostapd

kali@kali:~$ sudo systemctl enable hostapd

kali@kali:~$ sudo systemctl restart hostapd dhcpcd dnsmasq

Listing 4.1: Restart service

Simulate Internet services

To simulate an Internet connection to the access point, it is necessary to install and

configure the inetsim tool. To do this, two main values need to be changed in the in-

etsim configuration file /etc/inetsim/inetsim.conf. Firstly, change the value of

service_bind_address to specify the IP address on which the simulated internet services

will be bound i.e. 192.168.4.1, typically corresponding to the static IP address we gave to

the wlan0 interface previously. The second thing to change is the value of dns_default_ip

to 192.168.4.1 also in order to specify the default IP address used by the DNS server for

domain name resolution. Listing 5 shows how the configuration file should look after these

changes. After these changes, don’t forget to restart the inetsim tool and activate it to run

at boot.
...
service_bind_address 192.168.4.1
...
dns_default_ip 192.168.4.1
...

Listing 5: /etc/inetsim/inetsim.conf

Then, once the tool is correctly configured, you need to redirect some of the traffic to

inetsim. In fact, you need to redirect all the traffic apart from the DHCP packets. If we

redirected the DHCP packets to inetsim, it would be impossible to assign an IP address

to the mobile device we are connecting. Next, we need to record the firewall rules so that

they are resistant to each reboot using iptables-save.

kali@kali:~$ sudo iptables -t nat -A PREROUTING -i wlan0 -p udp --

dport 67:68 -j ACCEPT

kali@kali:~$ sudo iptables -t nat -A PREROUTING -i wlan0 -j REDIRECT

kali@kali:~$ sudo iptables-save > /etc/iptables/rules.v4

Listing 4.2: Modify firewall rules to redirect traffic to inetsim tool

What’s more, once we’ve redirected the traffic to inetsim we’ll have to modify a tool

that we’ve already installed : dnsmasq. Even if we have added firewall rules, dns requests

will still be managed by this tool, as it is required to create the access point. So we’re

going to add a configuration line to the file so that all responses to any DNS request are

192.168.4.1 or the static IP address that we gave to the Rapsberry.

CHAPTER 4. USAGE & IMPLEMENTATION 39

address=/#/192.168.4.1

Listing 6: The line to add at the end of /etc/dnsmasq.conf

Finally, we create a "startup" script which will restore the rules on reboot and which

we add to a crontab.

#!/bin/zsh

iptables-restore < /etc/iptables/rules.v4

Listing 7: startup script

Open a crontab configuration file with sudo crontab -e and add the following line

at the end of the file.

@reboot sudo /home/kali/Desktop/mobile-case/scripts/startup

Listing 8: Make firewall rules persistent

Install and configure Snort

Installing Snort is very simple and requires nothing more than being installed by the apt

package management tool. The official Snort website allows to download detection rules de-

veloped by the community that can be added to the project8. Once the rule file has been

downloaded, simply move it to the /etc/snort/rules folder. Once the community

rules have been imported, you can modify the Snort configuration file /etc/snort/s-

nort.lua to integrate these rules. To do this, modify the ips variable as follows.

ips =
{
enable_builtin_rules = true,
include = "/etc/snort/rules",
variables = default_variables
}

Listing 9: Make firewall rules persistent

We also want the alerts generated by the Snort rules to be saved on the USB stick. To

do this, we need to find the alert_fast variable in the same configuration file like this.

alert_fast = {file = true, packet = false,}

Listing 10: Redirect alert_fast output in a file

Now, if you want to run Snort from the command line and direct it to the USB key.

Here’s the command we need to use. It’s obviously for illustration purposes, as it will be

run using the python script.

8https://www.snort.org/downloads#rules

https://www.snort.org/downloads#rules

40 4.3. SOFTWARE DESIGN METHODOLOGY

kali@kali:~$ sudo snort -c /etc/snort/snort.lua -R /etc/snort/rules/

local.rules -i wlan0 -A alert_fast -s 65535 -k none -l /path/to/

USBKEY

Listing 4.3: Running Snort in a custom configuration to log on the USB key

The choice of running Snort on the pcap file and not during program execution is

easily justified. Firstly, because running Snort at the same time as a python script

results in a certain loss of information. In such a situation, some packets will be lost.

What’s more, given that we don’t need Snort’s live feedback and that we look at the

output afterwards anyway, there’s no point in having live processing. In short, the

aim of such a choice is to ensure the efficiency and precision of the software.

Remark

Turn on monitor mode

For this part, the tools are installed automatically by the operating system. To activate

monitor mode we use the airmon-ng tool, which is itself based on the nexmon firmware

patching framework. If we take into account that we have already configured all the

previous tools for IDS mode, then we need to disable them so that the wlan0 interface is

not already occupied. You also need to remove the firewall rules to prevent traffic from

being redirected. To do this, we have the following sequence of commands.

kali@kali:~$ sudo systemctl stop hostapd dhcpcd dnsmasq inetsim

kali@kali:~$ sudo iptables -F

kali@kali:~$ sudo airmon-ng start wlan0

Listing 4.4: Disable tools for IDS mode and enable monitor mode

A summary, without explanation, of all the commands executed one after the other

can be found in the Appendix A.2.

Shortcut for this subsection

4.3.5 Python implementation

This subsection presents the Python code that runs the entire project. We’re taking a

top-down approach here, starting with the main.py file and then looking at which methods

it calls. The aim here is not to explain the code line by line but rather the overall logic of

each file so that it is more accessible to someone who would like to improve the project.

main.py

If we look closely at the body of the program in Listing 11, it’s very short. Most of the

code is in the main() function. However, it’s interesting to note the way we handle ex-

ceptions. Since the user doesn’t get error feedback on a screen, we make it visual through

the LEDs using the indicates_exception() function. In addition, for ease of application

development, the error traceback is recorded on the USB key or on the desktop if this is

CHAPTER 4. USAGE & IMPLEMENTATION 41

not possible.

Apart from handling any exceptions, we can explain the overall logic of the main()

function. This function is quite simple; it detects whether the button is pressed and lights

the LEDs accordingly. Then, once it detects a long press, it will call the code in the

captureProbes.py or captureTraffic.py files, depending on the choice made by the

user.

try:
while True: # Let the program rerun automatically

main()
except Exception as e:

indicates_exception(red_led, yellow_led, green_led)
try:

usb_path = get_usb()
exception_path = f"{usb_path}/exception.txt"
store_exception(e, exception_path)
raise e # Print it in the stdout even though

except Exception as e:
exception_path = "/home/kali/Desktop/exception.txt"
store_exception(e, exception_path)
raise e

Listing 11: Body of the main.py file

config.py

This file contains everything you need to configure the project globally. It is used for the

classic setup of each pin on the Raspberry Pi board. In addition, it is this file that defines

the pin number to which the LEDs and button are connected.

captureTraffic.py

The main function of this file is capture_traffic(), which is divided in three stages:

pre-processing, processing and post-processing. Firstly, the pre-processing stage involves

mounting the USB flash drive and defining the paths where the analysis files will be stored.

In addition, whitelists from DNSWhitelist.txt and IPWhitelist.txt are loaded into

memory. Next, the processing stage consists of sniffing all the packets received on the

wlan0 interface (see Listing 12). If a packet is a DNS request, the domain name is analysed

and if it is not in the whitelist then it is recorded on the USB key. This processing stage

is multi-threaded to detect user button presses for ending the sniffing process. as shown in

Listing 12. Finally, the post-processing stage runs Snort on the generated pcap file, sorts

domain names, and removes Snort’s false positives.

t = AsyncSniffer(iface="wlan0", store=False, prn=process_packet)
t.start()
detect_button()
t.stop()

Listing 12: Processing part of the capture_traffic() function

42 4.4. FRITZING DIAGRAM FOR HARDWARE SETUP

captureProbes.py

This python file contains a main function called capture_probes(). This function is

quite short but has a pre-processing part as well as a processing part. The pre-processing

part consists of stopping all the tools used to create the access point, clearing the firewall

rules and putting the wireless interface in monitor mode. Once in monitor mode, the

interface is called wlan0mon. Listing 13 shows what the main processing of this function

looks like. As before, the idea of multi-threading the sniffing comes from the need to stop

the program when a button press is detected.

t = AsyncSniffer(iface="wlan0mon", store=False, prn=process_packet)
t.start()
detect_button()
t.stop()

Listing 13: Processing part of the capture_traffic() function

4.4 Fritzing diagram for hardware setup

Not many components are physically connected to the Raspberry Pi. However, it is al-

ways useful to provide a Fritzing diagram so that the developer can easily reproduce the

connections. This diagram is shown in Figure 4.9.

Figure 4.9: Fritzing picture of the connections

CHAPTER 4. USAGE & IMPLEMENTATION 43

4.5 Additional considerations and access

4.5.1 Generating whitelists for DNS, IP addresses and Snort

To simplify the work of the digital forensic analyst, it is useful to sort the domain names

and IP addresses that are considered legitimate. This will make it easier to identify IoCs in

domain names and IP addresses. If we look at the network traffic of an uninfected mobile

device, we can see that an astronomical number of domain names are requested. This

subsection therefore explains how the whitelist of domain names in DNSWhitelist.txt

was generated. In addition, within the code it was necessary to generate a whitelist for

Snort rules. The construction of this whitelist is a slightly more subtle choice, since it was

necessary for our particular case. Finally, it is also a good idea to whitelist legitimate IP

addresses. This will make it possible to identify suspect IP addresses.

First of all, to create the whitelist of domain names, it was necessary to create a

short python code. This script is not available on Gitlab but is provided in Listing 14.

