
Malware Obfuscation and Evasion
Developing Custom Malware and Extending AVET
Framework for CAPEv2 Sandbox Evasion

Ayoub Bouhnine

Academic year
2023 – 2024

Research and Development project owner:
Ayoub Bouhnine

Master thesis submitted under the supervision of
Professor Wim Mees and Professor Georgi Nikolov

in order to be awarded the Degree of
Master in Cybersecurity

Cryptanalysis and Forensics

text

This is done in order to skip the first half of the page

I hereby confirm that this thesis was written independently by myself without the use of any sour-
ces beyond those cited, and all passages and ideas taken from other sources are cited accordin-
gly.

The author(s) gives (give) permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-
right terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

The author(s) transfers (transfer) to the project owner(s) any and all rights to this master disserta-
tion, code and all contribution to the project without any limitation in time nor space.

03/06/2024

Title: Malware Obfuscation and Evasion: Developing Custom Malware and Extend-
ing AVET Framework for CAPEv2 Sandbox Evasion

Author: Ayoub Bouhnine
Master in Cybersecurity – Cryptanalysis and Forensics
Academic year: 2023 – 2024

Abstract

Malware remains as one of the foremost cyber threat, with cybercriminals continually de-
veloping techniques to bypass security solutions. Open-source antivirus evasion tools now
allow even individuals with limited technical knowledge to pose an increased risk to sys-
tems with active antivirus protection. Despite ongoing improvement in antivirus solutions,
these systems are not infallible. Hackers constantly create new methods to bypass defenses,
resulting in a continuous battle between malware creators and antivirus developers. Popu-
lar evasion tools are eventually detected as antivirus companies develop countermeasures,
needing constant updates and a limited user base to maintain their effectiveness.

While many studies have assessed the effectiveness of open-source evasion tools, there
is a lack of research on their customization for enhanced evasion. Specifically, the ways in
which hackers can create and refine malware to bypass security defenses.

This thesis explores the mechanisms of malware detection and evasion. We investigate
various methods to customize malware, ensuring it remains undetected by modern pro-
tections. To facilitate internal testing, we created a lab environment comprising antivirus
software for static and dynamic analysis, alongside sandbox analysis using CAPEv2. This
approach prevents bias in our analysis, as uploading newly developed malware samples
to public platforms like VirusTotal could share our them with other vendors, potentially
distorting results and increasing the likelihood of early detection as we continue our devel-
opment.

Our experimentation methodology involved first assessing samples generated using the
AVET Framework against the CAPEv2 sandbox. We then created a custom sample based
on the underlying logic of AVET to test its stealthiness. Subsequently, we applied other
evasion techniques, including Dynamic Loading of APIs, Dynamic Loading of NTAPIs
and Direct Syscalls. All these versions were tested against CAPEv2. Additionally, we
integrated these methods into AVET and assessed the samples generated using these tech-
niques. Finally, a comprehensive assessment was conducted targeting the Windows De-
fender antivirus to evaluate overall effectiveness.

Our findings reveal that shellcode injection effectively bypasses the CAPEv2 monitoring
system, concealing further activities performed by the payload. In reducing the Indicators
of Compromise (IoCs) of the dropper, advanced evasion techniques targeting API hook-
ing are effective. Specifically, the use of Direct Syscall significantly hides IoCs generated
by CAPEv2. Regarding detection by Windows Defender, we discovered a discrepancy
based on the use of the compiler when employing the Direct Syscall method generated
by SysWhispers. Indeed, samples compiled with Visual Studio 2022 were not detected,
whereas those compiled with MinGW were detected.

Keywords: Cybersecurity, Malware, Obfuscation, Antivirus, AV Evasions, AV Defenses,
Sandbox, CAPEv2, Meterpreter, AVET, Windows Defender, SysWhispers3, MinGW, Vi-
sual Studio

I

Preface

Before starting this thesis, I had no experience in malware development and only a basic
understanding of detection and evasion techniques. However, my curiosity and eagerness
to learn, particularly my interest in Red Teaming, turned this project into an exciting
learning opportunity. This journey has been immensely rewarding, allowing me to explore
a complex and evolving field that I find deeply fascinating.

Throughout my research, I have gained valuable insights and skills that have signifi-
cantly broadened my understanding of cybersecurity. Working with advanced techniques
and tools has enhanced my technical expertise and sharpened my analytical skills. This
thesis highlights the result of my hard work and dedication, and I am proud of the knowl-
edge and competencies I have acquired.

II

Acknowledgements

This subject was proposed by the Cyber Defence Lab (Cylab) under the guidance of Pro-
fessor Wim Mees and Professor Georgi Nikolov.

First of all, I wish to express my sincere gratitude to Professor Wim Mees and Pro-
fessor Georgi Nikolov for their continuous support, availability and advice throughout this
thesis. Their expertise and dedication have been invaluable in guiding my research and
contributing to the success of this work.

Additionally, I am deeply grateful to my family and friends for their support and
continuous help during difficult times. Their encouragement and belief in me provided the
strength and motivation needed to complete this thesis.

Finally, I would like to express my gratitude to the institutions responsible for the
Master in Cybersecurity for allowing free access to a wealth of scientific resources that have
been indispensable for the research related to this thesis. Their commitment to providing
academic resources has significantly enhanced the quality and depth of my research.

III

Table of Contents
Abstracts I

Abstract . I

Preface II

Table of Contents V

List of Figures VIII

List of Tables VIII

List of Abbreviations IX

1 Introduction 1
1.1 Motivations . 1
1.2 Project statement & contributions . 2

1.2.1 Contribution . 3
1.3 Organization of this document . 4

2 Literature review, state of the art (SotA), definitions and notations 5
2.1 Related Work . 5
2.2 Malware . 10

2.2.1 Definition . 10
2.2.2 Malware and the Cyber Kill Chain 11

2.3 The PE format . 11
2.4 Malware Detection Techniques . 12

2.4.1 Static-Based Method . 13
2.4.2 Behavior-Based Method . 13
2.4.3 Heuristic-Based Method . 14
2.4.4 Sandbox Detection . 15
2.4.5 Antivirus . 15
2.4.6 VirusTotal . 16

2.5 Malware Evasion Techniques . 17
2.5.1 Evading Static Detection . 17
2.5.2 Evading Dynamic Detection . 19
2.5.3 Evasion Frameworks . 26

3 Implementation & Testing 28
3.1 Selection of a Sandbox . 29
3.2 Selection of an Evasion Framework . 29
3.3 CAPEv2 Sandbox . 30

3.3.1 Architecture of CAPEv2 . 30
3.3.2 Processing files in CAPEv2 . 30
3.3.3 Capemon - Monitoring of CAPEv2 32

3.4 Implementation of the lab environment 34

IV

3.4.1 Architecture of the lab environment 34
3.4.2 CAPEv2 environment . 36
3.4.3 Testing the Sandbox Environment 38

4 Experimentation & data collection 42
4.1 Methodology . 42
4.2 Experimentation . 43

4.2.1 Introduction to AVET architecture 44
4.2.2 Selecting and assessing payload execution methods 45
4.2.3 Results of the assessment . 58
4.2.4 Custom Sample . 60
4.2.5 Extending AVET . 77
4.2.6 Assessment with Windows Defender 86

5 Discussion 94
5.1 Key findings . 94
5.2 Comparison with state of the art/related works 95

5.2.1 Limitations of Existing Methods 96
5.2.2 Key Contributions . 96

5.3 Limitations of validity . 97
5.4 Future Work . 98

6 Conclusions 101

Bibliography 107

Appendices 108

A Lab environment 108
A.1 Installation of CAPE . 108
A.2 Configuration of CAPE . 111
A.3 CAPEv2 Startup and Troubleshooting 120
A.4 Importing the Lab Environment . 120

A.4.1 Steps to Import the Lab Environment 121
A.5 Investigating CAPEv2 issue with x64 Meterpreter payloads 124

B Sandbox Evasion Techniques of AVET 127

C Debugging function issue in AVET 129
C.1 Investigation and Debugging . 129
C.2 Explanation and Solution . 130

D Assessment of the extended AVET 132

List of Figures

2.1 kernel32.dll hooked by a security solution 14
2.2 Implementation in assembly code for direct syscalls 23
2.3 Illustration of an indirect syscall . 24

3.1 Architecture of CAPEv2 [1] . 31

V

3.2 CAPEv2 analysis flow [2] . 32
3.3 Trampoline Hook [3] . 34
3.4 Lab environment . 35
3.5 Sequence diagram of the analysis process 36
3.6 Pipeline evaluation process . 36
3.7 Installed software on the Windows 10 guest VM 37
3.8 CAPEv2 sandbox analysis options . 38
3.9 Failed attempt to obtain a x64 Meterpreter session reverse HTTPS

obtained from the sandbox . 39
3.10 x86 Meterpreter session reverse HTTP obtained from the sandbox . . 39
3.11 Sandbox analysis of a staged x86 Meterpreter reverse HTTPS using

CAPEv2 . 40
3.12 Sandbox analysis of a staged x86 meterpreter reverse HTTPS using

CAPEv2 - Results . 41

4.1 Interface of AVET . 44
4.2 Detection results of the first sample 47
4.3 CAPA analysis results of the first sample 47
4.4 IoCs of the first sample . 48
4.5 Accessed files from Meterpreter payload with the first sample 49
4.6 Accessed files from our enumeration with the first sample 49
4.7 Detection results of the second sample 51
4.8 CAPA analysis results of the second sample 51
4.9 IoCs of the second sample . 52
4.10 Accessed files from our enumeration with the second sample 53
4.11 Detection results of the third sample 55
4.12 CAPA analysis results of the third and fourth samples 55
4.13 IoCs of the third sample . 56
4.14 IoCs of the fourth sample . 56
4.15 Behavioral analysis of processes for the third and fourth samples (same

API calls) . 57
4.16 Behavioral analysis of threads for the third and fourth samples 57
4.17 Accessed files with the third and fourth samples 58
4.18 Signature of Dynamic Loading of APIs 62
4.19 Detection result of custom sample - Classical APIs 64
4.20 CAPA analysis of custom sample - Classical APIs 65
4.21 IoCs of custom sample - Classical APIs 65
4.22 Behavioral processes of custom sample - Classical APIs 66
4.23 Behavioral process (enumeration) of custom sample - Classical APIs . 66
4.24 Behavioral threads of custom sample - Classical APIs 67
4.25 Files accessed of custom sample - Classical APIs 67
4.26 Detection result of custom sample - Dynamic Loading of APIs 68
4.27 CAPA analysis of custom sample - Dynamic Loading of APIs 68
4.28 IoCs of custom sample - Dynamic Loading of APIs 68
4.29 Files accessed of custom sample - Dynamic Loading of APIs 68
4.30 Detection result of custom sample - Dynamic Loading of NTAPIs . . . 70
4.31 CAPA analysis of custom sample - Dynamic Loading of NTAPIs . . . 70
4.32 IoCs of custom sample - Dynamic Loading of NTAPIs 71

VI

4.33 Behavioral processes of custom sample - Dynamic Loading of NTAPIs 72
4.34 Behavioral process (enumeration) of custom sample - Dynamic Load-

ing of NTAPIs . 72
4.35 Behavioral threads of custom sample - Dynamic Loading of NTAPIs . 72
4.36 Files accessed of custom sample - Dynamic Loading of NTAPIs 72
4.37 Detection result of custom sample - Direct Syscalls 73
4.38 CAPA analysis of custom sample - Direct Syscalls 74
4.39 IoCs of custom sample - Direct Syscalls 74
4.40 Behavioral analysis (process tree) of custom sample - Direct Syscalls . 75
4.41 Behavioral processes of custom sample - Direct Syscalls 75
4.42 Behavioral analysis (syscalls) of custom sample - Direct Syscalls . . . 75
4.43 Files accessed of custom sample - Direct Syscalls 75
4.44 Structure of the AVET project . 78
4.45 build script example (1) . 78
4.46 build script example (2) . 79
4.47 Static detection of the custom sample - Dynamic Loading of NTAPIs . 88
4.48 Dynamic detection of the custom sample - Dynamic Loading of NTAPIs 88
4.49 Static detection of the extended sample from AVET - Dynamic Load-

ing of NTAPIs . 89
4.50 Dynamic detection of the extended sample from AVET - Dynamic

Loading of NTAPIs . 90
4.51 Static detection of the custom sample - Direct Syscalls 91
4.52 Dynamic detection of the custom sample - Direct Syscalls 91
4.53 Static detection of the extended sample from AVET (1) - Direct Syscalls 92
4.54 Static detection of the extended sample from AVET (2) - Direct Syscalls 92

A.1 Configuring the IP address of the result server 112
A.2 Disabling Windows Defender Firewall 113
A.3 Disabling Windows Defender . 114
A.4 Disabling Windows Update service . 115
A.5 Setting up the agent to run on startup 116
A.6 Installed software on the Windows 10 guest VM 117
A.7 Configuration of routing to allow internet for the guest 118
A.8 Configuration of the Windows 10 guest for CAPEv2 119
A.9 Choosing a storage path . 121
A.10Locating storage volume . 122
A.11Updating the kvm.conf file . 123
A.12No meterpreter session established with monitoring - staged x64 me-

terpreter payload . 124
A.13Meterpreter session established without monitoring - staged x64 Me-

terpreter payload . 125
A.14Meterpreter session x64 established by removing the two problematic

hooks - staged x64 Meterpreter payload 125
A.15Sandbox analysis of a staged x64 Meterpreter reverse HTTPS using

CAPEv2 - Results . 126

D.1 Detection result of the first sample - Classical APIs 133
D.2 CAPA analysis of the first sample - Classical APIs 133

VII

D.3 IoCs of the first sample - Classical APIs 133
D.4 Files accessed of the first sample - Classical APIs 134
D.5 Detection result of the second sample - Dynamic Loading of APIs . . 135
D.6 CAPA analysis of the second sample - Dynamic Loading of APIs . . . 136
D.7 IoCs of the second sample - Dynamic Loading of APIs 136
D.8 Files accessed of the second sample - Dynamic Loading of APIs 137
D.9 Detection result of the third sample - Dynamic Loading of NTAPIs . . 138
D.10CAPA analysis of the third sample - Dynamic Loading of NTAPIs . . 138
D.11IoCs of the third sample - Dynamic Loading of NTAPIs 139
D.12Files accessed of the third sample - Dynamic Loading of NTAPIs . . . 140
D.13Detection result of the fourth sample - Direct Syscalls 141
D.14CAPA analysis of the fourth sample - Direct Syscalls 141
D.15IoCs of the fourth sample - Direct Syscalls 142
D.16Behavioral analysis (process tree) of the fourth sample - Direct Syscalls142
D.17Behavioral analysis (syscalls) of the fourth sample - Direct Syscalls . . 142
D.18Files accessed of the fourth sample - Direct Syscalls 143

List of Tables

5.1 Comparison of Techniques . 100

B.1 AVET Sandbox Evasion Techniques - 1 127
B.2 AVET Sandbox Evasion Techniques - 2 128

VIII

List of Abbreviations

API Application Programming Interface
AV AntiVirus
DEP Data Execution Prevention
DLL Dynamic Link Libraries
DOS Disk Operating System
IAT Import Address Table
MZ Mark Zbikowski
NT New Technology
NTAPI Native Application Programming Interface
OEP Original Entry Point
OS Operating System
PE Portable Executable
PID Process ID
RAT Remote Access Trojan
RWX Read-Write-Execute
VM Virtual Machine
VT VirusTotal

IX

Chapter 1

Introduction
Nowadays, the internet is widely accessible to people of all ages and backgrounds, allowing
them to use it for communication, entertainment and information acquisition. However,
this widespread accessibility also opens doors to hackers. These cybercriminals use the
internet to deploy malicious software, being therefore a major threat to users’ privacy and
the security of important data.

Over the years, hackers have developed numerous obfuscation and evasion techniques
that allow them to bypass antivirus defences and effectively infiltrate computer systems.
While antivirus software developers are constantly innovating and improving their secu-
rity measures to counter new emerging techniques, hackers are constantly evolving their
methods to circumvent them.

According to AV-Test [4], an independent institution that evaluates antivirus software,
the presence of malware on the internet has risen steadily over the years, reaching a peak
of more than 1.2 billion malware in 2024. This trend underlines the fact that antivirus
solutions are not flawless.

Many penetration testers and hackers have created open-source evasion frameworks
that combine various techniques to develop malware capable of evading detection. As
a result, individuals with malicious intent can easily access ready-to-use malware able
to compromise computer systems, including those protected by antivirus software. The
effectiveness of these tools in bypassing antivirus defenses often relies on their obscurity.
Indeed, the less known the tool, the more successful it is at generating payloads that can
bypass antivirus detection [36]. Although antivirus programs use several methods, such
as signature-based detection, behavioral-based detection and heuristic-based detection, to
identify malware, these methods are not flawless.

1.1 Motivations

This thesis was motivated by the rising trends of cyber threats, with malware emerging
as the main challenge to internet security. Malware has become the weapon of choice for
threat actors targeting both individuals and organisations in sophisticated attack cam-
paigns. An in-depth analysis and assessment is crucial to understand the defensive and
evasive capabilities. Our research examines the subtleties of modern and advanced malware
techniques, focusing particularly on the use of obfuscation and evasion strategies. These
methods are designed to circumvent the various defensive measures deployed on computer
systems and cloud infrastructures [48].

Moreover, the thesis highlights the central role of red team operators and penetration
testers in assessing the level of security of internal systems. Given that attackers frequently
use open-source tools, which can lose their effectiveness against modern antivirus solutions,
there is an urgent need for security professionals to understand the nuances of obfuscation
and evasion techniques. As a result, experts in defensive and offensive security are required

1

to assess the effectiveness of these tools. This assessment is essential not only to design
robust defences against these tools, but also to enable offensive security practitioners to
select the most effective method for penetration testing. Understanding these dynamics is
therefore essential to progress in cybersecurity measures and protecting against the ever-
changing cyber threat landscape.

1.2 Project statement & contributions

Recent research has examined the potential risks that open-source evasion tools may
present to computer systems by evaluating their effectiveness against security solutions.
However, less attention has been paid to how these tools can be adapted to bypass defences
by incorporating various evasion techniques or developing custom malware. Furthermore,
these studies often overlook the importance of sandbox detection and post-execution be-
havioural detection, some of them rely only on static and heuristic analysis results provided
by VirusTotal or antivirus (AV) deployed on testing virtual machines (VMs). Moreover,
a lot of malware are created by using open-source evasion tools or by doing minor mod-
ifications of existing malware, rather than building customized version and testing the
capabilities, highlighting a critical area of concern in cybersecurity efforts [66].

This master thesis aims to enhance the understanding and effectiveness of malware
evasion techniques against modern detection systems, with a particular focus on sandbox
environments and antivirus solutions. The specific objectives of this research are five-fold:

1. Conduct a comprehensive literature review and state of the art:

• Review related work on malware evasion and detection.

• Define key concepts related to malware, including definitions, cyber kill chain
and the PE format.

• Provide a detailed overview of existing malware detection techniques, including
static-based methods, behavior-based methods, heuristic-based methods and
sandboxing.

• Gain an understanding of how antivirus software and VirusTotal operate.

2. Explore malware evasion techniques:

• Investigate techniques for evading static detection methods.

• Analyze methods for evading dynamic detection.

• Review existing evasion frameworks.

3. Build a comprehensive lab environment:

• Set up CAPEv2 sandbox on a Ubuntu 22.04.4 VM.

• Set up a Kali Linux 2024.1 VM for generated samples from the frameworks.

• Set up a Windows VM for executing and evaluating malware detection and
evasion techniques. Additionally, this VM will be used for developing and testing
custom malware samples.

2

• Ensure a consistent and reliable environment for conducting various experi-
ments, incorporating tools and framework necessary for malware generation and
detection, as well as implementing and validating advanced evasion techniques.

4. Conduct initial experiments:

• Determine a methodology for visualizing and assessing the effectiveness of eva-
sion techniques against CAPEv2 sandbox.

• Evaluate the detection capabilities of CAPEv2 sandbox.

• Identify potential evasion strategies.

• Document the findings to guide the development of advanced evasion techniques.

5. Develop and test custom malware samples:

• Incorporate advanced evasion techniques into custom malware samples.

• Extend the AVET framework by integrating these techniques, enhancing its
capability to bypass modern detection systems.

• Assess the effectiveness of the extended AVET framework against the CAPEv2
sandbox and Windows Defender, identifying areas for potential improvement.

By focusing on these five key objectives, this thesis addresses the need for a more secure
and private testing environment for malware analysis while advancing the understanding
of advanced malware evasion techniques. The research aims to push the boundaries of
existing knowledge, contributing to the advancement of cybersecurity defenses and offensive
capabilities.

1.2.1 Contribution

This thesis aims to advance the field of cybersecurity through two primary contributions:

1. Evaluate the CAPEv2 Sandbox for potential evasion strategies:

• Thorough assessment: Conduct an in-depth evaluation of the CAPEv2 sand-
box to identify potential weaknesses and evasion strategies that malware might
exploit.

• Focus on Indicators of Compromise (IoCs): Go beyond merely evaluat-
ing malware by actively focusing on identifying and reducing IoCs detected by
CAPEv2. Implement and assess various evasion techniques to challenge the
ability of the sandbox to detect malware behaviors.

2. Create custom malware samples with evasion techniques and extend the
AVET open-source evasion framework:

• Development of custom malware: Create custom malware samples incor-
porating advanced evasion techniques, designed to bypass Windows Defender
and CAPEv2 sandbox.

• Extension of AVET framework: Enhance the AVET open-source evasion
framework by integrating the developed evasion techniques. This integration
will enhance its ability to produce malware that can effectively evade detection
measures.

3

• Comprehensive evaluation: Assess the effectiveness of these custom mal-
ware samples and the extended AVET framework against Windows Defender
and CAPEv2 sandbox. This will provide an evaluation of the current state of
malware detection and the effectiveness of advanced evasion techniques.

Through these two key contributions, this thesis addresses the need to enhance the
understanding and effectiveness of advanced malware evasion techniques.

1.3 Organization of this document

The remainder of this thesis is outlined as follows:

• Chapter 2 dives into the analysis of related work, explaining the concept of malware
and its various detection and evasion methodologies. This chapter aims to provide a
comprehensive understanding of these concepts.

• Chapter 3 details the practical aspects of the research. It involves setting up the lab
environment where our analysis will be performed. It begins with an introduction to
the CAPEv2 sandbox and the AVET framework. This is followed with an in-depth
explanation of the CAPEv2 sandbox, describing its architecture, file processing mech-
anisms and monitoring capabilities. The chapter then covers the implementation of
the lab environment.

• Chapter 4 focuses on the experimental phase. Several samples are generated using
the AVET framework and evaluated against CAPEv2. Following this, a custom
sample incorporating several evasion techniques is created and AVET is extended to
integrate these techniques. The extended AVET framework is then tested against
both CAPEv2 and Windows Defender.

• Chapter 5 provides a discussion of the experimentation results and comparisons
with the state of the art. This chapter aims to highlight the areas covered, gaps
filled and lessons learned from the analysis.

4

Chapter 2

Literature review, state of the art (SotA),
definitions and notations
In recent years, malware development has significantly evolved, incorporating sophisticated
methods to evade detection. These advancements are primarily driven by enhanced obfus-
cation and evasion techniques, resulting in increasingly sophisticated dynamic malware.

This chapter will explore the various strategies and methodologies used in both malware
creation and detection. It will provide an analysis of related work, offering a comprehen-
sive overview of key concepts, terminologies and the current state of the art in the field.
By examining the latest advancements in malware detection and the techniques used by
malware developers, we can gain a deeper understanding of the complexities within the cy-
bersecurity landscape and the continuous efforts required to defend against these evolving
threats.

2.1 Related Work

In the literature, different studies have been made to assess the effectiveness of payload
evasion techniques and open-source evasion frameworks against security solutions.

In 2018, Kalogranis [37] explains the different detection techniques on the one hand and
the obfuscations and evasion techiques on the other hand targeting the Windows Operat-
ing System. Then, he presented and tested 4 different evasion frameworks such as AVET,
peCloack.py, Shellter and Veil-Evasion used to target 5 different AV products namely, Avast
Free Antivirus, Bitdefender Internet Security 2018, Eset Internet Security, McAfee Total
Protecton and Avira Antivirus Pro each of them installed on different VMs running Win-
dows 7 Professional N. The findings of the study reveals that, by using a combination of
different payloads and encoding techniques, AVET and Veil-Evasion frameworks achieved
an average of 60% success rate in evading AV softwares, outperforming peCloak.py and
Shellter, which each had an average of 40% efficiency rate in bypassing antivirus protec-
tions. The study indicates that exploiting a variety of options within an evasion tool
can yield better results than using predefined payloads, suggesting that customisation and
flexibility of the features of the tool could help to improve its effectiveness in evading
detection.

A study made by Themelis [64] describes the creation of a desktop application called
pyRAT, which uses Metasploit’s capabilities to employ obfuscation and evasion techniques,
with the aim of evading antivirus detection. The author’s research shows that, at the time
of publication, payloads that underwent obfuscated methods from peCloack.py, created
in pyRAT, were only detected by 11 of VirusTotal’s 67 antivirus engines, highlighting
the effectiveness of the tool in bypassing antivirus detections. Additionally, the author
integrated ClamAV on his tool. However, the author did not provide details on the method
used to hide his payload.

5

In 2020, Aminu et al. [26] reevaluated Kalogranis’ findings and expanded the study
by incorporating TheFatRat as an additional evasion tool for comparison. Their analysis
concluded that AVET and peCloak.py achieved the highest evasion rates, at 83% and 67%
respectively, while Veil-Evasion and Shellter did not manage to bypass AV detection, each
scoring 0%.

This divergence in results may be attributed to the continuous updates of antivirus
products and evasion tools, which could impact their effectiveness. However, the study
did not provide detailed comparisons of encoding techniques and payloads compared to
Kalogranis’ approach.

In 2020, a thesis made by Panagopoulos [57] conducted an evaluation of antivirus
evasion techniques, comparing, on the one hand, a manually modified reverse TCP sample
from GitHub against the antivirus ESET installed on a Windows 7 VM and testing, on
the other hand, various samples generated by evasion frameworks against five antivirus
solutions, namely Bitdefender, Avast, AVG, Kaspersky and Avira (2019 versions). The
study distinguishes between trial versions of the full products for Kaspersky and Avira
and the free versions of BitDefender, Avast and AVG. The evasion tools assessed were
TheFatRat, Phantom Evasion, Hercules, Side Step and Veil-Framework.

For the first assessment, the custom malware, after manual modifications which in-
cludes renaming variables, restructuring the code, adding junk code and hiding the win-
dow, successfully evaded detection by ESET. On the other hand, the author revealed that
Phantom-Evasion achieved the highest evasion rate with a score of 65%, followed by Her-
cules at 47% and TheFatRat at 22%. Veil-Framework showed the lowest efficacy with a
10% evasion rate that may be attributed to its popularity and frequent uploading of its
samples to VirusTotal, which are then shared with antivirus companies. Side Step was
excluded from the study due to technical issues preventing payload generation.

The thesis did not explore manual obfuscations of a Meterpreter payload, opting instead
for a basic reverse TCP code from GitHub. Furthermore, the custom payload was not
evaluated against the five AVs on the VMs. Although the study covered manual anti-
emulation and evasion techniques for evading dynamic heuristic engines, these techniques
were not assessed in practice on the AV setup or platforms like VirusTotal, leaving their
real-world efficacy against modern antivirus solutions unexplored.

In 2021, Garba et al. [36] conducted a study focusing on the effectiveness of vari-
ous evasion tools, including the Veil-Framework, TheFatRat, Shellter, Unicorn, Venom,
Phantom-Evasion, Onelinepy and MsfMania, against the free version of Bitdefender an-
tivirus.

The research involved setting up a laboratory environment with two virtual machines
on Oracle VirtualBox: one running Kali Linux 2021.3 as the attacker machine and the
other running Windows 10 with Bitdefender Free as the target machine. The researchers
generated multiple payloads using these evasion frameworks on Kali Linux to test whether
they could establish a Meterpreter session by transferring and executing the payload on
the Windows 10 VM.

The findings of the study indicated that the highest evasion success rate was 50%,
achieved by Phantom-Evasion, Onelinepy and PayGen. In contrast, Shellter and Unicorn
obtained the lowest success rates, with both failing to evade detection entirely with a score
of 0%. Their evaluation methodology was the consideration of not only the evasion success

6

but also the successful execution of the payload and the establishment of a Meterpreter
session. The researchers compared their results with previous studies, noting the variation
success of evasion tools as they gain popularity and their signatures become more familiar
to antivirus vendors. This exposure needs continual updates and maintenance of the tools
to stay ahead of antivirus detection techniques.

A significant advantage of this study over others is its inclusion of tests for establishing
a Meterpreter session upon successful evasion, highlighting the primary goal of deploying
a Remote Access Trojan by establishing a remote connection, not merely bypassing an-
tivirus detection. This approach provides a more comprehensive assessment of the tools’
effectiveness in real-world scenarios.

However, one limitation of the study lies in its exclusive focus on payloads generated by
evasion tools without exploring the creation and testing of custom malware, which could
have provided further insights into the effectiveness of antivirus evasion methods. Addi-
tionally, the authors did not specify whether they employed encoding or evasion methods
during payload generation in order to bypass antivirus detection.

The recent study made by Samociuk [59] in 2023 provides an in-depth analysis of the
effectiveness of various antivirus evasion techniques, focusing on the correlation between the
age and popularity of evasion tools and their success rate. It reveals that modern antivirus
programs are highly effective against sample generated using the default settings of the
most popular evasion tools. However, it highlights an important gap in current research by
demonstrating that basic modifications to these evasion techniques can successfully bypass
these security solutions. The research specifically evaluates popular evasion frameworks
such as msfvenom, Hyperion, TheFatRat, Shellter and Veil-Evasion. The research focuses
on altering the malwares produced by these frameworks using a hex editor or employing
the evasion techniques provided by the frameworks themselves instead of creating custom
malware.

One of the main contributions of this paper is the exploration of the combination of
several evasion techniques, an area that the authors explained is relatively unexplored. It
highlights the importance of understanding how these techniques can be employed together
to more effectively bypass antivirus protections, suggesting the need for continued evolution
of antivirus software to deal with these sophisticated attack vectors.

The author tested payloads generated by the evasion frameworks against six AV soft-
ware selected on the basis of an AV-Comparatives report. Additionally, he submitted the
samples to an online scanning platform, named antiscan.me, where they were assessed
against 26 AV engines. The study evaluated the effectiveness of both static and dynamic
detection, the latter consisting of assessing whether a payload can establish a Meterpreter
session after execution. The author performed initial tests with an unmodified msfvenom
payload using default settings which will be used as a baseline for the comparison. The
author aimed to emphasize that, although most AV products can detect basic threats, their
effectiveness diminishes when facing slight modifications and combinations of evasion tech-
niques. These modifications, facilitated by evasion frameworks, enable malware to bypass
even most up-to-date AV software.

The study revealed that Shellter and TheFatRat are particularly effective evasion tools.
Shellter emerged as the most successful in bypassing both static and dynamic antivirus
detection, able to open a Meterpreter session through payload injection. TheFatRat, using
payloads written in C and PowerShell, also demonstrated significant effectiveness.

7

This highlights that even individuals with limited cybersecurity knowledge can use these
tools to compromise security. However, the effectiveness of these tools is not constant. In-
deed, it varies with antivirus software updates, as expained by the author’s observation
of increased detection rates following updates. This dynamic emphasizes the necessity of
continually improving antivirus detection methods to counter the evolving evasion tech-
niques.

The author calls for further exploration of advanced evasion techniques and highlights
the importance of regular software updates. The study aims to raise awareness of the
potential damage that hackers can inflict with simple steps to generate malware by using
evasion frameworks.

In 2022, the study made by Maňhal [50] evaluates the CAPEv2 sandbox, an evolution
of the Cuckoo sandbox designed to analyse malware in the Windows operating system.
By setting up a laboratory environment, Maňhal conducted an evaluation of CAPEv2’s
detection capabilities using a Meterpreter payload as well as numerous Metasploit methods
to bypass detection. The study highlighted the ability for malware to evade CAPEv2
monitoring engine, significantly compromising the reliability of scans for users who rely
on the sandbox. However, despite efforts to circumvent CAPEv2 monitoring, including
process migration, exploiting User Account Control (UAC) and using the Windows Task
Scheduler or mouse commands, Maňhal noted that these techniques, while sometimes
successful, inevitably left some traces. This suggests that it is difficult to achieve complete
evasion.

A drawback of the study is its reliance primarily on Meterpreter payloads and Metas-
ploit modules without diving into malware development or the customization of evasion
frameworks to conceal IoCs and bypass detection mechanisms commonly used by anti-
malware solutions. Furthermore, the study relies solely on evaluating the behavioral signa-
tures produced by CAPEv2, rather than exploring its other capabilities, such as extracting
payloads, dumping processes and logging APIs through behavioral analysis.

Additionally, the study does not evaluate the sample against antivirus solutions. In-
stead, it focuses solely on the dynamic evaluation of evasion techniques to bypass CAPEv2’s
sandbox monitoring after executing the Meterpreter payload. Given the use of an unmod-
ified payload, this approach inevitably leads to detection by security systems, including
CAPEv2, through signature detection and leaves IoCs.

Furthermore, the study does not explore the use of an evasion framework designed to
obfuscate the Meterpreter payload, missing an opportunity to enhance the potential stealth
of the malware.

The different studies reviewed earlier use a consistent methodology, starting with the
generation of a payload. The work of Panagopoulos [57] is a bit different since he also
compared with a simple custom reverse TCP sample from Github that he customized
by doing simple changes. These payloads are then subjected to tests against antivirus
software in order to evaluate the effectiveness of the evasion strategies, either in laboratory
with AVs installed on different VMs or via platforms such as VirusTotal or Antiscan.me.
The studies made by Garba et al. [36] and Samociuk [59] focus at the effectiveness of
evasion tools, specifically in their ability to establish Meterpreter sessions, providing thus
an examination of their real-world applicability. One notable finding is that even minor
modification can significantly improve the ability to evade detection, although the focus
remains on relatively simple modifications, such as basic hex editing.

8

While several studies present bypass and evasion techniques, a common weakness is
the lack of implementation and practical evaluation of these techniques. Another gap in
the literature is the lack of attention paid to sandbox evasion. Furthermore, despite some
analyses using VirusTotal, the results of these evaluations are not detailed.

To the best of the author’s knowledge, no existing research has specifically analyzed
the results and reduced IoCs produced by sandboxes using obfuscated payloads created by
open-source evasion frameworks or custom samples.

Although Maňhal’s study [50] significantly contributes to the field by evaluating the
CAPEv2 sandbox environment and addressing a gap identified in much of the existing
research, it has a notable limitation in its methodology. Specifically, Maňhal focuses merely
on well-known Meterpreter payloads without implementing any obfuscation or evasion
techniques, despite discussing some of these methods. Furthermore, there was no attempt
to assess the effectiveness of evasion framework tools in bypassing detection mechanisms.

