
Password guessing attack based on PII
A password dictionary generation tool based on PI

Tazribine Ali

Academic year
2023 – 2024

Research and Development project owner:
Tazribine Ali

Master thesis submitted under the supervision of
Debatty Thibault

in order to be awarded the Degree of
Master in Cybersecurity

Cryptalalysis and Forensics

text

This is done in order to skip the first half of the page

I hereby confirm that this thesis was written independently by myself without the use of any sour-
ces beyond those cited, and all passages and ideas taken from other sources are cited accordin-
gly.

The author(s) gives (give) permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-
right terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

The author(s) transfers (transfer) to the project owner(s) any and all rights to this master disserta-
tion, code and all contribution to the project without any limitation in time nor space.

19/08/2024

Password guessing attack based on PII: A password dictionary generation tool
based on PII

Tazribine Ali: Tazribine Ali
Master in Cybersecurity – Cryptalalysis and Forensics
: 2023 – 2024

Abstract

In the dynamically changing domain of cybersecurity, password security continues to top
the charts of the most controversial issues with ever-growing complexity in password-
guessing attacks leveraging PII. This project addresses the challenge by proposing a new
password generation tool that will work to enhance focused password guessing efforts. The
goal is to enhance current tools like CUPP by using PII in password dictionary generation
and utilizing probabilistic models to refine the guessing methodology.

The thesis is opened with a broad literature review of all existing authentication meth-
ods, pointing out the weaknesses of knowledge-based authentication when PII is used to
construct passwords.

The study aims to design and implement a password generation tool, which was evaluated
against CUPP with a series of metrics such as success rate, rank efficiency, and time
performance. The evaluations were done on the Clixsense leaked dataset.

Experiments show that the new tool outperforms CUPP in terms of a higher success rate,
fewer generated passwords during runtime, and more consistent ranking. These were ways
in which this research established the power of targeted approaches driven by PII to inform
password-guessing strategies. Significant limitations are also those constrained by the func-
tionality of CUPP itself: the use of only one dataset and keeping dictionary sizes small due
to computational restrictions. The thesis concludes with a discussion of the implications
of these findings on the cybersecurity world, innovating in password security tools contin-
uously, and articulating ways forward for future research, in particular, exploring machine
learning techniques and testing on even more heterogeneous datasets. Keywords: PII,
password guessing, dictionary, cupp, tool, generation

I

Table of Contents
Abstracts I

Abstract . I

Table of Contents V

List of Figures V

List of Tables VI

List of Abbreviations VII

1 Introduction 1
1.1 Motivations . 1

1.1.1 Context . 1
1.1.2 Problem statement . 1

1.2 Project statement & contributions . 2
1.3 Organization of this document . 2

2 Authentication 4
2.1 Knowledge-based authentication . 4
2.2 Property-based authentication . 4
2.3 Biometric-based authentication . 5
2.4 Summary . 6

3 Passwords 7
3.1 Introduction . 7
3.2 Password policies . 8
3.3 Reality of password policies . 9
3.4 Human behavior in password creation 10

3.4.1 Password reuse . 10
3.4.2 Cognitive load and memory challenges 10
3.4.3 Simplicity and remembrance capability 10
3.4.4 Common patterns and personal information 10
3.4.5 Common words and phrases . 10
3.4.6 Impact of password policies . 11
3.4.7 User frustration and non-Compliance 11
3.4.8 Security/Convenience tradeoff 11
3.4.9 Security awareness and its impact on password choices 11

3.5 Summary . 12

4 Password Guessing 13
4.1 Introduction . 13
4.2 Types of password guessing attack . 14

4.2.1 Online vs offline password guessing 14
4.2.2 Targeted vs trawling password guessing 15
4.2.3 Brute Force Attacks . 15

II

4.2.4 Dictionary Attacks . 16
4.2.5 Hybrid Attacks [12, 18] . 17
4.2.6 Rainbow Table Attacks [3, 7] 18
4.2.7 Phishing Attacks . 18
4.2.8 Shoulder Surfing . 19
4.2.9 Summary . 19

4.3 Advanced Password Guessing Techniques 20
4.3.1 Probabilistic Context-Free Grammar (PCFG) 20
4.3.2 Markov Models [31] . 23
4.3.3 Machine Learning-Based Attacks [31] 24
4.3.4 Summary . 25

4.4 Password cracking tools . 26
4.4.1 John The Ripper . 26
4.4.2 Hashcat . 27
4.4.3 Hydra . 27
4.4.4 Medusa . 28
4.4.5 Summary . 28

4.5 Password dictionary generator tools 29
4.5.1 Crunch . 29
4.5.2 Cewl (Custom Word List generator) 31
4.5.3 CUPP (Common User Passwords Profiler) 31
4.5.4 Summary . 32

4.6 Defenses Mechanism . 33
4.6.1 Strong Password Policies . 33
4.6.2 Hashing and Salting . 34
4.6.3 Rate Limiting and Account Lockout 35
4.6.4 Multi-Factor Authentication (MFA) 36
4.6.5 Summary . 37

5 Role of PII in Password Guessing 39
5.1 Introduction of PII . 39

5.1.1 Summary . 40
5.2 Password Guessing Frameworks based on PII 41

5.2.1 Personal-PCFG . 41
5.2.2 TarGuess-I . 43
5.2.3 Targuess-II . 46
5.2.4 Targuess-III . 47
5.2.5 Targuess-IV . 48
5.2.6 Targuess-I-H and TarMarkov-H 49
5.2.7 Summary . 50