This simple python script using Scapy adds all the domain names received on the wireless

interface to a text file. To retrieve the domain names, the idea was to make the Raspberry

Pi a Wi-Fi repeater so that it could provide an Internet connection to the connected

devices. In this way, all we had to do was people for their agreement to connect to the

access point while they were carrying out their usual activities. We can therefore make

the strong assumption that their phones are not infected with malware. We can make this

assumption because none of the phones connected to the access point have been rooted or

jailbreaked. Furthermore, they have only installed very basic applications. Additionally,

the applications installed on the various mobile devices were downloaded from the official

stores.

from scapy.all import *

def process_packet(pkt):
if DNS in pkt and pkt[DNS].qr == 0:

query_name = pkt[DNSQR].qname.decode("utf-8")
file = open("DNSWhitelist.txt", "a")
file.write(f"{query_name}\n")
file.close()

sniff(iface="wlan0", store=False, prn=process_packet)

Listing 14: Python code to generate the domain name whitelist

Next, we needed to create a whitelist for the Snort rules. This is because we have a

tool that simulates Internet services. Some packets may therefore be considered suspicious

because they do not appear the way a real Internet connection works. So, following the

same logic as before, the idea is to connect uninfected mobile devices and look at the

numbers of the rules that are generated. Afterwards, it will still be necessary to look at why

these rules are activated before hardcoding them in the project. For ease of presentation,

the rules we have decided to whitelist are presented in the table below. This table explains

what the rule detects and why it is activated in our case.

44 4.5. ADDITIONAL CONSIDERATIONS AND ACCESS

Rule number Rule explanation Reason for their activation

137:2 An invalid SSL server HELLO
was received without an SSL
client HELLO having been de-
tected

INetSIm may generate SSL re-
sponses in a simplified manner
that does not conform to typical
SSL/TLS exchanges. This may
include sending a ‘server HELLO’
without the full SSL handshake
process having been followed cor-
rectly, giving in this alert

116:444 (ipv4) IPv4 option set INetSIm could add IPv4 options
for various reasons, such as simu-
lating certain network behaviours

119:260 The TCP connection was closed
before the full HTTP message
body was transferred. The length
of the full message body was de-
termined by the Content-Length
HTTP header field

Transmission times may differ
from those encountered in a real
network environment. This can
lead to connection closures before
the full HTTP message is trans-
ferred, triggering this rule

116:414 The IPv4 packet has a broadcast
destination address

The use of broadcast addresses
may seem unusual. This may be
due to specific characteristics of
the simulation that may trigger
this rule

116:408 The IPv4 packet’s source address
is from the ’current net’ (value of
zero)

INetSIm may generate packets
with non-standard or particular
source IP addresses, including ad-
dresses with zero values

112:1 ARP request is unicast, not
broadcast

This rule is not specific to simu-
lation but can be ignored

Table 4.1: Snort rules added to the whitelist

Finally, it is important to build a whitelist of IP addresses that are accessed for routine

tasks. For this whitelist, it should be noted that our project has a significant advantage.

Indeed, when an application on the analyzed phone makes a DNS request, it will constantly

have as a response the IP address of the Raspberry Pi 192.168.4.1. Therefore, if the IP

address of the C2 server is hardcoded into the malware, then it will be different from

192.168.4.1. So we know that if the destination IP address of a packet is different from

192.168.4.1, it means that it is hardcoded in the phone application. However, there are

some classic apps like WhatsApp or Facebook which also has hardcoded IP addresses. To

avoid marking as suspicious theses IP addresses, we connect a few phones to our access

point and execute the following commands to extract legitimate IP addresses.

CHAPTER 4. USAGE & IMPLEMENTATION 45

kali@kali:~$ sudo tcpdump -i wlan0 -w sniff.pcap

kali@kali:~$ tshark -r sniff.pcap -T fields -e ip.dst | sort | uniq >

IPWhitelist.txt

Listing 4.5: Commands to generate properly the payload

4.5.2 Image replication for Raspberry Pi deployment

As this project is intended to be replicated on multiple Raspberry Pi for deployment

purposes, it needs to be installed quickly. This objective can be achieved by generating an

image of the microSD card, which can subsequently be loaded onto fresh microSD cards.

The image on the microSD card can be downloaded from the cylab cloud9. It can then be

easily loaded onto a new microSD card using the Raspberry Pi Imager software.

4.5.3 Failed attempts and lesson learned

Various areas of research were pursued during the course of this work, which proved to be

fruitless or even impossible. This subsection describes some of the functionalities that have

been considered to improve the project. Unfortunately, these innovations were unsuccessful

for various reasons. The aim of this subsection is to inform a future developer taking over

this project of the avenues that should no longer be considered. It also highlights all the

thinking that that has been made and that could not succeed.

Evil twin

A first idea was to create an evil twin that would answer all the probes requests of the mobile

device. An evil twin is an attack that replicates the access point the victim is connected to.

Once the twin access point is created, the attacker sends desauthentication packets to the

victim to log out of the legitimate access point. Once disconnected, the client goes into its

settings to reconnect to the access point and thus connects to the false access point. From

there, an attacker finds himself between the victim and the Internet to capture all the traffic

of the victim. This classic attack inspired 2 possibilities of integration into the project. The

first possibility was to retrieve probe requests, extract as much information about them as

possible in order to create a twin access point. From this twin access point, the idea was

to let the phone automatically connect to the fake access point. Unfortunately, even on

mobile devices, user interaction is required to connect to the twin access point when the

access point is not public. We can still note that if the mobile device sends probe requests

corresponding to unsecured Wi-Fi, the idea would be functional. The second possibility

was to implement the KARMA attack. As described in the [63] paper, the idea of the

karma attack is to respond positively to any probe request by sending a probe response.

Unfortunately, this attack is also only available for Wi-Fi hotspots without a password.

Recovering AP BSSIDs from probes

A second innovation idea requested by the promoter of this project was to recover the

MAC addresses of the access points known by the mobile device. This would have made it

even easier to locate the phone’s movements thanks to the WiGLE website10. Indeed, the

9https://cloud.cylab.be/s/Hx2JenWZL4MMKip
10https://wigle.net/

https://cloud.cylab.be/s/Hx2JenWZL4MMKip
https://wigle.net/

46 4.5. ADDITIONAL CONSIDERATIONS AND ACCESS

name of the access points are subject to certain changes while this is not the case for MAC

addresses. Unfortunately, when looking at the standard of a probe request, the content of

the MAC address destination is the broadcast MAC address. This does not allow us to

retrieve information about the MAC address of the access point.

4.5.4 Log in to the Raspberry Pi

Resolve conflict between NetworkManager and hostapd configuration

To connect to the Raspberry Pi and interact via a terminal, you can connect via SSH. The

purpose of such a connection may be to improve or debug the implementation. It can also

be used to interact with the malware. By default, an ssh server is automatically managed

on this version of Kali. However, the NetworkManager service conflicts with those we

have installed. We therefore had to make a slight modification to be able to use SSH and

assign it a static IP address for eth0. The purpose of this subsection is to explain the

change to basic services. If you only want to log in, you can read the next subsection.

kali@kali:~$ sudo printf "[keyfile]\nunmanaged-devices=interface-name

:wlan0\n" | sudo tee /etc/NetworkManager/conf.d/99-unmanaged-devices.

conf

kali@kali:~$ sudo printf "interface eth0\nstatic ip_address

=169.254.18.67/16\n" | sudo tee -a /etc/dhcpcd.conf

Listing 4.6: Commands to configure proprely SSH service

Connecting to Raspberry Pi via SSH

In order to connect to the Raspberry Pi in SSH, password connection is not possible.

Instead, you will need to log in with a certificate. In order to activate the certificate

connection, it must first be generated on the client side. Then, once the key pair (private

key, public key) is created, you need to move the contents of your public key to the

/home/kali/.ssh/authorized_keys file. Finally it is possible to connect in SSH

thanks to your private key. A summary of the commands to be reproduced is below. It is

assumed that the client is a Windows computer and that the public key is moved through

a USB key.

Client side

C:\Users\John\> ssh-keygen

C:\Users\John\> cd .ssh

C:\Users\John\.ssh\> copy id_rsa.pub D:\

Raspberry Pi side

kali@kali:~[/media/kali/USB_KEY]$ sudo mv id_rsa.pub /home/kali/.ssh/

authorized_keys

kali@kali:~[/media/kali/USB_KEY]$ sudo systemctl reload ssh

Client side

C:\Users\John\.ssh\> ssh -i id_rsa kali@169.254.18.67

Listing 4.7: Commands to connect to SSH

CHAPTER 4. USAGE & IMPLEMENTATION 47

C:\Users\John\.ssh\> ssh -i id_rsa kali@169.254.18.67

Shortcut for this subsection

Chapter 5

Case studies & applications

This chapter looks at the program’s output in different cases. This output is made up

of different files, which will be described later. We therefore study 2 cases. The first is

when a soldier suspects his phone is infected with malware. So the phone is placed in the

Faraday enclosure and the Raspberry is put into IDS mode. This first case is subdivided

into 3 sub-cases representing the 3 different situations that can be faced. Next, we look

at a second case in which a phone has been seized from an enemy combatant. In this

case, the mobile device is also placed in the Faraday enclosure and we don’t have the PIN

code. In short, the aim of this chapter is to examine the results of the program in different

real-life situations, through the analysis of concrete cases. The purpose is to understand

how the system reacts in specific scenarios, using real or simulated data, in order to draw

conclusions about its effectiveness, reliability and limitations. It’s important to specify

that a real Android phone was used for these different cases, not a virtual machine.