The focus was primarily in bypassing the sandbox monitoring engine after the execu-
tion of the payload, which resulted in a clear detection of the Meterpreter payload through
the produced IoCs. Additionally, the study lacks an analysis of how the sample could be
detected by AV engines. Addressing these aspects could significantly enhance the current
methodologies for analyzing dynamic behavior of malware, as highlighted in previous re-
search. This approach could also contribute to the refining of the reports generated by the
sandbox to minimise suspicious IoCs, allowing them to go undetected during analysis by
security professionals in sandbox environments.

Furthermore, the literature lacks research examples that involve taking a payload from
a tool, such as msfvenom, applying custom obfuscation and evasion techniques, and then
comparing its effectiveness to that of the payloads generated by the framework using the
same underlying logic. Existing studies emphasise on the simplicity and convenience of us-
ing evasion frameworks without considering the potential benefits of further customization
or developing entirely new code to improve evasion capabilities.

Themelis’ research [64] suggests that an effective strategy may be to write custom
payloads that are simple, as these tend to evade detection more effectively than those
generated by well-known frameworks. Additionally, Maňhal [50] suggests a direction for
future research, proposing the development of a custom sample that integrates API hook
evasion techniques, such as using syscalls, to be tested against the CAPEv2 sandbox.
This approach aims to more effectively bypass the CAPEv2 monitoring engine, potentially
offering a new method for improving evasion techniques in sandbox environments. These
hypothesis will be studied further to assess their validity.

Furthermore, there is a lack of understanding of the mechanisms by which these pay-
loads are identified, preventing the exploration of potential modifications to improve the
evasion. Current research is limited to assessing their existing effectiveness at avoiding
detection, rather than investigating ways to improve their stealth capabilities.

Another critical observation is the prevalent use of VirusTotal for payload evaluation,
which poses risks for red team operations and penetration testers by potentially compro-
mising the stealthiness of payloads. To meet this requirement, the author of this master
thesis plans to create a laboratory environment that incorporates both an AV software
(e.g., Windows Defender) and a sandbox (e.g., CAPEv2 sandbox), thus encompassing a
broad spectrum of detection mechanisms.

9

We chose AVET as the evasion framework and CAPEv2 as the sandbox. The reason
behind these choice are detailed in later sections ([Selection of an Evasion Framework]
and [Selection of a Sandbox]).

For the AV software, we selected Windows Defender due to its widespread use
and default installation on Windows systems, ensuring reliable and effective real-time
protection, as highlighted by AV-Test, which ranks it as a top product [5].

Remark

Before diving into the evasion methods, it is essential to first understand the nature of
malware and the processes involved in detecting such malicious software.

2.2 Malware

2.2.1 Definition

Malware, short for malicious software, refers to programs designed to perform unauthorised
operations and compromises the CIA triad, a core principle in information security ensur-
ing data protection against unauthorized access, alteration or destruction of a computer
system. Malicious actors uses malware to have access to sensitive data, conduct surveil-
lance or take control of a compromised system. The methods of distribution include web
applications, phishing and many more [67].

These malicious software could be of different types :

• Viruses replicate themselves and spread by infecting other files.

• Worms spread over networks, often resulting in significant damage.

• Rootkits embed themselves at a low level within the operating system to obtain
the highest privileges. They often hide their own existence or the existence of other
malware.

• Downloaders are designed to download additional malware onto the infected sys-
tem.

• Ransomwares encrypt the victim’s data, demanding a ransom for its decryption.

• Backdoors provide remote unauthorized access to the infected computer.

• Droppers are used to install viruses or other types of malware to the victim’s system.

• Spywares secretly gather information about a person or organization without their
knowledge.

• Botnet refer to a network of infected devices that can be controlled remotely to
perform coordinated tasks.

The selection of malware type depends on the attacker’s goals and the vulnerabilities
they aim to exploit.

10

2.2.2 Malware and the Cyber Kill Chain

The Cyber Kill Chain is a framework used to describe the stages of a cyberattack, from
initial planning to execution. Developed by Lockheed Martin, it outlines a series of steps
that attackers typically follow to infiltrate and exploit a target system [39]. This framework
can be applied to understand how malware attacks are performed. This framework includes
the following stages:

1. Reconnaissance: Attackers gather information about the target system. During
this phase, they identify vulnerabilities that can be exploited through malware.

2. Weaponization: Attackers create malware tailored to exploit the identified vulner-
abilities.

3. Delivery: The malware is delivered to the target system through methods like
phishing emails, compromised web applications or USB drives.

4. Exploitation: The malware exploits a vulnerability to execute unauthorized actions
on the system, such as spreading viruses, worms or installing rootkits.

5. Installation: Malware establishes its presence on the system, possibly installing
additional payloads like downloaders or backdoors.

6. Command and Control (C2): Malware, such as botnet or Remote Access Trojan
(RAT), communicates back to the attacker’s server for further instructions.

7. Actions on Objectives: The attacker achieves his goals, whether it is data ex-
filtration, data encryption for ransom or leveraging the infected system for further
attacks [39].

The evolution of malware is a critical aspect of modern cyber threats. Hackers fre-
quently update their malware with new obfuscations and evasion techniques to avoid de-
tection. Often, new malware samples are derived from existing code, allowing for continu-
ous development of more sophisticated variants [65]. This evolution complicates malware
detection and requires advanced strategies for cybersecurity.

As malware evolves, its detection becomes challenging due to advanced obfuscation
techniques such as encryption, oligomorphism, polymorphism, metamorphism and other
methods which will be detailed [in section Malware Evasion Techniques]. These tech-
niques help malware evade detection, highlighting the need for effective countermeasures
in cybersecurity.

Before diving into the different detection techniques, it is essential to first understand
the Portable Executable (PE) format.

2.3 The PE format

The PE file format, which stands for Portable Executable, is a format used in Windows
OS, including both x86 and x64 versions, and is the standard for executables (EXE) and
Dynamic Link Libraries (DLL), which is a shared library containing functions that a pro-
gram can call via APIs, and other file types. This format structures executable code within

11

a file on the disk, allowing the Windows PE loader to load it from the disk into memory,
thereby initiating it as a process ready for execution. The PE format includes a header,
which contains metadata about the file and various sections that contains the executable
data [47].

The structure of a header is divided into five main sections each serving a different
purpose :

• DOS Header : This section is static and indicates that the file cannot run in DOS
environments, identifiable by the MZ signature at the beginning and a DOS stub
that includes the message "This program cannot be run in DOS mode".

• PE/NT Header : Beginning with the PE signature, this section contains essential
information such as the target processor architecture, the number of sections in the
executable, a file creation timestamp and other important fields. Any inconsistencies
in these fields might be flagged as malicious by security solutions.

• Optional Header : It provides general information about the executable, including
whether it is a 32-bit or a 64-bit binary, the required version of Windows to execute
it and memory requirements. It also contains critical size and pointer fields for data
management, important for the Windows PE loader to execute the file properly.

• Data Directories : Contains addresses that are linked to different parts of the data
in the sections of the executable, focusing on imports from external libraries (DLLs)
and exports. The Import Address Table (IAT), part of the data directories section, is
crucial since it lists the pointers to the DLLs. These libraries contain functions that
a program can call. Moreover, the IAT includes another list containing the function
names and their corresponding addresses within the loaded DLLs [6].

• Sections Table : This part describes the sections of the executable and their loading
process into memory, detailing each section’s data location and size. While the
Windows PE loader is indifferent to the content of these sections, certain reserved
names indicate their special purposes, such as .text, for executable program code,
.rdata, for read-only metadata, .data, for static source code data, .reloc, for relocation
data and .rsrc, for resources like icons, version information or even another entire
executable file [47].

When an executable is started, the PE loader loads the program into memory. Fol-
lowing this step, the OS begins by analyzing the PE header during which it identifies and
loads into memory all the DLLs the applications require. Once this step achieved, the PE
loader locates the entry point and start the execution of the program [47].

2.4 Malware Detection Techniques

In order to mitigate the risks posed by malware, it is essential to focus on both detec-
tion and prevention. Advanced solutions like antivirus software, anti-malware scanners,
endpoint protection systems and sandboxes play a key role for this purpose. These tools
employ different techniques such as static, behavioral, heuristics analysis and sandboxing

12

to prevent malware infections. When these tools are regularly updated, they provide ro-
bust defense mechanisms, facilitating the protection of the computer systems against the
evolving landscape of malware threats.

In the upcoming subsections, we will explore in details different techniques for detecting
malware.

2.4.1 Static-Based Method

In the static-based method, various techniques are used to identify malware. Among these,
signature-based detection stands out as a widely used method by AV solutions to detect
malicious software [47].

The signature-based detection is a static detection technique that involves searching
sequences of bytes to identify a specific malicious pattern [52]. These sequences, known
as signatures, are stored on a database and used to compare with scanned files. This is
the most common and straightforward method used for detecting malware. Whenever a
new malware emerges, some researchers conduct a detailed analysis of its binary structure
and add its byte sequences to the database [52]. A hash value could also be used as a
signature [62].

Furthermore, AVs analyze the PE header by identifying unusual section names or ma-
licious patterns within these sections [62]. Additionally, during header analysis, the IAT
of the executable is also examined. This technique gives significant advantages for security
solutions by providing insight about the API calls an executable can make without running
it. Understanding which APIs an executable interacts with can reveal potential malicious
behaviour [38].

Moreover, in the study made by Nasi et al. [53], the author explains that the YARA
tool can be used to create rules for malware identification. These rules can be employed
in AVs and reverse engineering tools.

The main drawback is that an attacker can easily bypass this protection by creating
new code or modifying existing code in a way that alters its signature, effectively avoid-
ing detection. This evasion can be achieved through advanced obfuscation techniques like
polymorphism, which allows the malware to alter its code dynamically through encryption,
making it challenging to create a unique signature or hash. However, it is still possible to
construct signatures for encrypted malware by identifying specific patterns in the decryp-
tion routine [53]. Additionally, the process of identifying a new virus and updating the
client’s AV software can take some time, during which the system remains vulnerable to
undetected attacks from these new viruses [25].

2.4.2 Behavior-Based Method

The behavior-based detection method involves monitoring a program’s actions in real-time
during its execution [25]. Unlike traditional signature-based detection, which depends on
a database of known malware signatures, this method analyzes the behavior patterns of
programs to identify any anomalies.

The behavior-based method consists of inspecting the behavior of a program in real-
time during execution [25]. Unlike traditional signature-based detection, which depends

13

on a database of known malware signatures, this method analyzes the behavior patterns
of programs to identify any anomalies. It identifies suspicious activities such as DLL
loading, specific set of Windows API calls or internet connections. For API monitoring,
the technique of API hooking is used by security solutions to monitor system calls [49]. This
method involves intercepting commonly used APIs and analyzing their parameters. It is
highly effective because the parameters of the calls are clear after deobfuscation/decryption.
This technique is particularly advantageous for detecting malicious programs, as it can
effectively identify them.

Figure 2.1: kernel32.dll hooked by a security solution

2.4.3 Heuristic-Based Method

Heuristic-based detection is a notable improvement over traditional methods namely signature-
based and behavioral-based method, offering a proactive approach to identify new threats.

This technique was developed to identify suspicious features present in unknown, newly
emerged and modified versions of malware. Two types of Heuristic methods exist: Static
Heuristic Analysis and Dynamic Heuristic Analysis [33]. Heuristic models, depending on
the security solution employed, may include one or both of Heuristic methods:

• Static Heuristic Analysis : This method consists of decompiling the sample program
and comparing the code snippets to known malware that are in the heuristic database.
The goal is to identify any malicious activities in the sample without needing to run
it. If a significant sequence of bytes in the source code of a program matches with
a malware in the heuristic database, the program is then flagged as malicious [33].
Furthermore, additional techniques such as N-Grams and Control Flow Graphs can
be integrated to enhance detection [67].

• Dynamic Heuristic Analysis : The sample is executed inside a virtual environment
or a sandbox [60]. The behavior is monitored by hooking API calls in order to
identify any suspicious activity like for the behavioral-based method [57]. However,
the need for rapid analysis often results in security solutions implementing a virtual
environment with certain limitations. More precisely, not all APIs are emulated
in these environments. Consequently, an attacker could exploit this limitation by
using less common APIs, which can reveal that the sample is running within an
emulator [53]. This will be further explained [in section Malware Evasion Techniques].

This method allows antivirus programs to offer an initial defense against new viruses
even before the development of specific signatures, thus reducing reliance on frequent

14

updates from vendors. However, while it offers certain benefits, it also presents several
drawbacks. A notable one is its higher tendency to generate false positives compared to
signature-based systems [63] which can negatively impact user experience. Additionally,
incorporating extra code and integrating third-party components, such as protocol parsers,
could raise the risk of introducing new bugs and vulnerabilities [32]. Moreover, the evolving
tactics of modern malware writers, who frequently use obfuscation and evasion techniques
add further complexity for malware analysis.

2.4.4 Sandbox Detection

This techniques consists of creating an isolated virtual environment within a computer
system. This environment, known as "sandbox", is separate from the resources of the host
computer. The main purpose of a sandbox is to safely analyze and detect malicious software
by executing it within this separated environment using virtualization technology [47].

The virtual machine within the sandbox is designed to closely resemble host environ-
ments [47], often a full OS to enhance analysis accuracy.

One of the key advantages of using a sandbox is its effectiveness against malware that is
not detected by traditional AV static engines. By running malware in a sandbox, security
systems can observe its behavior, analyze its characteristics and understand its operation
without compromising the integrity of the actual system. Techniques such as API hooking,
previously discussed, can be used to analyze the behavior of the sample being executed [47].

2.4.5 Antivirus

Antivirus software is one of the main solutions used to protect computer system against
malware [43]. As malware becomes more complex each year, AV developers have responded
by designing specialized scanners for different file formats and kernel drivers to monitor
system activity. Modern antivirus solutions employ a wide range of engines, previously
discussed, to address various security aspects. On-demand file scanning typically uses
signature-based detection, while real-time monitoring can rely on API-based detection
which corresponds to a behavioral-based detection method. Additionally, suspicious files
are often further analysed using cloud-based scanning which offers more powerful analytical
tools and resources. This approach allows for deeper and more sophisticated malware
analysis, including behavioral analysis, which might not be feasible with local resources [42].

A key feature of AV applications is their incorporation of a heuristics engine, which,
depending on the AV solution, may also include a behavioral heuristic analyzer [28]. This
provides a multi-layered protection approach that guarantees a robust defence against a
wide range of cyber threats.

Additionally, some antivirus solutions incorporate IAT Checking to detect suspicious
behavior in imported functions, such as groups of imports commonly used by malware.
Furthermore, API Hooking in user-space, which refers to the part of the system where
user applications and processes run, level can also be part of the AV engine, enabling the
analysis and detection of frequently used APIs by malicious software [27].

A study by Botacin et al. [29] detailed the various types of scans used by antivirus
software to detect different attack surfaces. More specifically, AV solutions often include
the following:

15

• File System Scans: Monitor newly created or modified files.

• Process Scans: Track process interactions to detect malware activities.

• Memory Scan: Inspect loaded process images to detect fileless malware but comes
with huge performance costs. Due to high performance costs, this type of scan is
typically triggered only during on-demand scans and not in real-time.

• Network Inspection: Monitor internet traffic and application communication.

• Browser Protection: Inspect browser traffic and page contents through plugins and
extensions.

2.4.6 VirusTotal

VirusTotal is one of the most used online scanning platforms. These platforms allow users
to scan files or URLs using engines from mutliple vendors. For file scanning, VirusTo-
tal checks the uploaded file against more than 70 antivirus vendors to determine if it is
malicious, diverse sandboxes environments are also used for this type of scan [42]. As
explained by Oberheide et al. [54], using a platform that leverages multiple antivirus solu-
tions, rather than relying on a single one, improves malware detection. These engines are
continually updated with the latest virus definitions and incorporate a heuristic scanner
with a dynamic analyzer [28].

Whenever a file is uploaded, VirusTotal initially checks if the hash of the submitted
file already exists in its database, indicating a previous scan. If found, VirusTotal will
display the most recent scan results. Otherwise, the scanning process will start. Once
completed, the detection results are displayed [67]. It is then up to the user to decide
whether to consider the file as malicious. VirusTotal also offers private scans that do not
include antivirus engine analysis.

For sandboxes, VirusTotal uses both in-house [7] and external [8] sandboxes to analyze
files. In these controlled environments, submitted files are executed and their behavior is
closely monitored. This monitoring includes observing system changes, network activities
and file interactions, which are crucial for identifying potentially malicious actions.

Each sandbox is designed to trace the activities and communications of files, producing
detailed reports that include information on opened, created and modified files, created
mutexes, set registry keys, API calls, contacted domains, URL lookups and more. These
sandboxes are an effective way to quickly identify suspicious programs. When a sample is
submitted, a comprehensive behavior report is generated and returned [45].

When files or pages are submitted to VirusTotal, their contents may be shared with its
premium clients which has been designed for cybersecurity experts and developers. This
sharing is important in identifying and understanding new cybersecurity threats and mal-
ware, helping in the development of effective countermeasures and defensive strategies.
However, there is a risk that individuals with malicious intent could subscribe to VirusTo-
tal’s premium services and gain access to recently submitted malware samples. Such access
might enable them to study and modify the malware, helping it evade detection [67].

A key feature of VirusTotal is its emphasis on user feedback and community participa-
tion. Users can contribute by commenting on and voting on submissions, thereby helping to

16

build a shared knowledge base. This collaborative effort enhances dynamic and responsive
threat intelligence.

Leka et al. [42] highlighted a significant drawback. He observe differences in detection
between the antivirus engines used in VirusTotal and their desktop counterparts. Since
VirusTotal operates as a black box, the study aimed to evaluate its reliability compared
to desktop antivirus solutions. The research revealed that VirusTotal generally displays
lower malware detection rates. This disparity is attributed to the fact that AV engines from
VirusTotal do not use cloud detection, reducing their efficiency. The paper emphasizes the
importance of understanding these differences, especially given VirusTotal’s widespread
use in research and malware analysis.

2.5 Malware Evasion Techniques

While antivirus software typically offers robust protection against most threats, it is not
flawless. Hackers are increasingly using sophisticated evasion techniques to avoid detection.
In this section, we will explore the various methods hackers use to circumvent the three
layers of detection previously discussed.

2.5.1 Evading Static Detection

In this section, different techniques used for bypassing antivirus static detection engines will
be presented. We will explore various obfuscation methods designed to alter code, making
it easier to evade static detection mechanisms. Additionally, we will examine various
encryption techniques, including oligomorphic, polymorphic and metamorphic encryption,
and their effectiveness in bypassing static AV detection. The discussion will also cover how
packaging and other obfuscation techniques are employed to successfully evade detection
by most static engines.

Dead code insertion Dead code insertion is a technique used in malware development
to evade detection by incorporating non-functional code segments, known as "dead code".
These segments alter the appearance of the code without changing its functionality, thereby
avoiding signature-based static detection. This can be achieved using NOP (No Operation)
instructions [61].

Subroutine reordering This sophisticated obfuscation technique consists of randomly
reorganizing subroutines (functions or methods) of a program. Unconditional or condi-
tional jumps are inserted to maintain its functionality, creating various subroutine combi-
nations and significantly complicating static detection [68].

Code transposition This technique consists of reordering the sequence of instructions
in the original code without affecting its behavior [31]. It is achieved by randomly shuffling
the instructions and then restoring their original execution sequence using unconditional
jump (or branch) instructions. As a result, the program flow remains unchanged but its
structure becomes more difficult to analyze [68].

The difference between subroutine reordering and code transposition lies in their level
of granularity. Code transposition can be more granular, affecting individual lines or

17

blocks of code, whereas subroutine reordering deals with larger, more distinct code units
(subroutines).

Register reassignment This technique involves altering which registers are used to
store and manipulate data without changing the program’s overall functionality. For ex-
ample, if a piece of code initially uses register the EAX to hold a value, register reassign-
ment might modify the code to use the EBX register instead. This concept was seen in the
Win95/Regswap virus. However, wildcard searching can defeat this obfuscation technique,
since it can identify patterns and functionalities despite changes in register usage [68].

Instruction substitution This technique involves replacing one or more instructions
with different instructions or sequences that achieve the same result but in a less straight-
forward manner. This substitution is carefully designed to ensure that the functionality
of the program remains unchanged. For example, the instruction move eax, 0 can be
replaced with xor eax, eax, which also results in the value 0 [61].

Code integration This sophisticated obfuscation technique involves embedding mal-
ware into a target program. The process starts by decompiling the target program into
smaller components, inserting the malware into these components and then reassembling
them into a new executable. This seamless integration significantly complicates detection
and recovery efforts [68].

Packing code This technique involves changing the structure of an executable (e.g., PE
executable) by reducing its size or obfuscating it for intellectual property protection. While
packers may initially appear harmless, as they are used for various legitimate purposes, they
can also be exploited for malicious intent. Specifically, they can conceal the functionalities
of the executable from static analysis, making the detection process more challenging [67].

In practice, a packer obfuscates and compresses the .text section which contains the
code of the targeted executable. Depending on the packer used, other section could also
be modified. The packer then integrates a piece of code known as a stub. Its role is
to decompress the executable in the memory of the OS during runtime and redirects the
execution flow back to the original entry point (OEP) of the program, which was set prior
to the packing process [67].

Encryption This technique is widely used to effectively bypass antivirus software and
hiding the source code [67]. The process involves altering the program’s code, ranging from
simple methods like XOR obfuscation to more sophisticated approaches, including symmet-
ric cryptography (using a single key for both encryption and decryption) and asymmetric
cryptography (employing a public key for encryption and a private key for decryption).
These techniques are designed to hide the malicious code from signature-based detection.

The outcome of this process consists of an encrypted payload, a key for encryption
and decryption and a decryption routine, also known as decryptor. Before executing its
malicious operations, the malware must first decrypt the payload using the key and de-
cryption routine. Following decryption, the code is loaded into runtime memory, enabling
it to perform its malicious activities.

However, encrypted malware has a weakness. Indeed, it consistently uses the same
decryption routine to decrypt the payload. This repetitive usage allows signature-based

18

detection to recognize the unique signature of the decryptor, enhancing their ability to
identify such malware [61].

There are several techniques, namely Oligomorphic, Polymorphic and Metamorphic
code, that leverage code encryption to bypass static detection.

Oligomorphic This technique addresses the problem of using the same decryption rou-
tine for each infection. The key idea is to vary the decryption routine of the encrypted
virus with each new infection. During execution, the malware first infects the system and,
during replication, randomly selects a decryptor from a limited set. By choosing a dif-
ferent decryptor each time, the malware creates a new variant with a unique decryptor,
thereby bypassing detection by avoiding the signatures associated with previous decryption
routines [58].

Polymorphic Polymorphism is a more advanced technique compared to oligomorphism.
Like oligomorphic malware, it generates a new decryptor for each variant as it propagates.
However, polymorphic malware is distinguished by a mutation engine capable of producing
an unlimited number of decryptors, significantly enhancing its evasion capabilities. It
employs various obfuscation techniques to achieve this, making polymorphic malware more
sophisticated and harder to detect using static signature analysis on the decryption routine
[58].

Metamorphic This method goes beyond the complexity of the techniques described
above by also modifying the body of the malware for each new copy. During replica-
tion, it performs mutations using various techniques such as adding useless conditions and
variables, changing machine instructions and inserting NOP instructions, among others.
These modifications are made without affecting the core functionality of the malware [67],
demonstrating a higher level of sophistication in evading static detection engines.

IAT Obfuscation One method for obfuscating API calls involves using a technique
called API call site tampering, also called Dynamic Loading of APIs. This technique
eliminates the dependence on the IAT by resolving API addresses at runtime instead [44].

In this approach, the program stores the API names and, when
needed, dynamically obtains the API addresses using functions
such as GetProcAddress, GetModuleHandleA or LoadLibrary
during runtime. However, this method has a drawback. It requires
that the library names must be explicitly provided as parameters,
potentially exposing the targeted library names. Encrypting the
API names can mitigate this issue by ensuring that security so-
lutions analyzing the strings of the program do not detect any
suspicious patterns [44].

Nevertheless, the functions GetProcAddress and GetModuleHa
ndleA will still appear in the IAT, which itself constitutes a sig-
nature and can therefore be flagged by security solutions.

2.5.2 Evading Dynamic Detection

While static evasion techniques are useful, they become ineffective
once the malware is running. At some point, the malware will be decrypted and executed,

19

whether in runtime memory or during its malicious activities. Consequently, security
solutions can detect these behaviors and block the execution of the malware.

In this subsection, we will explore various evasion techniques designed to circumvent
dynamic analysis engines. The objective is to understand the methods that can potentially
bypass antivirus engines and sandbox environments. This analysis is divided into three
distinct parts:

First, we will examine techniques targeting behavioral detection, which involves observ-
ing malware activities during real-time execution to understand how it behaves.

Next, we will investigate evasion methods used against dynamic heuristic detection by
antivirus engines, particularly those employing emulated environments to analyze malware
behavior.

Finally, we will address techniques for evading detection in sandbox environments, where
malware samples are executed in virtual environments replicating full operating systems.

This comprehensive overview aims to provide a deeper understanding of malware eva-
sion techniques against dynamic analysis engines.

Evading Behavioral Detection

This section explores techniques used to evade behavioral detection by antivirus solutions.
We will focus on Process Injection methods, which involve inserting malicious code into
legitimate processes to bypass detection. Key techniques include Remote Thread Injection,
DLL Injection, Reflective DLL Injection, Process Hollowing and APC Injection. Addition-
ally, we will discuss API Hooking Evasion and the various techniques used to perform it.
Each method enables malware to hide its activities and evade security defenses effectively.

Process injection

Process injection is a method used to circumvent the behavioral engines of antivirus solu-
tions. This method consists of injecting malware code into the address space of a legitimate
process operating within the system. Additionally, the injected code can inherit the permis-
sions of the host process. This can potentially give a malicious actor more capabilities to
achieve his objectives. This allows the malware to remain undetected by AV solutions that
depend on behavioral detection, allowing it to operate for a long period before eventually
being detected [59].

This technique is not limited to the injection of shellcode, which is a small piece of
code used as payload by the attacker. Indeed, it extends to the injection of DLLs and even
entire executable files [53].

Performing a process injection typically involves the following steps:

1. Identifying the target process;.

2. Obtaining a handle to access the address space of the targeted process;

3. Allocating a virtual memory address space for the code injection and setting it to
allow execution;

4. Inject the code into the allocated memory address space of the target process;

5. Inserting the code into this allocated space within the memory of the target process;

20

6. Triggering the execution of the injected code (e.g., by starting a new thread).

Given that process injection is a more general technique, our focus will be on some
different methods: Remote Thread Injection, DLL Injection, Reflective DLL Injection,
Process Hollowing and APC injection.

Remote Thread Injection Remote Thread Injection, also known as Remote Thread
Shellcode Injection or simply as Shellcode Injection, is as a simple method to perform
process injection. This technique operates by integrating a shellcode or payload, into the
context of another process. Following this, it initiates a new thread using the API call
CreateRemoteThread within the targeted process to execute the injected payload. By
using the context of a trusted process, the malware can evade detection and hide itself in
legitimate activities, making it challenging for security systems to distinguish the malicious
behaviour from the normal operations of the host process [67].

DLL Injection The classical DLL injection remains a widely used method among var-
ious process injection techniques. This method consists of inserting the file path of a
malicious DLL into the memory space of a target process instead of a shellcode. Subse-
quently, a remote thread is initiated within that process, like the Remote Thread Injection,
which then loads the malicious DLL, executing the contained payload [59].

Reflective DLL Injection Reflective DLL injection is an advanced technique that al-
lows the execution of a DLL directly within the memory space of a target process, bypassing
the standard operating system mechanisms for library loading. Unlike other DLL injection
methods that depend on system functions like LoadLibrary to load DLLs from disk, re-
flective DLL injection operates by loading the DLL from memory. This approach involves
modifying the DLL to include a custom loader. Then, when executed by an initiated
remote thread, this custom loader maps the DLL into the memory space of the process
without relying on the Windows loader [35].

Process Hollowing Process Hollowing is another process injection technique, charac-
terized by its ability to manipulate a legitimate process. It achieves this by replacing the
code of the original process with that of the malware. This method enables the execution
of malicious code to impersonate a normal process since it operates within the memory
address space of the targeted process, enhancing therefore its ability to evade detection [67].

In more details, this technique involves the creation of a legitimate process in the
operating system, but in a suspended state. The core of this technique lies in emptying
(hollowing) the memory contents of this legitimate process and then filling it with the code
of the malware. Additionally, it aligns the base address of the malware with that of the
hollowed section of the legitimate process. Such execution not only hides the malware but
also has the potential to bypass behavioral detection systems, leveraging the trust typically
granted to the host process [67].

The study made by Emeric [53] highlighted that replacing the memory of the process
is no longer feasible when it is protected by Data Execution Prevention (DEP). In such
circumstances, the author suggests a more straightforward approach consisting of initiating
a new instance of the process and executing the payload within this instance. Given that
the malicious code has been written by the attacker, this technique is guaranteed to succeed,
assuming that the code responsible to run the payload has been compiled without the DEP
feature activated.

21

APC Injection Asynchronous Procedure Calls (APCs) are a feature of the Windows
operating system that enables the execution of functions asynchronously within the context
of a specific thread, allowing a program to perform multiple tasks simultaneously. Each
thread within a process has its own queue for APCs. When an APC is queued for a thread,
it specifies a function to be executed asynchronously [9].

Malicious actors can exploit this mechanism by queuing an APC that triggers the
execution of malicious code by using the QueueUserAPC API call. This is done by passing
the address of the malicious code to the QueueUserAPC function, which then schedules it
for execution. This technique, called APC Injection, requires the targeted thread to be
either in a suspended or an alertable state, which means it is ready to execute queued APC
functions once it enters a waiting state that allows for such execution. Such a condition
can be challenging to find in threads running under normal user privileges [10].

Early Bird APC Injection is a sophisticated variant designed to successfully perform
APC Injection without finding a thread in an alertable. In this technique, malicious actor
creates a new process in a suspended state, queues an APC to the main thread of this
process and then resumes it. When the process resumes, it begins by emptying its APC
queue, leading to the execution of the malicious code before any other thread activity. As a
result, the injected payload is executed successfully, potentially bypassing security solution
if hooks have not been set up before the execution of the main thread [50].

API Hooking evasion As explained by Bernardinetti et al. [27] security solutions in-
cluding AVs make usage of API hooking on API calls in user-space level. This allows the
analysis and monitoring of programs at runtime. By analyzing patterns of API calls, these
solutions could distinguish between legitimate and malicious activities.

Malware authors have developed new techniques to circumvent this detection method.
However, to understand these evasion techniques, it is essential to first explain several
key concepts of Windows internals, including APIs, syscalls (system calls) and user-space
hooks.

The Windows OS operates in two distinct modes: the user-mode, which allows the
program to be executed in a user-defined level which is not part of the kernel, and the
kernel-mode which allows the execution of code belonging to the OS such as services and
drivers. This segregation is done because if a program has access to the system hardware, it
can manipulate it and do whatever it wants. However, almost all programs running on user-
mode needs access to the GUI, the input/output operations, communication, among others.
This led to the development of syscalls. This provides an interface allowing the program
running on user-mode to request services from the kernel. Syscalls can be used either
directly by a program running in user-mode, difficult since they often lake documentation,
or through the use of an API that provides to the users a set of abstracted functions to
initiate a system call. Most system calls have a user-space wrapper function, the hooking
can be performed either on the Windows API, Native API (function starting with prefix
"Nt") or on the syscalls directly [46]. Whenever an API is called, it invokes NTAPIs, which
in turn issue syscalls to the kernel to execute the requested operation. For example, when
the VirtualAlloc (or VirtualAllocEx) API function is called, it triggers the execution
of its NTAPI equivalent, NtAllocateVirtualMemory. This NTAPI then issues a syscall to
interact with the kernel and allocate the requested memory.

System calls use a special number called the System Service Number (SSN). The kernel

22

Figure 2.2: Implementation in assembly code for direct syscalls

uses these numbers to distinguish syscalls from each other.

The majority of system calls are provided through the ntdll.dll dynamic link library
(DLL), serving as the primary source for these essential functions.

While the exploitation of syscalls has not traditionally been widely used for shellcode
purposes, as noted by Brizendine [30], their appeal lies in their resistance to detection by
antivirus solutions. Malicious use of Windows API calls can be intercepted by antivirus
systems using API hooking in user-mode, rendering this approach less effective. Therefore,
exploiting Windows syscalls offers a highly effective method for evading antivirus systems.

Bypassing hooks in user-mode can be effectively achieved by writing functions that
directly invoke syscalls [11]. Different other methods can also be employed to call syscalls
stealthily:

• Direct Syscalls: This technique consists of creating a custom version of a syscall
function directly in assembly language rather than using the standard APIs provided
by the OS. More precisely, the stub (code) of the corresponding native function,
obtained with ntdll.dll, is directly written into assembly using an .asm file [12].
This custom syscall is then executed from an assembly file. The primary goal is to
bypass API hooking method used by security solution which monitors API calls in
user-mode to detect and analyze potentially malicious activities. More precisely, it
enables the execution of syscalls directly from assembly code circumventing therefore
the hooked APIs that would normally alert security solutions. However, the main
challenge is to identify the SSN which change across different version of the OS.
To address this, the SSN can be either hard-coded or determined at runtime [11].
Hard-coding SSNs, while straightforward, is not flexibility and may not work across
different systems. Determining SSNs at runtime, however, allows the malware to
adapt to the specific system it is executing on, making the attack more versatile.
Several tools, like SysWhispers [13] and HellsGate [14], have been developed to make
the use of Direct Syscalls easier.

• Indirect Syscalls: This technique is designed in a similar way to direct syscalls, requir-
ing the creation of assembly files. However, instead of using the syscall instruction
directly in the assembly function, it performs a jump to the syscall within the mem-
ory area of ntdll.dll. This approach is advantageous because modern security
solutions often monitor for syscalls made from outside the ntdll.dll address space,
as this is considered unusual behavior in Windows (see Figure 2.3). Additionally,
the return statement is removed since the return execution now occurs within the
ntdll.dll memory area, effectively directing from ntdll.dll back to the custom

23

Figure 2.3: Illustration of an indirect syscall

indirect syscall assembly. Unlike direct syscalls, indirect syscalls require dynamically
extracting not only the SSN but also the memory address of the syscall instruction
to perform the jump instruction [12]

• Unhooking : This technique involves restoring the original state of the NTDLL library
so that calls are no longer intercepted by security solutions. The unhooked version
of the library can be obtained from several sources, with a common method being
to load it directly from disk where an original copy typically resides. Windows
maintains original versions of system libraries on disk, allowing them to be reloaded
into memory to overwrite the .text section of the hooked DLL. As a result, when the
library is reloaded, calls proceed without interception, effectively evading security
solution monitoring [27].