6 Project’s mission, objectives and requirements 51
6.1 Requirements . 51

6.1.1 List of requirements and how they relate one to another 51
6.1.2 Requirements covered by state of the art 51
6.1.3 Requirements not covered by state of the art 52

6.2 Project scoping . 52
6.2.1 Mission statement of this project 52

III

6.2.2 Explicit out-of-scope definition 52

7 Implementation 53
7.1 Methodology . 53

7.1.1 Implementing Basis for Tools 53
7.1.2 Main Tools . 55
7.1.3 Secondary Tools . 59

8 Experimentation preparation & data collection 61
8.1 Setup, Requirements, Environment, Tools & Materials 61

8.1.1 Hardware and software setup 61
8.1.2 Tools and libraries . 61

8.2 CUPP Tool . 61
8.3 Data Source . 62

8.3.1 Leaked database data preprocessing 62

9 Experiment’s output/Data Analysis 64
9.1 Database dataset analysis . 64

9.1.1 Length distribution . 64
9.1.2 Character distribution . 65
9.1.3 PII distribution . 66
9.1.4 Structures distribution . 69
9.1.5 Analysis conclusion . 71

9.2 Password Generation Tool Experimentation 73
9.2.1 Comparisons rules . 73
9.2.2 Comparisons metrics . 74
9.2.3 Comparisons results . 74
9.2.4 Gathered comparisons tables and figures 75

10 Discussion 83
10.1 Comparison with state of the art/related works 83
10.2 Limitations of validity . 84

10.2.1 Use of Basic Functionality of CUPP 84
10.2.2 Limitation on Dictionary Size 84
10.2.3 Probabilistic threshold and dataset size 84
10.2.4 Dependency on a Single Leaked Dataset 84
10.2.5 Conclusion . 84

11 Future work 86

12 Conclusions 87

Bibliography 90

Appendices 91

A Source code 91

B Documentation 92

IV

C Experimental data 93

List of Figures

7.1 Birthday format choice . 56
7.2 Main menu . 56
7.3 Statistics menu example - Password length distribution menu 57
7.4 Target personal information . 58
7.5 Target personal information validation 58
7.6 Dictionary generation . 58

8.1 Added function in cupp.py . 62

9.1 Passwords length distribution in database dataset 65
9.2 Passwords length statistics in database dataset 66
9.3 Average password character distribution in database dataset 67
9.4 Character types presence in passwords from database dataset 67
9.5 Uppercase vs. lowercase presence in passwords from database dataset 68
9.6 Overall PII presence in passwords from database dataset 68
9.7 PII types in passwords containing PII from database dataset 69
9.8 A sub-types distribution in passwords containing type A PII in database

dataset . 70
9.9 B sub-types distribution in passwords containing type B PII in database

dataset . 71
9.10 E sub-types distribution in passwords containing type E PII in database

dataset . 72
9.11 N sub-types distribution in passwords containing type N PII in database

dataset . 73
9.12 Average password generated per dictionary 78
9.13 Average success rate . 79
9.14 Average rank . 79
9.15 Average Median rank . 80
9.16 Average Standard deviation rank . 80
9.17 Average Number success . 81
9.18 Average success below 1000 guesses 81
9.19 Average time taken to generate 1000 dictionaries 82

List of Tables

2.1 Summary of Authentication Methods 6

3.1 Summary of Password chapter . 12

4.1 Summary of Password Guessing Attack Types 20
4.2 Summary of Advanced Password Guessing Techniques 25

V

4.3 Summary of Popular Password Cracking Tools 29
4.4 Summary of Popular Password Cracking Tools 32
4.5 Defensive Mechanisms Against Password Guessing 38

5.1 Overview of PII in Password Guessing 40
5.2 PII-Based Password Guessing Frameworks 50

9.1 Length distribution . 64
9.2 Length statistics . 65
9.3 Password character statistics . 66
9.4 Table for percentage of passwords containing PII in a set of passwords 66
9.5 Table for main keys presence in passwords containing PII 67
9.6 Table for A sub-types presence in passwords containing A 69
9.7 Table for B sub-types presence in passwords containing B 70
9.8 Table for E sub-types presence in passwords containing E 71
9.9 Table for N sub-types presence in passwords containing N 72
9.10 Structure distribution in overall passwords 73
9.11 Structure statistics in overall passwords 74
9.12 Top 10 password structures in passwords containing PII 74
9.13 Structure statistics in passwords containing PII 75
9.14 Iteration 1: Comparison of Password Evaluation Methods 75
9.15 Iteration 2: Comparison of Password Evaluation Methods 76
9.16 Iteration 3: Comparison of Password Evaluation Methods 76
9.17 Iteration 4: Comparison of Password Evaluation Methods 76
9.18 Iteration 5: Comparison of Password Evaluation Methods 76
9.19 Iteration 6: Comparison of Password Evaluation Methods 77
9.20 Iteration 7: Comparison of Password Evaluation Methods 77
9.21 Iteration 8: Comparison of Password Evaluation Methods 77
9.22 Iteration 9: Comparison of Password Evaluation Methods 77
9.23 Iteration 10: Comparison of Password Evaluation Methods 78
9.24 Average Results After Multiple Iterations 78