5.1 Case study 1: suspected malware infection

When a soldier suspects that his mobile device is infected with malware due to suspicious

behaviour, different scenarios can happen. These scenarios include the phone being free of

infection, the phone being infected with a basic reverse shell, or the phone being compro-

mised by an Advanced Persistent Threat (APT).

In the first sub-case, where the phone is not infected at all, the program’s output will

likely show no significant indicators of malicious activity. This outcome would indicate

that the soldier’s concerns were unfounded, providing reassurance regarding the integrity

of the device.

In the second sub-case, if the phone is infected by a basic reverse shell, the program’s

output may reveal evidence of suspicious network traffic. Common indicators might include

unexpected outgoing connections or abnormal data transmission patterns. By identifying

these IoCs, the program can confirm the presence of a basic malware infection.

The third sub-case involves the phone being infected by an Advanced Persistent Threat

(APT), a sophisticated and sneaky form of malware often associated with nation-state

actors or well-resourced cybercriminal groups. Detecting an APT infection presents a

greater challenge due to its advanced evasion techniques and ability to remain undetected

for extended periods

In each of these different sub-cases, the program will save 4 files on the USB key.

1. alert_fast.txt: This file contains all the alerts generated by the Snort tool.

2. sniff.pcap: This file contains all the network packets generated by the mobile

Side note

48

CHAPTER 5. CASE STUDIES & APPLICATIONS 49

device.

3. domain_names.txt: This file contains all the suspicious domain names re-

quested by the mobile device.

4. suspicious_IP addresses.txt: This file contains all the suspicious IP ad-

dresses requested by the mobile device.

5.1.1 Mobile device not infected

Once the capture has been made in the Faraday enclosure and the contents of the USB key

have been recovered, the Figure 5.1 shows what the key contains. For the example, this

capture represents 20 minutes of traffic from an Android phone including only the default

applications. The different files that are being analysed in subsection can be found on the

cylab cloud1.

Figure 5.1: Contents of the USB key after capture of the benign case

We can see that the alert_fast.txt file is empty. This is expected given that the

phone is not infected. So there’s no reason for us to have any intrusion alerts from the

Snort tool. Also, we can see that the domain_names.txt file contains only one domain

name alt2-mtalk.google.com. which is obviously a false positive. Finally, we can

take a quick look at the contents of the Wireshark file.

Thus, we look at the Wireshark capture, we can see that there’s nothing in particular,

there are no suspicious requests. One important thing to note is that our simulation of

Internet services is working well. Firstly, because all the packets from the "Internet" have

the IP address of our Raspberry Pi as their source, which means that it is the Raspberry

Pi that is responding and not another public address. Secondly, if we look more closely at

packets 32 to 51 of the pcap, we can see that INetSim manages to simulate the protocol for

establishing a TLS connection between client and server. What’s more, once the connection

has been established, INetSim manages to respond correctly to requests sent on port 443.

In short, this Wireshark capture shows that it is possible for a forensic analyst to investigate

the course of events in detail. It also shows that the Internet service simulator is working.

1https://cloud.cylab.be/s/C5X79MD6Yn7XdiA

https://cloud.cylab.be/s/C5X79MD6Yn7XdiA

50 5.1. CASE STUDY 1: SUSPECTED MALWARE INFECTION

Figure 5.2: Wireshark capture of a benign traffic

5.1.2 Mobile device infected by a basic reverse shell

As before, we analyse the contents of the USB stick. For this example, the capture rep-

resents 5 minutes of traffic from an Android phone infected with very basic malware. It

is therefore necessary first to explain how this malware was generated in order to better

understand the analysis of the contents of the USB key. The malware is crafted using

msfvenom2 which is quite basic, aiming to emulate the typical style of an attack launched

by a script kiddie. The different files that are being analysed in sub-section can be found

on the cylab cloud3.

Reverse shell creation

The msfvenom tool that we are using is present by default in Kali Linux. It is used to

create payloads that can be operated in the Metasploit framework4. These payloads can

be used to remotely access systems, exploit vulnerabilities and more. To connect remotely

to a victim’s machine, we need to enter the IP or domain name of the attacking machine

and the port on which we will be listening for incoming connections. All the commands

needed to create the reverse shell are available in Listing 5.1. In the following paragraphs,

we give a rather formal and complete explanation of the various commands.

In this case, given that our laboratory is local, we will simply use the local address

of our attacking machine. Therefore, when we call msfvenom, we’ll set the LHOST value

to 192.168.129.180. As for the port on which we’re going to wait for the connection, just

choose a port that isn’t currently used. Set the LPORT value to 4444. Additionally, we

need to select a payload that corresponds to our operating system. To do this, we can

choose a reverse shell tcp for Android: android/meterpreter/reverse_tcp. Such

a payload allows the compromised machine to initiate a connection back to the attacker’s

machine. This helps to bypass firewall restrictions and allows the attacker to execute

actions remotely. Once the payload has been generated by msfvenom, an attacker can

operate it thanks to the Metasploit framework. The capabilities of this payload managed

from the framework are wide-ranging, from credential harvesting to lateral movement, as

2https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-msfvenom.html
3https://cloud.cylab.be/s/7a3J2G6zraFWoRm
4https://docs.metasploit.com/

https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-msfvenom.html
https://cloud.cylab.be/s/7a3J2G6zraFWoRm
https://docs.metasploit.com/

CHAPTER 5. CASE STUDIES & APPLICATIONS 51

well as controlling the use of the microphone and webcam remotely.

After creating the payload, it needs to be signed to be executable on an Android device.

This stage is different from that for other operating systems. For Android to be able to

launch the application, it must be self-signed by the developer. To do this, we can use

the keytool5 tool to generate a certificate and use jarsigner6 to apply the signature to the

generated apk. As regards the use of keytool, we detail the different parameters used. The

genkey option is used to specify that a new key pair (private key, public key) should be

generated and associated with a self-signed certificate. Next, we use the keystore option

to specify the name of the keystore file. Finally, the keyalg, keysize and validity options

allow us respectively to use the RSA algorithm for key generation, to define the size of the

keys and the validity of the certificate. The key size is expressed as a number of bits and

the validity is expressed in terms of days. Finally, to sign the apk, the options used specify

the use of SHA-1 with RSA. We also provide the name of the keystore and the name of

the application to be signed.

kali@kali:~$ sudo msfvenom -platform android -p android/meterpreter/

reverse_tcp LHOST=192.168.129.180 LPORT=4444 R -o android.apk

kali@kali:~$ keytool -genkey -V -keystore key.keystore -alias Android

-keyalg RSA -keysize 2048 -validity 10000

kali@kali:~$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -

keystore key.keystore android.apk Android

Listing 5.1: Commands to generate properly the payload

Output analysis

Once the application has been installed on the phone, simply connect it to the access point

and launch the application. The USB key can then be disconnected from the Faraday

enclosure and its contents analysed. In Figure 5.3, the alert_fast.txt file appears to

be empty, and there isn’t even a domain_names.txt file. The file is missing because

the program has not even detected any suspicious domain names. Finally, we have the

sniff.pcap network packet capture and suspicious_IP addresses.txt file.

Figure 5.3: Content of the USB key after capture of the reverse shell case

5https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
6https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html

52 5.1. CASE STUDY 1: SUSPECTED MALWARE INFECTION

Then, if we look at the Wireshark capture, we can see that our malware has tried

to open a reverse shell. We can see a set of packets coming from the phone’s IP address

(192.168.4.11) to the IP address of the attacking machine (192.168.129.180). These packets

are equivalent to the malware attempting to connect remotely to the attacking machine.

This connection cannot be established because the Raspberry is not connected to the local

network. Moreover, if we look at our file of suspicious IP addresses, we can see that an

unauthorised IP was called 51 times. In our laboratory environment, this IP does not allow

to be sure that the phone is infected. However, in the case of a real threat, we can verify

that it is not blacklisted thanks to sites like VirusTotal7.

In short, given that Snort and the domain name analysis were inconclusive, it is nec-

essary to focus on the IP addresses file to determine whether or not the mobile device is

infected by malware. That’s why it’s so important to capture any suspicious IP addresses

requested by the phone. This also makes it possible to link these IP addresses with what

is in the Wireshark capture. Using a filter, we can then observe all the packets exchanged

with this suspect IP address.

Figure 5.4: Wireshark capture of a reverse shell traffic

5.1.3 Mobile sevice is infected by an advanced persistent threat

In this section the idea is to analyse an android malware known as Safer VPN8. Designed to

mimic a legitimate VPN service, this malware operates under the guise of providing secure

browsing capabilities. Its origins trace back to the APT35 group according to the threat

analysis group of Google [21]. In order to assess the effectiveness of the project against

such a threat, the idea is to determine what a forensic analyst could conclude. We need

to ascertain whether a mobile device is compromised by malware to achieve the project’s

objectives. Therefore, it’s crucial to assess the conclusions drawn from the files generated

by our program. These different files that are being analysed in subsection can be found

on the cylab cloud9.

7https://www.virustotal.com/
8https://bazaar.abuse.ch/sample/5d3ff202f20af915863eee45916412a271bae1ea3a0e20988309c16723ce4da5
9https://cloud.cylab.be/s/o9GTJEx4afYpZfn

https://www.virustotal.com/
https://bazaar.abuse.ch/sample/5d3ff202f20af915863eee45916412a271bae1ea3a0e20988309c16723ce4da5
https://cloud.cylab.be/s/o9GTJEx4afYpZfn

CHAPTER 5. CASE STUDIES & APPLICATIONS 53

Output analysis

As before, once the malware has been installed on the phone, all we have to do is con-

nect it to the access point and launch the fake application. As seen in Figure 5.5, the

alert_fast.txt file is empty. However, the file domain_names.txt is not empty and

contains interesting artifacts. Finally, we have the usual sniff.pcap file containing packets

captured on the network.