Evading Dynamic Heuristic Detection

Dynamic Heuristic Analysis, as discussed in the Heuristic-Based Method section, involves
the execution of a sample within a controlled environment, allowing AVs solutions to moni-
tor its behavior. These analyses, constrained by performance limits, neither use a complete
Windows OS nor fully virtualize hardware. Instead, they imitate a subset of the Windows
API on top of often incomplete CPU emulation. This makes AV emulators easily detectable
and vulnerable to evasion methods [28].

The paper made by Jeremy et al. [28] explains that "Black-Box" fingerprinting is a vi-
able method for evading dynamic heuristic analysis. It identifies hard-coded environmental
artifacts and detects timing inconsistencies, among other indicators, allowing malware to
recognise emulated environments and modify its behavior to evade detection. Further-
more, using non-emulated APIs to obtain hard-coded responses from the AV helps confirm
the presence of emulation, indicating that the malware is operating within a virtualized
context [40].

Some other example of evasion techniques are explored by Nasi et al. [53]. The authors
introduce the "Offers you have to refuse" method, which leverages the resource limitations
of the AV by executing code requiring a large amount of resources, thereby forcing the AV

24

to stop its analysis. Additionally, they highlight the adaptations to counter fast-forwarded
sleep calls by including repetitive simple operations. The author further explains that
it is also possible to distinguish whether such acceleration has occurred by comparing the
timestamps immediately before and after executing the sleep call. Another idea is to access
non-existent web domains, which, in an virtualized environment, might incorrectly return
positive responses due to potential simulated network services.

Evading Sandboxing Detection

As a reminder, Sandboxing are designed to closely replicate a host environment, thus
typically running on a full OS. This contrasts with Dynamic Heuristic Detection, which
uses an emulator with a subset of API calls instead.

There are two main types of evasion techniques targeting sandboxes:

• Fingerprinting Evasion: This method involves detecting artifacts specific to the sand-
box environment [28].

• Dynamic Evasion: This technique focuses on bypassing the monitoring system of the
sandbox, which uses methods like API hooking [50] [51].

Sandbox evasion through fingerprinting involves malware detecting the analysis envi-
ronment by identifying specific patterns and artifacts. Similar to evading Dynamic Heuris-
tic Detection, this method collects and analyzes environmental data. Known as "Black-
Box fingerprinting" by Jeremy et al. [28], it exploits common misconfigurations, such as
inconsistencies in CPU specifications (e.g., displaying a CPU name with more cores than
allocated to the machine), among others. These insights allow malware to perform checks
to verify the authenticity of its operating environment before executing its payload [41].

Malware authors often perform the following steps to bypass sandbox detection:

1. Writing a decoy sample that will be executed into the sandbox environment.

2. This decoy sample is designed to gather as many environmental fingerprints as pos-
sible.

3. The malware either transmits these collected fingerprints to an external server for
analysis or when the sandbox do not have internet connectivity, it may store this
information in system registries which will then be included in the analysis reports.
Another method could be to drop files which names correspond to the fingerprints
collected [28]. This will give the attackers a clear understanding of the sandbox’s
patterns.

4. The attacker, by analyzing observations from the decoy sample, can precisely ad-
just his malware to change its behavior when detecting specific fingerprints, thereby
enhancing its ability to evade detection [45].

Other examples of fingerprinting, as highlighted by Mohanta et al. [51], include check-
ing whether the malware is running in a virtualized environment by looking for specific
files, registry entries, virtual machine artifacts, process names or installed drivers indicative
of VMs like VirtualBox or VMware. Additionally, identifying certain software can suggest

25

that the malware is running in a sandbox environment. This information enables the mal-
ware to alter its behavior accordingly [48]. Furthermore, timing attacks can be employed
to exploit the limited analysis timeframe of sandboxes. By delaying the initiation of the
malicious payload until after the observation period of the sandbox, the malware can evade
detection and remain hidden [51].

Regarding the sandbox monitoring systems, a crucial technique used by sandboxes
involves logging API calls through hooks, as mentioned by Mohanta et al. [51]. In response,
malware authors attempt to detect the presence of hooked APIs by examining the DLLs
loaded by known sandbox agents. They may also use methods to unhook these APIs
or perform direct or indirect syscalls if the sandbox does not hook system calls directly.
Depending on the specific sandbox, these tactics can be highly effective in evading analysis,
thereby concealing the operations of the malware [34].

2.5.3 Evasion Frameworks

Open-source evasion frameworks, such as Msfvenom and AVET, play a crucial role in cy-
bersecurity, particularly in ethical hacking and penetration testing. They facilitate the
creation, injection and management of payloads designed to bypass antivirus and other
security solutions. These tools are essential for security professionals to simulate cyberat-
tacks, identify vulnerabilities and strengthen system defenses. In this subsection, we will
explore Metasploit, msfvenom and AVET, as these are the frameworks that will be used
in our upcoming experiments.

Metasploit and Msfvenom

Metasploit is a popular tool used for reconnaissance, exploitation and performing actions
on compromised systems. It has been particularly noted for its ability to contribute to
the development of unique payloads through its evasion modules. These evasion modules
represent an improvement in leveraging traditional techniques while offering the possibility
to generate unique payloads using msfvenom, a command line tool used for that purpose.

Metasploit is composed of five modules: auxiliary, encoders, exploits, nops, payloads
and post [50].

The module to generate malware is the payloads module. This latter is designed to
create and manage the code that will be executed on the target system. Payloads can be
as simple as a command that adds a user to the system or as complex as a full-featured
Remote Access Trojan (RAT). One of the RATs that can be created using Metasploit
is Meterpreter. This payload provides extensive control over the compromised system.
Meterpreter operates entirely in memory, which helps it evade detection by traditional
antivirus solutions. It offers a range of functionalities including, but not limited to, file
system manipulation, command execution and network pivoting, making it a powerful tool
for penetration testers and malicious actors alike [15].

The Meterpreter payload comes in different versions, namely staged and stageless. The
staged version splits the payload into two parts: the stager (first stage) and the stage
(second stage). The stager is a small initial payload that sets up a connection between
the attacker’s machine and the victim’s machine. Once this connection is established, the

26

larger stage payload, which contains the full Meterpreter payload, is delivered over this
connection [15].

The stageless version, on the other hand, combines both the stager and the stage into a
single payload. This form of payload immediately establishes the connection and delivers
the full Meterpreter payload in one go, simplifying the deployment process and reducing
the complexity involved [15].

AVET

AVET which stands for AntiVirus Evasion Tool, is a collection of AV Evasion techniques
used by malicious software for making life of pentesters and security researcher easier [37].

It supports a range of input payloads including shellcode, exe and dll files, and offers
various methods such as shellcode/dll injection and process hollowing for evading detection.
The tool also provides flexible payload retrieval methods, usage as a dropper, and the ability
to chain multiple evasion layers [16].

Additionally, various strategies can be employed to bypass sandboxing and heuristic
analysis. Emulators, for example, may cease the execution after a specific duration of time,
creating an opportunity for evasion. Tools like AVET are particularly effective in these
scenarios [37].

27

Chapter 3

Implementation & Testing

In the development of our methodology, we drew inspiration from the studies conducted by
Samociuk [59] and Maňhal [50]. Samociuk’s study assesses the effectiveness of an evasion
framework in bypassing AV detection by evaluating both the static and dynamic execution
of samples to establish a Meterpreter session. On the other hand, Maňhal’s study focuses
on evaluating the ability of CAPEv2 sandbox to evade the monitoring using a Meterpreter
payload and various evasion modules available on Metasploit.

Our research extends beyond the previous studies by incorporating both sandbox and
AV analysis. We aim to achieve this by deploying VMs and creating a lab environment
for comprehensive testing. This setup allows us to evaluate samples against both AV and
sandbox systems, providing a more comprehensive test environment. The use of a sandbox
is crucial for evaluating potential IoCs produced by samples generated from an evasion
framework.

A significant limitation identified in previous research, as discussed [in section Related
Work], is the superficial approach to improving generated samples. These studies do
not dive into modifying the evasion frameworks or creating custom samples that use the
same underlying logic while attempting to obfuscate them to bypass detection methods.
Additionally, there is a lack of understanding of the mechanisms by which these payloads
are identified, failing to explore potential modifications to evade detection. The studies
only assess their current effectiveness in avoiding detection rather than exploring ways for
improvement.

Moreover, Maňhal focuses merely on well-known staged Meterpreter payloads when
assessing the CAPEv2 sandbox without implementing any obfuscation or evasion tech-
niques, despite discussing some of these methods. Moreover, the author does not evaluate
the other capabilities of CAPEv2, such as extracting payloads, dumping processes and
logging APIs through behavioral analysis. Instead, the focus is solely on evaluating the
behavioral signatures produced by CAPEv2. Additionally, there was no attempt to eval-
uate the effectiveness of evasion framework tools in bypassing detection mechanisms or to
reduce IoCs produced by the stager.

In our study, we will generate samples using an evasion framework and then assess
them against a sandbox. We will create custom samples and evaluate them in our lab
environment, with the goal of reducing IoCs and evading the monitoring system of the
sandbox. Subsequently, we will enhance the selected framework to improve its capabilities.
This comprehensive approach aims to have a deeper understanding of evasion techniques
and increase the effectiveness of the samples in bypassing detection mechanisms. Finally,
we will evaluate both the custom samples and those generated by the extended evasion
framework against an AV solution.

28

3.1 Selection of a Sandbox

When discussing open-source sandboxes, the first that often comes to mind is the well-
known Cuckoo sandbox. Unfortunately, Cuckoo is no longer supported. However, CAPEv2,
as described in Maňhal’s study [50], is an advanced malware sandbox derived from Cuckoo
that extends its capabilities and is actively maintained at the time of writing this thesis.
Additionally, CAPEv2 is also employed on platforms such as VirusTotal, where behavior
analysis is also conducted within a CAPE sandbox. For our experiments, we will assess
the samples generated by an evasion framework, that will be selected [in section Selection
of Evasion Framework], against the CAPEv2 sandbox.

Before diving into the setup of our lab environment, we will first select an evasion
framework [in the next section]. Next, we will explain the architecture of the CAPEv2
sandbox [in section CAPEv2 Sandbox].

3.2 Selection of an Evasion Framework

In this section, we will select an evasion framework to assess and integrate it into our lab
environment.

Our evaluation will focus on assessing the AntiVirus Evasion Tool (AVET) [16] frame-
work, which, to the author’s best knowledge, remains one of the most updated open-source
evasion framework. The most recent update occurred six months ago before the writing of
this thesis, contrasting with other tools that may not have seen updates for several years.
AVET is distinguished by its capability to generate various payloads, including shellcode,
executable files and DLLs. It supports techniques such as process and DLL injection, as
well as process hollowing, as explained [in the section Evasion Frameworks]. This tool
allows for the application of multiple evasion techniques on a single binary, enhancing its
stealth capabilities. An additional advantage is its inclusion of sandbox evasion techniques.
Moreover, AVET also uses msfvenom for payload generation, enabling the straightforward
creation of different samples aiming at bypassing sandboxes. This feature allows us to com-
pare the effectiveness of our custom evasion techniques directly against those generated by
AVET, providing a clear benchmark for assessing the evasion techniques. Furthermore,
whenever custom evasion techniques successfully bypass the CAPEv2 sandbox, we will
integrate these methods into AVET, taking advantage of its open-source nature to make
the necessary modifications.

AVET uses a huge range of sandbox evasion techniques, based on fingerprinting, orga-
nized into several categories. These include Environmental Checks, where the system per-
forms initial check to detect execution inside environments such as debuggers or sandboxes,
Delay Tactics, such as sleep functions that delay execution to evade time based analysis,
Time Manipulation Checks to detect fast-forwarded operations typical in sandbox environ-
ments and User Interaction tests that assess environment responsiveness. Additional tech-
niques involve File and System Checks which check for system information and expected
file presence, hardware information among others, and Computational Loads, designed to
challenge the computational capacity of the environment. Miscellaneous techniques in-
clude registry checks for default browser and DNS check. These techniques collectively
enhance the ability to operate stealthily across a range of sandbox environment. However,

29

a significant drawback is that it can be used as signatures by vendors and, additionally, its
effectiveness may be limited in certain sandbox environments.

For a comprehensive overview of the sandbox evasion techniques used by AVET, please
refer to Tables [B.1] and [B.2] in Appendix [B], which provide additional details on these
techniques.

3.3 CAPEv2 Sandbox

CAPEv2 is a sophisticated open-source malware analysis sandbox derived from the Cuckoo
Sandbox. It introduces significant enhancements to allow a comprehensive malware analy-
sis in a controlled Windows environment. Using a sandbox approach, it executes suspicious
files in isolation, closely monitoring their behavior and capturing a range of forensic ar-
tifacts. This approach includes observing behavior via API hooking, documenting file
operations, analyzing network traffic in PCAP format and identifying malware using be-
havioral and network signatures. In addition, CAPEv2 captures desktop screens and per-
forms complete memory dumps during malware execution. It also uses CAPA, a tool that
analyzes executables to determine their capabilities, to produce a summary of executable
behaviors [17]

By extending Cuckoo capabilities, CAPEv2 introduces automated dynamic unpack-
ing of malware as well as sophisticated YARA signature-based classification of unpacked
content. It also makes advances in static and dynamic malware configuration extraction.
One of the most remarkable features is its automated debugger, programmable via YARA
signatures, which enables customization of unpacking or configuration extractors [17].

3.3.1 Architecture of CAPEv2

CAPEv2 Sandbox consists of a host machine, which acts as the central management soft-
ware responsible for handling the execution and analysis of samples, and an/several isolated
guest VM(s) which is/are launched whenever a sample is submitted. The host runs the
core component of the sandbox that manages the whole analysis process, while the guests
are the isolated environments where the malware will be executed and monitored [1].

The Figure 3.1 depicts the main architecture of CAPEv2 which is the same as Cuckoo
sandbox.

One of the main requirements for the operation of these VMs is that they must be
connected to the same virtual network, as illustrated in Figure 3.1. Generally, CAPEv2
can be installed either directly on the host machine or within a VM. However, a challenge
arises because the installation process by default generates an additional VM within the
initial CAPEv2 installation environment. This results in a nested VM configuration when
CAPEv2 is installed in a VM. The nuances of this configuration and its impact on the
setup of the laboratory environment will be examined in more detail in the next section,
[Architecture of the Lab Environment].

3.3.2 Processing files in CAPEv2

Since CAPEv2 is derived from the Cuckoo sandbox, it shares the same components for file
analysis as described by Maňhal [50]. Therefore, we will outline the analysis flow and the

30

Figure 3.1: Architecture of CAPEv2 [1]

various components involved when a file is submitted for analysis in the Cuckoo sandbox.

When a user submit a file or URL, the system creates a new database entry and
generates a task ID, detailing the target for analysis and the specified preferences [2].

The task scheduler continually checks for available VMs to allocate pending tasks,
prioritizing them for analysis [2].

The analysis manager selects an available VM from the machinery module for the
selected task, informs the result server to keep track of the collected behavioral data it
receives and initiates the analysis by starting the auxiliary modules and uploading necessary
components to the VM [2].

Before launching the VM, the guest manager, which is responsible for the communi-
cation with the agent, starts the auxiliary modules and uploads the analyzer, monitor,
configuration and the target sample to the agent. Then, the agent, which is simply a
python script that allows the guest and the host to communicate, initiates the analyzer,
which then starts the target and injects the monitor, consisting of a DLL, into it [2].

During the execution of the target, the monitor as well as the analyzer gather behavioral
data and send them to the result server. In the meanwhile on the host, the analysis manager
waits until the guest manager checks if the analyzer has stopped or if a timeout has been
reached to determine that the execution is finished [2].

When the analysis is finished, the analysis manager stops the VM and the auxiliary
modules. The processing modules then use the behavioral data to generate results which
are compared to signatures. Finally, the reporting modules format these results for the
user with JSON and MongoDB for the web interface [2].

The Figure 3.2 from Van Zutphen [2] depicts the flow of the analysis.

31

Figure 3.2: CAPEv2 analysis flow [2]

3.3.3 Capemon - Monitoring of CAPEv2

O’Reilly, the author of CAPEv2, maintains another Github repository [55] where the code
of the monitoring system for CAPEv2, called capemon, is made available. This could be
helpful if someone wants to customize the monitoring system, by adding for example other
hooks or other steps to be performed. This modularity helps to better suits the needs of
security analysts when performing automated malware analysis.

In the form of a DLL, this monitoring tool is injected into the designated target process
immediately after its execution, with the goal of monitoring its behavior through the use
of API hooking. This tool is also able to extend its detection capabilities to encompass
processes that are initiated by the target, thereby ensuring a wide monitoring scope [50].
According to Maňhal [50], the injection mechanism used by capemon is the APC injection
technique.

However, a closer look at the code of CAPEv2 and capemon reveals that other tech-
niques could also be used. The script process.py, which implements a method called
inject, in turn, invokes an external executable called loader.exe to perform the injec-
tion. The exploration of loader.c available in the source code of capemon reveals the
application of not one, but four distinct injection techniques :

1. IAT patching : This techniques, although less common than other injection tech-
niques, consists of injecting a DLL into a target process by modifying its IAT to
include the injected DLL. Therefore, it will force the target process to load the speci-
fied DLL at runtime [18]. While this alters the IAT, the primary purpose in this case

32

is to ensure the loading of capemon.dll into the address space of the process, not to
intercept or hook API calls directly. This action is performed inside the loader.c
contained in the capemon repository [56].

2. APC injection : This consists of queuing an APC to a thread in the target process
that points to LoadLibrary, the system will execute LoadLibrary in the context of
that thread, loading the specified capemon.dll DLL into the process. However, as
explained [in section Evading Behavioral Detection], for an injection to be successful,
the target threat needs to be in an alertable state.

3. Remote Thread Injection of a DLL/DLL injection : As explained [in section Evading
Behavioral Detection], this technique consists of simply creating a new thread within
the target process through the CreateRemoteThread function then injecting the cape-
mon.dll DLL and creating a remote thread that runs the function LoadLibrary.

4. Reflective DLL injection : Using this technique, the capemon.dll DLL is loaded
from memory, rather than from disk, bypassing standard loading mechanisms. Like
the previous method, this technique involves creating a remote thread in the target
process. However, instead of pointing the thread to LoadLibrary, it points directly
to the memory location of the custom loader within the injected DLL. This loader
then manually maps the rest of the DLL into memory.

The first step for monitoring involves injecting capemon, however, at this stage, no
API hooking methods are used, only the DLL injection has been executed. An exami-
nation of the source code within capemon, more precisely in the files hooking_32.c and
hooking_64.c, reveals a function named hook_create_trampoline. This function demon-
strates that the hooking technique used by CAPEv2 is based on trampoline hooking, as
explained by Maňhal [50]. However, the author bases his assumption on the idea that
CAPEv2, being derived from Cuckoo, uses the same strategy. Nonetheless, this could be
subject to potential modifications. This consideration led us to the decision to examine
the code.

Trampoline hook is a method that involves modifying the first few bytes of a target
function with a jump instruction. This jump redirects execution to a secondary function
designed for additional operations, such as monitoring. After these operations, execution
proceeds to a specially prepared trampoline function. This trampoline function contains
the original instructions that were replaced by the jump instruction at the start of the
target function. It concludes with a jump, carefully calculated with an offset, that directs
execution back into the original function, just after the initial jump instruction. This
technique ensures both the execution of additional monitoring actions and the preservation
of the intended behavior of the original function, integrating injected functionalities with
the flow of the original code [3].

The figure 3.3 illustrates the configuration of a hook on function_A. Initially, the
first bytes of function_A are modified to perform redirection, using the jump instruc-
tion, to function_B, the custom function designed to perform additional actions. Once
its tasks have been completed, function_B is redirected to the trampoline function, func-
tion_A_trampoline. This function executes the initial instructions of function_A before
returning back to the point immediately following the initial jump made by function_A.

33

Figure 3.3: Trampoline Hook [3]

3.4 Implementation of the lab environment

In this section, the lab environment used for conducting the different analysis is discussed.
Firstly, we outline the architecture of the lab, detailing the virtual machines used for anal-
ysis. Subsequently, we describe the environment where the CAPEv2 installation resides.
We then provide a brief overview of the installation and configuration procedures for the
machines running CAPEv2. For comprehensive details on the installation process and
configuration settings, please refer to Appendix [A.1].

3.4.1 Architecture of the lab environment

For the experimental test, we will setup a lab designed to efficiently analyze and develop
malware samples in an isolated and controlled environment. The core of our lab consists
of :

• A Kali Linux 2024.1 VM which will contain the AVET evasion framework;

• A Ubuntu 22.04.4 VM running CAPEv2 [17];

• A Windows 10 Pro 22H2 VM used as a sandbox for CAPEv2. This VM will also
serve as the host for two snapshot: one containing a development environment and
another configured with Windows Defender enabled for AV testing.

The Kali Linux VM, the Ubuntu VM as well as the Windows 10 sandbox/VM are
running on top of the KVM-QEMU Hypervisor.

The snapshot of the Windows 10 VM containing the development environment will be
used for creating custom malware in C++ using Visual Studio 2022 Community Edition1.

The lab environment is depicted in Figure 3.4, it consists of two VMs, one containing
Kali Linux 2024.1 which will be used to generate the payload created by AVET and listen to

1https://visualstudio.microsoft.com/vs/community/

34

Figure 3.4: Lab environment

reverse connection established by the payload and another one containing Ubuntu 22.04.4
where a fresh CAPEv2 installation has been made. The webpage of CAPEv2 is accessible
on the Kali Linux VM through the IP of the Ubuntu VM at port 8000. Whenever a sample,
generated with the Kali Linux VM, is submitted, the Ubuntu VM will instruct the host
to start a VM, beside the existing Kali Linux and Ubuntu VM, where a Windows 10 x64
22h2 machine is launched from a clean snapshot.

By default, the initial setup of CAPEv2 requires configuring the sandbox within the
host system running CAPEv2. This setup needs a nested VM configuration, where
a VM operates within another virtual machine. Alternatively, CAPEv2 could be
adapted to automatically initiate a separate VM whenever a sample is submitted,
alongside the VM running CAPEv2. This approach can significantly enhance the
effectiveness of the sandbox environment and performance, enabling faster sample
processing within the same allocated time and accelerating the analysis process. Ad-
ditionally, this strategy is advantageous as it simplifies the deployment of our lab
setup without requiring CAPEv2 installation on physical hardware, while still main-
taining good performance. To achieve this, we need to prepare both the host and
guest systems by adjusting CAPEv2 configuration files and establishing a communi-
cation channel between them to launch the sandbox alongside the guest containing
CAPEv2.

Important remark

A sequence diagram of the interaction between the different VMs when a sample is
submitted is depicted in Figure 3.5.

35

Figure 3.5: Sequence diagram of the analysis process

Figure 3.6: Pipeline evaluation process

This setup ensures the safe and effective examination of malicious software generated by
AVET. After the analysis step and when the report is generated, our attention will focus on
creating custom samples using various evasion techniques to minimize IoCs. Subsequently,
we will extend the AVET framework to incorporate these newly implemented techniques.
This process is highlighted in the Figure 3.6. At the end of the experimentations, we will
evaluate some samples from both the extended AVET framework and the custom samples
against Windows Defender to achieve a more comprehensive analysis.

3.4.2 CAPEv2 environment

This section provides an overview of the CAPEv2 environment, where the analysis of mal-
ware samples takes place. It includes a brief explanation of the host and guest configuration
and setup. For further insights into the installation and configuration steps, please refer
to Appendix [A].

"Host" VM The CAPEv2 sandbox was deployed and configured in a KVM-QEMU
virtual machine to simplify the malware analysis workflow and facilitate easy deployment
for future use. As discussed [in the previous section Architecture of the lab environment], an

36

Figure 3.7: Installed software on the Windows 10 guest VM

Ubuntu 22.04.4 VM was set up to run CAPEv2, based on the author’s recommendations
for compatibility and performance benefits. The installation process involves preparing
the virtual host environment using KVM-QEMU, ensuring seamless integration with the
CAPEv2 sandbox. The authors provided shell scripts to facilitate the installation of all
required software for CAPEv2. After running these scripts, different IP addresses need
to be adjusted to properly set up the result server and enable communication with the
sandbox. More details about the installation can be found in Appendix [A.1].

Guest VM The Windows 10 22H2 VM has been configured as a sandbox environment
for analyzing each sample submitted to CAPEv2. To ensure uninterrupted analysis, several
features, including Windows Defender, Firewall and Teredo, have been disabled. Addition-
ally, the agent must be configured to run automatically each time the VM starts. This
setup involves installing Python, the programming language used by CAPEv2 for its agent,
and creating a task in the "Task Scheduler" to ensure the automatic execution of the agent.
Furthermore, the author of this thesis has installed various software on the guest machine
to better simulate a typical user environment, as inspired by the approach outlined in
Maňhal’s study [50]. The installed software are shown in Figure 3.7. For detailed configu-
ration steps, please refer to Appendix [A.2].

Host computer The CAPEv2 installation on the Ubuntu VM has been configured to
directly communicate with the QEMU engine of the host computer via SSH. This setup
enables the launch of sandboxes alongside the CAPEv2 installation (Ubuntu VM). Since
all VMs run on top of KVM-QEMU, the communication between the Ubuntu VM and the
sandboxes remains undisturbed, as they are connected through the same network interface
provided by KVM-QEMU. For detailed configuration steps, please refer to Appendix [A.2].

Once the CAPEv2 environment is installed and set up, the Kali Linux VM can access
the CAPEv2 UI by navigating to "http://<IP_ubuntu_VM>:8000". From this interface,
users can submit samples for analysis and leverage a range of capabilities, as illustrated in

37

Figure 3.8. This figure provides a comprehensive overview of the various options available
for malware analysis within the CAPEv2 environment, demonstrating the extent of this
sandbox.

Figure 3.8: CAPEv2 sandbox analysis options

Moving forward, when analyzing samples in the CAPEv2 sandbox, we will use the
default analysis settings, i.e. the "Syscall Hooks" and "AMSI dumps" options will
remain enabled.

Remark

To facilitate further research and easy deployment of a CAPEv2 environment, the
author has made the lab environment publicly available by providing all necessary
VM files for download. This includes:

• A link to [download the VM files].

• A step-by-step guide on how to import the lab environment, detailed in Ap-
pendix [A.4].

By providing this open access, researchers and developers can easily reproduce
and build upon the lab environment.

Information

In the subsequent subsection, we will validate the functionality of the sandbox by
attempting to establish a reverse connection from the sandbox to the Kali Linux machine.

3.4.3 Testing the Sandbox Environment

To ensure the proper functionality of CAPEv2, we conducted an analysis using a Meter-
preter payload generated with msfvenom.

38

https://cloud.cylab.be/s/YP86jepMGZ85HoP?path=%2FLab%20Environment

Figure 3.9: Failed attempt to obtain a x64 Meterpreter session reverse HTTPS obtained
from the sandbox

Figure 3.10: x86 Meterpreter session reverse HTTP obtained from the sandbox

As outlined in Appendix [A.3], to successfully launch the sandbox, navigate to the
CAPEv2 directory (/opt/CAPEv2) and execute the following two commands in two sep-
arate terminals: sudo python3 utils/rooter.py -g cape and sudo -u cape poetry
run python3 cuckoo.py. If an error occurs with the second command, retry it by first
stopping "cape.service" using sudo systemctl stop cape.service.

When we attempted to upload a staged x64 Meterpreter reverse HTTPS payload using
the command "msfvenom -p windows/x64/meterpreter/reverse_https LHOST=192.168
.122.51 LPORT=443 -f exe", the payload failed to work as expected, as shown in Figure
3.9. In contrast, when we tested the x86 version of same payload, it worked successfully,
as illustrated in Figure 3.10.

According to the study made by Maňhal in 2022 [50], a bug was identified in the
CAPEv2 monitor that affected only the x86 Meterpreter reverse TCP payload. However,
our findings contradict this as the x86 payload worked correctly in our tests. Indeed, both
staged and stageless versions of the x64 Meterpreter reverse TCP and reverse HTTPS
payload encountered failures, indicating an issue specific to the x64 version of Meterpreter
payloads, while basic x64 shell payloads remained unaffected.

This situation poses a challenge for malware analysts as the obstacles in executing the
malware for analysis hinder their efforts. On the other hand, it simplifies the scenario for
penetration testers as their payloads do not execute inside the sandbox.

A thorough investigation of the issue related to using x64 Meterpreter payloads, both
staged and stageless, is detailed in Appendix [A.5], specifically in the section titled [Inves-
tigating CAPEv2 Issues with x64 Meterpreter Payloads]

39

Figure 3.11: Sandbox analysis of a staged x86 Meterpreter reverse HTTPS using CAPEv2

Before finalizing this thesis, the author decided to reassess the monitor against a
x64 Meterpreter payload with the latest update of the monitor, given that several
updates had been released since our initial experimentations. It founds that the
author of capemon fixed the issue. Therefore, to ensure the most accurate and up-to-
date results, the author of this thesis updated the monitor in the lab environment and
repeated all the experimentations using the latest version of capemon, specifically
version dated 22 May 2024 with commit ID 4a680e1.

Important Remark

Figure 3.11 and 3.12 illustrate the results of the x86 Meterpreter reverse HTTPS pay-
load analysis, accessible through the CAPEv2 UI. The interface is organized into multiple
tabs, each providing a comprehensive overview of different aspects of the analysis results:

• Quick Overview : This tab provides a summary of the analysis, with detection sig-
natures based on YARA rules, a CAPA analysis summary and behavioral CAPEv2
signatures categorized by three colors (blue, orange and red). Additionally, it in-
cludes a detailed summary of accessed files, registry modifications and other relevant
information.

• Behavioral Analysis: This tab contains an in-depth examination of the sample’s
behavior, listing all API calls performed during the analysis. This information enables
a comprehensive understanding of the sample’s actions and interactions.

• Network Analysis: This tab focuses on the network traffic generated by the sample,
providing insights into its communication patterns and potential connections.

• Dropped Files: This tab collects and displays all potential files dropped by the sample
during analysis. These files can be downloaded for further examination.

• Process Dumps: Although not shown in the figure, this tab includes the dumps
performed by CAPEv2 during runtime, allowing security analysts to conduct further
analysis.

40

• Payloads: This tab extracts and presents all executable files associated with the
sample, including those downloaded, dumped from memory (e.g., when creating a
thread) or obtained through other means.

Figure 3.12: Sandbox analysis of a staged x86 meterpreter reverse HTTPS using CAPEv2
- Results

41

Chapter 4

Experimentation & data collection
This chapter outlines the methodology and experiments conducted to bypass the monitor-
ing system of the CAPEv2 sandbox and conceal IoCs it generates. Additionally, it assesses
the ability of the sample to evade detection by Windows Defender. The chapter begins
with an explanation of the methodology to be followed. It then dives into the experimenta-
tion phase, where a selected set of samples from AVET will be evaluated. This is followed
by the creation of a custom sample using various evasion techniques. The chapter also
explores the extension of the AVET framework. Finally, it concludes with an assessment
of several samples, including the custom one, against Windows Defender.

4.1 Methodology

This section outlines the experimental and analytical methods used to address the research
questions posed in this master thesis.

The experimental procedure involves the following steps:

1. Use the Kali Linux VM to generate various malware samples from AVET;

2. Choose and assess different payload execution methods (e.g., Shellcode Injection, Pro-
cess Hollowing) for their evasion capabilities against CAPEv2 setup on the Ubuntu
VM. Select the method that provides the least number of IoCs;

3. Evaluate the sandbox detection capabilities by creating a custom sample using the
same underlying logic as the sample selected from AVET and analyze whether the
sandbox identifies distinct IoCs that can inform and enhance threat detection;

4. Incorporate behavioral evasion techniques into the custom sample (e.g., evading API
hooking via Direct Syscalls) to evade the capemon monitor of CAPEv2 and reduce
IoCs. Exploring these techniques is crucial since successfully evading the monitoring
system might allow bypassing other sandboxes and antivirus softwares, as we would
no longer rely on fingerprints which could vary across sandboxes;

5. Adapt these evasion techniques for use with AVET (extend the framework to add
options for generating a sample that uses these evasion techniques) and assess its
effectiveness against CAPEv2 sandbox, comparing the results with the custom mal-
ware.

6. Evaluate the best two payloads for both the custom samples and the samples from
the extended AVET framework against Windows Defender on the Windows 10 VM.
Compare and analyze the results obtained from these assessments.

Criteria for Success

42

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 43

The criteria to determine whether an obfuscation or evasion method is successful will
depend on the following:

• Evade detection by CAPA and YARA rules, which are used by CAPEv2, ensuring
that the sandbox does not recognize the malware being executed. Additionally,
we also aim to obfuscate the malware in such a way that CAPA cannot detect its
capabilities;

• Bypass the capemon monitoring system to minimize IoCs, including network mon-
itoring. Further reduce the IoCs detected by CAPEv2 signatures. We will also
enumerate the desktop directory and create a folder and a file to assess whether
these actions produce IoCs on CAPEv2. If we can evade the monitoring of this enu-
meration and the creation of folders and files, it indicates that we have bypassed the
monitoring system. To verify this assumption, we will create a folder, named "hello",
and a file, named "test.txt", on the Desktop of the sandbox during the execution of
Meterpreter.

• Conceal any potential files and data that could be extracted from the sample, memory
or network traffic;

• Hide any suspicious window that may appear in screenshots.

To minimize IoCs, we will focus on dynamic evasion techniques that circumvent hooks
and monitoring systems. In contrast, we will not explore fingerprinting methods, as it has
been extensively researched and can be easily defeated by minor adjustments to sandbox
configurations, rendering our evasion efforts ineffective.

All experiments presented in this master thesis were conducted against CAPEv2,
specifically commit ID 48d59c9, which was the version available as of April 2, 2024,
during the setup of the lab environment. At the time, this version was tested in
conjunction with CAPE agent 0.17. Note that the capemon monitor has since been
updated to incorporate the latest version, commit ID 4a680e1, released on May 22,
2024, as described [in section Investigating CAPEv2 Issues with Meterpreter Pay-
loads].

Important remark

4.2 Experimentation

In this section, we will conduct a series of experiments following the previously outlined
methodology. Our strategy involves a multi-step approach, starting with the selection of
some samples available on AVET. We will then evaluate them against CAPEv2 to identify
areas for improvement. Next, we will develop and assess custom samples that incorpo-
rate multiple evasion techniques aimed at circumventing the IoCs detected from AVET.
These evasion techniques will then be integrated into the AVET framework, enhancing its
capabilities. Following this, we will re-evaluate the samples generated by the extended
AVET framework with the newly developed evasion techniques. Finally, we will test these

44 4.2. EXPERIMENTATION

Figure 4.1: Interface of AVET

samples, including custom samples, against Windows Defender to assess their ability to
evade detection, providing valuable insights into the effectiveness of our approach.