VI

List of Abbreviations

2FA Two factor authentication
AAE Adversarial AutoEncoder
AE AutoEncoder
ASCII American Standard Code for Information Interchange
ATM Automated Teller Machines
DGM Deep Generative Model
GAN Generative Adversarial Network
GUI Graphical User Interface
HFS High Frequency Substring
LHS Left-Hand-Side
MD5 Message Digest 5
MFA Multi-Factor Authentication
NIST National Institute of Standards and Technology
OTP One Time Password
PCFG Probabilistic Context-Free Grammar
PII Personal Identifiable Information
PIN Personal Identification Number
RHS Right-Hand-Side
SFA Single-Factor Authentication
URL Uniform Resource Locator
VAE Varitional AutoEncoder

VII

Chapter 1

Introduction
In the digital age, password security assumes a place of pride in protecting personal and
organizational information. Since cyberspace is dominated by online services ,today more
than ever, strong passwords are very much needed. However, many users still stick to weak
or easily guessable passwords, thus leaving their accounts open to attacks. Password guess-
ing tools are used to test and improve password security. Such tools find weak passwords
and give information to improve the policy on passwords.

1.1 Motivations

1.1.1 Context

Password security is the keystone of securing personal and organizational data. Today,
with so much diffusion of the internet and digital services, everyone has dozens of online
accounts that require strong passwords. Password-guessing tools were developed to exploit
these weaknesses in user-created passwords. Early varieties of password-guessing tools
relied upon simple brute force or dictionary attacks, wherein every possible combination
or common password from a pre-defined list was tried for guessing. With improved security
practices, new techniques were created.

Probably one of the most important developments in password guessing is the use of Per-
sonally Identifiable Information, PII. It contains personal details such as name, birthdate,
and email addresses, all used to make the password guesses very accurate. Attackers ex-
ploit this PII because most users include personal information in their passwords for easy
recall. To that end, incorporating PII into password-guessing tools can greatly improve
chances of success.

Recent searches in cybersecurity revolve around understanding and mitigating risks asso-
ciated with PII. With the increasing rate of data breaches, attackers have now access to
vast volumes of PII, further increasing the threat. There is, therefore, a need for advanced
tools capable of analyzing and exploiting PII in passwords to properly test the security im-
plemented. Current trends also show a shift toward targeted attacks, in which the attacker
makes use of peronal identifiable information (PII) to improve guessing techniques. This
shift requires the development of state-of-the-art password-guessing tools which model such
advanced attack methodologies.

1.1.2 Problem statement

Whereas password-guessing algorithms have undergone considerable improvement over this
period, the existing tools that are PII-based, such as CUPP1 (Common User Passwords
Profiler) were not designed to combat today’s security challenges. CUPP provides the foun-
dation but without the sophistication needed to cope with both the complexities of current

1https://github.com/Mebus/cupp

1

https://github.com/Mebus/cupp

password patterns and volumes of PII now readily available from data breaches. Current
tools that are comprehensive in analyzing the usage of PII and its affecting passwords are
very few, which is important to understand and mitigate this threat.

Advanced development of PII-based password guessing tools is not without challenges.
Notably, one of the key problems that has to be addressed is incorporating large and varied
PII datasets into the guessing algorithm. These tools must also adapt to the changing
policies regarding passwords and behaviors expressed by users. Creating a fully functional
PII analysis tool requires advanced data processing capabilities with effective identification
and evaluation of the presence of a PII in a password.

The main research question this thesis is trying to answer is, "How can we build a more
optimized PII-based password dictionary generation tool and a comprehensive PII analysis
tool for passwords?" This question underscores how best to improve the accuracy and
efficiency of PII-based guessing methods by including a robust tool in analyzing PII usage
among passwords. An answer to this question would greatly benefit cybersecurity research
in improving our capability to protect sensitive information from unwanted access.

1.2 Project statement & contributions

This thesis aims to build a PII-based password dictionary generation tool that will be
better in performance than the already existing utility called CUPP. Although CUPP does
formulate some basis regarding PII-based password guessing, it does not seem to be very
effective. What we would want to do here is to construct something that exploits PII
better with respect to the accuracy and efficiency of guessing passwords.

Further, we wish to implement a PII analysis tool for passwords. From our studies, we
noticed a deficit in tools that could analyze the prevalence and impact of PII within
passwords. This deep analysis tool will provide insights into how PII is used when users
generate passwords and enhance security practice.

1.3 Organization of this document

This document has been designed to delve into some aspects of authentication, with a
greater focus on password security, guessing techniques for passwords, and finally, the role
of PII in the vulnerability of passwords. Then, it goes into the project statement and
contributions.

Chapter 2 elaborates on the different mechanisms of authentication. The mechanisms
range into three categories: knowledge-based, property-based, and biometric-based. This
puts some foundation down for the authentication landscape.

Then, chapter 3 is entirely devoted to the subject of passwords, policies related to them,
and implementation in the real world; it reviews human factors that impact password
creation. Additionally, it explores some of the cognitive challenges users face, such as
password reuse, memory problems, security vs. convenience, and common patterns and
personal information impacting password security.

Chapter 4 explains, in detail, the techniques of password guessing, right from the traditional
methods of brute force and dictionary attacks to probabilistic models and machine learning.