Figure 5.5: Contents of the USB key after capture of the APT case

Therefore, we can ignore the alert_fast.txt file since the file is empty. The inter-

esting one is domain_names.txt which contains two suspect domain names: cdsa.xyz.

and westernrefrigerator.xyz.. These are certainly the domain names of the C&C servers.

So if the digital forensic analyst checks domain names on sites such as VirusTotal10 or

URLHause11 to assess whether the mobile device is infected or not. From examining the

results of these sites, one can swiftly determine whether the phone is infected or not.

Finally, if we look at what is contained in the Wireshark capture, we also find very

interesting information in the HTTP frames. Moreover, it is also possible to establish a

link with the domain names collected in the other file. The capture reveals that package

90 includes a DNS query to the cdsa.xyz domain name. Then, from package 92 we can see

a set of requests to an API that can surely extract information. A detail of the URLs is

provided below to understand what is extracted. In addition, we can also see in packet 504

a DNS request to our other suspicious domain name westernrefrigerator.xyz. followed by

OpenVPN packets. We can therefore assume that this domain name can simulate a VPN

connection. This also makes it possible to redirect all the traffic of the phone when this

fake VPN is activated.

• /Api/IsRunAudioRecorder surely claims that it is possible to activate the audio

recorder on the phone. MAC=PPR1.180610.011 is present in the body of the request.

PPR1.180610.011 is an Android firmware version code, indicating a specific version

of the operating system for an Android phone. Surely allowing the C&C server to

uniquely identify the phone.

• /Api/IsRunClipboard surely indicated that it is possible to retrieve information

10https://www.virustotal.com/gui/home/url
11https://urlhaus.abuse.ch/

https://www.virustotal.com/gui/home/url
https://urlhaus.abuse.ch/

54 5.1. CASE STUDY 1: SUSPECTED MALWARE INFECTION

from the clipboard. The body of the request also contains the MAC address of the

phone.

• /Api/IsRunGPS surely indicates that the phone has a GPS identification function.

Once again the MAC address is sent in the request body.

• /Api/AndroidTargetLog is a URL that is called only once. The body of this

request still contains several interesting parameters that we detail.

– "MAC=48:27:EA:BE:7A:0D" It is the MAC address of the device.

– "Log=Fail to turn on Location because Turn on Location Permission Denied."

A log message indicating that the attempt to enable location services failed due

to permission denial.

– "ModuleName=Cell Info Location" The name of the module or feature attempt-

ing to enable location services.

• /Api/Session is a URL that is called on a regular basis to safely maintain a session

with the C&C server. This POST request contains a long string that can be detailed.

– "PPR1.180610.011" It is once again the Android firmware version code allowing

to uniquely identify the infected machine.

– "Android SDK: 28 (9)" Indicates the SDK version as well as the Android version.

– "SaferVPN" It is the name of the APK. Its purpose is surely to trick a forensic

analyst into making it legitimate.

– "(0,0)" It is a string that contains information whose purpose is difficult to

understand.

Figure 5.6: Wireshark capture of an APT

In conclusion, it becomes evident that a forensic analyst could have swiftly detected

the malware infection on the mobile device. Indeed, simply opening the file containing

the domain names and uploading them to VirusTotal would reveal the suspicious nature

of these domains. The objective explained at the beginning of this project is therefore

fulfilled. In a sensitive military environment, it is possible to detect if a phone is infected

with malware. In addition, thanks to Wireshark capture, it is possible to see what the

phone seeks to extract as information if the traffic is not encrypted. In addition, in this

CHAPTER 5. CASE STUDIES & APPLICATIONS 55

case, it is possible to infer what information the malware might have extracted before being

placed in our isolated environment. The fact that the malware seeks to know the location

of the phone justifies the importance of the Faraday enclosure and the need to work in an

isolated environment. However, it’s important to acknowledge that despite the productive

output of this malware analysis, there are aspects we haven’t fully considered. Primarily,

we lack access to the information gathered from a static or dynamic analysis that would

be executed directly on the mobile device. This means we may we must not ignore the

fact that there are other malware that could be able to escape our detection capabilities.

5.2 Summary table of different malware analysed

Once the analysis of different possible behaviours of the product in use, it is interesting to

analyse its effectiveness on more malware. Indeed, even if we could analyse 3 different sub-

cases, it is interesting to see if the product indeed detects more mobile malware. To do so,

the idea is to test recent malware that can be found on MalwareBazaar12 and install them

on our mobile test device. For budgetary reasons, the malware tested are only Android

malware. However, given that we mainly analyze the network, we can assume that the

network packets generated by an iOS device are similar. The way the table looks is quite

simple. The first column is the year the malware was first seen. Next, the second column

contains the name of the malware family tested. If the family name was not registered in

the database then the apk name is filled in. The third column states whether or not the

malware was able to extract IoCs. Subsequently, the "How detected" column indicates

which IoC was found. Finally, the last column gives the md5 fingerprint of the malware.

It is important to note that all files that were generated by the project are available

on the cylab clouda. The folder name matches the malware name and the md5 hash

of the malware.
ahttps://cloud.cylab.be/s/bkBYj3ratCt6B7b

Side note

Table 5.1: Different malware analysed

Year Mobile malware name Detected How detected MD5 fingerprint

IP Domain name Snort

2021 Google_Play_Installer.apk No dd4596cf68c85eb135f7e0ad763e5dab

2021 WIFI.apk No 79ba96848428337e685e10b06ccc1c89

2022 Ermac Yes ✓ 35e91deffa2d5392c8d0afa3e83db6a9

2022 IRATA Yes ✓ ce41d55ee66d509e1e2043d9e238f65a

2023 APT-35 Yes ✓ 8a847b0f466b3174741aac734989aa73

2023 tv-latest.apk Yes ✓ fe9a004870ead6f94ef1a2e09cd6a96a

2023 HookBot Yes ✓ 4002974dbb249748602fe1b4b9da5609

2024 TiSpy Yes ✓ ce48f58dbae28bcb25677b8add0ddf64

2024 Anubis Yes ✓ 18a3c09ce58b3db05cf248730adb6bd0

12https://bazaar.abuse.ch

https://cloud.cylab.be/s/bkBYj3ratCt6B7b
https://bazaar.abuse.ch

56
5.3. CASE STUDY 2: SEIZURE OF MOBILE DEVICE IN SENSITIVE

ENVIRONMENT

5.3 Case study 2: seizure of mobile device in sensitive envi-

ronment

When a mobile device is captured from an enemy installation, it is desirable to recover

interesting artifacts. In such a situation, we don’t have the phone’s PIN code. So we simply

place the phone in the Faraday enclosure and set the program to probes mode. We then

retrieve the probes requests from the phone. In this case, there are not several possible

cases. This section therefore only presents one case. Upon examining the contents of the

USB key, we find a file named probes.txt, which, in our instance, contains a single line.

This line contains the name of the access point requested and also the MAC address of the

telephone. Once we have found the name of the access point, we can use the WiGLE13

website to check if it has been referenced. This makes it possible to track the phone’s

movements. Obviously, for privacy reasons, the SSID in the file is not a real one. However,

the WiGLE website shows that there are network names in Belgium very similar to this

one. So it’s worth testing the product yourself to see how effective this mode is. The

different files that are being analysed in subsection can be found on the cylab cloud14.

Figure 5.7: Probes captured on USB key

5.4 Lessons learned and best practices

The purpose of this subsection is to sum up key insights and best practices about the

efficiency of the product. First, we will assess the effectiveness of malware detection and

explore potential improvements. Next, we will address the shortcomings observed with

Snort’s performance and understand the reasons behind this ineffectiveness. Lastly, we

will highlight the differences between our test environment and real-world conditions, high-

lighting their implications. These slight differences are important to highlight.

In order to evaluate the effectiveness of the product, we can look at the Table 5.1and

see that we can easily detect 7 malware out of 9 thanks to the project. At least, our

project makes it possible to highlight IoCs significantly helping the work of the forensic

13https://wigle.net
14https://cloud.cylab.be/s/9ZoxAPmBb43H96E

https://wigle.net
https://cloud.cylab.be/s/9ZoxAPmBb43H96E

CHAPTER 5. CASE STUDIES & APPLICATIONS 57

digital analyst. Indeed, he could simply look at the pcap file but this task would be rather

tedious. The second thing that can be noted from this Table is that for the first two mal-

ware samples, no IP or domain name was identified. Looking more closely at the capture

of these 2 malware, it is difficult to estimate whether the malware have extracted nothing

or if they have extracted data in a way that we cannot detect. We therefore understand

the importance of providing pcap to an analyst who will surely have more experience in

network patterns.

The third thing we can note is that the table clearly highlights that Snort did not work,

we must understand why. First, the Snort configuration was tested to verify that the tool

was installed. And indeed, if we add a custom rule that detects all ping and run it again

on our pcap, the ping is detected. It is therefore necessary to look at some rules of the

community to understand when they are activated and why they have not been activated

here.