The analysis of the results is organized into four key components:

• Detection results and YARA signatures: Evaluate the effectiveness of detection
methods, including YARA signatures and any extracted process dumps, dropped files
or payloads, in identifying potential IoCs.

• CAPA analysis: Analyze the CAPA analysis summary to gain insights into the
capabilities of the malware identified.

• Indicators of Compromise: Assess the IoCs, including any screenshots captured
during analysis and examine the API logs in the "Behavioral Analysis" tab.

• File Accessed: Determine which files have been accessed, ensuring that monitoring
is working correctly to detect potential host enumeration attempts.

Before proceeding, it is essential to provide a high-level overview of the AVET archi-
tecture.

4.2.1 Introduction to AVET architecture

AVET consists of a Python script that invokes a shell script to build the malware based on
the provided options. This shell script contains all the necessary instructions to generate
the sample, including creating the Meterpreter payload, encrypting the payload, adding
sandbox evasion techniques and more. The script is easily customizable and the source
code for various payloads execution methods and the implementation of the options are
stored in C files, which can also be modified as needed.

Upon launching AVET, we are presented with various malware payloads and execution
methods, as illustrated in the Figure 4.1.

AVET can generate a total of 54 different types of malware, ranging from basic shellcode
execution within the dropper to more advanced techniques like DLL injection, process

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 45

hollowing and shellcode injection. Our primary focus will be on assessing these advanced
techniques, as simpler methods are more easily detected by security solutions. For example,
malware using a dropper to establish remote connections is more likely to be detected. In
contrast, typical Windows processes that frequently initiate such connections but have
payloads injected into them can more easily evade detection. However, for the sake of
completeness and for the comparison of results, an assessment of a basic execution of
shellcode will be carried out.

A detailed analysis of AVET’s internal architecture will be presented [in section Ar-
chitecture of AVET], providing a foundation for extending the framework, as discussed [in
section Extending AVET].

4.2.2 Selecting and assessing payload execution methods

In this section, we will select and evaluate samples generated by AVET, using various
payload execution methods.

As discussed in the previous section, our analysis will focus on advanced techniques
provided by AVET. To achieve this, we have selected the following scripts to generate these
samples:

• build_avetenc_mtrprtrxor_revhttps_win64.sh: Executes a staged x64 Me-
terpreter reverse HTTPS with XOR encoding and custom AVET encryption. This
script uses the encoded option (x64/xor) of Metasploit.

• build_hollowing_targetfromcmd_doubleenc_doubleev_revhttps_win64
.sh: Implements a process hollowing technique with dual encryption. It includes
double sandbox evasion, applying both "fopen" and "gethostbyname" environmen-
tal checks. The target process name and a spoofed command are required as a
command line parameter at runtime.

• build_injectshc_targetfromcmd_fopen_gethostbyname_xor_revhttps_
stageless_win64.sh: Injects a stageless x64 Metasploit reverse HTTPS payload
that undergoes a XOR decryption on the dropper side. This script performs again
both "fopen" and "gethostbyname" sandbox evasion checks before executing the
shellcode. The target process ID must be provided as a parameter at execution time
from the command line.

• build_injectshc_targetfromcmd_fopen_gethostbyname_xor_revhttps_
win64.sh: Similar to the previous script, this version injects a staged x64 Meterpreter
reverse HTTPS shellcode. It features again XOR decryption and sandbox evasion
("fopen" and "gethostbyname" checks). It also requires the target process ID at
runtime.

The third build script, build_injectshc_targetfromcmd_fopen_gethostbyna
me_xor_revhttps_stageless_win64.sh, is not included in AVET by default. To
ensure a comprehensive analysis, we created this additional script by modifying the
fourth script, build_injectshc_targetfromcmd_fopen_gethostbyname_xor

Important remark

46 4.2. EXPERIMENTATION

_revhttps_win64.sh. Specifically, we adapted the Meterpreter payload generation
from a staged version to a stageless one. This modification allows us to conduct an
in-depth comparison of both staged and stageless payloads, thereby enhancing our
understanding of their characteristics during the analysis and the potential difference
in IoCs.

Since our sandbox environment is based on a 64-bit operating system, we are unable to
inject 32-bit applications into 64-bit processes. Therefore, we have decided to focus
our assessment on x64 binaries exclusively. Notably, when comparing the analysis
results of x86 and x64 Meterpreter reverse HTTPS payloads, we found that the x64
version triggers fewer detections, particularly in terms of CAPEv2 signature detection.
As a result, x64 Meterpreter payloads tend to generate fewer IoCs compared to their
x86 counterparts. This observation has led us to prioritize x64 Meterpreter payloads
for further in-depth analysis.

Important remark

With the build script selected, we can now generate the samples and evaluate them
using the CAPEv2 sandbox.

Assessment of the first sample To generate the first sample using the "build_avet
enc_mtrprtrxor_revhttps_win64.sh" script, we launch the script avet.py. Then, we
select the corresponding number for the script and leave the default options, except for
disabling the "enable_debug_print" setting. After a few seconds, the payload will be
ready and can be found in the source/ folder within the avet/ directory.

Upon uploading the generated sample and setting up the listener windows/x64/meter
preter/reverse_https using msfconsole on the Kali Linux VM, we obtained the following
results :

• Detection results and YARA signatures: Firstly, as shown in Figure 4.2, the sample
is detected as "Meterpreter". Initially, one might conclude that the AVET encryp-
tion is ineffective. However, the Meterpreter payload was encrypted using a XOR
encryption from Metasploit. This means that the decoding stub, responsible for this
decryption, is widely known and may be identified by security solutions, as detailed
in an online resource [19]. Normally, this should not pose an issue since the payload
has been encrypted with an additional layer using AVET encryption. To further an-
alyze this hypothesis, we tested again the sample without setting up a listener, which
resulted in no detection at all. This suggests that the detection focuses on the second
stage of the Meterpreter payload. Furthermore, the presence of a "Dropped Files"
tab indicates that CAPE successfully captured files created during execution. Addi-
tionally, the "Process Dumps" and "Payloads" tabs reveal that CAPE can extract
both the running sample and the injected payload.

• CAPA analysis: Figures 4.3a and 4.3b provide interesting insights. The CAPA sum-
mary under the "host-interaction/process/inject" namespace indicates that AVET
samples use the APC injection method. This suggests a potential error in the CAPA
identification process, incorrectly labeling the injection method as "APC injection".

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 47

Figure 4.2: Detection results of the first sample

This misidentification likely results from analyzing multiple IoCs and drawing incor-
rect conclusions about the injection method. Additionally, IoCs identified by CAPA
include actions like importing cryptographic modules, generating random numbers
and using HTTP libraries.

(a) CAPA analysis results of the first sample
- 1

(b) CAPA analysis results of the first sample
- 2

Figure 4.3: CAPA analysis results of the first sample

• Indicator of Compromises: In Figure 4.4, several IoCs are highlighted under the sig-
nature section. The IoCs marked in blue may not directly indicate suspicious behav-
ior, as they involve actions like establishing a connection to an IP port and checking
adapter addresses, which are expected since the stager connects back via a reverse
HTTPS connection. In contrast, the orange IoCs suggest unusual activities, such as
the establishment of HTTPS connections and the downloading of an executable file,
which are indicative of downloading the second stage of the payload. Additionally, the
creation of RWX (Read-Write-Execute) memory suggests a preparatory phase before

48 4.2. EXPERIMENTATION

Figure 4.4: IoCs of the first sample

executing a shellcode, signaling more suspicious behavior. More alarming, red IoCs
indicate highly suspicious behavior, including a downloaded executable and YARA
detections in process dumps of both shellcode parsing and the Meterpreter payload.
These findings provide critical IoCs that alert security analysts to the presence of a
Meterpreter malware.

The screenshots also reveal a Window dialog box, potentially raising suspicions.
However, AVET offers an "hide_console" option, which we plan to explore when
assessing the extended AVET framework. For now, we maintain the default settings.

The "Behavioral Analysis" tab confirms that there are calls to connect to a remote
HTTP server and download the second stage of Meterpreter. Furthermore, there are
calls to NtAllocateVirtualMemory and NtProtectVirtualMemory to create RWX
memory for the shellcode. Additionally, the second stage use several API calls such
as NtOpenSection, NtCreateSection and NtMapViewOfSection for memory man-
agement. These APIs are crucial for loading DLLs and sharing memory between
processes. Moreover, calls to NtOpenProcessToken and NtQueryInformationToken
indicate operations likely related to security and access control, which may involve
elevating privileges or managing process security settings. These clearly show us the
behavior of the Meterpreter payload where a Reflective DLL injection is performed.

Despite the comprehensive detection of API usage displayed in the "Behavioral Anal-
ysis" tab, CAPEv2 does not fully highlight all these IoCs in a behavioral signature
format within the signature tab. It fails to detect all behaviors of the Meterpreter due
to the absence of custom signatures for complete behavioral identification. However,
it effectively captures all API and NTAPI calls, demonstrating its strong capabilities
in API monitoring.

– Checking dropper source code: Upon examining the code within AVET, particu-
larly the build script used for payload generation located at "avet/source/imple
mentations/payload_execution_method/exec_shellcode64.h", it is evident
that the code uses Local Shellcode Execution. This method indicates that the
sample does not create a new thread or use API calls such as CreateThread. In-
stead, it relies merely on VirtualProtect. The sample executes the Meterpreter

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 49

Figure 4.5: Accessed files from Meterpreter payload with the first sample

Figure 4.6: Accessed files from our enumeration with the first sample

stager directly within its address space using "(* (int(*)()) shellcode)();",
with the payload stored in a buffer named "shellcode". This approach avoids
using APIs that could indicate malicious behavior. However, despite being an
older technique, it can still be easily detected by security solutions. Additionally,
since the monitor is not bypassed, all Meterpreter actions are logged.

• Files accessed : In Figures 4.5 and 4.6, the summary section under "Accessed Files"
shows successful monitoring of several files created or accessed by the Meterpreter
payload. It detected activities related to the desktop enumeration, including access
to the "hello" directory and "test.txt" file that were created within the Meterpreter
session. These observations clearly demonstrate that capemon effectively monitors
the actions performed by the Meterpreter payload.

Assessment of the second sample For the second script, select "build_hollowing_tar
getfromcmd_doubleenc_doubleev_revhttps_win64.sh" when running avet.py. Use the
default options and delete the "enable debug print into file" line to prevent execu-
tion delays in the sandbox. As mentioned previously, the resulting payload will be stored
in the "output/" directory.

This script requires specific parameters to work effectively.

In CAPEv2 UI, there is an "options" input box where parameters for the executable

Important remark

50 4.2. EXPERIMENTATION

can be specified. Using this feature allows us to execute the sample with the desired
parameters. To achieve this, we need to enter the following into the options field:

arguments=first second C:\windows\system32\svchost.exe,C:\i\spoofed\
this.exe

In this command, "first" and "second" are used as placeholder parameters and are
not processed further. Following these, we specify two paths:

• The first path (C:\windows\system32\svchost.exe) refers to the process that
the malware will create, hollow and inject into.

• The second path (C:\i\spoofed\this.exe), following the comma, is the com-
mand path used for spoofing purposes associated with this process.

Upon uploading the generated sample and setting up the listener windows/x64/meter
preter/reverse_https using msfconsole on the Kali Linux VM, we obtained the following
results :

• Detection results and YARA signatures: To begin, Figure 4.7 shows that the sample
is identified as "Meterpreter", consistent with previous detections by YARA signa-
tures. Previously, we observed that even with XOR encryption from Metasploit, the
Meterpreter payload remained detectable. In this case, the sample employs a dual
layer of encryption. Despite this, the second stage of the Meterpreter payload that is
being downloaded is well-known, making it detectable by YARA. Our tests also reveal
that without a listener setup, there is no detection, highlighting that the detection
specifically targets the second stage payload when it is downloaded. This under-
scores the vulnerability of the second stage to detection. Furthermore, similar to the
previous sample, the presence of a "Dropped Files" tab indicates that CAPEv2 suc-
cessfully captured files created during execution. Additionally, the "Process Dumps"
and "Payloads" tabs reveal that CAPEv2 can extract both the running sample and
the injected payload.

• CAPA analysis: Figures 4.8a and 4.8b detail the operational behavior of the sample.
While the IoCs generated by CAPA related to network activities and cryptographic
functions are nearly identical to the previous sample, the absence of the APC inject
(possibly a false positive in the first sample) marks a difference. More importantly,
there is a significant difference in process handling. The sample initiates a process,
allocates RWX memory, and then overwrites the content of the initiated process with
the Meterpreter payload. This sequence is characteristic of the "Process Hollowing".
This behavior represents a significant deviation from the previous sample, which only
performed Local Shellcode Execution, highlighting the distinct strategy used in this
instance.

• Indicator of Compromises: In Figure 4.9, the signature section highlights various
IoCs. The IoCs are largely consistent with the previous sample tested, with additional
observations including two blue IoCs, one for a log file being written and another

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 51

Figure 4.7: Detection results of the second sample

(a) CAPA analysis results of the second sam-
ple - 1

(b) CAPA analysis results of the second sam-
ple - 2

Figure 4.8: CAPA analysis results of the second sample

52 4.2. EXPERIMENTATION

Figure 4.9: IoCs of the second sample

indicating a potential early exit by the sample. Notably, a significant discrepancy
emerges when the sample is submitted for analysis multiple times. It can occasionally
trigger red alerts for "Establishes an encrypted HTTPS connection with a suspicious
or fake User Agent" and "Fake User Agent detected". These are critical IoCs.

Despite using the same payload as in previous tests, this behavior remains the same
with the previous sample and the original Meterpreter payload. Repeated testing of
these samples confirms that generation of User Agents performed by Meterpreter can
sometimes lead to detection by CAPEv2. This suggests that similar weakness could
affect all other Meterpreter samples based on reverse HTTPS connection except if
the monitoring system is bypassed before its execution.

Concerning the screenshots, we do not observe any window, which is expected because
we removed the debug print. The process injects the payload into the hollowed
process and exits immediately afterward, leaving no time to capture the window.
However, this does not ensure complete concealment, as the window may still pop
up, allowing the CAPE agent to potentially capture it.

The "Behavioral Analysis" tab provides information about the behaviors mani-
fested by the sample. However, compared to previous analysis, this time there are
two main areas of activity due to the involvement of an additional process resulting
from process injection:

– API calls made by the dropper : The executable named "hollowing_targetfrom
cmd_doubleenc_doubleev_rev_https_win64.exe" uses several API calls for
process manipulation. These include NtCreateUserProcess and CreateProcessA
(with NtCreateUserProcess being internally invoked by CreateProcessA). These
functions are used to initiate the "svchost.exe" process, logging it as a pa-
rameter. Additionally, ReadProcessMemory, NtAllocateVirtualMemory, with
RWX permissions, and WriteProcessMemory, with the payload as a parameter,
are used to manipulate the memory of "svchost.exe". Essentially, the pro-
cess reads memory, creates an RWX region and overwrites its content with the
Meterpreter payload.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 53

Figure 4.10: Accessed files from our enumeration with the second sample

– API calls made by "svchost.exe" : The API calls observed in "svchost.exe"
are identical to those seen in the Meterpreter payload behavior, such as Reflec-
tive DLL injection, from the previously tested sample. This consistency aligns
with the use of the same Meterpreter payload.

Now checking at the dropper source code:

– Checking dropper source code: Upon examining the AVET code, specifically the
build script used for payload generation, we observe that it is divided into two
main sections. The first section manages the payload that will be injected using
the process hollowing technique. It uses Local Shellcode Execution, similar to
the previous script, and contains a 64-bit XORed staged Meterpreter payload.
The second section consists of a dropper that executes the Process Hollow-
ing injection method. This functionality is encapsulated in the code located at
avet/source/implementations/payload_execution_method/hollowing64.h,
which implements the injection process. The code leverages various API calls,
including VirtualAlloc, VirtualAllocEx, ReadProcessMemory and WriteProc
essMemory, clearly indicating a Process Hollowing injection.

• Files accessed : The Figure 4.10 presents an analysis of files accessed during the exe-
cution of the sample. CAPEv2 effectively captured the enumeration of the desktop,
as depicted in the Figure, which included accessing the "hello" directory and the
"test.txt" file. We have omitted a figure detailing the Reflected DLL injection per-
formed by the Meterpreter payload, as it is identical to the previous sample. Overall,
the process hollowing technique did not prevent CAPEv2 from monitoring the actions
executed by the Meterpreter payload same as the previous sample.

This payload presents a significant limitation for Red Team exercises, as it assumes
the attacker already has access to the computer since it requires a parameter in
command line before execution. Without an already established access, the attacker
cannot execute this malware.

Important remark

Assessment of the third and fourth samples To generate the sample of the third and
fourth scripts, "build_injectshc_targetfromcmd_fopen_gethostbyname_xor_revhttps_
stageless_win64.sh" and "build_injectshc_targetfromcmd_fopen_gethostbyname_x

54 4.2. EXPERIMENTATION

or_revhttps_win64.sh", the default options were used except for disabling the "enable_de
bug_print" setting.

This program requires specific parameters to work properly, one of which is a target
Process ID (PID). Unfortunately, in real-world scenarios, obtaining initial access to
a victim’s machine using this executable alone, without any other methods, is not
possible. Thus, it may not be suitable as it is. We plan to include a process enumer-
ation feature into AVET later as part of our efforts to enhance the framework and
overcome this limitation.

To analyze this executable within CAPEv2, we need to manually extract the PID of
a target process. To achieve this, we launched the sandbox from a snapshot, then
identifying the PID of our target, such as msedge.exe for example. After recording
the PID, the sandbox will be shut down and this PID will then be used as an option
in the CAPEv2 submission UI.

The "options" field should be structured as follows:

arguments=first second <PID>

In this command, "first" and "second" serve as placeholders for arbitrary strings,
which are not used in the operation. The <PID> represents the PID of the target
process into which we intend to inject our payload.

In our tests, we will inject the Meterpreter payload into msedge.exe

Important remark

When submitting the sample for analysis and setting up the listener with windows/x64/
meterpreter_reverse_https for the stageless and windows/x64/meterpreter/reverse_h
ttps for the staged version using msfconsole on the Kali Linux VM, we obtained the
following results :

• Detection Results and YARA Signatures: Figure 4.11 depicts the detection results
for both stageless and staged payloads (we omitted separate figure for the staged
payload as it gives the same result). Notably, neither payload was detected. This
lack of detection could be attributed to the effective XOR encryption by AVET, which
hide the Meterpreter payload from detection mechanisms. However, even though the
staged payload downloads the Meterpreter DLL which is typically recognized by
security solutions, it remained undetected in our tests. Furthermore, the presence of
the "Process Dumps" and "Payloads" tabs indicates that CAPE can still extract the
injected payload. However, in the "Payloads" tab, only the first stage is extracted.
Unlike the previous sample, there are no dropped files in this instance. This suggests
that the method of shellcode injection could be a critical factor in evading detection
by CAPE, marking a significant discrepancy from previous samples where only the
payload execution method was different. This represents a notable improvement.

• CAPA analysis: Figure 4.12 illustrate the behaviors of both stageless and staged
versions of the sample. We discovered that the IoCs identified by CAPA are identical
for both versions. Additionally, there are no IoCs associated with HTTP connection,

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 55

Figure 4.11: Detection results of the third sample

Figure 4.12: CAPA analysis results of the third and fourth samples

cryptography, among others. Since the same payload is used as the previous tests,
with only the execution methods differing, this indicates a significant reduction in
IoCs due to the shellcode injection technique. Only a few IoCs are present, such
as "create process on Windows", "inject thread", "spawn thread to RWX shellcode",
among others. This suggests that the observed behavior likely corresponds more to
that of a dropper performing a process injection rather than the Meterpreter payload
itself.

• Indicator of Compromises: Figures 4.13 and 4.14 show the IoCs highlighted by
CAPEv2 signatures for both the stageless and staged versions of the same Me-
terpreter payload. Both versions share common IoCs, including a potential anti-
debugging IoC, which appears to be a false positive frequently triggered by simple
compiled applications. Another IoC suggests a date expiration check following a local
time check. Furthermore, we observe other more concerning IoCs, such as one in
orange indicating "Creates RWX memory" and another in red showing "Code injec-
tion with CreateRemoteThread in a remote process". These findings clearly suggest
actions performed by shellcode injection. Notably, there are no IoCs related to HTTP
connections or the downloading of a second-stage payload in the staged version, in-
dicating that the shellcode injection technique effectively conceals IoCs observed in
previous samples.

Regarding the screenshots, we do not see any window for either payload, similar to the
previous sample. This is expected because we removed the debug print. The process
injects the payload into the target process and exits immediately, leaving no time to

56 4.2. EXPERIMENTATION

Figure 4.13: IoCs of the third sample

Figure 4.14: IoCs of the fourth sample

capture the window. However, this does not guarantee complete concealment, as the
window may still appear briefly, allowing the CAPE agent to potentially capture it.

For the "Behavioral Analysis" tab, we have two distinct subsections covering both
the dropper and the process, msedge.exe, where the payload is injected :

– API calls made by the dropper : As depicted in Figure 4.15, the executables
"injectshc_targetfromcmd_fopen_gethostbyname_xor_revhttps_stageless
_win64.exe" and "injectshc_targetfromcmd_fopen_gethostbyname_xor_rev
https_win64.exe" both use a series of API calls critical for shellcode injection.
These calls include NtOpenProcess, targeting msedge.exe, and NtAllocateVirt
ualMemory with RWX protection. Following this, the WriteProcessMemory API
is used to inject the payload, with the specific payload contents available for
further analysis in the subsection "Payloads". This sequence indicates to the
security analyst that the sample is performing remote shellcode injection into
the msedge.exe process. The only variation between the two versions of the
sample is the payload passed to the WriteProcessMemory call. Figure 4.16 il-
lustrates a call to CreateRemoteThread, indicating the typical behavior of a
dropper executing malicious code via a remote shellcode injection method.

– API calls made by "msedge.exe" : The API logs for msedge.exe are empty,
suggesting that the behavior of the Meterpreter payload is effectively hidden
by the shellcode injection techniques. This allows the payload to operate un-
detected, evading the monitoring capabilities of CAPEv2. This observation
applies for both versions of the sample.

Now checking at the dropper source code:

– Checking Dropper Source Code: Upon reviewing the AVET build scripts, more
precisely "build_injectshc_targetfromcmd_fopen_gethostbyname_xor_revh
ttps_stageless_win64.sh" and "build_injectshc_targetfromcmd_fopen_ge

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 57

Figure 4.15: Behavioral analysis of processes for the third and fourth samples (same API
calls)

Figure 4.16: Behavioral analysis of threads for the third and fourth samples

thostbyname_xor_revhttps_win64.sh", which generate payloads for the stage-
less and staged versions of the Meterpreter respectively, it is clear that both
scripts employ shellcode injection for payload execution. Examination of the
code within avet/source/implementations/payload_execution_method/inj
ect_shellcode.h, used by both scripts, reveals the use of several API calls, in-
cluding OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteTh
read and CloseHandle.

As noted in the "Behavioral Analysis" tab, these API calls, particularly, some-
times NTAPI versions, were successfully identified. This suite of API calls can
serve as significant IoCs for security analysts, indicating typical shellcode injec-
tion behavior.

• Files accessed : Figure 4.17 provides an analysis of the files accessed during the
execution of both the stageless and staged versions of the payload. Notably, the only
file accessed is "c:\windows\system.ini" through the "fopen" function, intended
to evade sandbox detection. In contrast to previous samples, there is no evidence
of enumeration of the desktop or access to newly created folders and files, such as
"hello" and "test.txt". This suggests that the Meterpreter shellcode successfully
circumvented the monitoring system. The process injection technique appears to
hide the activities of the Meterpreter payload from CAPEv2 monitoring, compared
to previous samples.

58 4.2. EXPERIMENTATION

Figure 4.17: Accessed files with the third and fourth samples

4.2.3 Results of the assessment

The first two samples we assessed provided important IoCs and CAPEv2 was able to log
all actions from the dropper to the Meterpreter payload, leading security analysts to defini-
tively classify them as malicious. In contrast, the analysis of the shellcode injection method,
employed by the third and fourth samples, reveals a different result. It demonstrates its
effectiveness in both bypassing the monitor of CAPEv2 sandbox and reducing IoCs for
the Meterpreter payload. Despite the fourth sample involving the download of a Meter-
preter DLL which is widely recognized by security systems, this remained undetected. This
finding underscores the efficiency of shellcode injection in bypassing the monitoring mech-
anisms of CAPEv2, representing a notable advancement compared to earlier techniques
(first and second samples), which differed only in payload execution methods.

In the latest assessments, the lack of typical IoCs, associated with HTTP or crypto-
graphic activities and the successful concealment of behaviors typically associated with
the Meterpreter payload identified by CAPA and CAPEv2, that were present in the first
two tests, mark a significant improvement in our ability to effectively hide such traces.
However, some IoCs that could indicate suspicious activities still appear, notably "inject
thread" and "spawn thread to RWX shellcode" from CAPA, as well as "Creates RWX mem-
ory" and "Code injection with CreateRemoteThread in a remote process" from CAPEv2
signatures. These indicators suggest there is still room for improvement, as they could
alert security analysts to suspicious activities. Nonetheless, the reduction of IoCs high-
lights that the shellcode injection technique plays a crucial role in hiding the underlying
activities performed by the Meterpreter payload.

Behavioral analysis of recent samples has provided further information. In the earlier
sample, numerous API calls associated with internet connections and Reflective DLL in-
jection performed by the Meterpreter payload were observed. However, in the more recent
samples (third and fourth), the API calls detected were primarily linked to the actions of
the dropper, such as OpenProcess, NtAllocateVirtualMemory, WriteProcessMemory and
CreateRemoteThread. These calls reveal crucial details about the target process for pay-
load injection: OpenProcess is used to access the target process, NtAllocateVirtualMemory
creates a RWX memory and WriteProcessMemory injects the payload. This sequence of
API calls indicates a reliance on process injection methods. Notably, the behavior of
msedge.exe, which has been chosen as the target process for the injection, highlighted the
effective dissimulation of Meterpreter payload activities, as no IoCs related to suspicious
behavior were detected, thereby successfully bypassing the monitoring engine. Further-
more, the hiding of desktop enumeration activities underscores, once again, the robustness
of the shellcode injection technique in evading the monitoring system of CAPEv2.

In conclusion, the shellcode injection technique represents an effective way of bypassing
the monitoring capabilities of CAPEv2 with regard to the behaviour of the payload being

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 59

injected. This effectiveness has been demonstrated by the execution of a Meterpreter
payload, where no differences were observed between staged and stageless versions, even
though the staged version typically involves downloading a second stage. Moreover, there
is no evidence of file accessed or Reflective DLL injection operations typically associated
with Meterpreter behavior. Additionally, the absence of suspicious IoCs related to the
activity of the created process indicates that the monitoring system is not injected into
these processes, thereby effectively bypassing the CAPEv2 monitoring system.

Despite successfully evading monitoring for the Meterpreter payload, there are still ways
for improvement, particularly regarding the IoCs generated by the action of the dropper.
The system can still detect that an injection is being performed and CAPEv2 can extract
the payload from the injected process. Additionally, it detects the creation of a RWX
memory and a new thread associated with the injection. These detections provide security
analysts with additional IoCs, enabling them to classify the sample as malicious.

Based on the criteria for success we established [in the section Methodology], we con-
cludes the following for the last two samples:

• Evade detection by CAPA and YARA rules: Partially achieved, as there are still
suspicious IoCs identified in the CAPA analysis summary.

• Bypass the capemon monitoring system: Partially achieved. The Meterpreter payload
successfully evades the monitoring system, but the actions of the dropper are still
logged.

• Hide any potential files that could be extracted from the sample: Not achieved.
CAPEv2 can extract the raw payload from the call to WriteProcessMemory.

• Hide any suspicious window that may appear in screenshots: Partially achieved, as
it does not guarantee complete concealment. The window may still appear briefly,
allowing the CAPE agent to potentially capture it. However, this could be easily
addressed by adding an option to hide the windows when generating the payload
with AVET.

This assessment clearly indicates that there are still ways for improvement to try to
achieve an undetectable sample.

If we summarize the assessment we conducted previously, the advantages of the obfus-
cation and evasion methods include:

• XOR encryption of the payload : This technique evades YARA rules that would typ-
ically detect the Meterpreter payload;

• Shellcode injection: Allows the Meterpreter payload to bypass the monitoring systems
and reduce IoCs generated by both CAPA and CAPEv2.

Actions to take and strategies for improving the evasion:

• Reduce API logging : Trying to hide the shellcode injection process, the launch of the
targeted process and the extraction/dump of the payload to prevent CAPEv2 from
capturing these activities;

• Hiding the application window : Enhance stealth by hiding any visible elements on
CAPEv2 screenshots.

60 4.2. EXPERIMENTATION

Further development plans:

• Create a self-contained sample: Create a self-contained malware that does not require
additional parameters for execution, unlike the last two samples we tested which
needed specific details in arguments of command line like the process to launch or
the PID of the target process for payload injection;

• Use a stageless payload : Opt for a stageless payload rather than a staged one to avoid
AV detection on the second staged downloaded, which is well known to vendors.

All these considerations will be taken into account when developing the custom sample
and extending the AVET framework.

4.2.4 Custom Sample

Referring back to our discussion [in the subsection Results of the assessment], we mentioned
plans to enhance our approach in order to evade sandbox detection.

The goal is to develop custom samples that incorporate specific enhancements, while
using the same payload execution method evaluated as AVET, particularly focusing on the
shellcode injection technique.

The enhancements are the following:

• Self-contained sample: Create a custom sample designed to operate independently,
requiring no external parameters provided via the command line for successful exe-
cution.

• Injection Methodology :

– Create a sample that specifies a target process by name for shellcode injection,
initially using standard API calls. This sample will serve as a baseline before
applying evasion techniques.

– Implement a basic custom encryption/decryption to hide the stageless Meter-
preter payload.

• Reduction of IoCs:

– Focus on minimizing detectable IoCs, particularly "Create RWX Memory" and
"CreateRemoteThread" in the CAPEv2 signature section. Additionally, reduce
suspicious IoCs listed under the "Behavioral Analysis" tab especially those
involving the NtOpenProcess call, which reveals the targeted process and the
WriteProcessMemory call, which discloses the payload being injected as refer-
enced in Figure 4.15

– Address behavioral IoCs through the following techniques:

∗ Dynamically loading of APIs.
∗ Dynamically loading of NTAPIs.
∗ Direct Syscalls using Syswhispers3 [20].

These enhancements aim to improve the efficiency and stealth of the custom malware
samples, reducing their detectability while maintaining functionality.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 61

Implementing custom sample

In this subsection, we will focus on the implementation details for creating a custom sam-
ple. We will start by using classical API calls and then explore more advanced evasion
techniques by developing additional samples that incorporate these methods.

The payload is a stageless x64 Meterpreter reverse HTTPS, generated using msfvenom
with x64/xor encoding from Metasploit.

Find target PID based on process name In order to obtain a self-contained sample,
we need some code able to retrieve the target PID based on a specified process name, in
contrast to the shellcode injection samples generated by AVET, which require a PID to be
supplied via command line before execution.

To achieve this, we will use the CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,
0) API call, which takes a snapshot of all running processes on the machine. We can
then iterate over the list of process entries using Process32First and Process32Next,
comparing each process name to the target process name provided as a function parameter.
Once a match is found, the PID associated with the target process name is returned.

Shellcode injection To perform a shellcode injection, we first need to find the PID of
the target process (e.g., msedge.exe). If successful, the target process is opened with the
necessary permissions using OpenProcess. The program then applies a XOR decryption
on the payload buffer, which has been previously encrypted and stored in a separate file.
This decryption uses theˆoperator with a hardcoded key. The decrypted payload is then
injected into the target process and, finally, the handle to the target process is closed.

The core of shellcode injection involves several API calls. Assuming the payload is
already decrypted, we begin by opening the target process (with the found PID) using
OpenProcess. Next, we allocate memory within that process using VirtualAllocEx. The
payload is then written to this allocated memory space using WriteProcessMemory. Fi-
nally, a remote thread is created in the target process using CreateRemoteThread, leading
to the execution of the injected shellcode within the context of the target process.

Furthermore, we will use WinMain instead of main for the entry point. This approach
tricks the machine into thinking it is a GUI application, thereby avoiding the display of a
console window.

Dynamic Loading of APIs For the dynamic loading of APIs, the code base remains
the same, however, instead of calling the APIs directly, we will first load them from the
DLL kernel32.dll. Once it is loaded, we need to obtain function pointers for each API
by defining these pointers with the correct signatures (as shown in Figure 4.18) and then
using GetProcAddress to retrieve the addresses of the required functions. This method
allows us to call the APIs indirectly, ensuring they are not listed in the IAT. This approach
can be beneficial for bypassing hooks placed by security solutions on the IAT, enhancing
the stealth of the sample.

Dynamic Loading of NTAPIs To reduce the presence of IoCs in our sample, we cre-
ated another version which dynamically loads Native APIs (NTAPIs) from ntdll.dll in-

62 4.2. EXPERIMENTATION

Figure 4.18: Signature of Dynamic Loading of APIs

stead of classical APIs from kernel32.dll. For example, the Native API of VirtualAllocEx
is NtAllocateVirtualMemory. By using GetModuleHandle and GetProcAddress to load
NTAPIs at runtime, we prevent these APIs from appearing in the IAT. This method
can bypass hooks that security solutions place on the IAT or specifically on the DLL
kernel32.dll, further reducing the risk of detection.

The equivalent NTAPIs of the APIs used before are listed below:

• NtQuerySystemInformation: Used for finding the target PID.

• NtOpenProcess: Used for opening the target process.

• NtAllocateVirtualMemory : Used for allocating virtual memory within the target pro-
cess.

• NtWriteVirtualMemory : Used for injecting shellcode into the target process.

• NtCreateThreadEx : Used for creating a new thread in the target process.

• NtClose: Used for closing handles to open objects.

Additionally, Using NTAPIs requires declaring certain structures and constants to en-
sure proper functionality as these APIs are not documented by Microsoft. For example,
success and error codes such as STATUS_SUCCESS (defined as ((NTSTATUS)0x00000000L))
and STATUS_INFO_LENGTH_MISMATCH (defined as ((NTSTATUS)0xC0000004L)) must be de-
clared. Additionally, the InitializeObjectAttributes macro is used to set up the
OBJECT_ATTRIBUTES structure correctly by initializing its length and other fields. This
structure is essential for various low-level operations involving system objects like files,
directories, processes and threads.

Direct Syscalls Another evasion technique to reduce IoCs involves the use of direct
syscalls instead of API/NTAPIs calls. This method requires defining the syscall number,
structuring the syscall parameters correctly and writing the corresponding native function
stubs in assembly. By constructing and invoking the syscall directly via assembly, the appli-
cation interacts with the Windows kernel without relying on potentially hooked functions
within ntdll.dll. This approach can evade detection by security solutions monitoring
API/NTAPI calls. However, implementing direct syscalls requires a deep understanding
of the Windows kernel internals and the specific syscall interface for different Windows
versions.