2

This chapter also reviews a variety of password cracking tools and defensive mechanisms
so that one understands the practical difficulties and solutions before them in password
security.

Chapter 5 discusses PII in password guessing, including a number of frameworks designed
to exploit personal information for guessing passwords more effectively. This chapter un-
derlines vulnerabilities stemming from the use of PII within the password.

Chapter 6 summarizes the mission, objectives, and requirements of the project. It explains
precisely which specific goals are aimed at and within what scope of work undertaken.
Moreover, it demarcates between requirements covered by the present state of the art or
not, therefore setting a frame for the contributions of this thesis in the research context at
large.

Chapter 7 presents the implementation and testing methodologies followed in the project.
All tools and techniques used to achieve the objectives in the project are described here.
This chapter also elaborates on the test strategy.

Chapter 8 describes how the setting of experimentation and the process of data collection
ensues, with details on the environment in which hardware and software are used, along
with tools and libraries, and some sources of data. The chapter explains in detail ways in
which the experimental data has been prepared and processed.

Chapter 9 presents the results of experimentation and analysis targeting data from a leaked
database. Detailed analysis has been done for password length, character makeup, presence
of PII, and structural pattern characteristics in passwords. In addition to that, the imple-
mented password generation tool has been compared to an existing PII based generation
tool finally followed by a discussion of general findings.

Chapter 10 concludes the thesis by discussing the findings in relation to state-of-art, reflect-
ing on the lessons learned, and identification of possible limitations of this work concerning
the validity of results. Chapter 12 gives an indication of some directions for further re-
search, and Chapter 13 gives a conclusions.

3

Chapter 2

Authentication
Authentication is very important when it comes to cybersecurity. It involves a check to
verify that something or someone is what they claim to be. It is to ensure that the said
information is accessed or tasks are performed by none other than the right people or
systems. Sound authentication methods are crucial for safety and security in every system
dealing with sensitive data.

There are three key types of authentication: knowledge-based, possession-based, and
biometric-based. [20].

2.1 Knowledge-based authentication

The most important type of authentication for this thesis is knowledge-based authentica-
tion, which relies on user knowledge. This type is one of the most traditional forms of
authentication and is widely used due to its simplicity and ease of implementation.

Generally, this type of authentication is separated into two types of methods: text-based
authentication and image-based authentication.

In text-based authentication, the user has to answer a question with a secret that only
the authenticated user knows. This secret could be a password, a PIN number, or even an
answer to a security question like "What is the name of my first pet?".

An alternative to the above authentication type is a visual pass system, where users select
images in a specific order on their GUI. Graphical passwords are classified using recognition-
based and recall-based techniques. In recognition-based techniques, users are authenticated
by recognizing images selected during registration. Recall-based techniques require users
to reproduce what they generate during registration. [26]

2.2 Property-based authentication

Possession-based authentication is another type of authentication method that involves the
use of something physical, such as a user’s having to verify who they are. This is different
from just using a password. For instance, when you are using an ATM, it requires the
use of your bank card (something you have) and your PIN (something you know) to get
money. There are two main types of these physical items, called tokens: hardware and
software. Hardware tokens include USB security keys and smart cards, enabling them to be
easily portable in daily routines. Software tokens enable the generation of OTPs (one-time
passwords), which can be displayed on the user’s phone or sent as an SMS. OTPs change
in different parts of time, thus very hard to guess, leading to enhanced security [1, 21,26].

In most cases, the possession-based mode of authentication is used in combination with
other means, such as passwords or biometrics of fingerprints. This is what refers to multi-
factor authentication. The more the methods, the more secure an account will be. Even if

4

attackers manage to get the password, they will still need the physical token to get in [1].
Possession-based authentication is widely used in banks and big companies as they have
to keep their information really secure. For example, a smart card used with a password
may be immune to many kinds of attacks [26].

2.3 Biometric-based authentication

Biometric authentication is another method of using a person’s physical or behavioral
characteristics to identify them. Biometrics, unlike many other authentication methods,
such as passwords that could be forgotten or sometimes stolen, relies on who you are,
thus making it very strong in the context of security. It is characterized by the analysis
of characteristics such as fingerprints, facial features, voice patterns, keystrokes, hand
geometry, retina, and iris scans. The two general processes it goes through are enrollment
and verification. In the stage of enrollment, the system captures several samples of a user’s
biometric trait, such as his fingerprint or the pattern of the iris, and stores the extracted
features in a database. The next time the user makes a try at the system, the new sample
under processing goes into the stage of verification to be compared for identity with the
stored data [17].

One of the strengths of biometric authentication is the ability to provide evidence directly
on who one is. Unlike passwords or PINs, which can be shared or stolen, biometric traits
are unique and difficult to duplicate. This makes biometrics one of the technologies that
enhance security in different applications. However, various biometric techniques offer
different levels of accuracy and security. Fingerprint recognition is widely used, particularly
in smartphones and laptops, mainly because of its convenience and effectiveness due to
the high biometric availability of fingerprints. Nonetheless, it could be prone to spoofing
since applicable are fingerprints lifted off from surfaces [19]. Iris and retinal scans are
highly accurate options that require specialized, expensive equipment. These would include
capturing and analyzing the unique patterns in the eyes and, therefore, be extremely
reliable but not very common because of the cost.