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"OS-LINUX x86 Linux

overflow attempt ADMv2"; flow:to_server,established; content:"|89 F7

29 C7 89 F3 89 F9 89 F2 AC|<|FE|",fast_pattern,nocase; metadata:

ruleset community; service:dns; classtype:attempted-admin; sid:265;

rev:16;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"OS-MOBILE

Android/Fakelash.A!tr.spy trojan command and control channel traffic

"; flow:to_server,established; http_uri; content:"/data.php?action=",

nocase; content:"&m=",distance 0,nocase; content:"&p=",distance 0,

nocase; content:"&n=",distance 0,nocase; metadata:policy max-detect-

ips drop,ruleset community; service:http; reference:url,blog.

fortiguard.com/android-malware-distributed-by-malicious-sms-in-france

/; classtype:trojan-activity; sid:24251; rev:5;)

Listing 5.2: Snort community rules example

The first Snort rule detects an attempt to exploit a vulnerability on x86 Linux on port

53. It looks for a specific hexadecimal entry in order to trigger an alert. This rule does

not apply to our case because we are only interested in mobile malware. It can be noted

that in the community rules, a lot of rules concern Windows or Linux systems that only

slow down the analysis of our pcap. Scraping them off might be a good idea. The second

rule is much more interesting as it allows us to note an Android malware that we have not

encountered in the Table 5.1. Snort can therefore detect some Android malware across

the network. Specifically, this rule can detect if the malware has attempted to extract

data at the specific URL /data.php?action=. Among the malware tested in Section

5.2, none triggered Snort rules. We can therefore conclude from here that Snort is not

poorly implemented or non-functional for our context but that it is not fully adapted to

mobile malware. The ideal would be to have a feed of Snort rules for recent mobile malware.

In addition, another important thing that can be noted about our testing environment

is its limit to adapt to the real case. It should still be noted that in the real case of prod-

uct use, a much larger number of applications will generate traffic. This will significantly

increase the size of the various output files. However, whitelists help significantly reduce

the size of these files. We can therefore recommend to disable applications that are not

58 5.4. LESSONS LEARNED AND BEST PRACTICES

suspicious on the phone in order to reduce the network traffic generated.

In conclusion, the different results of the product show that it meets its objectives.

Nevertheless, the community’s Snort rules are not adapted to the recent mobile malware

and require a manual update. Snort therefore does not meet its share of efficiency in

identifying network artifacts. Fortunately, Snort can be easily updated given the simplicity

of writing rules. Also, using the product in a real case will generate much more traffic. It

is therefore advisable to disable unsuspecting applications.

Chapter 6

Future work

It will be important that future research investigate practical considerations for time to

pack, host artifacts and Snort customisation. Time to pack is important in the military

context to achieve objectives. Host artifacts are of paramount importance in dealing with

the most advanced threats. Finally, customising Snort could significantly increases the

detection of threats by the network.

First of all, time to pack in the military environment describes the time given to the

soldiers during which they organise their equipment in preparation for deployment or any

operational activity. This concept has crucial implications in terms of efficiency, organisa-

tion, logistics and mission success. It is therefore crucial to consider this idea in the future

work. For now, the physical product is still in the state of "Proof of concept" being con-

nected to a breadboard and fairly basic components. In order to improve product mobility,

it is necessary to solder the cables directly to the Raspberry Pi as well as secure it inside

the Faraday enclosure. In this way, digital forensic analysts in the field will just have to

take the Faraday enclosure to the deployment location. Once there, they simply put the

phone in the Faraday enclosure and perform the analysis. Finally, it can be noted that

plugging in a USB display and developing a GUI could increase the usability of the product.

Then, it would be interesting to couple the malware detection with an investigation

of artifacts on the host. This would allow a more complete analysis and thus assess with

more assurance whether the mobile device is infected with a malware. Indeed, for now, if a

malware secretly exfiltrates data through encrypted traffic, it remains difficult, even for an

advanced forensic digital analyst, to see it in a Wireshark capture. We highlighted during

the state of the art and the Section 3.3.1 the importance of these artifacts of the host.

Fortunately, it is indeed possible to search for such artifacts. This can be done through

HIDS or malware analysis. It is possible to connect a USB cable to the Faraday enclosure.

We therefore highlight the possibility of connecting to the phone in USB and investigate

the phone through ADB as well as various analysis tools such as Frida, Objection, etc. On

the other hand, there may be data exfiltration by cable.

Finally, as highlighted in the conclusion of Chapter 5, Snort is not adapted to current

mobile threats. Nevertheless, Snort takes advantage of the possibility to integrate custom

rules. Future research should be devoted to the development of new rules for mobile

malware detection in the form of Snort rules. This could potentially identify patterns of

encrypted network exfiltration of some advanced malware. The search for such a domain

would not only improve the detection of malware in our context but the detection of mobile

malware in general.

59

Chapter 7

Conclusion

The aim of this master thesis was to deal with a series of situations that a digital foren-

sics team in a military context might encounter. Identifying malware infections on mobile

devices in the dynamic and resource-constrained military environment was previously chal-

lenging. In order to address this challenge, we set up a Faraday enclosure, a portable intru-

sion detection system and finally the ability to capture probe requests from locked phones

seized from an enemy installation. Importantly, our results prove that recent Advanced

Persistent Threats can be detected by the developed solution. Therefore, our findings

on malware detection in an isolated environment are broadly consistent with the current

threats that can be encountered in the field.

The research began with a comprehensive literature review on mobile device security,

malware detection and data acquisition for locked phones. After identifying the various

existing tools, it was necessary to make a selection and justify the usefulness of these

choices using widely-used frameworks. Next, the use and implementation phase provides

a comprehensive guide for both the user and the developer. Finally, our findings have

demonstrated the effectiveness of network-based malware detection in an isolated environ-

ment. This is achieved by highlighting suspicious domain names and IP addresses and by

logging network traffic. Snort can also be useful in very specific cases of some malware,

although not optimised for mobile malware.

Based on the results of this study, it is recommended that the artifacts left on the host

should not be overlooked. Indeed, it was highlighted in the literature review that it is

necessary to analyse the artefacts left on the host to be sure of detecting malware. In addi-

tion, the results of Chapter 5 showed that not all malware could be found by our product.

Practitioners in the field or future developers should therefore focus on implementing a

hybrid approach based on both network IoCs and those that may be present on the host.

In conclusion, in order to combat today’s threats effectively in a military context, a

hybrid approach is more than important. However, our work highlights the effectiveness

and potential of network-based threat detection. It is therefore vital to continue innovating

in digital investigation methods against advanced threats in dynamic environments such

as the military.

60

Bibliography

[1] Adware - What is Adware and How to Remove Adware — malwarebytes.com. https:

//www.malwarebytes.com/adware, [Accessed 12-05-2024] [Cited on page 6.]

[2] Data Exfiltration Techniques - YouTube, https://youtube.com/playlist?

list=PLqM63j87R5p4cHSmz5UcrujWA64ap9DNW&si=vi9SyefQXJtFTmHc

[Cited on page 10.]

[3] Exfiltration, Tactic TA0010 - Enterprise | MITRE ATT&CK®, https://attack.

mitre.org/tactics/TA0010/, [Accessed 19-11-2023] [Cited on page 10.]

[4] New RedDrop Android Spyware Records Nearby Audio,

https://www.bleepingcomputer.com/news/security/

new-reddrop-android-spyware-records-nearby-audio/ [Cited on page 9.]

[5] Trojan Horse Virus | Trojan Horse Malware | What is a Trojan Virus — malware-

bytes.com. https://www.malwarebytes.com/trojan, [Accessed 12-05-2024]

[Cited on page 6.]

[6] What is a Computer Worm? | Malwarebytes — malwarebytes.com. https://www.

malwarebytes.com/computer-worm, [Accessed 12-05-2024] [Cited on page 6.]

[7] What is threat hunting? | IBM, https://www.ibm.com/topics/

threat-hunting [Cited on page 16.]

[8] How to analyze mobile malware: a Cabassous/FluBot Case

study (Apr 2021), https://blog.nviso.eu/2021/04/19/

how-to-analyze-mobile-malware-a-cabassous-flubot-case-study,

[Online; accessed 18. May 2024] [Cited on page 8.]

[9] What Is a Drive by Download (Apr 2023), https://www.kaspersky.com/

resource-center/definitions/drive-by-download [Cited on page 7.]

[10] What is zero-click malware, and how do zero-click attacks work? (Apr

2023), https://usa.kaspersky.com/resource-center/definitions/

what-is-zero-click-malware, [Online; accessed 18. May 2024] [Cited on page 8.]

[11] APE: Intrusion Protection System for Android Devices | MITRE (May

2024), https://www.mitre.org/our-impact/intellectual-property/

ape-intrusion-protection-system-android-devices, [Online; accessed

19. May 2024] [Cited on page 17.]

[12] Bypassing Certificate Pinning - OWASP Mobile Application Security

(May 2024), https://mas.owasp.org/MASTG/techniques/android/

MASTG-TECH-0012, [Online; accessed 19. May 2024] [Cited on page 21.]

[13] Command and Control, Tactic TA0011 - Enterprise | MITRE ATT&CK® (May

2024), https://attack.mitre.org/tactics/TA0011, [Online; accessed 18.

May 2024] [Cited on page 9.]

61

https://www.malwarebytes.com/adware
https://www.malwarebytes.com/adware
https://youtube.com/playlist?list=PLqM63j87R5p4cHSmz5UcrujWA64ap9DNW&si=vi9SyefQXJtFTmHc
https://youtube.com/playlist?list=PLqM63j87R5p4cHSmz5UcrujWA64ap9DNW&si=vi9SyefQXJtFTmHc
https://attack.mitre.org/tactics/TA0010/
https://attack.mitre.org/tactics/TA0010/
https://www.bleepingcomputer.com/news/security/new-reddrop-android-spyware-records-nearby-audio/
https://www.bleepingcomputer.com/news/security/new-reddrop-android-spyware-records-nearby-audio/
https://www.malwarebytes.com/trojan
https://www.malwarebytes.com/computer-worm
https://www.malwarebytes.com/computer-worm
https://www.ibm.com/topics/threat-hunting
https://www.ibm.com/topics/threat-hunting
https://blog.nviso.eu/2021/04/19/how-to-analyze-mobile-malware-a-cabassous-flubot-case-study
https://blog.nviso.eu/2021/04/19/how-to-analyze-mobile-malware-a-cabassous-flubot-case-study
https://www.kaspersky.com/resource-center/definitions/drive-by-download
https://www.kaspersky.com/resource-center/definitions/drive-by-download
https://usa.kaspersky.com/resource-center/definitions/what-is-zero-click-malware
https://usa.kaspersky.com/resource-center/definitions/what-is-zero-click-malware
https://www.mitre.org/our-impact/intellectual-property/ape-intrusion-protection-system-android-devices
https://www.mitre.org/our-impact/intellectual-property/ape-intrusion-protection-system-android-devices
https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0012
https://mas.owasp.org/MASTG/techniques/android/MASTG-TECH-0012
https://attack.mitre.org/tactics/TA0011

62 BIBLIOGRAPHY

[14] Exfiltration Over C2 Channel, Technique T1646 - Mobile | MITRE ATT&CK® (May

2024), https://attack.mitre.org/techniques/T1646, [Online; accessed 18.