To simplify this process, we used Syswhispers3, a tool that automates the generation of
direct syscalls. Syswhispers3 generates header and ASM files for any syscall, which can be
integrated and called directly from C/C++ code, as described in its GitHub repository [20].

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 63

By specifying the NTAPIs for which syscalls are needed, Syswhispers3 outputs a header
file, a C source file and an assembly file. If the MinGW compiler is selected, the assembly
code is directly integrated into the C file.

The generated header files contain function declarations and necessary structures for
the proper execution of the syscalls.

Additionally, like for the dynamic loading of NTAPIs, the same macros and constants
must be defined. However, in addition, the SYSTEM_PROCESS_INFORMATION structure needs
to be defined to hold comprehensive details about system processes, including memory
usage, identifiers like process ID, parent process ID, among others. This structure is used
with the NtQuerySystemInformation syscall to gather detailed process information for
tasks.

Since AVET uses MinGW for compiling binaries, we leverage a Syswhispers3 option
that generates syscalls.c and syscalls.h files compatible with the MinGW compiler.
For our custom samples, we compiled them using Visual Studio 2022 Community Edition.

For more details on the implementation of the samples and instructions for compiling
the binaries, please refer the authors’ master thesis GitHub repository [21]. The custom
samples are located in the "samples/" directory of the repository.

Assessments of the custom samples

In the previous section, we built our own custom samples. Now, we will focus on assessing
their performance to determine if they outperform those generated by AVET, particularly
the version that uses shellcode injection with a stageless payload.

First, we will test the version that performs only classical API calls. Next, we will
move on to dynamic loading of APIs, followed by their NTAPIs version and, finally, we
will assess the sample using Direct Syscalls. All samples include a stageless x64 Meterpreter
reverse HTTPS payload, which undergoes an initial x64/xor encoding from Metasploit,
followed by a basic custom XOR encryption.

As explained at the beginning of [the section Experimentation], the assessment is
structured as follows:

• Evaluate detection results and YARA signatures;

• Analyze the CAPA analysis summary;

• Assess the Indicators of Compromises, including screenshots and behavioral
analysis;

• Determine which files have been accessed (ensuring the monitoring is working
properly for potential host enumeration);

Reminder

Classical API calls In our initial experiment, we tested the sample that uses classical
API calls to perform its operations. This serves as a baseline and is expected to produce
results similar to the stageless version of injectshc (last two samples tested) from AVET.

https://github.com/bayoub03/Master-Thesis-Implementation

64 4.2. EXPERIMENTATION

Figure 4.19: Detection result of custom sample - Classical APIs

However, unlike the version from AVET, our sample also performs a process enumeration.
This could potentially introduce additional IoCs.

Upon uploading the sample and setting up the listener windows/x64/meterpreter_reve
rse_https using msfconsole on the Kali Linux VM, we obtained the following results :

• Detection results and YARA signatures: The detection results are depicted in Figure
4.19. Similar to the previous two AVET scripts that generate samples using shell-
code injection, our custom sample, combined with the x64/xor Meterpreter and XOR
encryption, effectively evades YARA signatures. However, the detection results of
the last two AVET samples, illustrated in Figure 4.11, include a "Process Dumps"
tab, which is not present in the detection results of our custom sample. This ab-
sence indicates that our sample appears stealthier, as CAPEv2 is unable to dump it.
However, the payload is still successfully extracted, as shown by the presence of the
"Payloads" tab.

• CAPA Analysis: Figure 4.20 illustrates the IoCs identified by CAPA. We observed
IoCs corresponding to the behavior of the dropper, indicating typical shellcode injec-
tion behavior such as "inject thread" and "spawn thread to RWX shellcode", similar
to those seen in the last two AVET samples. However, our custom sample revealed
additional IoCs related to process enumeration, such as "map section object" and
"enumerate processes", which fall into the "host-interaction/process" category, rais-
ing more suspicion. The absence of these IoCs in the AVET sample, as demonstrated
in Figure 4.12, is due to the integration of a process enumeration step in our custom
sample to identify the PID associated with a target name. However, our sample does
not display IoCs related to "DNS resolving" and ".tls section". Furthermore, the
implementation of shellcode injection also conceals IoCs related to the execution of
the Meterpreter payload.

• Indicator of Compromises: Figure 4.21 presents several IoCs identified by CAPEv2
signatures. When compared to the AVET samples shown in Figure 4.14, the IoCs are
quite similar. Notably, both samples generate "Creates RWX memory" and "Code
injection with Create Remote Thread in a remote process".

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 65

Figure 4.20: CAPA analysis of custom sample - Classical APIs

Figure 4.21: IoCs of custom sample - Classical APIs

However, the AVET sample includes an additional IoC "Possible date expiration
check, exits too soon after checking local time", which is not present in the custom
samples. Conversely, our custom sample display two additional IoC signatures: "Enu-
merates running processes" and "Expresses interest in specific running processes".
These signatures are due to the process enumeration we added to identify the tar-
geted PID. While this addition is expected, it introduces a highly suspicious IoC that
will need to be concealed.

The screenshots in Figure 4.21 show no visible windows, effectively validating the
success of the WinMain method in hiding windows.

For the "Behavioral Analysis" tab, we have two distinct subsections covering both
the dropper and the process where the payload is injected :

– API calls made by the dropper : Similar to the last two samples from AVET,
we observe several API calls related to process injection. These include calls
to NtOpenProcess targeting msedge.exe, NtAllocateVirtualMemory with a
protection of PAGE_EXECUTE_READWRITE, WriteProcessMemory along with the
payload being injected, and CreateRemoteThread, as shown in Figures 4.22
and 4.24. Additionally, there are numerous calls to Process32NextW for process
enumeration, depicted in Figure 4.23.

– API calls made by "msedge.exe" : As in the AVET sample, there are no sus-
picious IoCs originating from msedge.exe. This suggests that the behavior of

66 4.2. EXPERIMENTATION

Figure 4.22: Behavioral processes of custom sample - Classical APIs

Figure 4.23: Behavioral process (enumeration) of custom sample - Classical APIs

the Meterpreter payload is effectively concealed by the shellcode injection.

• Files accessed : Figure 4.25 shows the files accessed during the execution of the sam-
ple. We observe that only "C:\Windows\Globalization\Sorting\sortdefault.nls"
was accessed. This file is used for handling linguistic data in applications, indicating
no malicious activity, it is merely benign noise. Additionally, there is no indication
of desktop enumeration being performed or actions of the Meterpreter payload, like
the AVET samples. However, the AVET samples have an IoC indicating access to
"C:\Windows\System.ini" due to a fingerprinting check.

In conclusion, the analysis of our first custom sample using shellcode injection with
classical APIs, x64/xor Meterpreter and XOR encryption demonstrates similar capabilities
to those of the AVET sample. However, unlike AVET, CAPEv2 was unable to perform a
process dump of our sample, as indicated by the absence of the "Process Dumps" tab.

The CAPA analysis identified unique IoCs related to process enumeration, distinguish-
ing our sample by incorporating a step to identify the target PID. While this addition was
beneficial for creating a self-contained sample, it also introduced new IoCs, highlighting
areas for improvement.

Behavioral analysis confirmed that the API calls made by the dropper were consistent
with those from AVET samples, particularly focusing on process injection techniques. The

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 67

Figure 4.24: Behavioral threads of custom sample - Classical APIs

Figure 4.25: Files accessed of custom sample - Classical APIs

key difference was the integration of the process enumeration in our sample, which is not
implemented in the AVET samples. No suspicious IoCs were detected from "msedge.exe",
indicating that the shellcode injection effectively concealed the behavior of the Meterpreter
payload.

The main drawback is that the custom sample failed to conceal the existing IoCs from
AVET. Specifically, IoCs related to process injection and the creation of a remote thread
are still present, the addition of the process enumeration adds more suspicious behavior.
All of these information could be useful for security analysts to classify the sample as
malicious.

Dynamic Loading of APIs Next, we evaluated a sample that uses a more advanced
technique to hide APIs, called dynamic loading of APIs. This approach dynamically re-
solves and loads the required API functions at runtime rather than at compile time. The
outcomes of this assessment are summarized below:

• Detection results and YARA signatures: Figure 4.26 depicts behavior identical to
those observed in the first custom sample (Classical API calls). This custom sam-
ple successfully evades YARA signatures and, like the first one, does not display a
"Process Dumps" tab. This consistency is expected, as the only variation between
the samples is the API calls that are now dynamically called. However, despite using
dynamic loading of APIs, the payload is still successfully extracted, as shown by the
presence of the "Payloads" tab.

• CAPA Analysis: Figure 4.27 illustrates the IoCs identified by CAPA. These IoCs are
identical to those observed in the first custom sample, particularly those related to
process injection and process enumeration. This observation indicates that, at this
stage, dynamic loading of APIs does not effectively conceal these IoCs from CAPA
detection.

• Indicator of Compromises: As with the first sample, Figure 4.28 highlights several
IoCs identified by CAPEv2 signatures. These IoCs are identical to those observed

68 4.2. EXPERIMENTATION

Figure 4.26: Detection result of custom sample - Dynamic Loading of APIs

Figure 4.27: CAPA analysis of custom sample - Dynamic Loading of APIs

Figure 4.28: IoCs of custom sample - Dynamic Loading of APIs

Figure 4.29: Files accessed of custom sample - Dynamic Loading of APIs

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 69

in the initial custom sample, specifically indicating process enumeration, creation of
RWX memory and thread creation. Consequently, it is evident that Dynamic Loading
of APIs does not yield any improvement in concealing these IoCs.

Regarding the screenshots presented in Figure 4.28, we again observe that no windows
are visible. This confirms that the WinMain method effectively hides any windows
that might appear.

Within the "Behavioral Analysis" tab, two separate subsections dive into the
behavior of the dropper and the payload injection process:

– API calls made by the dropper : Once again, we observe the same set of API calls
recorded in the logs compared to the first custom sample. Specifically, we identi-
fied multiple API calls associated with process injection. These include opening
the process msedge.exe, allocating virtual memory with PAGE_EXECUTE_READWRI
TE protection on it, writing the shellcode into the allocated memory and creating
a new thread. Additionally, there is an obvious presence of process enumeration.
Since this yields the same results as the first sample shown in 4.22, 4.23 and
4.24, we have omitted additional figures. Based on these observations, there is
still no improvement in concealing API calls through dynamic loading of APIs.

– API calls made by "msedge.exe": Similar to the findings with the custom
and AVET samples, our analysis reveals no IoCs originating from msedge.exe.

• Files accessed : Figure 4.29 depicts the files that has been accessed. Our analysis
aligns with the first custom sample. We found no signs of desktop enumeration and
no IoCs suggesting any malicious activity.

The analysis of the custom sample using dynamic loading of APIs demonstrates that
this technique does not enhance its ability to evade detection mechanisms. Detection
results show no improvement in hiding IoCs from CAPA analysis, as they are identical to
those observed with classical API calls, indicating persistent presence of process injection
and enumeration activities. CAPEv2 is also able to extract the payload from msedge.exe.
Behavioral analysis confirms consistent API call patterns, revealing evidence of process
related activities such as process enumeration, memory allocation and thread creation.
Additionally, the files accessed do not suggest any malicious activity. Overall, dynamic
loading of APIs failed to effectively conceal the malicious behavior of the sample.

Dynamic Loading of NTAPIs We then assessed the sample that uses dynamic loading
of NTAPIs (Native APIs). This technique involves dynamically resolving and loading
NTAPI functions, which are in a lower-level than standard API calls. The results of this
evaluation are presented here:

• Detection results and YARA signatures: Figure 4.30 demonstrates results identical
to the first and second custom samples. This sample evades YARA signatures and,
like the others, does not display a "Process Dumps" tab. However, despite using
dynamic loading of NTAPIs, the payload is still successfully extracted as evidenced
by the presence of the "Payloads" tab. This indicates that this technique does not
effectively conceal the extraction of payloads.

• CAPA Analysis: The CAPA analysis depicted in Figure 4.31 highlights the be-
haviors extracted from the sample. Notably, there are minor differences in the

70 4.2. EXPERIMENTATION

Figure 4.30: Detection result of custom sample - Dynamic Loading of NTAPIs

Figure 4.31: CAPA analysis of custom sample - Dynamic Loading of NTAPIs

IoCs detected by CAPA compared to the first two custom samples. Specifically,
a new IoC indicating "get system information on Windows", probably from the
NtQuerySystemInformation call, is present, while "map section object" and "query
or enumerate registry value", observed in the first two samples, are not present. Ad-
ditionally, the "enumerate processes" IoC includes further details, explaining that
this enumeration was performed using NtQuerySystemInformation. Despite these
variations, CAPA effectively captures the overall behavior of the dropper.

• Indicator of Compromises: In Figure 4.32, several IoCs detected by CAPEv2 signa-
tures are shown. A notable difference from the first two samples is obvious: fewer
IoCs are displayed. Specifically, only the "Create RWX memory" and "Code injection
with CreateRemoteThread in a remote process" suspicious IoCs are present. In con-
trast, previous samples identified IoCs related to process enumeration, as illustrated
in Figures 4.21 and 4.28. This discrepancy underscores the potential of dynamic
loading of NTAPIs to conceal such IoCs. The differences between the CAPEv2 sig-
nature and CAPA analysis results may be due to CAPEv2 lacking signatures for all
NTAPIs. This is shown by CAPA detecting enumerate processes via NtQuerySys-
temInformation, suggesting that CAPEv2 signature detection may not cover this
particular case.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 71

Figure 4.32: IoCs of custom sample - Dynamic Loading of NTAPIs

Concerning the screenshots presented in Figure 4.32, we again observe that no win-
dows are visible. This further confirms that the WinMain method effectively conceals
any windows that might appear.

Under the "Behavioral Analysis" tab, two distinct subsections are again displayed,
detailing the behavior of both the dropper and the payload injection process:

– API calls made by the dropper : When examining the APIs associated with shell-
code injection, we find the same sequence of API calls recorded in the logs com-
pared to the first two custom samples. These include actions such as opening the
process msedge.exe, allocating virtual memory with PAGE_EXECUTE_READWRITE
protection, writing the shellcode into the allocated memory and creating a new
thread. However, a significant difference arises concerning the process enu-
meration. Notably, there is an absence of calls to Process32NextW. This de-
viation is expected because our approach no longer performs a direct call to
Process32NextW in order to iterate through process names, instead, it involves
computations with the NextEntryOffset. Therefore, the absence of these API
calls contrasts with the behavior observed in the first two custom samples. In the
case of dynamic loading of NTAPIs, only a call to NtQuerySystemInformation
is observed, which may still alert security analysts to the presence of process
enumeration. These behaviors are depicted in Figures 4.33, 4.34 and 4.35. Based
on these observations, using dynamic loading of NTAPIs offers a small improve-
ment. By eliminating the excessive Process32NextW calls from the logs, it makes
the process enumeration activity less obvious to analysts.

– API calls made by "msedge.exe" : Consistent with our observations from the
custom sample and AVET analysis, the experiment of this custom sample indi-
cates the absence of any IoCs originating from msedge.exe.

• Files accessed : Our analysis, shown in Figure 4.36, indicates that no files were ac-
cessed during the examination, unlike the first two samples, suggesting that the
accessed file in the initial samples is inherent to API calls.

In conclusion, our evaluation of the sample that uses dynamic loading of NTAPIs
reveals both strengths and limitations of this technique. The sample effectively evades
YARA signatures and does not trigger a "Process Dumps" tab, similar to previous custom
samples. However, despite the dynamic loading of NTAPIs, the payload extraction is still
performed. CAPA analysis shows minor differences in IoCs, with new detections such as
"get system information on Windows" and the absence of others like "map section object".

72 4.2. EXPERIMENTATION

Figure 4.33: Behavioral processes of custom sample - Dynamic Loading of NTAPIs

Figure 4.34: Behavioral process (enumeration) of custom sample - Dynamic Loading of
NTAPIs

Figure 4.35: Behavioral threads of custom sample - Dynamic Loading of NTAPIs

Figure 4.36: Files accessed of custom sample - Dynamic Loading of NTAPIs

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 73

Figure 4.37: Detection result of custom sample - Direct Syscalls

The dynamic loading method reduces the visibility of process enumeration by eliminating
Process32NextW calls, replacing them with computations using NextEntryOffset and only
calling NtQuerySystemInformation. This change decreases log footprint and enhances
stealth, though it may still alert analysts to process enumeration activities. Additionally,
APIs related to opening a process, allocating memory space, writing shellcode into it and
executing a remote thread to launch the shellcode are still present, indicating that dynamic
loading of NTAPIs is not effective at concealing these IoCs. However, no IoCs were detected
from msedge.exe and no files were accessed during the analysis.

Direct Syscalls Finally, we tested a sample that incorporates direct syscalls. This
method involves making system calls directly to the Windows kernel, bypassing the usual
API layers. The results of this assessment are detailed below:

• Detection results and YARA signatures: Figure 4.37 demonstrates behavior similar
to the other custom samples. It effectively evades YARA signatures and does not
display a "Process Dumps" tab. More interestingly, it also lacks the "Payloads"
tabs. This indicates a successful concealment of payload extraction and evasion of
CAPEv2 payload detection. The addition of direct syscalls significantly enhances the
concealment of payload extraction, which was not the case in the first three custom
samples.

• CAPA Analysis: Figure 4.38 illustrates the CAPA analysis, highlighting the behav-
iors observed in the sample. Surprisingly, there is a significant difference in the IoCs
detected by CAPA compared to the first three samples. Unlike the earlier samples,
which showed some IoCs related to shellcode injection, this analysis found no IoCs
at all. This underscores the effectiveness of using direct syscalls to conceal IoCs
associated with API calls.

• Indicator of Compromises: In Figure 4.39, a significant difference emerges compared
to the first three samples. Notably, there are no suspicious IoCs. The only occurrence
of "SetUnhandledExceptionFilter detected (possible anti-debug)", which is

74 4.2. EXPERIMENTATION

Figure 4.38: CAPA analysis of custom sample - Direct Syscalls

Figure 4.39: IoCs of custom sample - Direct Syscalls

common in executables, is not due to the actions of our dropper. This result contrasts
with the three initial samples, which displayed numerous IoCs related to shellcode
injection. This highlights the effectiveness of the Direct Syscall method in evading
CAPEv2 signatures, as evidenced by the absence of logged behaviors in this section.

Regarding the screenshots, we once again observe consistency with the first three
samples. The WinMain method effectively hides any windows that might appear
from the sample in the screenshots.

In the "Behavioral Analysis" tab, notably there is only one subsection detailing the
behavior of the dropper, as depicted in Figure 4.40. Surprisingly, it fails to detect the
creation of the thread inside msedge.exe. Consequently, the process tree established
by CAPEv2 only identifies the execution of the sample, missing the payload running
inside "msedge.exe".

Regarding the API calls made by the dropper, upon inspecting those associated with
shellcode injection activities, we were surprised to find no indications of such actions.
Specifically, there were no signs of process opening, virtual memory allocation with
PAGE_EXECUTE_READWRITE protection, writing process memory with the payload or
thread creation. This explains the absence of suspicious IoCs in previous steps, as
these critical API calls were not logged. Figure 4.41 merely shows generic API calls
typically made by executables.

However, Figure 4.42 reveals a drawback of using Direct Syscalls. CAPEv2 was able
to detect the use of syscalls, however, it provides minimal details, merely indicating
"syscalls" without further information. This underscores the effectiveness of direct
syscalls in concealing API calls from CAPE. Although CAPE can identify syscall
activities, the information are not directly visible in the CAPE UI. Analysts must
thoroughly examine the "Behavioral Analysis" tab to identify syscall activities.

Furthermore, even with syscall logs, directly classifying the sample as malicious re-
mains challenging for a security analyst. He must gather more information, such as
through reverse engineering, to accurately determine the maliciousness of the sample
as the current logs do not provide sufficient information.

• Files accessed : Similar to the third custom sample, Figure 4.43 indicates that no files
were accessed during the execution.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 75

Figure 4.40: Behavioral analysis (process tree) of custom sample - Direct Syscalls

Figure 4.41: Behavioral processes of custom sample - Direct Syscalls

Figure 4.42: Behavioral analysis (syscalls) of custom sample - Direct Syscalls

Figure 4.43: Files accessed of custom sample - Direct Syscalls

76 4.2. EXPERIMENTATION

In conclusion, our assessment of the sample incorporating direct syscalls revealed signif-
icant improvements in evading detection mechanisms. By bypassing the typical API layers
and making system calls directly to the Windows kernel, the sample effectively concealed
its malicious activities from CAPEv2 monitoring system. This approach was particularly
successful in evading YARA signatures and CAPEv2 payload detection, as evidenced by
the absence of IoCs and the "Payloads" tab. The CAPA analysis further highlighted the
effectiveness of direct syscalls, showing no IoCs related to shellcode injection, which were
present in the first three samples. The behavioral analysis confirmed that API calls typi-
cally associated with malicious activities were not logged, leading to a clean process tree
and behavioral logs. While CAPE detected the use of syscalls, it provided minimal details,
making it challenging for security analysts to classify the sample as malicious based only
on the logs.

Overall, the direct syscalls method significantly enhances the concealment of malicious
activities, presenting thus a considerable challenge for CAPEv2 detection mechanisms.

Results of the assessment

The comparative analysis of various API call techniques for CAPEv2 detection revealed
significant insights into their effectiveness and limitations. We found that while the dy-
namic loading of NTAPIs offered some level of improvement in stealth by reducing process
enumeration in CAPEv2 signature detection, it did not provide a significant advantage over
classical API calls and dynamic loading of APIs. These methods can evade YARA signa-
tures and avoid the dump of process as evidenced by the absence of a "Process Dumps"
tab. However, they still generated IoCs related to process injection, which security analysts
could detect.

On the other hand, the use of direct syscalls emerged as a notable improvement for
evasion. This method effectively concealed payload extraction and eliminated many of the
typical IoCs associated with malicious behavior, such as those related to process injection.
The direct syscall method does not only avoid the creation of suspicious logs and a "Pay-
loads" tab but also made it challenging to classify the activities as malicious due to the
absence of API calls related to process injection. While CAPE was able to identify the
use of syscalls, the details provided were not enough, complicating the task for analysts
to identify the malicious nature of the sample. The ability of CAPE to understand that
a syscall is performed may be due to potential syscall hooking within CAPEv2. After
examining the code of the capemon monitor (hooking_64.c), we identified an instruc-
tion that could indicate syscall hooking since it manipulates a syscall number for a hook.
Specifically, there is a check for native API hooks that ensures the mov eax, <syscall
nr> instruction is retained (if (!memcmp(addr, "\x4c\x8b\xd1\xb8", 4))).

Overall, the direct syscall method significantly enhances the concealment of malicious
activities, presenting a considerable challenge for CAPEv2 detection mechanisms.

Based on the criteria for success established [in section Methodology], we conclude the
following for the last custom sample (Direct Syscalls):

• Evade detection by CAPA and YARA rules: Completely achieved. No suspicious IoCs
were found in either CAPA or CAPEv2 signatures.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 77

• Bypass the capemon monitoring system: Partially achieved. The Meterpreter pay-
load successfully evades the monitoring system. While no actions related directly to
process injection were detected, some syscalls were logged by CAPEv2 in the "Behav-
ioral Analysis" tab. Although CAPEv2 can detect these syscalls, it does not provide
detailed information, only indicating "syscall".

• Hide any potential files that could be extracted from the sample: Completely achieved.
No files were extracted and the "Process Dumps" and "Payloads" tabs were not
present.

• Hide any suspicious windows that may appear in screenshots: Completely achieved.
By using WinMain instead of main, we successfully concealed any suspicious windows.

This assessment clearly indicates significant improvement compared to the last two
samples from AVET highlighted [in section Results of the assessment].

We will now proceed to integrate these methods into AVET.

4.2.5 Extending AVET

In this subsection, we will focus on enhancing the AVET framework by incorporating the
methods used in the custom samples.

Before diving into the extension of AVET, we will thoroughly explain its internal ar-
chitecture and workings. This comprehensive understanding will simplify the process of
extending the framework and integrating our evasion techniques.

Architecture of AVET

AVET is a versatile tool used for generating various types of malware using evasion tech-
niques. It is structured around a main script, called avet.py, which serves as the interface
for these operations. The core functionalities of AVET include:

• Payload Execution Methods: These involve different strategies such as Shellcode
Injection, DLL Injection and Process Hollowing to execute the payload.

• Obfuscation Techniques: Methods like encryption are used to hide the payload.

• Sandbox Evasion Techniques: This includes techniques like environmental checks
that help the malware to evade sandbox detection.

AVET typically creates a "dropper" that encapsulates and dynamically executes the
payload. The malware samples are constructed using customizable shell scripts located in
the "build/" directory of AVET. These scripts can be tailored to meet specific needs and
typically include detailed instructions for constructing the malware.

These are highlighted in the figures provided. Figure 4.44 demonstrates the structure
of the AVET project, while Figures 4.45 and 4.46 show an example of a build script.

The operations within these scripts, such as encode_payload, set_payload_source
and set_key_source, are defined as function through the feature_construction.sh
script. This script is crucial as it contains the logic necessary to dynamically populate
files that are essential for building the malware. These dynamically filled files are then

78 4.2. EXPERIMENTATION

Figure 4.44: Structure of the AVET project

Figure 4.45: build script example (1)

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 79

Figure 4.46: build script example (2)

imported into the main source file, avet.c, allowing the tailored creation of each malware
sample.

Key components of the AVET project include:

• Build scripts ("build/" directory): As previously mentioned, these scripts pro-
vide detailed instructions for creating a working malware sample. It contains the
steps for generating a new payload, creating an encryption key for it, encrypting the
payload and setting this encrypted payload along with its decryption key as source
for the malware. These steps are depicted in Figures 4.45 and 4.46.

• Source files of payload execution methods ("source/implementations/payload
_execution_methods/"): This directory contains the implementation files for differ-
ent payload execution methods, such as Shellcode Injection and Process Hollowing.

• Source files of data retrieval methods ("source/implementations/retrieve_da
ta/"): These scripts are designed for creating self-contained payloads by specifying
the necessary data for retrieval and integration into the malware. Later, we will
explore the importance of the static_from_here data retrieval method, which will
be crucial for directly extracting a target process name from a script file.

The core file, avet.c located in the "source/" directory, forms the foundation of the
malware sample. The build script, using the feature_construction.sh script, dynam-
ically populates this file based on selected options. It achieves this by filling and incor-
porating additional files, ending by the extensions .assign and .include, into the main
code base of avet.c.

For more comprehensive details, the reader is encouraged to consult the AVET GitHub
repository [16]. This repository not only hosts the source code but also provides extensive
documentation on the use and extension of AVET.

80 4.2. EXPERIMENTATION

Extending the framework

Thanks to the modularity of AVET, as discussed earlier, our techniques can be easily
integrated into the framework.

We will begin by integrating a process enumeration step, followed by the dynamic
loading of APIs. Next, we will implement dynamic loading of NTAPIs and, finally, we will
incorporate direct syscalls into the AVET framework.

For the payload execution method, we will build upon inject_shellcode.h given its
proven efficacy in previous tests and in our custom samples. Additionally, we have opted
for a stageless version of x64 Meterpreter reverse HTTPS, incorporating x64/xor encoding
along with a custom encryption for enhanced obfuscation.

Initially, we opted to develop a custom XOR encryption method, using a hard-coded
key included directly within the source code of the payload execution method similar
to the custom samples. This decision arose after the detection by Windows Defender
of AVET encryption methods. Such detection was expected, given the status of AVET
as a widely used open-source framework, which has led security vendors to develop
signatures for its detection.

However, our custom XOR encryption method also triggered detection by De-
fender, identified as Trojan:Win64/CryptInject.VZ!MTB, due to the usage of the
xor operator combined with the AVET source code. Consequently, we conceived a
solution involving basic arithmetic operations to obfuscate the payload, successfully
evading detection of Windows Defender.

Important remark

Find target PID based on process name Our objective is to enable the process
name to be supplied directly via the build script in AVET before compiling the executable,
instead of providing a PID at runtime. This involves developing an algorithm to search for
the PID of the target process, a feature currently not implemented by AVET. Achieving
this needs adapting several parts of the source code and understanding its overall logic.

Understanding the structure of AVET

AVET consists of a Python script that invokes shell scripts responsible for generating the
Meterpreter payload (if selected) and dynamically constructing parts of the code using the
feature_construction.sh script. This setup allows for dynamic generation of C code.
For example, in shellcode injection scenarios requiring a PID as an argument, AVET must
integrate the relevant code into the final dropper code, avet.c.

As discussed before, all implementations of payload execution methods are located in
the source/implementations/ folder.

Initial Setup

First, we need to generate a new script file. Since we are using the same payload execution
method as the injectshc scripts, we will duplicate the script build_injectshc_targetfro
mcmd_fopen_gethostbyname_xor_revhttps_win64.sh and rename it to build_injectshc
_custom_enc_revhttps_stageless_win64.sh.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 81

We will opt for a stageless Meterpreter payload instead of a staged one. A stageless
payload is less likely to raise suspicions as it avoids downloading a second stage, which is
often flagged by security vendors. Additionally, since sandbox evasion techniques are not
our primary focus, we will remove them by default, commenting out the lines:

add_evasion fopen_sandbox_evasion ’c:\windows\system.ini’
add_evasion gethostbyname_sandbox_evasion ’this.that’

Enabling process name specification

In the script, we locate the parameter enabling the retrieval of command line input:

set_payload_info_source from_command_line_raw

Where the implementation of the function (set_payload_info_source) can be found
on feature_construction.sh.

This function verifies whether the payload is statically included, either sourced from a
file or directly provided as a parameter in the build script. Therefore, an approach could
consist of changing "from_command_line_raw" with "static_from_here ’msedge.exe’",
enabling the specification of a process name instead of a PID at runtime.

This modification involves changing the following line in the build script:

set_payload_info_source static_from_here ’msedge.exe’

Modifying the payload execution method

The payload execution method inject_shellcode expects an integer for the PID. To
adapt to a process name, we duplicated the existing code to preserve the original version,
renaming it to inject_shellcode_procname.h and ensuring the function name matches
the source file. We then implement a function to search for the PID corresponding to the
specified process name, integrating our FindTarget function previously developed for our
custom sample.

Although it should normally work, it did not in our case. When running the sample
on a Windows VM, we received the following message: "Static retrieval from file failed;
argument arg1 of function static_from_file not recognized and/or defines not correctly set
in included headers?"

After conducting a thorough investigation, we determined that the issue arises from the
scope of STATIC_PAYLOAD_INFO. This macro is accessible in static_from_here but not in
static_from_file.

As a macro, STATIC_PAYLOAD_INFO is used to retrieve information statically. It is
defined only after the inclusion of static_from_file. Since static_from_file.h uses
#pragma once, it prevents the file from being re-included if it has already been included,
avoiding redefinitions. Consequently, if static_from_file.h has been previously included
(for instance, if set_payload_source in the shell script used static_from_file earlier
for the payload), the #define STATIC_PAYLOAD_INFO will not be within its scope.

To address this issue, we decided to separate the logic of static_from_here and
static_from_file. This problem likely occurred because the author did not consider
all possible use cases. To resolve the problem, we copied the logic from static_from_file
to static_from_here, eliminating dependencies. This solution resolves the issue of con-
flicting inclusions, ensuring that macros remain within the appropriate scope.

82 4.2. EXPERIMENTATION

The detailed investigation can be found in Appendix [C].

Final Adjustments

We have opted to convert char* to wchar_t* using the mbstowcs function:

mbstowcs(target_process, payload_info, 256); // Convert char* to wchar_t*

This conversion simplifies the adaptation efforts when integrating the evasion tech-
niques from the custom samples. Additionally, we have introduced two macros:

#define UNICODE
#define _UNICODE

These inform MinGW to interpret the code with UNICODE encoding.

After generating the sample and executing it in the Windows VM, we successfully
obtained a working Meterpreter session. This new version now accepts a process name in
the build script instead of a PID from the command line before execution.

At this stage, we disabled Windows Defender from the Windows 10 VM. We will
evaluate the sample against it later [in section Assessment with Windows Defender].

Important remark

Extending with dynamic Loading of APIs For the implementation of Dynamic
Loading of APIs inside AVET, we begin by creating a new shell script named build_inject
shc_dynamic_lib_APIs_revhttps_stageless_win64.sh based on build_injectshc_cus
tom_enc_revhttps_stageless_win64.sh. Additionally, we created a new header file, inje
ct_shellcode_procname_dyn_lib.h, to include a version with dynamic loading of APIs.
This file is derived from inject_shellcode_procname.h and is inspired by the dynamic
loading of APIs technique used in the custom sample.

After modifying the code, generating the sample and executing it on the Windows VM,
we successfully obtained a fully functional Meterpreter session.

Extending with dynamic Loading of NTAPIs Instead of using conventional APIs,
we are now focusing on improving AVET through Dynamic Loading of NTAPIs.

To achieve this, we first created a new script, build_injectshc_dynamic_lib_NTAPIs_
revhttps_stageless_win64.sh, based on the existing build_injectshc_dynamic_lib_AP
Is_revhttps_stageless_win64.sh. Next, we integrated the dynamic loading of NTAPIs
from the custom sample into a modified version of inject_shellcode_procname_dyn_lib.h.
This modified file was renamed to inject_shellcode_procname_dyn_lib_NTAPI.h.

These modifications enabled us to achieve a fully working Meterpreter session on the
Windows VM.

Extending with Direct Syscalls We will now focus on adapting the code to use
Direct Syscalls, generated using Syswhisper3. First, we have created a new shell script
named build_injectshc_syscalls_revhttps_stageless_win64.sh to facilitate this pro-
cess. Additionally, a new header file, inject_shellcode_procname_syscalls.h, has been
created under the directory source/implementations/payload_execution_method/. In-
side this header file, we have imported another header file, implementation_inject_shellc

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 83

ode_procname_syscalls.h, where the actual implementation resides. This design choice
was made to maintain organization, avoiding disorder in the payload_execution_method
directory. Instead, a separate directory named inject_shellcode_procname_syscalls
has been created to contain our source code (implementation_inject_shellcode_procnam
e_syscalls.h) along with all files generated by Syswhisper3.

To generate the required syscalls, the following command is executed:

python.exe syswhispers.py -c mingw -f NtQuerySystemInformation,NtOpenProcess
,NtAllocateVirtualMemory,NtWriteVirtualMemory,NtCreateThreadEx,NtWaitForSing
leObject,NtClose -o output/syscalls

This generates the following files:

• syscalls.c

• syscalls.h

These files are then placed in the inject_shellcode_procname_syscalls directory.