The facial recognition system, on the other hand, has had vast improvements and is com-
mon on most consumer devices these days. It works by taking the measurement of the
distance between key facial features, but it can be less reliable under different lighting
conditions or with changes in the user’s appearance. Voice recognition uses vocal traits for
authentication but can be easily fooled by voice imitation or recordings. Hand geometry
and vein recognition both measure the shape of the hand or its internal patterns, offering
more reliable authentication, though they require specialized scanners. While biometric
authentication has its advantages, it also has several challenges: This involves potential
spoofing and the necessity for the protection of biometric data since the same cannot be
changed once it has been stolen, unlike a password. It also raises privacy concerns since
one’s biometric data is very personal. In general, biometric authentication is a safe and
handy means of identification, with its broad usage, especially when technology expands.
However, more work in research is very necessary to address the security and privacy
challenges in order to be adoptable by many more [17].

5

2.4 Summary

Authentication is important in cybersecurity because it ensures that sensitive informa-
tion and systems are accessed or forwarded to authorized persons. There are three main
classes of authentication methods in application: knowledge-based, possession-based, and
biometric-based, all with varying strengths.

Authentication Type Description
Knowledge-based It relies on the information the user knows, like a password, PIN, or

questions answers. It involves text-based techniques, such as passwords,
and image-based techniques like graphical passwords. Although it is
simple to implement, it is usually vulnerable to attacks like phishing or
brute force.

Possession-based Something the user has, such as a physical token or a device. Examples
include bank cards and USB security keys. Possession-based authentica-
tion is often combined with knowledge-based ones to form multi-factor
authentication (MFA). This makes the security stronger by requiring
both a physical token and something the user knows.

Biometric-based Leveraging unique physical or behavioral features, such as fingerprints,
facial recognition, or iris scanning, to authenticate users. Biometric tech-
niques have high security since it is hard to replicate them; however, this
technique also has several privacy concerns and can be vulnerable to
spoofing or data breaches.

Table 2.1: Summary of Authentication Methods

6

Chapter 3

Passwords
3.1 Introduction

Having learned about various authentication methods, we now focus on knowledge-based
authentication, more precisely, passwords. As we have seen, information relating to per-
sonal identification has to be secured in the world of the Internet. This is when passwords
come in. Passwords make sure that only a selected few can get hold of a particular piece of
information: your email, your bank account, or even your social media profiles. Without
strong passwords, other people might find it easier to access your accounts and rob your
information.

A good password is like a solid lock on a door. It should be difficult for others to guess.
This indicates that it should consist of some uppercase letters, lowercase letters, numbers,
and even special symbols, such as @ or #, and should be as long as possible. For example,
the length of one 12-character password is much stronger than a 6-character password.
However, people still tend to create simple passwords and maintain the same password for
different accounts. That is substantially dangerous. For a hacker who has acquired one
password, access to many accounts is easy. Recent studies underline the need for unique
and complex passwords for every account [5].

This is where a password manager might come in handy. A password manager creates
strong passwords and remembers them for you so that you only remember one master
password. This way, having different strong passwords for each account is quite effortless
[2]. Having said that, another way to protect the account is by going through two-factor
authentication (2FA) or multi-factor authentication (MFA). This technique would allow
you to provide two pieces of information or more to log in, for example, a password and a
code sent to your phone. The effectiveness of such a measure increases because, even if the
hacker knows your password, he still needs the second code to access your account [20].

Hackers use various methods to steal your passwords. One way is phishing, in which they
will trick you into giving up your password by appearing to be a trusted source, such as
your bank. The other manner is the utilization of software that makes trial guesses of a
large number of diverse passwords extremely quickly until it gets it right; it is referred to
as a brute-force attack. And there are other kinds of attacks. Studies indicate that upon
learning more about these threats, users can remain protected [23].

7

3.2 Password policies

To ensure the production of secure passwords, The National Institute of Standards and
Technology (NIST) has set out full guidelines [21]. The suggestions on creating and re-
membering and the required security procedures for passwords will ensure that a user is
well safeguarded from potential risks. If followed, these regulations would enable an orga-
nization or an individual to improve their security regarding password use, thus minimizing
unauthorized breaches.

Password Complexity and Length

NIST suggests that passwords should be at least eight characters long, but longer pass-
words are recommended. NIST no longer requires or recommends a mix of uppercase
letters, lowercase letters, numbers, and special characters but advises allowing any type of
character and spaces to allow for passphrases that are more easily remembered and typed.

Password Creation

NIST does not support the use of complex composition rules or require the use of different
characters because this tends to produce predictable patterns. Instead, they suggest using
password blocklists to stop common, expected, or compromised passwords. Users shall be
allowed to create passwords up to 64 characters in length to encourage passphrases.

Password Expiration

NIST advises that organizations do not impose periodic password changes except when a
breach has been detected. Frequent forced changes can result in poor password choices
since users will tend to make minimal modifications to existing passwords.

Password Entry

NIST says that masking (showing asterisks) during password entry should be optional.
Users may have a preference to see the actual characters entered to allow for reduced error.
Moreover, the rate of incorrect password trials should be controlled to avoid brute-force
attacks.

Multi-Factor Authentication (MFA)

NIST recommends that multi-factor authentication should be applied when possible. MFA
is a process in which something you know is combined with something you have (like a
password or security token) or something you are (like biometric verification).