May 2024] [Cited on page 12.]

[15] Matrix - Mobile | MITRE ATT&CK® (May 2024), https://attack.mitre.

org/matrices/mobile [Cited on page 10.]

[16] RedDrop, Software S0326 | MITRE ATT&CK® (May 2024), https://attack.

mitre.org/software/S0326, [Online; accessed 18. May 2024] [Cited on page 9.]

[17] Supply Chain Compromise, Technique T1474 - Mobile | MITRE ATT&CK® (May

2024), https://attack.mitre.org/techniques/T1474, [Online; accessed 18.

May 2024] [Cited on page 8.]

[18] The Dangers of Third-Party App Stores: Risks and Precautions -

SOCRadar® Cyber Intelligence Inc. (Mar 2024), https://socradar.io/

the-dangers-of-third-party-app-stores-risks-and-precautions,

[Online; accessed 17. May 2024] [Cited on page 7.]

[19] What are indicators of compromise (IoC)? (May 2024),

https://www.cloudflare.com/learning/security/

what-are-indicators-of-compromise, [Online; accessed 19. May 2024]

[Cited on pages 13 and 25.]

[20] America’s Cyber Defense Agency: Best Practices for MITRE ATT&CK

Mapping. https://www.cisa.gov/sites/default/files/publications/

BestPracticesforMITREATTCKMapping.pdf, [Accessed 12-05-2024] [Cited on

page 10.]

[21] Ajax Bash, T.A.G.: Countering threats from Iran — blog.google. https:

//blog.google/threat-analysis-group/countering-threats-iran/

(2021), [Accessed 07-05-2024] [Cited on page 52.]

[22] Allen, J., Yang, Z., Landen, M., Bhat, R., Grover, H., Chang, A., Ji, Y., Perdisci,

R., Lee, W.: Mnemosyne: An effective and efficient postmortem watering hole attack

investigation system. In: Proceedings of the 2020 ACM SIGSAC Conference on Com-

puter and Communications Security. p. 787–802. CCS ’20, Association for Computing

Machinery, New York, NY, USA (2020) [Cited on page 7.]

[23] Aman_Utkhedkar: Data Exfiltration with Discord. (Nov 2022), https://medium.

com/@rootxaman/data-exfiltration-with-discord-98139e8c6590

[Cited on page 11.]

[24] Arora, A., Peddoju, S.K.: Minimizing network traffic features for android mobile

malware detection. In: Proceedings of the 18th international conference on distributed

computing and networking. pp. 1–10 (2017) [Cited on page 18.]

[25] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on smart-

phone touch screens. In: 4th USENIX workshop on offensive technologies (WOOT 10)

(2010) [Cited on page 23.]

https://attack.mitre.org/techniques/T1646
https://attack.mitre.org/matrices/mobile
https://attack.mitre.org/matrices/mobile
https://attack.mitre.org/software/S0326
https://attack.mitre.org/software/S0326
https://attack.mitre.org/techniques/T1474
https://socradar.io/the-dangers-of-third-party-app-stores-risks-and-precautions
https://socradar.io/the-dangers-of-third-party-app-stores-risks-and-precautions
https://www.cloudflare.com/learning/security/what-are-indicators-of-compromise
https://www.cloudflare.com/learning/security/what-are-indicators-of-compromise
https://www.cisa.gov/sites/default/files/publications/Best Practices for MITRE ATTCK Mapping.pdf
https://www.cisa.gov/sites/default/files/publications/Best Practices for MITRE ATTCK Mapping.pdf
https://blog.google/threat-analysis-group/countering-threats-iran/
https://blog.google/threat-analysis-group/countering-threats-iran/
https://medium.com/@rootxaman/data-exfiltration-with-discord-98139e8c6590
https://medium.com/@rootxaman/data-exfiltration-with-discord-98139e8c6590

BIBLIOGRAPHY 63

[26] Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion

detection. p. 1–7. CCS ’99, Association for Computing Machinery, New York, NY,

USA (1999) [Cited on page 26.]

[27] Ayers, R., Brothers, S., Jansen, W.: Guidelines on mobile device forensics (May 2014)

[Cited on page 23.]

[28] Barbera, M.V., Epasto, A., Mei, A., Perta, V.C., Stefa, J.: Signals from the crowd:

uncovering social relationships through smartphone probes. In: Proceedings of the

2013 conference on Internet measurement conference. pp. 265–276 (2013) [Cited on

page 18.]

[29] Barmpatsalou, K., Cruz, T., Monteiro, E., Simoes, P.: Current and future trends in

mobile device forensics: A survey. ACM Computing Surveys 51(3), 1–31 (May 2018)

[Cited on page 23.]

[30] Beckers, J.: Proxying Android app traffic – Common issues / check-

list (2024) (Feb 2024), https://blog.nviso.eu/2020/11/19/

proxying-android-app-traffic-common-issues-checklist, [Online;

accessed 19. May 2024] [Cited on page 21.]

[31] Beek, C.: Apply MITRE’s ‘ATT&CK’ Model to Check Your Defenses.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/

apply-mitres-attck-model-to-check-your-defenses/ (2018), [Ac-

cessed 12-05-2024] [Cited on page 10.]

[32] Bianco, D.J.: The Pyramid of Pain (Jan 2014), http://detect-respond.

blogspot.com/2013/03/the-pyramid-of-pain.html, [Online; accessed 20.

May 2024] [Cited on page 27.]

[33] Breeuwsma, M.: Forensic imaging of embedded systems using jtag (boundary-scan).

digital investigation 3(1), 32–42 (2006) [Cited on page 23.]

[34] Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent threats. In:

De Decker, B., Zúquete, A. (eds.) Communications and Multimedia Security. pp. 63–

72. Springer Berlin Heidelberg, Berlin, Heidelberg (2014) [Cited on page 9.]

[35] Chris Wysopal, C.E.: Static detection of application backdoors (2015) [Cited on page 5.]

[36] Conti, M., Li, Q.Q., Maragno, A., Spolaor, R.: The Dark Side(-Channel) of Mobile

Devices: A Survey on Network Traffic Analysis. IEEE Communications Surveys &

Tutorials 20(4), 2658–2713 (2018) [Cited on pages 17 and 19.]

[37] Di Luzio, A., Mei, A., Stefa, J.: Mind your probes: De-anonymization of large crowds

through smartphone wifi probe requests. In: IEEE INFOCOM 2016 - The 35th Annual

IEEE International Conference on Computer Communications. pp. 1–9 (2016) [Cited on

page 24.]

[38] Do, Q., Martini, B., Choo, K.K.R.: Exfiltrating data from Android devices. Comput-

ers & Security 48, 74–91 (Feb 2015) [Cited on pages 10 and 11.]

[39] D’Orazio, C.J., Choo, K.K.R., Yang, L.T.: Data exfiltration from internet of things

devices: ios devices as case studies. IEEE Internet of Things Journal 4(2), 524–535

(2017) [Cited on page 10.]

https://blog.nviso.eu/2020/11/19/proxying-android-app-traffic-common-issues-checklist
https://blog.nviso.eu/2020/11/19/proxying-android-app-traffic-common-issues-checklist
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/apply-mitres-attck-model-to-check-your-defenses/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/apply-mitres-attck-model-to-check-your-defenses/
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

64 BIBLIOGRAPHY

[40] Enterprise, B.: The Differences Between Static and Dynamic Malware Analy-

sis (May 2024), https://www.bitdefender.com/blog/businessinsights/the-differences-

between-static-malware-analysis-and-dynamic- malware-analysis [Cited on page 16.]

[41] Eslahi, M., Naseri, M.V., Hashim, H., Tahir, N., Saad, E.H.M.: Byod: Current state

and security challenges. In: 2014 IEEE Symposium on Computer Applications and

Industrial Electronics (ISCAIE). pp. 189–192 (2014) [Cited on page 4.]

[42] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajarajan,

M.: Android security: A survey of issues, malware penetration, and defenses. IEEE

Communications Surveys & Tutorials 17(2), 998–1022 (2015) [Cited on page 9.]

[43] Feng, J., Shen, L., Chen, Z., Wang, Y., Li, H.: A Two-Layer Deep Learning Method

for Android Malware Detection Using Network Traffic. IEEE Access 8, 125786–125796

(2020) [Cited on page 19.]

[44] Freudiger, J.: How talkative is your mobile device? an experimental study of wi-fi

probe requests. In: Proceedings of the 8th ACM Conference on Security & Privacy

in Wireless and Mobile Networks. WiSec ’15, Association for Computing Machinery,

New York, NY, USA (2015) [Cited on page 24.]