Next, we need to create the source file (implementation_inject_shellcode_procname
_syscalls.h), which will contain the actual implementation. This file has been placed
within the inject_shellcode_procname_syscalls directory. Then we need to adapt the
custom sample using Direct Syscall generated by Syswhisper3 (Shellcode_injection_sysc
alls_mingw from the GitHub repository [21]) to meet AVET requirements. We have also
adjusted the build script accordingly and paid attention to the compilation process, con-
sidering the additional files. The compilation commands that need to be added to the
build script are the following:

$win64_compiler -o output/injectshc_syscalls_revhttps_stageless_win64.exe
source/avet.c source/implementations/payload_execution_method/inject_shell
code_procname_syscalls/syscalls.c -masm=intel -Wall

strip output/injectshc_syscalls_revhttps_stageless_win64.exe

Where win64_compiler is a variable that points to the MinGW compiler binary.

For detailed information on compiling Syswhispers3 binaries, please refer to their
GitHub repository [20].

These modifications enabled us to achieve a fully working Meterpreter session on the
Windows VM using Direct Syscalls.

All implementations and modifications of AVET are available in the author’s GitHub
repository [21], under the "avet/" directory.

Assessment and results of the extension

In the previous section, we expanded the capabilities of the AVET framework by incor-
porating the evasion techniques used in our custom samples. In this section, our primary
focus will be on evaluating their performance to identify any additional IoCs that the
framework could produce compared to our custom sample that uses the same underlying
logic.

84 4.2. EXPERIMENTATION

As for [the section Assessments of the custom samples], we will start by testing the
classical API calls from AVET, which now use a process name instead of a PID. Next, we
will move on to the dynamic loading of APIs, followed by substituting standard APIs with
NTAPIs. Finally, we will evaluate the sample generated by AVET that incorporates direct
syscalls.

The assessment will be performed using the following structure as explained at the
beginning [of section Experimentation]:

• Evaluate detection results and YARA signatures;

• Analyze the CAPA analysis summary;

• Assess the Indicators of Compromises, including screenshots and behavioral
analysis;

• Determine which files have been accessed (ensuring the monitoring is working
properly for potential host enumeration);

Reminder

Given that the extension use the same techniques as the custom sample, we expect to
have similar results, we will not delve into the experimental details in this section. Instead,
we will provide a summary of the results and discuss their implications. A comprehensive
analysis can be found in Appendix [D].

The results of the experiments using the extended AVET framework revealed several
key insights into the effectiveness of the different evasion techniques implemented and their
impact on detection and behavioral analysis.

Starting with the use of classical API calls, the sample successfully bypassed YARA
detection due to custom encryption. This outcome was consistent with the custom sam-
ple that uses the same technique. However, a significant finding was the presence of a
"Process Dumps" tab, indicating the ability of CAPEv2 to dump processes, which was
not observed in the custom samples. CAPA analysis identified additional IoCs specific
to AVET, such as process termination and a .tls section. The IoCs related to shellcode
injection and process enumeration were expected, but an additional IoC, potential date
expiration check, suggested potential detection related to the AVET source code. Behav-
ioral analysis showed consistent API calls by the dropper, highlighting process enumeration
and process injection, similar to the first custom sample, with no suspicious activity from
msedge.exe. The screenshots revealed a small window, indicating a weakness in AVET
evasion technique. The accessed files were consistent with previous findings, indicating a
detection of sortdefault.ntls likely to be a false positive.

In the second experiment, which tested dynamic loading of APIs, the results are
similar to the second custom sample. The sample successfully evaded YARA detection and
included "Payloads" tabs, similar to the custom sample, but it also included the "Process
Dumps". CAPA analysis identified the same IoCs, with no significant reduction despite
the use of dynamic loading of APIs. Additional IoCs, such as process termination and
a .tls section, were also detected. The dynamic loading did not conceal IoCs compared
to classical API calls. Behavioral analysis revealed identical API calls by the dropper as
observed in the previous extended sample, with no suspicious activity from msedge.exe.

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 85

This time, the screenshot did not reveal a window, which might be a stroke of luck. The
accessed file is identical to the previous sample, where only sortdefault.nls was detected.

The third experiment, focusing on the dynamic loading of NTAPIs, revealed its
ability to better conceal process enumeration IoCs. While YARA detection remained in-
effective, both "Process Dumps" and "Payloads" tabs were present, unlike in the third
custom sample where only payload extraction was performed by CAPEv2. CAPA analysis
again revealed additional IoCs compared to the third custom sample, including process ter-
mination, a .tls section and registry value queries, indicating that NTAPIs did not mitigate
these IoCs generated by the AVET samples. Despite improvements in hiding process enu-
meration IoCs, the date expiration check IoC persisted. Behavioral analysis showed similar
process injection activities by the dropper, with better concealment of process enumeration,
similar to the third custom sample, and no suspicious activities from msedge.exe. The
screenshot again did not reveal a window, likely due to luck. File access patterns remained
consistent with the third custom sample, where no files have been accessed.

The final experiment assessed direct syscalls, aiming to minimize IoCs. YARA failed
to detect the sample and only the "Process Dumps" tab was present. This contrasts
with the fourth custom sample, where neither the "Process Dumps" nor the "Payloads"
tabs were present. Direct syscalls effectively concealed most IoCs, with only a .tls section
IoC remaining. This demonstrated the capability of direct syscalls, particularly in hiding
shellcode injection techniques and some additional IoCs generated by the execution of the
AVET sample. The behavioral analysis showed no visible process injection activities, with
syscall logs detected without detailed information, necessitating thorough investigation by
security analysts. The screenshot again did not reveal a window, likely due to luck. File
access patterns were consistent with the fourth custom sample, where again no files have
been accessed.

Overall, the experiments demonstrated that different API call methods varied in their
effectiveness at evading detection and concealing IoCs. Classical API calls and dynamic
API loading did not significantly reduce detection compared to NTAPIs and direct syscalls.
Direct syscalls proved highly effective in evading detection and concealing IoCs, although
the presence of syscall logs required deeper analysis to determine maliciousness.

A crucial observation was the consistent presence of the "Process Dumps" tab in AVET
samples. This could be attributed to the AVET source code, however, we did not observe
significant differences between its code and our custom sample since we removed all unnec-
essary sandbox evasion techniques (fopen and gethostbyname). Alternatively, the difference
could be due to the compiler used, as AVET was compiled with MinGW, while the custom
sample was compiled with Visual Studio 2022.

Recompiling the fourth custom sample with MinGW resulted in exactly the same IoCs
as those found in the AVET sample, such as the presence of a .tls section IoC and the
"Process Dumps" tab, highlighting the impact of compiler choice on detection and analysis
results. This indicates that the presence of this IoC, as well as the ability of CAPEv2 to
dump the process, is linked to the compilation of the sample with MinGW. This underscores
the importance of considering issues related to the compiler in future developments.

86 4.2. EXPERIMENTATION

We believe this might be due to the widespread use of Kali Linux by hackers, red
teamers and pentesters to create malware samples, with MinGW being the commonly
used compiler in this OS. Consequently, vendors adapt to these malware character-
istics, leading to more effective detection compared to samples compiled with Visual
Studio. This adaptation is evidenced by the presence of the "Process Dumps" tab in
the CAPEv2 analysis.

Personal thought

Based on the criteria for success established [in section Methodology], we conclude the
following for the last extended sample from AVET (Direct Syscalls):

• Evade detection by CAPA and YARA rules: Completely achieved. No suspicious IoCs
were found in either CAPA or CAPE signatures.

• Bypass the capemon monitoring system: Partially achieved. The Meterpreter pay-
load successfully evades the monitoring system. While no actions related directly to
process injection were detected, some syscalls were logged by CAPEv2 in the "Behav-
ioral Analysis" tab. Although CAPEv2 can detect these syscalls, it does not provide
detailed information, only indicating "syscall".

• Hide any potential files that could be extracted from the sample: Partially achieved.
While there is no "Payloads" tab, indicating that CAPEv2 could not extract the
payload, the "Process Dumps" remains persistent, meaning that CAPEv2 was still
able to dump the process.

• Hide any suspicious windows that may appear in screenshots: Partially achieved.
AVET does not use WinMain to hide the window console. Instead, it uses the main
function but employs a "free console" technique to hide it at runtime, which may
occasionally appear in screenshots.

This assessment clearly indicates significant improvement compared to the results be-
fore the extension of AVET, as highlighted [in section Results of the assessment for the
evaluation of AVET samples].

When compared to the custom samples, the average performance is nearly similar.
However, it fails to completely achieve the criteria "Hide any potential files that could be
extracted from the sample" and "Hide any suspicious windows that may appear in screen-
shots". The custom samples using direct syscalls perform better in these aspects, as
highlighted [in the Results of the Assessment for the evaluation of custom samples].

We will now proceed to the assessment against Windows Defender.

4.2.6 Assessment with Windows Defender

In this section, we will focus our attention towards evaluating both the custom sample
and the extended AVET sample using dynamic loading of NTAPIs and direct syscalls for
payload execution methods.

To protect our samples from any leak, we used a dedicated Windows 10 VM snapshot
for testing purposes. In this VM, we disabled both "Cloud-delivered protection" and "Au-
tomatic sample submission" features of Windows Defender, retaining only the "Real-time
protection".

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 87

Our analysis will be organized into three main components:

• Initially, we will examine whether the sample is detected during download via the
Microsoft Edge browser (with the sample accessible from the Kali Machine using a
Python HTTP server).

• If the sample successfully passes the initial test, we will proceed to conduct a manual
static analysis by initiating a scan with Windows Defender through a right-click
mouse action.

• Following successful completion of the static analysis, we will further investigate by
executing the sample to determine its ability to evade dynamic analysis. At this
stage, we will also proceed with post-exploitation actions, including "screenshare"
and "migrating" features from Meterpreter.

During sample generation, we configured the listener windows/x64/meterpreter_rever
se_https using msfconsole on the Kali Linux VM.

Custom sample - Dynamic Loading of NTAPIs Using Visual Studio 2022 Commu-
nity edition, we compiled the sample code from the Shellcode_injection_NTAPIs project
(from the author’s GitHub repository [21]) on the Windows 10 VM Development snapshot.
The compiled code was then transferred to the Kali machine and subsequently deployed
to the Windows 10 VM snapshot, where Windows Defender was enabled to assess its
effectiveness.

We decided to initially transfer the sample to the Kali machine and then use a sep-
arate Windows 10 snapshot with Windows Defender enabled as a sandbox environ-
ment. This approach allows for a better replication of a real-world scenario, thereby
increasing the validity of our results.

Remark

The results obtained are the following:

• Scan on download: Upon successful download of the sample on the Windows 10
VM, the payload was retrieved as expected without any detection.

• Manual scan: To ensure a thorough analysis, we manually scanned the sample to
verify that Windows Defender did not detect it. Our results show that the sample
successfully evaded Defender’s detection, with the sample completely bypassing its
static detection capabilities as illustrated in Figure 4.47.

• Executing the sample: The execution of the sample resulted in a successful Me-
terpreter session, confirming that the payload evaded detection. We then employed
various post-exploitation techniques to test Windows Defender’s ability to detect
malicious behavior. Notably, Defender failed to trigger any detections as depicted in
Figure 4.48.

In summary, our findings demonstrate that this sample is capable of bypassing the
detection mechanism of Windows Defender, comprising both static and dynamic detection
capabilities and successfully establishes an interactive Meterpreter session.

88 4.2. EXPERIMENTATION

Figure 4.47: Static detection of the custom sample - Dynamic Loading of NTAPIs

Figure 4.48: Dynamic detection of the custom sample - Dynamic Loading of NTAPIs

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 89

Figure 4.49: Static detection of the extended sample from AVET - Dynamic Loading of
NTAPIs

AVET - Dynamic Loading of NTAPIs Initially, we compiled the sample using the
build script build_injectshc_dynamic_lib_NTAPIs_revhttps_stageless_win64.sh on
our Kali Linux Machine. Subsequently, we made it available for download in the Windows
10 VM snapshot with Windows Defender already enabled.

Our analysis yielded the following results:

• Scan on download: The sample was successfully downloaded on the Windows 10
VM without any issue.

• Manual scan: To verify that Windows Defender did not miss the sample, we con-
ducted a manual scan. Again, the sample was able to evade detection and, as a
result, the sample successfully bypassed static detection as illustrated in Figure 4.49.

• Executing the sample: The payload was executed and we obtained a Meterpreter
session without issue. We then performed post-exploitation techniques to assess if
Windows Defender would detect the behavior, but it remained undetected as shown
in Figure 4.50.

Overall, the ability to evade detection was successful as it bypassed both static and dy-
namic detection by Windows Defender, allowing for the establishment of a fully functional
Meterpreter session. This outcome is comparable to the results achieved by the custom
sample, which uses the same underlying logic.

Custom sample - Direct Syscalls To compile the code, we used again Visual Studio
2022 Community Edition to compile the sample code from the Shellcode_injection_sysc
alls project directory (from the author’s GitHub repository [21]) on a Windows 10 VM
Development snapshot. The compiled code was then transferred to a Kali machine, from
which it was deployed to a separate Windows 10 VM snapshot with Windows Defender
enabled, allowing for a realistic testing scenario.

The outcome of our analysis is the following:

90 4.2. EXPERIMENTATION

Figure 4.50: Dynamic detection of the extended sample from AVET - Dynamic Loading
of NTAPIs

• Scan on download: Our attempt to download the sample to the Windows 10 VM
resulted in a successful sample retrieval.

• Manual scan: The manual scan verified that the sample bypassed Windows De-
fender, with the payload avoiding detection as shown in Figure 4.51, further confirm-
ing the evasion.

• Executing the sample: Upon running the sample, we were able to successfully
establish a Meterpreter session. To further test the system’s ability to detect mali-
cious behavior, we used various post-exploitation techniques. However, once again,
the system failed to identify any suspicious activity, as illustrated in Figure 4.52.

In summary, this sample has demonstrated its evasive capabilities, successfully evading
both static and dynamic detection mechanisms employed by Windows Defender. No-
tably, it established a fully working Meterpreter session, illustrating its ability to operate
stealthily and remain undetected.

AVET - Direct Syscalls Following the compilation of the sample using our customized
build script, build_injectshc_syscalls_revhttps_stageless_win64.sh, on the Kali
Linux VM, the resulting executable was made accessible for download within the Windows
10 VM snapshot. This snapshot had Windows Defender enabled to accurately replicate a
real-world environment.

Our investigation produced the following findings:

• Scan on download: Upon downloading the payload through the browser, Win-
dows Defender immediately blocked it, as shown in Figure 4.53. Further examina-

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 91

Figure 4.51: Static detection of the custom sample - Direct Syscalls

Figure 4.52: Dynamic detection of the custom sample - Direct Syscalls

92 4.2. EXPERIMENTATION

Figure 4.53: Static detection of the extended sample from AVET (1) - Direct Syscalls

Figure 4.54: Static detection of the extended sample from AVET (2) - Direct Syscalls

tion in the Windows Security application revealed that the sample was detected as
HackTool:Win64/NanoDump.LK!MTB, as depicted in Figure 4.54.

Since the sample was blocked by the first layer of detection (static detection), it
is unnecessary to continue the assessment. Instead, we will investigate the reason
behind this detection.

Initially, we suspected that Syswhispers3 might be the issue, as the generated files
could be recognized by antivirus vendors. However, our test of the custom sample
that uses also Direct Syscalls showed that when the code is compiled with Visual
Studio, it did not trigger detection. In contrast, compiling the custom sample us-
ing direct syscalls with MinGW resulted in detection by Windows Defender. This
suggests that the issue is inherent to Syswhispers’ source code combined with the
compilation from MinGW, which raises suspicion.

To further explore this, we tested Syswhisper2, which generates assembly files. We
compiled these files using both Visual Studio (with MASM) and MinGW (with
NASM). The results are the same: Windows Defender detected the sample when
compiled with MinGW but not with Visual Studio. This indicates that the issue
may be specific to the combination of Syswhispers and MinGW.

Further research on NanoDump, the detected signature, revealed that it is a well-
known program for LSASS dumping using direct syscalls generated by Syswhispers,
as explained in the article [22]. NanoDump is also compiled using MinGW, which ex-
plains why our code, when compiled with MinGW and using Syswhispers (regardless

CHAPTER 4. EXPERIMENTATION & DATA COLLECTION 93

of the version), is detected as NanoDump.

In summary, the assessment revealed that Windows Defender immediately blocked the
sample upon download, identifying it as HackTool:Win64/NanoDump.LK!MTB. This detec-
tion occurred due to the combination with Syswhispers’ source code when compiled with
MinGW.

In conclusion, the experiments have provided insightful results on the evasion capabil-
ities of different techniques against Windows Defender. The dynamic loading of NTAPIs
proved to be effective, with both custom and AVET samples evading detection throughout
all stages of the analysis. Direct syscalls, when implemented using Syswhispers and com-
piled with Visual Studio, also demonstrated successful evasion. However, when compiled
with MinGW, the same technique triggered detection due to recognized patterns associated
with NanoDump.

These findings highlight the importance of the compilation environment and the specific
implementations of evasion techniques. Furthermore, it underscores the need to consider
these factors when developing and testing malware evasion techniques.

Chapter 5

Discussion
In this chapter, we will discuss the results and key findings of our study. We will compare
these findings with related work to highlight both the contributions and limitations of
our research. Additionally, we will discuss the limitation affecting the validity of our
study. Finally, we will explore potential future directions for advancing the evaluation
of obfuscation and evasion techniques against antivirus software and sandboxes. This
exploration will include recommendations for improving current methodologies, identifying
new research areas and suggesting practical applications for our findings.

5.1 Key findings

To summarize our methodology, we setup a lab environment using the CAPEv2 open-
source sandbox, Windows Defender AV and the AVET evasion framework to generate
and test malware samples. Our assessment process began by testing samples generated
with AVET against the CAPEv2 sandbox, providing a baseline for evaluating its efficacy.
Next, we developed custom samples integrating various evasion techniques, focusing on
Classical API calls, Dynamic Loading of APIs, Dynamic Loading of NTAPIs and Direct
syscalls, and assessed them against CAPEv2. We then integrated these techniques into the
AVET framework to analyze improvements in evasion strategies. Finally, we tested these
samples against Windows Defender AV to assess its detection capabilities. This structured
approach allowed us to comprehensively evaluate the effectiveness of both the sandbox and
antivirus solutions in detecting various evasion techniques.

The experiments against CAPEv2 provided valuable insights into the effectiveness of
different evasion techniques and their impact on detection and behavioral analysis systems.
Initially, samples using simple Local Shellcode Execution combined with classical API calls
were found to produce obvious malicious IoCs, including those related to Meterpreter
execution (Reflective DLL injection). However, using a shellcode injection into a remote
process revealed a significant weakness in CAPEv2. However, while actions performed by
the Meterpreter payload were hidden, actions performed by the dropper were still detected.
Furthermore, CAPEv2 could extract the injected payload but failed to monitor it due to
shellcode injection.

When employing more advanced API call techniques while maintaining the process
injection method, it was observed that Dynamic Loading of APIs produced IoCs iden-
tical to those generated by classical API calls, indicating its ineffectiveness due to the
ability of CAPE to hook DLLs and not just the IAT. Additionally, the Dynamic Loading
of NTAPIs successfully concealed process enumeration identified by CAPEv2 signatures
by using NtQuerySystemInformation instead of CreateSnapshotTool and ProcessNext.
However, this approach did not effectively conceal the primary malicious IoCs related to
process injection, such as opening the target process, creating RWX memory, writing to
the target memory process and creating a remote thread. The technique demonstrating

94

CHAPTER 5. DISCUSSION 95

the most significant improvements in evasion capabilities was Direct Syscalls. This method
concealed all malicious IoCs and the payload extraction capability of CAPEv2. Neverthe-
less, behavioral analysis of CAPEv2 captured "syscall" calls without providing additional
details, necessitating thorough analysis by security analysts. Thus, Direct Syscalls effec-
tively hide IoCs related to process injection.

A notable difference between the extended AVET samples and the custom samples
was observed. Non-malicious IoCs, such as the "contain .tls section" IoC identified by
CAPA, were present in the AVET samples but absent in the custom samples. Interestingly,
CAPEv2 was able to dump the process of AVET samples only, not the custom samples.
The key difference was the compiler used. Indeed, AVET uses the MinGW compiler, while
custom samples were compiled with Visual Studio. In an independent test where a custom
sample was compiled with MinGW, the additional IoCs found in the AVET sample, as well
as the ability of CAPEv2 to dump the process, were observed, demonstrating a discrepancy
in results due to the variation of the compiler.

In the analysis against Windows Defender, behavioral analysis showed that Dynamic
Loading of NTAPIs could evade detection during execution and post-exploitation actions
for both the extended AVET sample and the custom sample. However, concerning the
Direct Syscalls method, the custom sample successfully bypassed static and dynamic de-
tection of Windows Defender, establishing a Meterpreter session and performing post-
exploitation actions without triggering alerts. In contrast, the AVET sample failed to
evade static detection, triggering the detection "HackTool /NanoDump.LK!MTB". This de-
tection was due to the use of Syswhispers’ source code when compiled with MinGW, which
is also used in the NanoDump malware, thus making it detectable by Windows Defender.

5.2 Comparison with state of the art/related works

This section compares our approach with the related works, highlighting the contribution
of our work. Before diving into the comparison, we will review the various related studies
and highlight the limitations in their methodologies.

• Kalogranis (2018): Examined various evasion frameworks like AVET, peCloak.py,
Shellter and Veil-Evasion. Found that using a combination of different payloads
and encoding techniques within AVET and Veil-Evasion frameworks achieved higher
evasion rates compared to peCloak.py and Shellter.

• Themelis (2019): Developed pyRAT, a tool using the capabilities of Metasploit to
employ obfuscation and evasion techniques. Demonstrated that payloads obfuscated
by pyRAT were detected by fewer antivirus engines, indicating the effectiveness of
custom obfuscation.

• Aminu et al. (2020): Expanded Kalogranis’ study by including TheFatRat as
an evasion tool. The authors concluded that AVET and peCloak.py achieved the
highest evasion rates among the tools evaluated.

• Panagopoulos (2020): Conducted evaluations on antivirus evasion techniques us-
ing a manually modified reverse TCP sample and various evasion frameworks. High-
lighted the importance of manual modifications in enhancing evasion rates.

96 5.2. COMPARISON WITH STATE OF THE ART/RELATED WORKS

• Garba et al. (2021): Focused on the effectiveness of evasion tools like Veil, TheFa-
tRat, Shellter and others. Emphasized that combining different evasion techniques
can significantly improve the success rate of establishing a Meterpreter session.

• Samociuk (2023): Investigated the correlation between the age and popularity
of evasion tools and their success rate. Found that basic modifications to evasion
techniques can bypass modern antivirus solutions.

• Maňhal (2022): Conducted an evaluation of the CAPEv2 sandbox, identifying its
limitations by attempting to bypass its monitoring system. This was achieved using
exploitation techniques from Metasploit following the execution of a Meterpreter
payload.

5.2.1 Limitations of Existing Methods

While significant progress has been made in the field of malware evasion, several limita-
tions persist in current methodologies. These limitations highlight the need for a more
comprehensive approach.

Many existing studies focus on evasion frameworks without providing precise details
about the payloads used, which adversely affects the reproducibility of their findings. In
contrast, our study uses a more dynamic approach by initially evaluating our sample and
subsequently adapting it using additional evasion techniques. Throughout the process, we
provide precise details about the techniques and methodologies used.

Furthermore, existing studies frequently present their assessments without diving into
the reasons behind the detection of certain samples. These assessments are confined to the
capabilities of the evasion frameworks and do not attempt to integrate additional techniques
that could enhance stealthiness. Another limitation is the absence of assessments regarding
post-exploitation effectiveness against antivirus software.

The effectiveness of payloads generated by well-known frameworks diminishes over time
as antivirus vendors become more familiar with them, leading to variability in effective-
ness across different studies. Additionally, there is a lack of emphasis on developing custom
malware samples specifically designed to evade detection by both sandboxes and antivirus
solutions. Finally, there is a lack of exploration into how compiler selection impacts de-
tection rates, as a sample generated with one compiler might evade static detection more
effectively than one generated with another compiler.

5.2.2 Key Contributions

Our research introduces several key elements to address these limitations:

• Comprehensive evasion strategy: Our study uniquely integrates multiple ad-
vanced techniques, focusing on both static and dynamic evasion methods to create
a robust evasion strategy. Unlike the other studies, who focused on using single or
limited evasion techniques, our approach combines shellcode injection, direct syscalls,
XOR encryption and window concealment. This integration significantly enhances
the stealth of our malware payloads, making them harder to detect by antivirus
solutions and sandbox environments.

CHAPTER 5. DISCUSSION 97

• Advanced payload execution: We employed shellcode injection to bypass CAPEv2
monitoring systems, effectively concealing the actions of the Meterpreter payload.
This approach ensures that all actions of the Meterpreter are hidden, in contrast
to Maňhal’s approach, which attempted to evade monitoring after executing several
post-exploitation techniques.

• Custom sample development and testing: We developed custom malware sam-
ples incorporating advanced techniques like shellcode injection and direct syscalls.
These samples were rigorously tested against both antivirus software and sandbox
environments within the same lab setup, avoiding reliance on online platforms like
VirusTotal. Our approach involved creating customized samples to minimize IoCs
and evade detection more effectively.

• Impact of compiler selection: Our research provides also an analysis of the impact
of compiler selection on malware detection rates. We found that samples compiled
with Visual Studio 2022 were less likely to be detected compared to those compiled
with MinGW when using Syswhispers. By understanding how compiler choices affect
the generation of IoCs, we can better tailor our evasion techniques to avoid detection.

• Focused sandbox evasion: A part of the study focuses on targeting sandbox de-
tection mechanisms using advanced techniques such as shellcode injection and direct
syscalls to bypass monitoring systems. This focus on sandbox evasion is more detailed
than that of studies like the one performed by Maňhal, which did not extensively ad-
dress the reduction of IoCs generated by sandbox analysis or minimizing and evading
other sandbox capabilities, such as API logs or payload extraction. Our approach
employs advanced techniques to reduce nearly all IoCs and evade the payload ex-
traction capabilities of CAPEv2, making it significantly more difficult for security
professionals to detect malicious behavior during sandbox analysis.

Table 5.1 provides a detailed comparison of the techniques used by each study.

5.3 Limitations of validity

While our study provides significant insights into advanced malware evasion techniques,
several limitations affect the validity of our findings. Recognizing these limitations is crucial
for understanding the scope of our research and for guiding future work in this area.

Sample size and diversity One of the primary limitations of our study is the relatively
small sample size. The malware samples used for testing were limited in number and type,
which may not fully represent the diversity of real-world malware. Additionally, our focus
on specific evasion techniques and payload types means that the findings may not be
applicable to all types of malware.

Testing environments Our study was conducted using a specific set of testing environ-
ments which include the CAPEv2 sandbox and Windows Defender. While these are widely
used and provide valuable insights, they do not encompass the full range of detection em-
ployed by all antivirus and sandbox solutions. The effectiveness of our evasion techniques
may vary when tested against different or more sophisticated detection systems.

98 5.4. FUTURE WORK

Focus on specific techniques Our research focused on advanced evasion techniques
such as shellcode injection, direct syscalls, XOR encryption and window hiding. While
these techniques were effective in reducing detection, they represent only a subset of the
possible evasion strategies.

Impact of compiler selection Although our study highlighted the significant impact
of compiler selection on detection rates, the analysis was limited to Visual Studio 2022 and
MinGW compilers. Different versions or configurations of these compilers, as well as other
compilers were not considered.

Real-world applicability The controlled environment of our lab setup does not fully
replicate the complexity and variability of real-world scenarios. For example, real-world
attackers often use a combination of social engineering and technical exploits, which were
not addressed in our study.

Continuous evolution of detection mechanisms New updates and patches are reg-
ularly released by antivirus vendors and sandbox developers, which can quickly render
current evasion techniques obsolete. Our study represents a snapshot in time, and the
effectiveness of the techniques we evaluated may change as detection technologies advance.
Ongoing research is necessary to keep pace with these developments and to identify emerg-
ing evasion strategies.

5.4 Future Work

In this section, we discuss potential directions for future research and development in the
field of malware evasion. While this thesis provides valuable insights, it does not compre-
hensively explore all evasion techniques. Numerous experiments and research opportunities
remain, which could provide deeper insights into antivirus and sandbox functionalities and
operations.

The findings of this study have opened several avenues for future research and devel-
opment in the field of malware obfuscation and evasion. To build on our work and address
its limitations, future research should consider the following areas:

• Diverse malware samples: Future research should include a broader and more
diverse set of malware samples, such as ransomware, spyware and rootkits, targeting
various operating systems beyond Windows.

• Custom malware samples: Continue developing and testing custom malware sam-
ples to gain a deeper understanding of AV evasion mechanisms. This approach allows
for the assessment of the actual behavior of the malware, rather than relying on the
signatures generated by well-known evasion frameworks.

• Reverse engineering AV software: Reverse engineering AV software can provide
a clearer understanding of their detection techniques, enabling the development of
more effective evasion strategies.

CHAPTER 5. DISCUSSION 99

• Analyzing well-known malwares: Reverse engineering well-known malware to
understand their underlying logic and writing new malware samples using similar
logic could provide valuable insights.

• Process memory hiding techniques: Implementing techniques such as in-memory
encryption can help conceal processes and evade detection by security systems.

• Advanced obfuscation techniques: Since Syswhisper with MinGW is detected
by some AVs, further obfuscation techniques, such as LLVM obfuscation, should be
explored to fully obfuscate malware samples.

• Advanced evasion techniques: Explore techniques like API Unhooking and Indi-
rect Syscalls, and other advanced methods to enhance evasion capabilities.

• Exploration injection techniques: Investigate additional injection methods, such
as DLL injection, as they may produce different and potentially more effective evasion
results.

• Combining evasion with anti-heuristic techniques: Pairing evasion techniques
with anti-heuristic and anti-sandbox techniques based on fingerprinting can improve
stealth. For example, using direct syscalls when checking CPU information can
bypass sandbox detection without leaving traces.

• Static and heuristic detection evasion: Further exploration of static and heuris-
tic detection evasion is needed. This includes obfuscating binaries to evade detection,
similar to the approach used by packers. Developing a packer that evades static de-
tection could be a significant area of research.

• Expanding testing scope: Future studies should test evasion techniques across a
wider range of AV products and sandbox environments.

• Understanding CAPEv2 hooking: Dive deeper into how CAPEv2 performs
hooking to understand its internal working and find any better way to evade its
monitoring system.

• Understanding shellcode injection against CAPEv2: Investigate why shell-
code injection effectively conceals the actions of the Meterpreter payload within
CAPEv2 to identify specific weaknesses of the detection mechanism.

• Impact of compiler configurations: Further exploration of the impact of various
compilers and their configurations on malware detection is needed. This includes
studying different versions of compilers and older versions of Visual Studio, as well
as different optimization settings and code generation patterns.

• Compiler impact on process dumps: Investigate why process dumps occur with
CAPEv2 when compiling binaries with MinGW but not with Visual Studio and
explore how different compilers affect malware detection.

In conclusion, the field of malware evasion is complex and rapidly evolving. By ad-
dressing the limitations identified in this study and pursuing the outlined future work,
researchers can significantly advance our understanding and capabilities in this area of
cybersecurity.

100 5.4. FUTURE WORK

Study Evasion
Tech-
niques
Used

Compiler
Impact
Analysis

Custom
Sample
Develop-
ment

Sandbox
Evasion
Focus

Multi-
Technique
Integra-
tion

Kalogranis
(2018)

Combination
of payloads
and encod-
ing using
evasion
frameworks

No No No Partial

Themelis
(2019)

Metasploit
obfuscation,
peCloak.py

No No No Partial

Aminu et al.
(2020)

AVET,
peCloak.py,
TheFatRat

No No No Not speci-
fied

Panagopoulos
(2020)

Manual
modifi-
cations,
evasion
frameworks

No Yes (lim-
ited)

No Not speci-
fied

Garba et al.
(2021)

Various eva-
sion tools

No No No Yes

Samociuk
(2023)

Basic mod-
ifications
to evasion
techniques

No No No Yes

Maňhal
(2022)

Meterpreter
payloads,
Metasploit
modules

No No Yes No

Our Study Shellcode
injection,
direct
syscalls,
XOR/-
custom
encryption

Yes Yes Yes Yes

Table 5.1: Comparison of Techniques

Chapter 6

Conclusions
This thesis explores the rapidly evolving domain of advanced malware evasion techniques,
evaluating their effectiveness against modern detection systems. This research advances
cybersecurity knowledge by creating unique malware samples and combining advanced
evasion tactics. The key contributions and findings of our work are summarized below.

We implemented and tested advanced evasion techniques such as shellcode injection,
custom encryption, dynamic loading of APIs and NTAPIs, and direct syscalls. These
methods were designed to minimize IoCs and evade detection by both antivirus software
and sandbox environments. Shellcode injection proved to be highly effective in bypassing
CAPEv2 monitoring systems, allowing the payload to establish a Meterpreter sessions
without triggering alerts.

Custom malware samples were developed, integrating the aforementioned evasion tech-
niques. This allowed for real-world assessments, demonstrating their potential to bypass
modern detection mechanisms. The direct syscalls technique significantly reduced the IoCs
generated by the malware, making detection more challenging for the sandbox. Regarding
the antivirus we tested, both the dynamic loading of NTAPIs and direct syscalls tech-
niques were initially successful. However, when using direct syscalls, the combination of
the MinGW compiler with the source code generated by Syswhispers enabled the AV to
detect the malware.

A detailed analysis of the CAPEv2 sandbox and Windows Defender was conducted.
The detection capabilities of these systems against various malware samples were assessed,
providing valuable insights into their strengths and weaknesses. Integrating multiple eva-
sion techniques proved more effective than employing single techniques in isolation, en-
hancing the ability of the malware to evade the different detection layer.

The impact of various compilers on the detectability of malware samples was investi-
gated, revealing significant differences. The study highlighted the critical importance of
compiler selection in developing evasive malware, as certain compilers are more commonly
used by hackers and Red Teamers, thus making detection by security solutions easier.
Samples compiled with Visual Studio 2022 were less likely to be detected compared to
those compiled with MinGW, highlighting the role of the compiler in evasion strategies.

During the research, bugs were identified in both CAPEv2 and the AVET framework.
Initially, CAPEv2 failed to execute x64 Meterpreter payloads, only working with x86 Me-
terpreter payloads. This issue was later resolved in an update by the author of CAPEv2.
Additionally, a functionality in the AVET framework for retrieving data directly from the
build script was not working. We addressed and fixed this problem, thereby enhancing the
robustness of the framework.