Password Handling

Passwords should be stored securely using salted cryptographic hashing algorithms. Inse-
cure storage of passwords in plain text is strongly discouraged. Besides, it is important
to have passwords transmitted across an open network secured so that they are not inter-
cepted.

8

3.3 Reality of password policies

While NIST suggests clear guidelines available on its website, in practice, the password
policies set on most websites can deviate from these. The new guidelines issued by NIST in
2017 have been shown to exhibit discrepancies between guidelines and reality recently by
Sahin et al. [24]. This study draws attention to the strategies of implementation as well as
the policy formulation made by web admins regarding setting a password policy for their
websites. It reflects stricter policies so that a snapshot of how usual password policies are
currently placed on real websites is obtained.

Sahin et al. [24] also point out that most admins are still using conventional password poli-
cies. Newer recommendations suggest longer passwords instead of complex ones and even
recommend not changing them periodically. Yet, many administrators still revert to mak-
ing the passwords complex and requiring their users to change them every once in a while.
All these have their roots in older guidelines, such as the 2004 NIST recommendations,
indicating much work is still needed to adopt the new standards.

The study also indicates that in most cases, administrators are still unaware of many
best practices at the time of research, such as advising that the password is not changed
frequently. Mostly, password policy decisions are made by heads or management of the
organization, who tend to have outdated ideas about password security. This highlights
the need for more information and awareness so that administrators can understand and
implement the guidelines provided.

The current documents on the standards are too long, tiring, and complex; thus, it becomes
a real challenge for the administrators to execute and interpret the documents. Sahin
et al. [24] recommended that if guidelines are provided through a summary table with
proper explanations, this will assist administrators in understanding and applying such
recommended policies.

9

3.4 Human behavior in password creation

Password choice is a very important aspect of online security, and a majority of people
find it difficult to observe best practices in this area. Knowledge of human behaviors in
such an area would be quite essential in developing better measures for security.

3.4.1 Password reuse

Password reuse is the habit of using the same password for more than one purpose. Ac-
tually, this is very common because people currently handle a lot of accounts. Research
shows that many people would reuse passwords not because they intend to but rather
because it is easier than remembering a different password for every account [29].

Despite making life easier, reusing passwords creates drastic security risks. Basically, if
one password is divulged through a website, then access can be gained to other websites
where the same password has been used. In this manner, there seems to be a domino effect
where, through one breach, many accounts can be accessed. For example, if one has the
same password for social media, banking, or email, then any single breach in these services
compromises the integrity of all the individual user’s accounts. [33].

3.4.2 Cognitive load and memory challenges

The notion of cognitive load is relevant here. Cognitive load relates to the effort of mental
capacity needed to process and retain information. For the user, passwords would lead to
a high cognitive load since they require memorizing many unique and complex passwords.
Modern requirements on passwords to contain a mixture of both case letters, numbers, and
even special characters further aggravate the situation [29].

Human memory is limited. It is difficult for many humans to remember a multiple number
of complicated passwords. They reuse passwords, therefore, to make their online experience
simpler. Wash, and Rader [33]. Reported that the users often consider easiness and
memorability rather than security in most cases, which leads to reusing their passwords.

3.4.3 Simplicity and remembrance capability

Another important aspect of password selection is simplicity and remembrance capability.
Even though users know that simple passwords are less secure, they commonly tend to
choose simple passwords that can be remembered easily. This is because of cognitive load
and the need to remember many passwords [29].

3.4.4 Common patterns and personal information

People use common patterns for information such as number or letter sequences and per-
sonal information such as names and birth dates, among others. While these would make
a password relatively easy to remember, they make it equally easy for an attacker to
guess [29].

3.4.5 Common words and phrases

Another strategy for making passwords memorable is to use common words or phrases.
However, this makes the passwords weak because dictionary attacks can be carried out by

10

an attacker. Knowing the risks, users usually choose convenience over security [29].

3.4.6 Impact of password policies

Strict password policies are enforced with the aim of making passwords hard to guess.
Sometimes, however, the whole process may backfire. Instead of learning the complex con-
ditions required, users usually resort to ways of coping, like adding a number to a familiar
word or using predictable patterns. These may, in a way, meet the policy requirements
but really do not make passwords much more secure at all [13].

3.4.7 User frustration and non-Compliance

Complex password policies can also lead to user frustration. Writing down passwords or
using the same ones on multiple sites are major threats to security, and people will take the
easiest route. So, policies need to strike a balance where the best choices are also easiest,
and security fatigue is avoided [13].

3.4.8 Security/Convenience tradeoff

Essentially, good password management is about a tradeoff between security and conve-
nience. Balancing strong and secure passwords against those that are easy to remember
poses a challenge for users. The tradeoff in the development of strong but memorable
passwords is influenced by cognitive shortcuts, fear of forgetting, and perceived risk. Users
tend to prefer convenience over more secure and less convenient passwords [29].

3.4.9 Security awareness and its impact on password choices

It is important for users to know of security threats that could enable them to appreci-
ate the significance of having strong passwords. However, awareness does not generally
translate to better behavior. Most users exhibit cognitive dissonance, where beliefs about
needing strong passwords do not match the actions of those who select weaker ones. Prac-
tical solutions, for example, the use of password managers, can easily and without much
cognitive load manage several complex passwords [33].