[45] Ganacharya, T.: Microsoft 365 Defender demonstrates 100 percent protection

coverage in the 2023 MITRE Engenuity ATT&CK® Evaluations: Enterprise |

Microsoft Security Blog — microsoft.com (2021), https://www.microsoft.com/en-

us/security/blog/2023/09/20/microsoft-365-defender-demonstrates-100-percent-

protection-coverage-in-the-2023-mitre-engenuity-attck-evaluations-enterprise/ [Cited on

page 10.]

[46] Ghorbanian, M., Shanmugam, B., Narayansamy, G., Idris, N.B.: Signature-based

hybrid intrusion detection system (hids) for android devices. In: 2013 IEEE Business

Engineering and Industrial Applications Colloquium (BEIAC). pp. 827–831 (2013)

[Cited on page 17.]

[47] González-Granadillo, G., González-Zarzosa, S., Diaz, R.: Security information and

event management (siem): Analysis, trends, and usage in critical infrastructures.

Sensors 21(14) (2021) [Cited on page 16.]

[48] Goodin, D.: Legit app in Google Play turns malicious and sends mic record-

ings every 15 minutes (May 2023), https://arstechnica.com/information-

technology/2023/05/app-with-50000-google-play-installs-sent-attackers-mic-

recordings-every-15-minutes [Cited on page 6.]

[49] Gorecki, C., Freiling, F.C., Kührer, M., Holz, T.: TrumanBox: Improving Dynamic

Malware Analysis by Emulating the Internet. In: Défago, X., Petit, F., Villain, V.

(eds.) Stabilization, Safety, and Security of Distributed Systems. pp. 208–222. Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg (2011) [Cited on page 22.]

[50] Gu, X., Wu, W., Gu, X., Ling, Z., Yang, M., Song, A.: Probe Request Based Device

Identification Attack and Defense. Sensors 20(16), 4620 (Aug 2020) [Cited on page 24.]

https://www.bitdefender.com/blog/businessinsights/the-differences-between-static-malware-analysis-and-dynamic- malware-analysis
https://www.bitdefender.com/blog/businessinsights/the-differences-between-static-malware-analysis-and-dynamic- malware-analysis
https://www.microsoft.com/en-us/security/blog/2023/09/20/microsoft-365-defender-demonstrates-100-percent-protection-coverage-in-the-2023-mitre-engenuity-attck-evaluations-enterprise/
https://www.microsoft.com/en-us/security/blog/2023/09/20/microsoft-365-defender-demonstrates-100-percent-protection-coverage-in-the-2023-mitre-engenuity-attck-evaluations-enterprise/
https://www.microsoft.com/en-us/security/blog/2023/09/20/microsoft-365-defender-demonstrates-100-percent-protection-coverage-in-the-2023-mitre-engenuity-attck-evaluations-enterprise/
https://arstechnica.com/information-technology/2023/05/app-with-50000-google-play-installs-sent-attackers-mic-recordings-every-15-minutes
https://arstechnica.com/information-technology/2023/05/app-with-50000-google-play-installs-sent-attackers-mic-recordings-every-15-minutes
https://arstechnica.com/information-technology/2023/05/app-with-50000-google-play-installs-sent-attackers-mic-recordings-every-15-minutes

BIBLIOGRAPHY 65

[51] Guri, M., Kachlon, A., Hasson, O., Kedma, G., Mirsky, Y., Elovici, Y.: GSMem: Data

exfiltration from Air-Gapped computers over GSM frequencies. In: 24th USENIX Se-

curity Symposium (USENIX Security 15). pp. 849–864. USENIX Association, Wash-

ington, D.C. (Aug 2015) [Cited on page 12.]

[52] Haataja, K.: Security Threats and Countermeasures in Bluetooth-Enabled Systems

(Turvallisuusuhkat ja vastatoimet Bluetooth-yhteensopivissa järjestelmissä). Ph.D.

thesis, Kuopion yliopisto (2009) [Cited on page 7.]

[53] Harkin, D., Molnar, A., Vowles, E.: The commodification of mobile phone surveillance:

An analysis of the consumer spyware industry. Crime, Media, Culture 16(1), 33–60

(2020) [Cited on page 5.]

[54] Intelligence, M.T.: Toll fraud malware: How an Android application can drain your

wallet | Microsoft Security Blog. Microsoft Security Blog (Sep 2023) [Cited on page 9.]

[55] Jakobsson, M., Myers, S.: Phishing and countermeasures: understanding the increas-

ing problem of electronic identity theft. John Wiley & Sons (2006) [Cited on page 11.]

[56] Johnson, N.F., Jajodia, S.: Exploring steganography: Seeing the unseen. Computer

31(2), 26–34 (1998) [Cited on page 12.]

[57] Kalidas, A.: Android-Data-Exfiltration (Aug 2023), https://github.com/

Arjunkalidas/Android-Data-Exfiltration, original-date: 2020-03-

19T02:41:57Z [Cited on page 10.]

[58] Kaspersky: What is rootkit – definition and explanation (Apr 2023), https://www.

kaspersky.com/resource-center/definitions/what-is-rootkit [Cited

on page 5.]

[59] Kent, K., Souppaya, M.: Guide to Computer Security Log Management. Tech. Rep.

NIST Special Publication (SP) 800-92, National Institute of Standards and Technology

(Sep 2006) [Cited on page 15.]

[60] Kharraz, A., Kirda, E., Robertson, W., Balzarotti, D., Francillon, A.: Optical delu-

sions: A study of malicious qr codes in the wild. In: 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks. pp. 192–203. IEEE

(2014) [Cited on page 8.]

[61] Kral, P.: The incident handlers handbook. Sans Institute (2011) [Cited on page 6.]

[62] La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.

IEEE Communications Surveys & Tutorials 15(1), 446–471 (2013) [Cited on pages 5 and 7.]

[63] Lovinger, N., Gerlich, T., Martinasek, Z., Malina, L.: Detection of wireless fake access

points. In: 2020 12th International Congress on Ultra Modern Telecommunications

and Control Systems and Workshops (ICUMT). pp. 113–118 (2020) [Cited on page 45.]

[64] Lunt, T.F.: A survey of intrusion detection techniques. Computers & Security 12(4),

405–418 (Jun 1993) [Cited on page 13.]

[65] Makhlouf, A.M., Boudriga, N.: Intrusion and anomaly detection in wireless networks.

In: Handbook of Research on Wireless Security, pp. 78–94. IGI Global (2008) [Cited on

page 7.]

https://github.com/Arjunkalidas/Android-Data-Exfiltration
https://github.com/Arjunkalidas/Android-Data-Exfiltration
https://www.kaspersky.com/resource-center/definitions/what-is-rootkit
https://www.kaspersky.com/resource-center/definitions/what-is-rootkit

66 BIBLIOGRAPHY

[66] Marczak, B., Scott-Railton, J., McKune, S.: Hacking team reloaded? us-based

ethiopian journalists again targeted with spyware. The Citizen Lab (2015) [Cited on

page 5.]

[67] Marczak, B., Scott-Railton, J., McKune, S., Abdul Razzak, B., Deibert, R.: Hide and

seek: Tracking nso group’s pegasus spyware to operations in 45 countries. Tech. rep.

(2018) [Cited on page 8.]

[68] Müller, T., Spreitzenbarth, M.: Frost: Forensic recovery of scrambled telephones. In:

Applied Cryptography and Network Security: 11th International Conference, ACNS

2013, Banff, AB, Canada, June 25-28, 2013. Proceedings 11. pp. 373–388. Springer

(2013) [Cited on page 23.]

[69] Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L.: Dynamic malware analysis in the

modern era—a state of the art survey. ACM Comput. Surv. 52(5) (sep 2019) [Cited on

page 16.]

[70] Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer

Networks 31(23), 2435–2463 (1999) [Cited on page 20.]

[71] Provos, N., et al.: A virtual honeypot framework. In: USENIX Security Symposium.

vol. 173, pp. 1–14 (2004) [Cited on page 15.]

[72] Ribeiro, J., Saghezchi, F.B., Mantas, G., Rodriguez, J., Shepherd, S.J., Abd-

Alhameed, R.A.: An Autonomous Host-Based Intrusion Detection System for Android

Mobile Devices. Mobile Netw. Appl. 25(1), 164–172 (Feb 2020) [Cited on page 17.]

[73] Ribeiro, J., Saghezchi, F.B., Mantas, G., Rodriguez, J., Abd-Alhameed, R.A.:

Hidroid: Prototyping a behavioral host-based intrusion detection and prevention sys-

tem for android. IEEE Access 8, 23154–23168 (2020) [Cited on page 17.]

[74] Roesch, M.: Snort – Lightweight Intrusion Detection for Networks (1999) [Cited on

page 20.]

[75] Ruberg, B.: Small-scale honeynet with Raspberry Pi (Dec 2016), https://www.

redpill-linpro.com/techblog/2016/12/19/raspberry-pi-honeynet.

html [Cited on page 22.]

[76] Rudie, J., Katz, Z., Kuhbander, S., Bhunia, S.: Technical analysis of the nso group’s

pegasus spyware. In: 2021 International Conference on Computational Science and

Computational Intelligence (CSCI). pp. 747–752 (2021) [Cited on page 8.]

[77] Scarfone, K., Mell, P.: Guide to Intrusion Detection and Prevention Systems (IDPS).

Tech. Rep. NIST Special Publication (SP) 800-94, National Institute of Standards and

Technology (Feb 2007) [Cited on page 20.]

[78] Search, C.: What is Threat Intelligence and Why is it Impor-

tant? (Nov 2023), https://www.cyberneticsearch.com/blog/

what-is-threat-intelligence-and-why-is-it-important-, [Online;

accessed 20. May 2024] [Cited on page 26.]