In conclusion, this thesis provides a comprehensive analysis of advanced malware eva-
sion techniques, moving beyond the simple use of open-source frameworks to demonstrate
their effectiveness against modern detection systems. It also underscores how easily these
techniques can be integrated into open-source frameworks. The findings emphasize the

101

102

critical need for ongoing innovation and adaptation in response to evolving cybersecurity
threats. By combining multiple evasion techniques and developing custom malware sam-
ples, this research enhances the understanding of how to effectively bypass sophisticated
detection mechanisms. This contributes to the ongoing efforts to strengthen cybersecurity
defenses and enhance offensive capabilities.

Bibliography
[1] https://capev2.readthedocs.io/en/latest/introduction/what.html#

architecture [Cited on pages V, 30, and 31.]

[2] https://hatching.io/blog/cuckoo-sandbox-architecture/ [Cited on pages VI, 31, and 32.]

[3] http://jbremer.org/x86-api-hooking-demystified/#ah-trampoline [Cited on pages

VI, 33, and 34.]

[4] https://www.av-test.org/en/statistics/malware/ [Cited on page 1.]

[5] https://www.av-test.org/en/antivirus/home-windows/manufacturer/
microsoft/ [Cited on page 10.]

[6] https://www.ired.team/offensive-security/code-injection-process-injection/
import-adress-table-iat-hooking [Cited on page 12.]

[7] https://support.virustotal.com/hc/en-us/articles/
6253253596957-In-house-Sandboxes-behavioural-analysis-products [Cited

on page 16.]

[8] https://support.virustotal.com/hc/en-us/articles/
7904672302877-External-behavioural-engines-sandboxes [Cited on page 16.]

[9] https://learn.microsoft.com/en-us/windows/win32/sync/
asynchronous-procedure-calls [Cited on page 22.]

[10] https://www.ired.team/offensive-security/code-injection-process-injection/
apc-queue-code-injection [Cited on page 22.]

[11] https://www.ired.team/offensive-security/defense-evasion/
using-syscalls-directly-from-visual-studio-to-bypass-avs-edrs [Cited

on page 23.]

[12] https://redops.at/en/blog/direct-syscalls-vs-indirect-syscalls [Cited on

pages 23 and 24.]

[13] https://github.com/jthuraisamy/SysWhispers [Cited on page 23.]

[14] https://github.com/am0nsec/HellsGate [Cited on page 23.]

[15] https://docs.rapid7.com/metasploit/getting-started/ [Cited on pages 26 and 27.]

[16] https://github.com/govolution/avet [Cited on pages 27, 29, 79, and 127.]

[17] https://capev2.readthedocs.io/en/latest/introduction/what.html [Cited on pages

30, 34, and 108.]

[18] https://blog.neteril.org/blog/2016/12/23/diverting-functions-windows-iat-patching/
[Cited on page 32.]

103

https://capev2.readthedocs.io/en/latest/introduction/what.html##architecture
https://capev2.readthedocs.io/en/latest/introduction/what.html##architecture
https://hatching.io/blog/cuckoo-sandbox-architecture/
http://jbremer.org/x86-api-hooking-demystified/##ah-trampoline
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/antivirus/home-windows/manufacturer/microsoft/
https://www.av-test.org/en/antivirus/home-windows/manufacturer/microsoft/
https://www.ired.team/offensive-security/code-injection-process-injection/import-adress-table-iat-hooking
https://www.ired.team/offensive-security/code-injection-process-injection/import-adress-table-iat-hooking
https://support.virustotal.com/hc/en-us/articles/6253253596957-In-house-Sandboxes-behavioural-analysis-products
https://support.virustotal.com/hc/en-us/articles/6253253596957-In-house-Sandboxes-behavioural-analysis-products
https://support.virustotal.com/hc/en-us/articles/7904672302877-External-behavioural-engines-sandboxes
https://support.virustotal.com/hc/en-us/articles/7904672302877-External-behavioural-engines-sandboxes
https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://www.ired.team/offensive-security/code-injection-process-injection/apc-queue-code-injection
https://www.ired.team/offensive-security/code-injection-process-injection/apc-queue-code-injection
https://www.ired.team/offensive-security/defense-evasion/using-syscalls-directly-from-visual-studio-to-bypass-avs-edrs
https://www.ired.team/offensive-security/defense-evasion/using-syscalls-directly-from-visual-studio-to-bypass-avs-edrs
https://redops.at/en/blog/direct-syscalls-vs-indirect-syscalls
https://github.com/jthuraisamy/SysWhispers
https://github.com/am0nsec/HellsGate
https://docs.rapid7.com/metasploit/getting-started/
https://github.com/govolution/avet
https://capev2.readthedocs.io/en/latest/introduction/what.html
https://blog.neteril.org/blog/2016/12/23/diverting-functions-windows-iat-patching/

104 BIBLIOGRAPHY

[19] https://www.purpl3f0xsecur1ty.tech/2021/03/30/av_evasion.html [Cited on

page 46.]

[20] https://github.com/klezVirus/SysWhispers3 [Cited on pages 60, 62, and 83.]

[21] https://github.com/bayoub03/Master-Thesis-Implementation [Cited on pages 63, 83,

87, 89, and 143.]

[22] https://www.coresecurity.com/core-labs/articles/
nanodump-red-team-approach-minidumps/ [Cited on page 92.]

[23] https://github.com/kevoreilly/CAPEv2/blob/master/installer/kvm-qemu.sh#
L37 [Cited on page 108.]

[24] https://github.com/kevoreilly/CAPEv2/blob/master/installer/cape2.sh [Cited

on page 110.]

[25] Al Amro, S., Alkhalifah, A.: A comparative study of virus detection techniques. In-
ternational Journal of Computer and Information Engineering 9(6), 1559–1566 (2015)
[Cited on page 13.]

[26] Aminu, S.A., Sufyanu, Z., Sani, T., Idris, A.: Evaluating the effectiveness of antivirus
evasion tools against windows platform. Fudma Journal of Sciences 4(1), 112–119
(2020) [Cited on page 6.]

[27] Bernardinetti, G., Di Cristofaro, D., Bianchi, G.: Pezong: Advanced packer for au-
tomated evasion on windows. Journal of Computer Virology and Hacking Techniques
18(4), 315–331 (2022) [Cited on pages 15, 22, and 24.]

[28] Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P., Yener, B.: {AVLeak}: Finger-
printing antivirus emulators through {Black-Box} testing. In: 10th USENIX Work-
shop on Offensive Technologies (WOOT 16) (2016) [Cited on pages 15, 16, 24, and 25.]

[29] Botacin, M., Domingues, F.D., Ceschin, F., Machnicki, R., Alves, M.A.Z., de Geus,
P.L., Grégio, A.: Antiviruses under the microscope: A hands-on perspective. Com-
puters & Security 112, 102500 (2022) [Cited on page 15.]

[30] Brizendine, B., Abdelmotaleb, T.: Syscall shellcode in wow64 windows [Cited on page 23.]

[31] Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. In: 12th USENIX Security Symposium (USENIX Security 03) (2003) [Cited on

page 17.]

[32] Davis, M., Bodmer, S., LeMasters, A.: Hacking exposed malware and rootkits.
McGraw-Hill, Inc. (2009) [Cited on page 15.]

[33] De Villiers, M.: Computer viruses and civil liability: A conceptual framework. Tort
Trial & Ins. Prac. LJ 40, 123 (2004) [Cited on page 14.]

[34] Ferrand, O.: How to detect the cuckoo sandbox and to strengthen it? Journal of
Computer Virology and Hacking Techniques 11, 51–58 (2015) [Cited on page 26.]

[35] Fewer, S.: Reflective dll injection (2008) [Cited on page 21.]

https://www.purpl3f0xsecur1ty.tech/2021/03/30/av_evasion.html
https://github.com/klezVirus/SysWhispers3
https://github.com/bayoub03/Master-Thesis-Implementation
https://www.coresecurity.com/core-labs/articles/nanodump-red-team-approach-minidumps/
https://www.coresecurity.com/core-labs/articles/nanodump-red-team-approach-minidumps/
https://github.com/kevoreilly/CAPEv2/blob/master/installer/kvm-qemu.sh##L37
https://github.com/kevoreilly/CAPEv2/blob/master/installer/kvm-qemu.sh##L37
https://github.com/kevoreilly/CAPEv2/blob/master/installer/cape2.sh

BIBLIOGRAPHY 105

[36] Garba, F.A., Yarima, F.U., Kunya, K.I., Abdullahi, F.U., Bello, A.A., Abba, A.,
Musa, A.L.: Evaluating antivirus evasion tools against bitdefender antivirus. In: Pro-
ceedings of the International Conference on FINTECH Opportunities and Challenges,
Karachi, Pakistan. vol. 18 (2021) [Cited on pages 1, 6, and 8.]

[37] Kalogranis, C.: Antivirus software evasion: an evaluation of the av evasion tools.
Ph.D. thesis, University of Piraeus (Greece) (2018) [Cited on pages 5 and 27.]

[38] Kawakoya, Y., Iwamura, M., Miyoshi, J.: Taint-assisted iat reconstruction against
position obfuscation. Journal of Information Processing 26, 813–824 (2018) [Cited on

page 13.]

[39] Kiwia, D., Dehghantanha, A., Choo, K.K.R., Slaughter, J.: A cyber kill chain based
taxonomy of banking trojans for evolutionary computational intelligence. Journal of
computational science 27, 394–409 (2018) [Cited on page 11.]

[40] Koret, J., Bachaalany, E.: The antivirus hacker’s handbook. John Wiley & Sons (2015)
[Cited on page 24.]

[41] Koutsokostas, V., Patsakis, C.: Python and malware: Developing stealth and evasive
malware without obfuscation. arXiv preprint arXiv:2105.00565 (2021) [Cited on page 25.]

[42] Leka, C., Ntantogian, C., Karagiannis, S., Magkos, E., Verykios, V.S.: A comparative
analysis of virustotal and desktop antivirus detection capabilities. In: 2022 13th In-
ternational Conference on Information, Intelligence, Systems & Applications (IISA).
pp. 1–6. IEEE (2022) [Cited on pages 15, 16, and 17.]

[43] Lévesque, F.L., Somayaji, A., Batchelder, D., Fernandez, J.M.: Measuring the health
of antivirus ecosystems. In: 2015 10th International Conference on Malicious and
Unwanted Software (MALWARE). pp. 101–109. IEEE (2015) [Cited on page 15.]

[44] Li, Y., Kang, F., Shu, H., Xiong, X., Zhao, Y., Sun, R.: Apiaso: A novel api call
obfuscation technique based on address space obscurity. Applied Sciences 13(16), 9056
(2023) [Cited on page 19.]

[45] Liu, K., Lu, S., Liu, C.: Poster: Fingerprinting the publicly available sandboxes. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1469–1471 (2014) [Cited on pages 16 and 25.]

[46] Lopez, J., Babun, L., Aksu, H., Uluagac, A.S.: A survey on function and system call
hooking approaches. Journal of Hardware and Systems Security 1, 114–136 (2017)
[Cited on page 22.]

[47] Lundsgård, G., Nedström, V.: Bypassing modern sandbox technologies (2016) [Cited

on pages 12, 13, and 15.]

[48] Luoma-aho, M.: Analysis of modern malware: obfuscation techniques (2023) [Cited on

pages 1 and 26.]

[49] Marhusin, M.F., Larkin, H., Lokan, C., Cornforth, D.: An evaluation of api calls hook-
ing performance. In: 2008 International Conference on Computational Intelligence and
Security. vol. 1, pp. 315–319. IEEE (2008) [Cited on page 14.]

106 BIBLIOGRAPHY

[50] Maňhal, O.: Evading cape sandbox detection. CZECH TECHNICAL UNIVERSITY
IN PRAGUE - Faculty of Electrical Engineering - Department of Computer Science
(May 2022) [Cited on pages 8, 9, 22, 25, 26, 28, 29, 30, 32, 33, 37, 39, 116, and 124.]

[51] Mohanta, A., Saldanha, A.: Malware Analysis and Detection Engineering: A Com-
prehensive Approach to Detect and Analyze Modern Malware. Springer (2020) [Cited

on pages 25 and 26.]

[52] Morales, J.A.: A behavior based approach to virus detection. Ph.D. thesis, Florida
International University (2008) [Cited on page 13.]

[53] Nasi, E.: Bypass antivirus dynamic analysis. Limitations of the AV model and how
to exploit them (2014) [Cited on pages 13, 14, 20, 21, and 24.]

[54] Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network
cloud. In: USENIX Security Symposium. pp. 91–106 (2008) [Cited on page 16.]

[55] O’Reilly, K.: capemon: The monitor DLL for CAPE: Config And Payload Extraction,
https://github.com/kevoreilly/capemon [Cited on pages 32 and 125.]

[56] O’Reilly, K.: CAPEv2: Analysis Packages, https://capev2.readthedocs.io/en/
latest/customization/packages.html#Process.inject [Cited on page 33.]

[57] Panagopoulos, I.: Antivirus evasion methods. Ph.D. thesis, University of Piraeus
(Greece) (2020) [Cited on pages 6, 8, and 14.]

[58] Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in malware: from encryption to
metamorphism. International Journal of Computer Science and Network Security
12(8), 74–83 (2012) [Cited on page 19.]

[59] Samociuk, D.: Antivirus evasion methods in modern operating systems. Applied Sci-
ences 13(8), 5083 (2023) [Cited on pages 7, 8, 20, 21, and 28.]

[60] Shipley, T.G., Bowker, A.: Investigating internet crimes: an introduction to solving
crimes in cyberspace. Newnes (2013) [Cited on page 14.]

[61] Singh, J., Singh, J.: Challenge of malware analysis: malware obfuscation techniques.
International Journal of Information Security Science 7(3), 100–110 (2018) [Cited on pages

17, 18, and 19.]

[62] Stipovic, I.: Antiforensic techniques deployed by custom developed malware in evading
anti-virus detection. arXiv preprint arXiv:1906.10625 (2019) [Cited on page 13.]

[63] Szor, P.: The art of computer virus research and defense: Art comp virus res defense
_p1. Pearson Education (2005) [Cited on page 15.]

[64] Themelis, N.: A Tool for Antivirus Evasion pyRAT [Cited on pages 5 and 9.]

[65] Wadkar, M., Di Troia, F., Stamp, M.: Detecting malware evolution using support
vector machines. Expert Systems with Applications 143, 113022 (2020) [Cited on page 11.]

[66] Walenstein, A., Venable, M., Hayes, M., Thompson, C., Lakhotia, A.: Exploiting
similarity between variants to defeat malware. In: Proc. BlackHat DC Conf. Citeseer
(2007) [Cited on page 2.]

https://github.com/kevoreilly/capemon
https://capev2.readthedocs.io/en/latest/customization/packages.html##Process.inject
https://capev2.readthedocs.io/en/latest/customization/packages.html##Process.inject

BIBLIOGRAPHY 107

[67] Yehoshua, N., Kosayev, U.: Antivirus bypass techniques: Learn practical techniques
and tactics to combat, Bypass, and evade antivirus software. Packt Publishing Limited
(2021) [Cited on pages 10, 14, 16, 18, 19, and 21.]

[68] You, I., Yim, K.: Malware obfuscation techniques: A brief survey. In: 2010 Interna-
tional conference on broadband, wireless computing, communication and applications.
pp. 297–300. IEEE (2010) [Cited on pages 17 and 18.]

Appendix A

Lab environment
This section provides a comprehensive guide on installing and configuring the lab environ-
ment. The information comes from the official CAPEv2 documentation [17]. For further
details on specific configurations, please refer to the documentation [17].

A.1 Installation of CAPE

For the installation part of CAPEv2, a Ubuntu 22.04.4 machine was set up using KVM-
QEMU. The choice of Ubuntu as the operating system, particularly version 22.04, was
inspired by recommendations from the authors of CAPEv2 [17], who specifically suggest
using either versions 20.04 or 22.04 for optimal compatibility and performance.

Following the CAPEv2 installation guidelines [17], the initial step is to prepare the
virtual host environment, which, in this case, is the Ubuntu 22.04.4 VM. The process
begins with the installation of KVM-QEMU, recommended by the CAPEv2 authors for
its compatibility and efficiency. Additionally, using KVM-QEMU facilitates launching the
sandbox alongside the Ubuntu 22.04.4 VM running CAPEv2. Since CAPEv2 connects
to the QEMU engine via an URI (e.g., qemu:///system), this setup can be modified to
enable remote connection to the QEMU engine of the host through SSH, allowing VM
management using the URI qemu+ssh://username@ip_address/system.

In our configuration, we opted to use the remote connection setting via SSH to ini-
tiate the sandbox alongside the CAPEv2 installation. This approach enhances the
efficiency of our malware analysis. Therefore, we will provide detailed instructions
for this particular setup. However, switching to the default configuration, where the
sandbox operates within the CAPEv2 installation (in our case, a VM within a VM),
is relatively easy. The URI of the configuration file simply needs to be rolled back to
qemu:///system.

Important Remark

KVM-Qemu

The installation of KVM-QEMU is facilitated by a script provided by the author of
CAPEv2, kvm-qemu.sh, referenced in [23].

It is recommended to use the kvm-qemu.sh script for installing KVM-QEMU. This
approach is advised because the script configures the environment in a manner that is
more discreet and efficient compared to manual installation methods, such as using APT.
Before executing the script, it is important to modify the placeholder <WOOT> within the
script to match actual hardware patterns. Tools like acpidump on Linux and acpiextract
on Windows can be employed to obtain these patterns, as the script details suggest.

108

APPENDIX A. LAB ENVIRONMENT 109

This script can also be used to install KVM-QEMU on the host before installing the
Ubuntu 22.04.4 guest VM, ensuring that KVM-QEMU is properly installed if it has not
been already done. This approach was followed in our configuration.

It is indeed also necessary to install KVM-QEMU on the Ubuntu 22.04.4 guest VM
even if we will not launch the sandbox on it, as the script will install the necessary
components to enable remote communication with the QEMU engine.

Remark

The KVM installation can be proceeded with the following command:

$ sudo ./kvm-qemu.sh all ubuntu | tee kvm-qemu.log

Here, "ubuntu" represents the username of the Ubuntu 22.04 VM setup (If installing
on the host computer, you must use the username of the host computer instead). Following
the installation, a system reboot is necessary.

Furthermore, the Virtual Machine Manager (virt-manager) is installed using:

$ sudo ./kvm-qemu.sh virtmanager ubuntu | tee kvm-qemu-virt-manager.log

Again, "ubuntu" is the designated username, with a reboot required after the execution
of the script.

If you plan to use the setup with SSH, repeat these steps to install KVM-QEMU and
virt-manager on the host computer.

Remark

In the course of our study, it was discovered that installing KVM-QEMU on Ubuntu
22.04.4 VM leads in the automatic creation of a network interface named virbr0,
assigned the subnet 192.168.122.0/24. This configuration becomes problematic in
our lab environment, which also uses KVM-QEMU for the OS we installed including
Ubuntu, Kali and Windows, leading to a subnet conflict on the host machine with
the same subnet address. The presence of identical subnet addresses disrupt the com-
munication between the Ubuntu VM and the Windows VM, needing the permanent
removal of the virbr0 interface from the Ubuntu VM. The creation of this interface
is due to the libvirt service installed with the script kvm-qemu.sh.

To address this issue, there are some modifications to do within the libvirt network
configuration:

• Begin by listing all network configurations to identify the specific network to
be removed using the command sudo virsh net-list –all;

• Following identification, the network can be removed by executing sudo virsh
net-destroy default and sudo virsh net-undefine default, replacing ’de-
fault ’ with the actual network name if it differs;

Important Remark

110 A.1. INSTALLATION OF CAPE

This procedure ensures the elimination of the conflicting virbr0 interface, facili-
tating a seamless communication within the lab environment.

CAPEv2

We now focus on the installation of CAPEv2. This can be done by using another script
provided by the authors, cape2.sh, available in the GitHub repository [24].

To initiate CAPEv2 installation along with all optimizations, the following command
is executed on the Ubuntu 22.04.4 VM:

$ sudo ./cape2.sh all cape | tee cape.log

A system reboot is then required after the installation finished.

This procedure ensures the installation of all necessary libraries and services. The
primary services deployed include:

• cape.service

• cape-processor.service

• cape-web.service

• cape-rooter.service

For service management these services, the following commands are used:

$ systemctl restart <service_name>
$ journalctl -u <service_name>

The authors highly recommend using Poetry for a more reliable handling of dependency
conflicts, as all services are optimized for its use.

To install dependencies via Poetry, execute the following command from the main
working directory of CAPEv2, typically located at /opt/CAPEv2/:

$ poetry install

After completion, we can verify the creation of a virtual environment by running:

$ poetry env list

which should give the following expected output:

capev2-t2x27zRb-py3.10 (Activated)

From now, all CAPEv2 executions must occur within virtual environment created by
Poetry. This can be easily done by prefixing commands with poetry run. For example:

$ sudo -u cape poetry run python3 cuckoo.py

APPENDIX A. LAB ENVIRONMENT 111

This command will run CAPEv2 under the "cape" user. However, at this stage it will
not work since we didn’t finish the configuration of the sandbox including the routing and
the sandbox VM.

For installing optional dependencies, we can use the following command:

$ sudo -u cape poetry run pip install -r extra/optional_dependencies.txt

Only the installation scripts and certain utilities like rooter.py should be run with
sudo. All other configuration scripts and programs MUST be executed under the
"cape" user, which the system creates after running cape2.sh.

Important remark

By default, the "cape" user is not configured to log in. To switch to this user and access
the command line as "cape", execute:

$ sudo su - cape -c "/bin/bash"

This installation forms the foundations required for the CAPEv2 sandbox environment.
The following steps involve configuring CAPEv2 and setting up the guest VM that will
run beside the VM containing the CAPEv2 installation. This guest VM will be used
to execute the samples safely. Additionally, it is also important to configure the proper
communication between the host VM and the guest VM. This is done thanks to the CAPE
agent and the different scripts which ensure a seamless interaction between them.

A.2 Configuration of CAPE

First, initiate a shell session with the "cape" user by entering the command:

$ sudo su - cape -c "/bin/bash"

Navigate to the CAPEv2 installation directory:

$ cd /opt/CAPEv2/

Modify the configuration file conf/cuckoo.conf, by executing nano conf/cuckoo.conf
under the cape user, to replace the IP address of the Ubuntu VM machine under the
resultserver variable, as illustrated in Figure A.1. The machinery variable is set to kvm
by default, which aligns with our use case, so no changes are needed here. Additionally, it
is recommended to adjust the freespace variable, as it could raise a warning if we set a
value for the variable that is larger than the available space on the sandbox VM.

Next, we will focus on installing and setting up the guest VM for sandbox analysis:

• Launch virtmanager on the host : Access the Virtual Machine Manager (virt-manager)
installed on the host machine.

112 A.2. CONFIGURATION OF CAPE

Figure A.1: Configuring the IP address of the result server

• Install Windows 10 22H2 : Use the ISO file downloaded from the official Microsoft
website to install an up-to-date version of Windows 10. Create a new machine, select
the ISO as the disk installation source and leave all settings at their default values
until the installation finishes. The name of the VM is important since we will need
to specify it in another configuration file. In our case, we called it win10.

• Configure the Windows 10 VM :

– Install Python3 32-bit : Python3 is essential for the CAPE guest component
(analyzer) to function. the installation of the 32-bit (x86) version of Python3 is
the only version compatible with the requirements of the analyzer for interacting
with Windows libraries.

– Set Python PATH : Ensure Python is added to the PATH environment variable.

– Install Python libraries: Some Python libraries offer additional functionali-
ties. For example, Pillow enables screenshot capture during analysis. Exe-
cute the following commands to install these libraries: python -m pip install
−−upgrade pip && python -m pip install Pillow==9.5.0.

Depending on the types of files you want to analyze and the specific sandbox envi-
ronment required, consider installing additional applications such as web browsers, PDF
readers and office suites. Additionally, the author advised to disable automatic updates to
maintain control over the software environment.

Network configuration adjustments

As the authors suggest, two important adjustments need to be done: disabling Windows
Firewall and Automatic Updates. These features may interfere with malware behavior

APPENDIX A. LAB ENVIRONMENT 113

analysis and can disturb network analysis in CAPEv2 by either blocking connections or
generating other requests.

To disable the Windows Defender Firewall, first open the ’Windows Defender Fire-
wall’, then navigate to ’Turn Windows Defender Firewall on or off ’. Select ’Turn
off Windows Defender Firewall (not recommended)’ for both Private and Public
network settings, as illustrated in Figure A.2.

Figure A.2: Disabling Windows Defender Firewall

Furthermore, it’s necessary to disable Windows Defender AV protection to prevent it
from blocking the submitted sample.

Navigate to ’Windows Security’ > ’Virus & threat protection’ > ’Manage set-
tings’. Here, disable ’Real-time protection’, ’Cloud-delivered protection’, ’Automatic
sample submission’ (to prevent sample leakage) and ’Tamper Protection’ (to fully as-
sess the impact of the sample). These settings are depicted in Figures A.3a and A.3b.

114 A.2. CONFIGURATION OF CAPE

(a) Disabling Real-time protection & Cloud-
delivered protection

(b) Disabling Automatic sample submission
& Tamper protection

Figure A.3: Disabling Windows Defender

Later in this work, when conducting sample analysis with CAPEv2, we observed that
Windows Defender sometimes became active, even when we disable it and load the
VM from a snapshot. Consequently, a strategy to completely disable it involves using
the Group Policy Editor, which is only available on Windows 10 Pro, Enterprise and
Education versions. To do so, follow these steps:

• Search for ’gpedit.msc’;

• Then navigate to ’Computer Configuration’ > ’Administrative Tem-
plates’ > ’Windows Components’ > ’Microsoft Defender Antivirus’;

• Find and double-click the ’Turn off Microsoft Defender Antivirus policy’.

• Set it to Enabled, then click Apply and OK.

Important remark

To turn off automatic updates, open ’Control Panel’, search for ’Administrative
Tools’, then open it and proceed to ’Services’. Locate ’Windows Update’ and double-
click on it. Set Startup type to disabled and click stop, as shown in Figure A.4.

APPENDIX A. LAB ENVIRONMENT 115

Figure A.4: Disabling Windows Update service

The next step is to disable noisy network service Teredo that was introduced in Win-
dows 7, which can affect PCAP processing negatively.

Open a command prompt as ’Administrator’ and execute the following command:

$ netsh interface teredo set state disabled

Installing the agent on the guest VM

The CAPE agent is cross-platform compatible, designed to work on Windows, Linux and
OS X guest VMs. For the best user experience, the agent must be installed and initiated
on each guest VM.

The agent resides within the /opt/CAPEv2/agent directory. Copy this file to the guest
VM by any suitable method. One method could be to establish a python http server using
the command:

python3 -m http.server 8089

Since CAPEv2 already uses the port 8000, we must select an alternative port for the
python server.

In our setup, the guest Windows 10 VM and the Ubuntu VM are connected with the
subnet 192.168.122.0/24. The Ubuntu host’s IP address, which is used to access the
python webserver, is, in our case, 192.168.122.60.

After downloading the agent on the guest side, running it will start an HTTP server
that listens for incoming connections.

116 A.2. CONFIGURATION OF CAPE

On Windows, directly executing the script spawns a Python window. To prevent this
window from appearing whenever the script is executed, rename agent.py to agent.pyw.
This change to a window-less version (.pyw extension) is recommended to avoid interference
with human.py, which is a script that simulate human interaction within the sandbox, and
potential issues such as obstructed communication with the host or absence of behavioral
analysis output.

As per the author, to minimize the risk of the agent being detected, consider renaming
the script and placing it in a hidden directory to avoid detection. Changing the port
number of the script can also help prevent it from being easily detected by a malware.

Important remark

To launch the script at startup, we need to avoid to simply place the script in
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp due to privilege is-
sues. Instead:

• Open ’Task Scheduler’ and select ’Create Basic Task’. Name the task arbitrarily.

• For the ’trigger’, choose ’When I log on’. Keep the ’Action’ set to ’Start a
program’ and specify the path to the file.

• Locate your task in the ’Task Scheduler Library’, double-click on it and select
’Run with highest privileges’.

Figure A.5: Setting up the agent to run on startup

In addition, to better simulate the environment of a regular user and create a better
real-world environment, we have installed various other software, inspired by Maňhal [50].

APPENDIX A. LAB ENVIRONMENT 117

This aims to ensure that our experiments reflect the actual usage scenarios encountered by
users. Figure A.6 provides a visual representation of the software installed on the Windows
10 guest VM.

Figure A.6: Installed software on the Windows 10 guest VM

Before capturing a snapshot of the Windows 10 VM, reboot to ensure the script
is properly initialized. After the reboot, disable Real-time protection of Windows
Security again as it typically re-enables automatically after a reboot (though with
the gpedit modification, it should not re-enable). If necessary, execute the command
curl VM_IP:8000. This should yield a JSON response containing details about the
CAPE Agent.

Important remark

Finally, depending on the use case, configure routing to grant to the sandbox internet
access:

• Open a terminal, navigate to /opt/CAPEv2, and switch to the cape user with sudo
su - cape -c "/bin/bash".

• Edit the conf/routing.conf file to change the ’route’ from ’none’ to ’internet’.
Additionally, change the ’internet’ variable (just below ’route’) to the Ubuntu VM
interface connected to the internet. In our setup, the interface is enp1s0.

118 A.2. CONFIGURATION OF CAPE

Figure A.7: Configuration of routing to allow internet for the guest

Once the routing is configured, execute the rooter.py script as root with:

$ sudo python3 utils/rooter.py -g cape

The script needs to be executed as the regular user with root privileges.

The next and final step of the configuration is to specify the correct machine in the
conf/kvm.conf file for CAPEv2 to run on, adjusting machine name, label, IP address and
the snapshot of the Windows 10 VM accordingly as shown in Figure A.8.

Configuring the SSH access to the host from the VM

If you configured the sandbox so that it launches within the Ubuntu 22.04.4 VM
containing CAPEv2, you can skip this subsection.

Important remark

This section outlines the steps to configure the host and Ubuntu 22.04.4 VM for SSH
connectivity without requiring a password. This enables communication with the QEMU
engine seamlessly.

The first step is to install OpenSSH-Server on the host so that the Ubuntu VM could
connect to it.

Install the OpenSSH server by executing the following commands on the host machine:

$ sudo apt update
$ sudo apt install openssh-server

APPENDIX A. LAB ENVIRONMENT 119

Figure A.8: Configuration of the Windows 10 guest for CAPEv2

Then, we need to start the SSH service:

$ sudo systemctl start sshd

Once this has been done, we need to configure SSH on the guest (Ubuntu VM) by gen-
erating an SSH key under the cape user. This can be done using the following commands:

$ sudo su - cape -c "/bin/bash"
$ ssh-keygen -t rsa -b 4096

After that, the "PublicKey Based Authentication" setting must be enabled on the
host. This can be done by modifying the server’s SSH configuration to enable public
key authentication. Edit /etc/ssh/sshd_config and set PasswordAuthentication to
yes. Restart the SSH service:

$ sudo systemctl restart sshd

On the guest VM first, display and copy the public key from the Ubuntu VM under
the cape user:

$ cat ~/.ssh/id_rsa.pub

On the host, add the public key to authorized_keys and ensure correct permissions:

$ nano ~/.ssh/authorized_keys
$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/authorized_keys

Finally, to ensure that the SSH setup is functioning correctly, attempt to SSH from the
guest to the host without entering a password:

120 A.3. CAPEV2 STARTUP AND TROUBLESHOOTING

$ ssh username@host-ip-address

If the setup is successful, we should be able to log in without being prompted for a
password, verifying that the SSH key-based authentication is properly configured.

A.3 CAPEv2 Startup and Troubleshooting

To launch CAPEv2, two essential commands must be executed on two different termi-
nals:

• sudo python3 utils/rooter.py -g cape

• sudo -u cape poetry run python3 cuckoo.py

These commands should be run from the /opt/CAPEv2 directory under the regular user.

The CAPEv2 UI should be accessible through IP_ubuntu_vm:8000.

If an error occurs, it could be related to several reasons:

• libvirt is not properly installed: This issue might arise due to missing de-
pendencies. To resolve this problem, you can execute the following command:
sudo -u cape poetry run extra/libvirt_installer.sh. This script attempts
to install and configure "libvirt", ensuring all necessary dependencies are met.

• The cape.service is already running: The command sudo -u cape poetry
run python3 cuckoo.py starts the "cape.service". If this service is already
active, it needs to be stopped before you can successfully launch CAPEv2.
Use the following commands to stop the existing service and start CAPEv2:
sudo systemctl stop cape.service, followed by sudo -u cape poetry run
python3 cuckoo.py.

Important remark

A.4 Importing the Lab Environment

This section details the steps required to import the lab environment. The VMs are running
on KVM-QEMU and the files to import have a .qcow2 extension.

We assume the user has already installed KVM-QEMU, virt-manager and added the
"cape" user using the provided CAPEv2 script files. If these steps have not been
completed, please refer to subsections [KVM-QEMU] and [CAPEv2] for detailed
installation instructions.

Important remark

APPENDIX A. LAB ENVIRONMENT 121

Figure A.9: Choosing a storage path

A.4.1 Steps to Import the Lab Environment

The following steps highlight the procedure to import the lab environment. Each step
must be carefully followed to ensure the VMs are correctly imported and configured. This
includes downloading the necessary VM files, importing them using virt-manager, con-
figuring network settings and setting up SSH connection.

1. Download VM Files

• Download the required VM files from [the link here]. Extract the downloaded
zip files to obtain the VM files which have a .qcow2 extension.

2. Import VM Files

• Open virt-manager.

• Navigate to "File" > "New Virtual Machine".

• In the "New VM" window, select "Import existing disk image" and click "Forward".

• When selecting the storage path, click on "Browse" as shown in Figure A.9.

• In the "Locate or create storage volume" window, as shown in Figure A.10,
click on "Browse Local" and select the downloaded .qcow2 file.

• Choose the appropriate OS for each file (e.g., Ubuntu 22.04 LTS for the Ubuntu
VM, Microsoft Windows 10 for the Windows 10 VM, Generic Linux 2022 for
the Kali Linux VM) and keep the default configuration (e.g., two cores).

• Start the VM. Once it reaches the desktop, take a snapshot.

Repeat this procedure for each .qcow2 VM file downloaded.

https://cloud.cylab.be/s/YP86jepMGZ85HoP?path=%2FLab%20Environment

122 A.4. IMPORTING THE LAB ENVIRONMENT

Figure A.10: Locating storage volume

For the Windows 10 VM, it is mandatory to take a snapshot as it will be used
by CAPEv2 to launch the sandbox environment. Make sure to record the name
given to the snapshot, as it will be required for the kvm.conf configuration file
to specify the snapshot that the sandbox should use for startup.

Important remark

3. Configure Ubuntu VM

• The password for the Ubuntu VM is "user".

• Change the result server’s IP address:

– Navigate to /opt/CAPEv2/conf/.
– Edit the cuckoo.conf file with root privileges (e.g, sudo nano cuckoo.conf).
– Update the result server’s IP address to match the IP of the Ubuntu VM.

You can find the IP address by using the ifconfig or ip a command.