11

3.5 Summary

Key Learning Summary
Importance of strong
passwords

They are very important in securing digital accounts and
keeping unauthorized access at bay. This is what will repel
any forms of security break-ins at the very frontier.

Effective Password
Policies

It is the length, not complexity, that password policies should
pursue and they encourage long, memorable passphrases.
Mandatory frequent changes to passwords are not encour-
aged since they may result in weaker passwords..

Challenges in Imple-
menting Password
Policies

Still too many organizations hold old practices for the en-
forcement of unnecessary complexity and frequent change
that can result in quite predictable patterns of passwords,
reducing security overall.

Human Behavior
and Password Cre-
ation

A lot of pitfalls make this rather challenging, such as cog-
nitive load, memory limitations, and a tendency to reuse.
All of these factors result in the generation of simpler, less
secure passwords.

Security Awareness
and User Education

awareness of security risks do not always result in better
practice. There should be practical tools, such as for instance
password managers and multi-factor authentication, to guide
secure password habits..

Table 3.1: Summary of Password chapter

12

Chapter 4

Password Guessing
4.1 Introduction

Arguably, password guessing is the most common and one of the oldest threats in the whole
cybersecurity landscape. This technique involves revealing the password by systematically
checking a large number of possible variants. Attackers have many password-guessing
methods that exploit weak and predictable password choices, user behavior, and system
vulnerabilities. Understanding the basics of password guessing is essential for both im-
plementing effective defenses and educating users on the importance of strong password
practices.

Password guessing attacks can range from simple measures of guessing common passwords
to sophisticated strategies that use advanced algorithms with large datasets. The com-
plexity and uniqueness of the passwords and the security measures in place to mitigate
unauthorized access determine the effectiveness of these attacks.

One basic concept that governs password guessing lies in the predictability of human behav-
ior as seen in section 2.4.4. Most users prefer simple passwords that they can remember
easily, using basic combinations of words, numbers, and common phrases. Being so pre-
dictable, it is easier for attackers to guess passwords when users use the same password
across different accounts.

To protect against password guessing, strong policies should be enforced, and extensive
user education programs should be carried out regarding creating complex and unique
passwords. In addition, the use of multi-factor authentication and other advanced security
features can significantly reduce the risk of successful password-guessing attacks.

This topic defines types of password-guessing attacks with basic and advanced features.
Further in the chapter, we will review popular software tools with functionality applied
in practice. Protection approaches from these attacks are also discussed to understand all
the pieces of the system that define a security strategy to mitigate risks of harm from the
method of guessing passwords.

13

4.2 Types of password guessing attack

4.2.1 Online vs offline password guessing

Online and offline methods are the two ways in which password-guessing attacks can be
divided, and they each have their own unique difficulties and tactics. It is important to
recognize these categories so as to develop effective defenses.

A method of guessing a user’s password online requires an attacker to make multiple login
attempts directly on the system. This technique presumes that the individual attempting
it will have to communicate with a computer until he or she gets the right combination of
symbols, letters, numbers, etc. [31].

The number of guesses allowed before intervention by systems is one major shortcoming
of online password guessing. A majority of systems employ security mechanisms such as
account lockout policies or even IP address blacklisting to limit unsuccessful tries. For
instance, if the login attempts are not successful after several tries, then there would be a
temporary blockage or permanent one on the account. The process also slows down due
to network latency, thereby limiting the speed of attack [31,32].

Despite these limitations, online password guessing is still employed by attackers who
exploit target information like frequently used passwords, user IDs, birth dates, or other
personal details. Most often, they start with the most probable passwords because it is
understood that many users prefer easy and foreseeable ones [31,32].

Offline password guessing occurs when a hacker has access to hashed password data from a
leaked database or compromised system. Unlike online attacks, offline password guessing
does not require continuous interaction with the targeted system, which allows an intruder
to work independently and at his pace [31,35].

One major advantage of offline attacks is that there are no limitations on the number of
guesses. The attacker can attempt several million passwords without detection or being
restricted by system policies. This is because they operate with hashed values of passwords
and employ powerful machines to calculate hash results faster than any online environment
would be able to manage [31,32,35].

Offline password guessing typically involves the use of advanced algorithms and techniques
such as dictionary attacks, brute-force attacks, PCFGs (probabilistic context-free gram-
mars), and Markov models. These methods are used to create possible passwords using
different sources of data such as common password lists, leaked password databases, pat-
terns of keyboard use, and linguistic patterns [31, 35].

Offline attacks, however, pose a serious threat once access to hashed password files can be
achieved. To enhance password security, systems should, therefore, make use of a strong
hashing algorithm plus salting technique [31,35].

So, even though both offline and online guessing carries considerable risks, they have dif-
ferences in terms of execution and limitations. Online attacks are restricted by network
speeds and system defenses, but offline ones do not suffer from this problem, thus allowing
an unlimited number of guesses without detection. It is crucial to understand these varia-
tions in order to build effective defense mechanisms against both kinds of attacks that will
provide complete protection from any possibility of password breaches.

14

4.2.2 Targeted vs trawling password guessing

Password guessing attacks can be broadly categorized into two distinct types: targeted
and trawling attacks. Each type uses different strategies and focuses, making it crucial to
understand their differences to develop effective defenses.