[79] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “andromaly”: a behavioral

malware detection framework for android devices. Journal of Intelligent Information

Systems 38(1), 161–190 (2012) [Cited on page 18.]

https://www.redpill-linpro.com/techblog/2016/12/19/raspberry-pi-honeynet.html
https://www.redpill-linpro.com/techblog/2016/12/19/raspberry-pi-honeynet.html
https://www.redpill-linpro.com/techblog/2016/12/19/raspberry-pi-honeynet.html
https://www.cyberneticsearch.com/blog/what-is-threat-intelligence-and-why-is-it-important-
https://www.cyberneticsearch.com/blog/what-is-threat-intelligence-and-why-is-it-important-

BIBLIOGRAPHY 67

[80] Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for

network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy. pp.

305–316 (2010) [Cited on page 26.]

[81] Stefan: Wifi probe requests explained (Jul 2022), https://blog.spacehuhn.

com/probe-request [Cited on page 3.]

[82] Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user privacy

in android ad libraries. In: Workshop on Mobile Security Technologies (MoST). vol. 10,

pp. 195–197 (2012) [Cited on page 19.]

[83] Su, X., Chuah, M., Tan, G.: Smartphone dual defense protection framework: Detect-

ing malicious applications in android markets. In: 2012 8th International Conference

on Mobile Ad-hoc and Sensor Networks (MSN). pp. 153–160. IEEE (2012) [Cited on

page 18.]

[84] Titterington, A.: Google Play malware clocks up more than 600 million downloads in

2023. Kaspersky (Nov 2023) [Cited on page 6.]

[85] Tung, L.: Apple: These are the sorts of apps we blocked from our App

Store last year, https://www.zdnet.com/article/apple-these-are-the-sorts-of-apps-we-

blocked-from-our-app-store-last-year/ [Cited on page 6.]

[86] Watkins, L., Corbett, C., Salazar, B., Fairbanks, K., Robinson, W.H.: Using network

traffic to remotely identify the type of applications executing on mobile devices. Johns

Hopkins University Applied Physics Laboratory Laurel, MD USA (2013) [Cited on page 19.]

[87] Wim, M.: Pragmatic cybersecurity. Independently published (2020) [Cited on pages 13

and 14.]

[88] Xiang, C., Binxing, F., Lihua, Y., Xiaoyi, L., Tianning, Z.: Andbot: towards advanced

mobile botnets. In: 4th USENIX Workshop on Large-Scale Exploits and Emergent

Threats (LEET 11) (2011) [Cited on page 9.]

[89] Yadav, T., Rao, A.M.: Technical Aspects of Cyber Kill Chain. In: Abawajy, J.H.,

Mukherjea, S., Thampi, S.M., Ruiz-Martínez, A. (eds.) Security in Computing and

Communications. pp. 438–452. Springer International Publishing, Cham (2015) [Cited

on page 6.]

[90] Yasar, K.: command-and-control server (C&C server). WhatIs (Oct 2022) [Cited on

page 9.]

[91] Yeboah-Boateng, E.O., Amanor, P.M.: Phishing, smishing & vishing: an assessment

of threats against mobile devices. Journal of Emerging Trends in Computing and

Information Sciences 5(4), 297–307 (2014) [Cited on page 8.]

[92] Zarni Aung, W.Z.: Permission-based android malware detection. International Journal

of Scientific & Technology Research 2(3), 228–234 (2013) [Cited on page 17.]

https://blog.spacehuhn.com/probe-request
https://blog.spacehuhn.com/probe-request
https://www.zdnet.com/article/apple-these-are-the-sorts-of-apps-we-blocked-from-our-app-store-last-year/
https://www.zdnet.com/article/apple-these-are-the-sorts-of-apps-we-blocked-from-our-app-store-last-year/

Appendix A

Source code

A.1 Configuration files

1 interface=wlan0
2 dhcp-range=192.168.4.2,192.168.4.20,255.255.255.0,24h
3 address=/#/192.168.4.1

Figure A.1: Configuration file for dnsmasq.conf

1 hostname
2 clientid
3 persistent
4 option rapid_commit
5 option domain_name_servers, domain_name, domain_search, host_name
6 option classless_static_routes
7 option interface_mtu
8 require dhcp_server_identifier
9 slaac private

10

11 interface wlan0
12 static ip_address=192.168.4.1/24
13 nohook wpa_supplicant
14

15 interface eth0
16 static ip_address=169.254.18.67/16
17

Figure A.2: Configuration file for dhcpcd.conf

1 country_code=BE
2 interface=wlan0
3 ssid=MemoryThesis
4 channel=9

Figure A.3: Configuration file for hostapd.conf

68

APPENDIX A. SOURCE CODE 69

A.2 Python code

A.3 Tools installation not in details

1 sudo apt install dnsmasq hostapd
2 sudo nano /etc/dhcpcd.conf
3 # Modify the configuration file

4 sudo nano /etc/dnsmasq.conf
5 # Modify the configuration file

6 sudo nano /etc/hostapd/hostapd.conf
7 # Modify the configuration file

8 sudo nano /etc/default/hostapd
9 # Indicates where the configuration file is located

10 sudo systemctl unmask hostapd
11 sudo systemctl enable hostapd
12 sudo systemctl restart hostapd dnsmasq dhcpcd
13 sudo apt install inetsim
14 sudo nano /etc/inetsim/inetsim.conf
15 # Modify the configuration file

16 sudo iptables -t nat -A PREROUTING -i wlan0 -p udp --dport 67:68 \

17 -j ACCEPT
18 sudo iptables -t nat -A PREROUTING -i wlan0 -j REDIRECT
19 sudo iptables-save > /etc/iptables/rules.v4
20 sudo systemctl restart inetsim
21 sudo systemctl enable inetsim
22 sudo nano startup
23 # Create a script that restores iptables rules at boot

24 sudo crontab -e
25 # Make the script launched at boot

26 sudo nano /etc/dnsmasq.conf
27 # Make all the dns responses containing the address of the Raspberry Pi

28 sudo systemctl restart dnsmasq
29 # Install and configure SNORT

30 sudo apt install snort -y
31 sudo snort -c /etc/snort/snort.lua
32 sudo ip link set dev wlan0 promisc on
33 ip address show wlan0
34 sudo ethtool -K wlan0 gro off lro off
35 sudo snort -c /etc/snort/snort.lua -R /etc/snort/rules/local.rules \

36 -i wlan0 n-A alert_fast -s 65535 -k none -l </path/to/USBKEY>
37 # To turn on monitor mode

38 sudo systemctl stop hostapd dhcpcd dnsmasq inetsim
39 sudo iptables -F
40 sudo airmon-ng start wlan0

Figure A.4: Command sequence to install the tools

Appendix B

Quick Reference Guide

LED off LED on

Program not running

IDS mode selected

Probe requests mode
selected

IDS mode running

Probe requests mode
running

x5

Program is
stopping

Program has
stopped

t

x20

An error
has occurred

Program has
stopped

t

Quick reference guide

Figure B.1: Quick reference guide to print and display on the Faraday enclosure1

1https://cloud.cylab.be/s/9tAoemq2nTmmxzK

70

https://cloud.cylab.be/s/9tAoemq2nTmmxzK

	Abstracts
	Abstract

	Preface
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivations
	Project statement & contributions
	Organisation of this document

	State of the art
	Mobile security
	Mobile malware taxonomy
	Mobile malware entry points
	Malicious applications
	Web-based method
	Network-based methods
	Social engineering
	Physical access
	Zero click attack

	Mobile malware capabilities
	Mobile malware data exfiltration techniques
	Web service
	Social engineering
	Covert channels
	Physical medium
	Network protocols
	Other network medium
	Steganography

	Malware detection
	Malware detection techniques
	Intrusion Detection System
	Logging
	Honeypots
	SIEM
	Threat hunting
	Static malware analysis
	Dynamic malware analysis

	Malware detection applied to mobile malware
	HIDS for mobile devices
	NIDS for mobile devices
	Logging
	Dynamic malware analysis

	Developing a stand-alone solution

	Locked mobile device data acquisition
	Challenges in acquiring data from locked devices
	Probe requests analysis

	Bridging research and application
	Purpose and overview
	Tools and technologies used
	IoCs: Context and coverage
	Tool selection

	Validation of chosen approaches
	Pyramid of pain
	Data exfiltration prevention and detection

	Summary

	Usage & Implementation
	Global methodology
	Usage
	Launch the Raspberry Pi
	Mode selection
	Mode switching
	IDS mode particularity

	Launch the program
	Save the capture on the USB stick

	Software design methodology
	Overview of software components
	Installing the OS on the Raspberry Pi
	Implementation methodology
	Tools installation
	Create an access point
	Simulate Internet services
	Install and configure Snort
	Turn on monitor mode

	Python implementation
	main.py
	config.py
	captureTraffic.py
	captureProbes.py

	Fritzing diagram for hardware setup
	Additional considerations and access
	Generating whitelists for DNS, IP addresses and Snort
	Image replication for Raspberry Pi deployment
	Failed attempts and lesson learned
	Evil twin
	Recovering AP BSSIDs from probes

	Log in to the Raspberry Pi
	Resolve conflict between NetworkManager and hostapd configuration
	Connecting to Raspberry Pi via SSH

	Case studies & applications
	Case study 1: suspected malware infection
	Mobile device not infected
	Mobile device infected by a basic reverse shell
	Reverse shell creation
	Output analysis

	Mobile sevice is infected by an advanced persistent threat
	Output analysis

	Summary table of different malware analysed
	Case study 2: seizure of mobile device in sensitive environment
	Lessons learned and best practices

	Future work
	Conclusion
	Bibliography
	Appendices
	Source code
	Configuration files
	Python code
	Tools installation not in details

	Quick Reference Guide