4. Configure SSH

• On the Ubuntu VM, log in as the "cape" user using the command sudo su -
cape -c "/bin/bash".

• Find the existing SSH public key in the .ssh directory with cat /home/cape/.ssh/
id_rsa.pub.

• On the host machine, add the public key to authorized_keys and set correct
permissions:

$ nano ~/.ssh/authorized_keys
$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/authorized_keys

5. Update kvm.conf File

APPENDIX A. LAB ENVIRONMENT 123

Figure A.11: Updating the kvm.conf file

• Exit the shell currently running under the "cape" user to return to the "ubuntu"
user.

• Navigate to /opt/CAPEv2/conf/

• Edit the kvm.conf file with root privileges (e.g, sudo nano kvm.conf).

• Modify the dsn variable to connect to the QEMU engine of the host:

qemu+ssh://<host_username>@<host_ip_address>/system

• Update the IP address of the Windows 10 machine and the name of the newly
created snapshot in kvm.conf as seen in Figure A.11.

Once all configuration steps are completed, you should be ready to use the lab envi-
ronment to reproduce the results.

To start CAPEv2, open two terminal windows. Go to the /opt/CAPEv2/ directory.
Then, in the first terminal, execute the command: sudo python3 utils/rooter.py -g
cape. In the second terminal, follow these steps: first, stop the CAPEv2 service us-
ing sudo systemctl stop cape.service, then restart the CAPEv2 service with sudo -u
cape poetry run python3 cuckoo.py.

For additional details on configuring SSH, please refer to Appendix A.2.

To assess the samples against Windows Defender, you need to create a snapshot to
preserve the original functionality of the CAPEv2 sandbox. Then, re-enable Windows
Defender through Group Policies. For more information, follow the [link here].

https://www.windows-active-directory.com/configuring-windows-defender-network-protection-via-group-policy.html

124A.5. INVESTIGATING CAPEV2 ISSUE WITH X64 METERPRETER PAYLOADS

Figure A.12: No meterpreter session established with monitoring - staged x64 meterpreter
payload

A.5 Investigating CAPEv2 issue with x64 Meterpreter pay-
loads

In section [Testing the Sandbox Environment], we mentioned that x64 Meterpreter payloads
fail to work when tested against CAPEv2. Initially, we suspected that the communication
between the sandbox and the Kali Machine could be broken, however this was contradicted
by the successful operation of x86 Meterpreter payloads. This represents a discrepancy
from the study made by Maňhal [50] in 2022, which reported that only the x86 Meterpreter
reverse TCP payload was not working. However, in our case, the x86 Meterpreter payload
for both reverse TCP and reverse HTTPS are fully operational, whereas none of the x64
Meterpreter payloads did work.

We observed different behaviors between staged and stageless x64 Meterpreter payloads.
Stageless payloads achieve no connectivity at all to the Kali Machine. Staged payloads,
however, do connect but only to download the second stage. They fail to establish a valid
session, acting merely as a "dropper" as depicted in Figure A.12.

Additionally, we experimented with other x64 payloads beyond Meterpreter payloads,
and they were successful. Our testing specifically focused on both the staged and stageless
versions of the x64 shell reverse TCP.

These experiments clearly indicate an issue, particularly with Meterpreter payloads,
in the CAPEv2 environment. According to the study conducted by Maňhal [50], the core
problem arises from the function NtWaitForSingleObject being hooked by the capemon
monitor, which, in this case, prevents the x86 Meterpreter reverse TCP payload from
working correctly. Consequently, we decided to disable the monitoring to determine if the
issue originates from the hooking function, specifically the capemon monitor.

CAPEv2’s monitoring features are customizable through its user interface as depicted
in Figure 3.8. Disabling certain features, like Syscall hooks and AMSI dumps, and enabling
the option "Run without monitoring" allows for a successful Meterpreter session, as shown
in another figure A.13. This confirms that these monitoring features interfere with the

APPENDIX A. LAB ENVIRONMENT 125

Figure A.13: Meterpreter session established without monitoring - staged x64 Meterpreter
payload

Figure A.14: Meterpreter session x64 established by removing the two problematic hooks
- staged x64 Meterpreter payload

functionality of the payload.

Further investigation into the issue was conducted by analyzing the code of the monitor
(capemon) available on GitHub [55]. The hooks.c file within the repository lists all hooks
implemented by capemon.dll under the array full_hooks. We used a divide-and-conquer
approach to identify the problematic hooks. After modifying some hooks, we compiled the
DLLs (capemon_x64.dll only since x86 meterpreter payload works fine) and transferred
them to the directory /opt/CAPEv2/analyzer/windows/dll/. Following this, we tested
the x64 meterpreter samples to check for connectivity. This process was repeated iteratively
until we isolated the specific hooks causing the problem.

We identified that the problematic hooks are NtAllocateVirtualMemory and Nt-
ProtectVirtualMemory which corresponds to the APIs VirtualAlloc/VirtualAllo-
cEx and VirtualProtect/VirtualProtectEx respectively. Upon their removal, we suc-
cessfully obtain a valid Meterpreter session by using both staged and stageless x64 Meter-
preter payloads as seen in Figure A.14.

126A.5. INVESTIGATING CAPEV2 ISSUE WITH X64 METERPRETER PAYLOADS

Figure A.15: Sandbox analysis of a staged x64 Meterpreter reverse HTTPS using CAPEv2
- Results

To modify and recompile the capemon monitoring, we need to install Visual Studio
2017, clone the repository and retarget the solution to our SDK version. After building
the solution, we should then place capemon_x64.dll inside
"/opt/CAPEv2/analyzer/windows/dll/".

Important remark

Appendix B

Sandbox Evasion Techniques of AVET
This chapter provides details information about the sandbox evasion techniques available
in AVET, based on its official GitHub repository [16].

Category Technique Details
Environmental
Checks

Debugger and
Sandbox Evasion

Checks are performed before encod-
ing and payload execution; stops if
a debugger or sandbox is detected.
Supports up to 10 queued checks.

Debugger Checks isDebuggerPresent Exits if a debugger is detected.
Delay Tactics Sleep Delays execution by a specified

number of seconds. Example:
add_evasion evasion_by_sleep 3
(sleeps for 3 seconds).

Sleep by Ping Uses a timed ping against local-
host to delay execution. Exam-
ple: add_evasion sleep_by_ping
4 (4 seconds).

Time Manipula-
tion Checks

Fast Forwarding
Check

Uses local time and sleep to detect
fast forwarding in sandboxes.

Get TickCount Checks if uptime and sleep are ma-
nipulated to detect fast forwarding.

User Interaction Username Check Exits if the current username
doesn’t match a specified one.

MessageBox Displays a MessageBox; exits if not
interacted with correctly.

getchar Waits for input using getchar().
System Pause Pauses execution waiting for any

keypress using system("pause").
File and System
Checks

fopen Checks for the existence of a specific
file; stops execution if not found.

BIOS Info Checks for SMBIOS firmware table;
stops if not fetchable.

gethostbyname Attempts to resolve a specified host-
name; stops if successful.

CPU Cores Checks the number of CPU cores;
stops if below a specified threshold.

VM Checks Detects vendor-specific MAC pre-
fixes or registry keys; stops if found.

Table B.1: AVET Sandbox Evasion Techniques - 1

127

128

Category Technique Details
File and System
Checks

Installation Date Compares Windows installation
date with a specified one; stops if
they do not match.

Number of Pro-
cesses

Counts running processes; stops if
below a threshold.

Miscellaneous Standard Browser Checks the registry for the default
browser; stops if it doesn’t match a
specified value.

Domain Check Verifies if the target is in a specified
DNS domain; exits if not.

Computational
Loads

Fibonacci Computes specified iterations of Fi-
bonacci; stops for computational in-
accuracies.

Timed Fibonacci Performs Fibonacci computations
for a specified time.

File System
Checks

Folder and More Checks for the existence of vari-
ous system artifacts like wallpapers,
folders, desktops, recycle bins, etc.;
stops if they are not present.

Table B.2: AVET Sandbox Evasion Techniques - 2

Appendix C

Debugging function issue in AVET
In this chapter, we will dive into the debugging process undertaken in order to identify and
fix a specific issue encountered in the AVET framework. The problem and its proposed
solution are detailed below.

As previously discussed [in section Extending the Framework], the issue concerns the
static_from_here function where the implementation resides in feature_construction.sh.
This function fails to work properly when a process name is directly provided as an argu-
ment (e.g., using set_payload_info_source static_from_here ’msedge.exe’).

The following sections will detail the investigative steps taken to identify the root cause
of the problem as well as the subsequent solution implemented to resolve it.

C.1 Investigation and Debugging

Upon investigating the feature_construction.sh script, we discovered that within the
set_payload_info_source, the macro STATIC_PAYLOAD_INFO is appended to a file after
verifying the condition static_from_here:

printf "\n#define STATIC_PAYLOAD_INFO \n" >> source/get_payload_info/
get_payload_info.include

Upon inspecting avet.c, we encountered the following code snippet. For debugging
purposes, we included a printf:

#ifdef STATIC_PAYLOAD_INFO
printf("We are behind STATIC_PAYLOAD_INFO\n");
unsigned char *payload_info = get_payload_info("static_payload_info",
&payload_info_length);
#else
unsigned char *payload_info = get_payload_info(argv[3], &payload_info_length);
#endif

We confirmed that the program correctly checked for the presence of STATIC_PAYLOAD_INFO
in get_payload_info.include, as indicated by the debug print statement observed on the
Windows VM after execution.

We noted the usage of a function retrieval method. In our scenario, specifying static_from
_here led to the invocation of the static_from_file function, which is defined within the
static_from_file.h file, itself included by static_from_here.h.

129

130 C.2. EXPLANATION AND SOLUTION

unsigned char *static_from_here(char *arg1, int *data_size) {
printf("We enter into the function ’static_from_here’\n");
return static_from_file(arg1, data_size);

}

After adding an additional print statement, we verified that the function was being
entered correctly. To further investigate, we manually inserted the condition #ifdef
STATIC_PAYLOAD_INFO to check if this macro was within the scope of static_from_here.h.

The presence of the print statement during execution confirmed that the test was suc-
cessful. This prompted us to conduct a more in-depth investigation into the static_from_f
ile function:

unsigned char *static_from_file(char *arg1, int *data_size) {
...
#ifdef STATIC_PAYLOAD_INFO
if(strcmp(arg1, "static_payload_info") == 0) {

DEBUG_PRINT("Statically retrieving data from array payload_info[] in
included file...\n");
*data_size = sizeof(payload_info) - 1;
return payload_info;

}
#endif
...
DEBUG_PRINT("Static retrieval from file failed; argument arg1 of function
mstatic_from_file not recognized and/or defines not correctly set in
included headers?\n");
return NULL;

}

Interestingly, we noticed that the earlier DEBUG_PRINT message is present in this func-
tion.

When executing the code once again, we observed that the DEBUG_PRINT statement,
under the strcmp, was not being executed, suggesting an issue either with the retrieval of
static_payload_info as an argument or with the scope of STATIC_PAYLOAD_INFO.

To further investigate, we added a print statement before the strcmp function to verify
that the problem does not come from the argument retrieval process. Surprisingly, even
with this additional print statement, the message was not outputted on the Windows VM.

C.2 Explanation and Solution

The observation led us to conclude that the issue lies with the scope of STATIC_PAYLOAD_INFO,
as it is accessible in static_from_here but not in static_from_file.

Upon examining the file contents (after temporarily disabling the cleaning process
at the end of the file feature_construction.sh), we discovered the following line in
get_payload_info.assign:

APPENDIX C. DEBUGGING FUNCTION ISSUE IN AVET 131

get_payload_info = static_from_here;

Furthermore, in the get_payload_info.include file, we found:

#define STATIC_PAYLOAD_INFO

#include "../implementations/retrieve_data/static_from_here.h"

This confirms the presence of both static_from_here and STATIC_PAYLOAD_INFO.

However, during our examination of the avet.c source file, we observed a sequential
inclusion of get_payload.include followed by get_payload_info.include at the begin-
ning of the code. The content of get_payload.include is as follows:

#include "../implementations/retrieve_data/static_from_file.h"

This sequence reveals the underlying issue. As STATIC_PAYLOAD_INFO is defined after
the inclusion of static_from_file and since static_from_file.h uses #pragma once,
the file will not be reincluded if it has already been included before to prevent redefini-
tions. Consequently, if static_from_file.h has been previously included (for instance, if
set_payload_source in the shell script used static_from_file earlier for the payload),
the #define STATIC_PAYLOAD_INFO will not be within its scope.

To ensure that there are no issues related to the scope, we must separate both static_fr
om_here and static_from_file logic. This oversight may be due to the fact that the au-
thor may not have considered all possible use cases. To solve the problem, we copied the
logic from static_from_file to static_from_here, eliminating dependencies. There-
fore, the issue of conflicting inclusions is resolved, ensuring that macros remain within the
appropriate scope.

Appendix D

Assessment of the extended AVET
This section presents the experimental details for the extended AVET framework. We begin
by testing the classical API calls, which now utilize a process name instead of a PID. Next,
we examine the dynamic loading of APIs. This is followed by replacing standard APIs with
NTAPIs. Finally, we assess the sample that integrates Direct Syscalls.

Classical API calls For the first experiment, we generated a sample that uses classical
API calls with the script build_injectshc_custom_enc_revhttps_stageless_win64.sh.
This sample employs the same techniques as our initial custom sample, which also uses
classical API calls. Additionally, during the generation process, we incorporated the eva-
sion technique of AVET to hide any windows that might appear.

Upon uploading the sample and setting up the listener windows/x64/meterpreter_reve
rse_https using msfconsole on the Kali Linux VM, we obtained the following results :

• Detection results and YARA signatures: Figure D.1 illustrates the detection out-
comes. Similar to the results observed in the custom sample that uses Classical API
calls, depicted in Figure 4.19, there is no detection by YARA. This outcome was
expected, as we used the same payload (x64/xor Meterpreter reverse HTTPS and
custom encryption), effectively bypassing YARA signatures. However, a significant
divergence is the presence of a "Process Dumps" tab. This indicates that CAPEv2
can now dump the process, which was not the case in the custom sample. The pres-
ence of the "Payloads" tab is expected, as we employed the same technique involving
classical API calls.

• CAPA Analysis: The IoCs identified by CAPA are depicted in Figure D.2. While
they are similar to those of the first custom sample, which uses the same payload
execution method, namely Classical API calls (as shown in Figure 4.20), there are
two additional IoCs. These include the termination of a process and the presence
of a .tls section, both specific to AVET. The process enumeration observed here is
expected, given that we integrated this feature into AVET. Once again, we observe
only the behavior of the dropper due to the shellcode injection, which conceals the
behavior of Meterpreter as seen in the custom sample.

• Indicator of Compromises: In Figure D.3, CAPEv2 signatures highlight several IoCs.
Comparing them with the IoCs of the first custom sample (displayed in Figure 4.21),
we observe the typical behavior associated with shellcode injection. Furthermore,
we also encounter IoCs related to the process enumeration. However, an addition
is the detection of a potential date expiration check. Even after removing the two
fingerprinting methods ("fopen" and "gethostbyname"), the persistence of this IoC
suggests that CAPEv2 detects a specific code intrinsic to AVET. This could poten-
tially be a false positive since AVET performs several operations that might lead
CAPEv2 to interpret it as an evasion technique based on date expiration.

132

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 133

Figure D.1: Detection result of the first sample - Classical APIs

Figure D.2: CAPA analysis of the first sample - Classical APIs

Figure D.3: IoCs of the first sample - Classical APIs

134

Figure D.4: Files accessed of the first sample - Classical APIs

In the screenshots shown in Figure D.3, we observe that a window appears shortly.
This occurrence may be attributed to the absence of WinMain usage, potentially
employing a technique where the window is hidden during execution. Given the
occasional slowness of sandboxes, combined by the execution of the CAPE agent,
the screenshot is captured at a precise moment, before the instruction that hides the
window executes, hence its visibility. Subsequently, the window is concealed again.
This observation highlights a weakness compared to the method used in the custom
samples.

The "Behavioral Analysis" tab reveals two distinct subsections, similar to those
of the first custom sample, which displays the behaviors of both the dropper and the
process into which the payload is injected:

– API calls made by the dropper : Similar to the first custom sample, this section
highlights several IoCs associated with process injection. These include calls
to NtOpenProcess targeting msedge.exe, NtAllocateVirtualMemory with full
permissions, WriteProcessMemory for injecting the payload, CreateRemoteThre
ad and process enumeration using Process32NextW. As these IoCs are identical
to those of the first sample, depicted in Figures 4.22, 4.23 and 4.24, separate
figures have not been included.

– API calls made by "msedge.exe" : Similarly to the first custom sample, no
suspicious IoCs originating from "msedge.exe" were detected.

• Files accessed : The files accessed during the execution of the sample are depicted
in Figure D.4. The specific file accessed is the same as in the first sample, namely
"C:\Windows\Globalization\Sorting\sortdefault.nls". However, this may be a
false positive as it does not indicate any suspicious activity. Notably, since we re-
moved two fingerprinting techniques, we no longer observe access to "C:\Windows\Sys
tem.ini" as seen in the initial tests of samples generated by AVET in Figure 4.17.

In conclusion, our experiment yielded results consistent with the first custom payload.
The payload successfully bypassed YARA detection due to custom encryption and the
ability of CAPEv2 to dump the process was observed, which was not the case in the first
custom sample. CAPA analysis revealed additional IoCs like process termination and a
.tls section, specific to AVET, compare to the custom sample. The IoCs analysis showed
typical shellcode injection behaviors which aligns with the other sample and additionally a
potential date expiration check. Regarding the screenshots, the evasion method, intended to
conceal windows, generated by AVET was not effective. The behavioral analysis confirmed
consistent API calls by the dropper and no suspicious IoCs from msedge.exe, identical to
the custom sample. File access patterns remained the same as the custom sample.

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 135

Figure D.5: Detection result of the second sample - Dynamic Loading of APIs

Overall, the experiment demonstrated that the new feature for searching a PID based
on a target name works effectively. However, the only additional IoCs identified, compared
to the custom sample, were the ability of CAPEv2 to dump the process and a signature
related to potential early termination due to a date expiration check.

Dynamic Loading of APIs To explore dynamic loading of APIs with AVET, we gener-
ated a sample using the script build_injectshc_dynamic_lib_APIs_revhttps_stageless
_win64.sh. This sample uses the same payload execution method as our second custom
sample. During the generation phase, we once again added the evasion technique from
AVET to conceal any potential windows that could arise.

The following outcomes were obtained after uploading the sample and setting up the
listener windows/x64/meterpreter_reverse_https using msfconsole on the Kali Linux
VM :

• Detection results and YARA signatures: The detection results, shown in Figure D.5,
are exactly the same as the first extended sample from AVET previously tested. As
before, YARA failed to flag the Meterpreter payload. However, the "Process Dumps"
tab still appeared in the detection results, which was absent in the analysis of the
second custom sample that uses Dynamic Loading of APIs, as depicted in Figure
4.26. Furthermore, the expected "Payloads" tab was also present, aligning with the
observations from the second custom sample.

• CAPA Analysis: Figure D.6 illustrates IoCs identified by CAPA. These IoCs remain
consistent when compared to the first extended sample from AVET previously tested.
However, compared to the second custom sample that employs Dynamic Loading of
APIs, two additional IoCs are detected: a process termination and the presence of
a .tls section, mirroring the results of the previous sample. This repetition empha-
sizes that Dynamic Loading of APIs does not significantly reduce the IoCs from the
dropper identified by CAPA.

136

Figure D.6: CAPA analysis of the second sample - Dynamic Loading of APIs

Figure D.7: IoCs of the second sample - Dynamic Loading of APIs

• Indicator of Compromises: The IoCs identified by CAPEv2 are depicted in Figure
D.7. Upon comparison with the IoCs identified in the previous extended sample from
AVET during the previous test, we observed identical IoCs. Notably, the behavior of
shellcode injection is highlighted, with the addition of "Possible date expiration check,
exits too soon after checking local time". There is no reduction in IoCs observed,
similar to the second custom sample (Dynamic Loading of APIs) illustrated in Figure
4.28, which is expected given its reliance on the same payload execution method.

In the screenshots presented in Figure D.7, there is no window visible during exe-
cution this time. This absence could be attributed to a stroke of luck, wherein the
screen capture by CAPEv2 might have missed the moment when the console win-
dow briefly appeared. Consequently, using the WinMain method proves to be more
effective than hiding the window during execution.

For the "Behavioral Analysis" tab, we have again two distinct subsections covering
both the dropper and the process where the payload is injected similar to the second
custom sample :

– API calls made by the dropper : Our analysis reveals logs detailing different
API calls indicative of process injection, which are exactly the same as those
found in both the second custom sample and the previous extended sample
from AVET. These actions encompass process enumeration, opening the pro-
cess "msedge.exe", allocating virtual memory with PAGE_EXECUTE_READWRITE

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 137

Figure D.8: Files accessed of the second sample - Dynamic Loading of APIs

protection, writing the shellcode into the allocated memory and creating a new
thread. As these IoCs align precisely with those of the initial custom sample, as
depicted in Figures 4.22, 4.23 and 4.24, we have omitted separate figures. There
is still no noticeable improvement in concealing API calls through dynamic load-
ing of APIs, aligning with the findings from the second custom sample.

– API calls made by "msedge.exe" : No signs of suspicious IoCs were found from
"msedge.exe" which corresponds to the results of the custom sample.

• Files accessed : Figure D.8 highlights the files accessed during the execution of the
sample. Consistently, our findings match those of the previous extended sample and
the second custom sample, revealing access to only one file "C:\Windows\Globali
zation\Sorting\sortdefault.nls", which is in line with our expectations.

In conclusion, the analysis of the second sample using dynamic loading of APIs yielded
results similar to the second custom sample. YARA signatures failed to flag the Meterpreter
payload and the "Process Dumps" and "Payloads" tabs were both present whereas in the
second custom sample only the "Payloads" tab was present. CAPA analysis identified
the same IoCs as previous samples, with additional detections such as process termination
and a .tls section, indicating that dynamic loading of APIs does not significantly reduce
IoCs. The IoCs identified by CAPEv2, including shellcode injection and possible date
expiration checks, matched those of the second custom sample. Concerning the screenshots,
no windows were displayed, but this was likely due to luck, as the program does not use
the WinMain method. Behavioral analysis revealed identical API calls by the dropper
and the payload injected process to those found in the second custom sample and the
previous extended sample. No suspicious IoCs were found in "msedge.exe". Regarding
the files accessed during the analysis, they were consistent across all samples, limited to
"C:\Windows\Globalization\Sorting\sortdefault.nls", as expected.

In summary, the experiment underscores that the main distinctions from the second
custom sample lie in the presence of the "Process Dumps" and two unique IoCs from
CAPEv2 signatures inherent to AVET. Otherwise, the remaining findings are the same as
those of the second custom sample.

Dynamic Loading of NTAPIs Next, we evaluated the sample created with the script
build_injectshc_dynamic_lib_NTAPIs_revhttps_stageless_win64.sh. This sample uses
dynamic loading of NTAPIs, similar to the third custom sample. Additionally, while gen-
erating the payload, we integrated evasion techniques from AVET to hide any potential
windows.

After setting up the listener using msfvenom on the Kali Linux machine, the results of
this evaluation are presented below:

138

Figure D.9: Detection result of the third sample - Dynamic Loading of NTAPIs

Figure D.10: CAPA analysis of the third sample - Dynamic Loading of NTAPIs

• Detection results and YARA signatures: Figure D.9 presents behavior identical to
the initial two extended samples from AVET. Once more, YARA failed to flag the
Meterpreter payload. However, in contrast to the third custom sample depicted in
Figure 4.30, where only the "Payloads" tab was present, both "Process Dumps" and
"Payload" tabs are displayed.

• CAPA Analysis: The CAPA analysis, illustrated in Figure D.10, provides insight
into the behavioral IoCs of the sample. While IoCs related to shellcode injection are
evident in both this sample and the third custom sample, our analysis highlighted
again additional IoCs, such as process termination, the presence of a .tls section
and the query or enumeration of registry values, which also appear in the previous
extended sample from AVET. This underscores that the dynamic loading of NTAPIs
does not mitigate the emergence of additional IoCs originating from AVET source
code. The presence of other IoCs associated with shellcode injection of the dropper
is expected, given their similarity to those observed in the third custom sample.

• Indicator of Compromises: Figure D.11 reveals several IoCs identified by CAPEv2

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 139

Figure D.11: IoCs of the third sample - Dynamic Loading of NTAPIs

signatures. Once again, a notable improvement is shown compared to the previous
extended samples from AVET. This aligns with the findings from the third custom
sample, where IoCs related to process enumeration are effectively hidden due to the
Dynamic Loading of NTAPIs. Specifically, among the shellcode injection IoCs, only
"Create RWX memory" and "Code injection with CreateRemoteThread in a remote
process" are present. However, the additional IoC "Possible date expiration check,
exits too soon after checking local time" from AVET persists. Overall, the results
closely resemble those of the third custom sample due to shared payload execution
methods, with discrepancies primarily attributed to the AVET source code, resulting
in a false positive in the IoC signatures.

In the screenshots presented in Figure D.11, no windows are visible during execution.
This absence could be attributed to luck, as the sample only uses a "hide console"
method in runtime.

Under the "Behavioral Analysis" tab, two distinct subsections covering both the
dropper and the process where the payload is injected are displayed :

– API calls made by the dropper : Under this subsection, we observed APIs asso-
ciated with process injection which are identical to those found in the third cus-
tom sample. These include actions such as opening the process "msedge.exe",
allocating virtual memory with PAGE_EXECUTE_READWRITE protection, writing
the shellcode into the allocated memory and creating a new thread. How-
ever, unlike before, we do not find the call to Process32NextW, since we use
NtQuerySystemInformation, similar to the third samples. All these IoCs are
depicted in Figures 4.33, 4.34 and 4.35. Since they align precisely with those
observed in the third sample, we have omitted separate figures from our analy-
sis. This examination demonstrates an improvement in concealing the process
enumeration, thanks to the Dynamic Loading of NTAPIs, thus aligning with
the results of the third custom sample.

– API calls made by "msedge.exe" : Consistent with the findings of the previ-
ous sample tested, once again, no signs of suspicious IoCs were detected from
"msedge.exe".

• Files accessed : The analysis depicted in Figure D.12 indicates that no files were
accessed during the execution of the sample. This reflects the results observed in the
third custom sample, aligning with our expectations.

140

Figure D.12: Files accessed of the third sample - Dynamic Loading of NTAPIs

Our analysis of the extended sample using dynamic loading of NTAPIs has shown
several key findings. Detection results mirror those of earlier AVET samples, with YARA
failing to detect the Meterpreter payload. However, this sample displayed both "Process
Dumps" and "Payloads" tabs, unlike the third custom sample, indicating CAPEv2 ability
to dump process of the sample from AVET. CAPA analysis revealed additional IoCs,
such as a process termination, a .tls section and registry value queries, consistent with
previous extended samples, suggesting that dynamic loading does not mitigate these IoCs.
Regarding the IoCs detected by CAPEv2, the expected IoCs related to shellcode injection
were present, as seen in the third custom sample. However, there was an additional IoC
related to a potential date expiration check. This indicates that the dynamic loading of
NTAPIs does not help at conceal concealing such IoC. For the screenshots, once again,
no windows were visible, more probably due to a stroke of luck. Behavioral analysis
indicated identical API calls for process injection compared to the third custom sample,
using NtQuerySystemInformation instead of Process32NextW for better concealment of
process enumeration. Additionally, no suspicious IoCs were detected from "msedge.exe"
and no files were accessed during execution aligning with our expectations.

Overall, the analysis demonstrates that incorporating dynamic loading of NTAPIs ef-
fectively conceals IoCs related to process enumeration, marking an improvement over the
first two extended AVET samples. However, compared to the third sample, there is the
presence of a "Process Dumps" tab and an additional IoC concerning a date expiration
check inherent to AVET.

Direct Syscalls Finally, we conducted an analysis of direct syscalls implemented within
AVET. We generated the sample using the script build_injectshc_syscalls_revhttps
_stageless_win64.sh. This particular sample uses direct syscalls in the payload execution
method, identical to the fourth custom sample. Below, we outline the findings of this
assessment after setting up the listener in the Kali machine:

• Detection results and YARA signatures: Figure D.13 depicts the detection results
of the extended sample. Once again, there is no detection by YARA. However, a
notable difference is the absence of the "Payloads" tab, similar to the fourth custom
sample. Interestingly, the "Process Dumps" tab remains present, suggesting a highly
probable correlation with the AVET source code or the compiler used, as we did not
observe this behavior with our custom sample.

• CAPA Analysis: The CAPA analysis, as illustrated in Figure D.14, demonstrates a
notable improvement compared to the previous extended sample from AVET, with
the majority of IoCs effectively concealed. However, in contrast to the fourth custom
sample, which yielded empty CAPA results, the analysis here identified only one

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 141

Figure D.13: Detection result of the fourth sample - Direct Syscalls

Figure D.14: CAPA analysis of the fourth sample - Direct Syscalls

remaining IoC "contain a .tls section" from the extended sample. The successful
concealment of IoCs related to shellcode injection techniques suggests that the query
registry and process termination IoCs may result from a combination of AVET source
code and shellcode injection code, potentially misleading IoC identification of CAPA,
given its context-based analysis of API calls.

The persistence of the IoC ".tls section" may be attributed to the compiler used,
as AVET employs MinGW, whereas our custom samples were compiled with Visual
Studio 2022 Community edition.

• Indicator of Compromises: The IoCs identified by CAPEv2 signatures in Figure
D.15 reveal that all suspicious IoCs are concealed using the direct syscalls technique,
aligning with the fourth custom sample and representing an improvement compared
to the extended custom sample. Surprisingly, even the IoC concerning "Possible
date expiration check, exits too soon after checking local time" is hidden, which could
be explained by the fact that since process termination was not identified in the
previous CAPA analysis, it did not generate the IoC by CAPEv2 signature. Overall,
the IoCs results identified by CAPEv2 signatures are identical to those of the fourth
custom sample, demonstrating the effectiveness of direct syscalls in concealing IoCs.

In the screenshots presented in Figure D.15, no windows are visible during execution.
This could once again be attributed to luck, as the sample only employs a "hide
console" method at runtime.

Within the "Behavioral Analysis" section, a single subsection detailing the be-

142

Figure D.15: IoCs of the fourth sample - Direct Syscalls

Figure D.16: Behavioral analysis (process tree) of the fourth sample - Direct Syscalls

havior of the dropper is illustrated in Figure D.16. This underscores the efficacy of
the direct syscalls method in hiding the shellcode injection within "msedge.exe",
mirroring the results of the fourth sample.

Concerning the API calls made by the dropper, we observe identical behavior to
the fourth sample, where no process injection activity is visible, thanks to the use
of direct syscalls. However, just like the fourth sample, we encountered a drawback
where some logs of "syscall" are displayed without further information, as depicted in
Figure D.17. This indicates that despite concealing API logs indicative of shellcode
injection behavior, CAPEv2 can still detect logs related to syscalls without providing
detailed information. As mentioned earlier, this lack of specificity prevents a security
analyst from directly classifying the sample as malicious and necessitates thorough
exploration of the behavioral analysis tab since these logs are not directly visible.

• Files accessed : Figure D.18 depicts the files accessed by the sample during execution.
No file has been accessed which reflects the results obtained in the fourth custom
sample.

In conclusion, the extended sample using direct syscalls reveals several key insights.
YARA did not detect the sample, but the consistent presence of the "Process Dumps" tab
indicates CAPE’s ability to dump processes from AVET samples, a behavior not seen in
custom samples. The CAPA analysis shows improved concealment of IoCs, although a

Figure D.17: Behavioral analysis (syscalls) of the fourth sample - Direct Syscalls

APPENDIX D. ASSESSMENT OF THE EXTENDED AVET 143

Figure D.18: Files accessed of the fourth sample - Direct Syscalls

persistent ".tls section" IoC remains. Furthermore, Direct Syscalls effectively concealed
most IoCs, similar to the fourth custom sample. The absence of "process termination"
IoCs further underscores this efficacy. Behavioral analysis confirms successful conceal-
ment of shellcode injection within "msedge.exe", consistent with the fourth sample. Some
"syscall" logs were visible but lacked detail, preventing immediate classification as mali-
cious and requiring deeper investigation. No files were accessed during the execution of
the sample, aligning with the fourth custom sample.

Overall, direct syscalls are highly effective in evading detection and concealing IoCs,
although the presence of syscall logs needs additional analysis by security analysts to
determine the maliciousness of the sample.

We observed that none of the custom samples, including the most basic one, contain
a "Process Dumps" tab. This, combined with the knowledge that the custom samples
were compiled using Visual Studio while AVET uses MinGW, suggests an issue related
to the compiler. Additionally, the presence of the ".tls section" may also be attributed
to the compiler.

To verify these hypotheses, we performed a separate test by compiling the fourth
custom sample with MinGW. Both "Process Dumps" and ".tls section" IoCs were
present, confirming that these IoCs originate from the compiler. This custom sam-
ple, compiled with MinGW, is available in the author’s GitHub repository [21] under
the "samples/Shellcode_injection_syscalls_mingw" directory.

Obervation

	Abstracts
	Abstract

	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivations
	Project statement & contributions
	Contribution

	Organization of this document

	Literature review, state of the art (SotA), definitions and notations
	Related Work
	Malware
	Definition
	Malware and the Cyber Kill Chain

	The PE format
	Malware Detection Techniques
	Static-Based Method
	Behavior-Based Method
	Heuristic-Based Method
	Sandbox Detection
	Antivirus
	VirusTotal

	Malware Evasion Techniques
	Evading Static Detection
	Evading Dynamic Detection
	Evasion Frameworks

	Implementation & Testing
	Selection of a Sandbox
	Selection of an Evasion Framework
	CAPEv2 Sandbox
	Architecture of CAPEv2
	Processing files in CAPEv2
	Capemon - Monitoring of CAPEv2

	Implementation of the lab environment
	Architecture of the lab environment
	CAPEv2 environment
	Testing the Sandbox Environment

	Experimentation & data collection
	Methodology
	Experimentation
	Introduction to AVET architecture
	Selecting and assessing payload execution methods
	Results of the assessment
	Custom Sample
	Extending AVET
	Assessment with Windows Defender

	Discussion
	Key findings
	Comparison with state of the art/related works
	Limitations of Existing Methods
	Key Contributions

	Limitations of validity
	Future Work

	Conclusions
	Bibliography
	Appendices
	Lab environment
	Installation of CAPE
	Configuration of CAPE
	CAPEv2 Startup and Troubleshooting
	Importing the Lab Environment
	Steps to Import the Lab Environment

	Investigating CAPEv2 issue with x64 Meterpreter payloads

	Sandbox Evasion Techniques of AVET
	Debugging function issue in AVET
	Investigation and Debugging
	Explanation and Solution

	Assessment of the extended AVET