When a hacker specifically wants to break into a particular user’s account, he employs a
targeted password-guessing attack. Such attacks are employed by the attacker when he or
she has a well-defined target in mind, such as crawling into an online account or restoring
a user’s lost password. This technique involves collecting as much information as possible
about the target so as to reduce the search space [31].

Attackers often use publicly available personal information from social media or other
online sources. By leveraging this data, they can create highly probable password guesses
that match the target’s habits and preferences. This personalized approach makes targeted
attacks particularly dangerous, as the guesses are not random but informed by specific user
details [35].

In contrast, trawling password-guessing attacks aim to crack passwords across a large group
of users. This type of attack does not target specific individuals but seeks to find any user
accounts that match a known password. Trawling attacks are often used in scenarios where
password storage or hashed values have been compromised. The primary goal is to uncover
as many passwords as possible, making it a broad and sweeping approach [31].

Unlike targeted attacks, trawling does not rely on personal information. Instead, it
uses common passwords, dictionaries of leaked passwords, and patterns observed in large
datasets. This method is efficient in identifying weak passwords that are frequently used
by many users. The effectiveness of trawling attacks is enhanced when attackers have ac-
cess to large collections of hashed passwords, allowing them to run their algorithms offline
without the limitations imposed by online systems [35].

One key difference between these two types of attacks lies in their mode of operation.
Targeted attacks are typically performed online, requiring the attacker to interact with the
system in real time, submit the user identity, and then try the guessed passwords. This
means the number of attempts is often limited by the system’s security settings, such as
account lockouts after a certain number of failed attempts [31].

On the other hand, trawling attacks are generally performed offline. Here, the attacker
works with hashed password values and can make an unlimited number of guesses, con-
strained only by computational resources. This offline approach allows attackers to use
powerful hardware and sophisticated algorithms to guess as many passwords as possible,
making it a potent method for compromising large numbers of accounts simultaneously [35].

4.2.3 Brute Force Attacks

Brute force attacks are one of the most straightforward yet powerful techniques used in
password cracking. The idea is very simple: just try all possible combinations until you get
to the password. This approach will definitely yield the password provided that adequate
time and processing power are supplied, though at very high values for time and resources.
However, brute-force attacks can be very time-consuming and resource-intensive.

All possible combinations are tried one after another in a brute-force attack until the correct

15

password is identified. Now, if the password is eight characters long and contains only
lowercase letters, there will be 268 different combinations. That would be 208827064.576
possibilities! Even if there is the likelihood of the attacker’s computer running through
1000 passwords per second, all possible combinations would require more than 208 million
seconds, so approximately 58000 hours. Clearly, brute force attacks are not quick and often
not feasible for long and complex passwords [22,34].

It becomes really complex when dealing with encrypted passwords. Many systems keep
passwords hashed by algorithms like MD5. In such a situation, to make the attack suc-
cessful, the attacker has to generate the hash for every possible password and then match
it with the stored hash. For example, some early versions of Linux kept passwords in MD5
hash format. If an attacker steals the file containing these hashed passwords, they could
use brute force to compare the generated hashes until a match is found [22,34].

Even though they are simple, brute force attacks remain a big threat, largely to short and
less complex passwords. In most cases, attackers will always target systems where they
can leak the hashed passwords to perform an offline brute force attack without them being
detected. This is due to the fact that offline attacks are not strengthened by the security
features imposed by a system, such as a lockout after a certain number of attempts on
account login [22].

Although one of the most basic and primitive ways to crack a password, brute force attacks
are very dangerous. Knowing how they work might help users and system administrators
implement appropriate security measures that would greatly reduce the risk of successful
brute-force attacks.

4.2.4 Dictionary Attacks

Password guessing is a well-known method that hackers use, and it is known as a dictionary
attack. However, unlike brute force attacks that attempt every possible combination of
characters, hackers use pre-made lists of likely passwords making them generally much
quicker and more effective.

In a dictionary attack, the attacker uses a collection of words commonly used as passwords.
These words often come from everyday life, like names of birds, places, or famous people.
Users often choose these kinds of passwords because they are easy to remember [22]. How-
ever, many password policies require modifications to these words to make them more
secure, such as adding numbers or special characters.

To get around this, attackers apply "word-mangling" rules to the words in their dictionary.
These rules systematically alter the words to create variations that users might use. For
example, a common rule might add a number to the end of a word, so "password" becomes
"password9". Another rule might change the first letter to uppercase, turning "password"
into "Password." By applying these rules, attackers can generate a large number of possible
passwords from a relatively small list of dictionary words [34].

Choosing the right word-mangling rules is crucial for the success of a dictionary attack.
Each rule can produce many variations of a single word, and using multiple rules in com-
bination can exponentially increase the number of guesses. For example, if there is an
800,000-word dictionary and two digits are added at the end of each word, this will gener-
ate 80 million guesses while changing only the first letter to upper and lower cases doubles

16

it up. Therefore, attackers need to select rules that maximize their chances of success while
keeping the number of guesses manageable [34].

While dictionary attacks are faster than brute force attacks because they don’t have to
check every possible combination, they still have limitations. The biggest limitation is
that the dictionary might not contain the password being guessed. If the user has chosen
a password that is not in the dictionary, the attack will fail. Nonetheless, these kinds of
attacks are very fruitful since many users select simple common passwords that an attacker
would probably have in his or her dictionary [22].

In summary, dictionary attacks are a faster and often more efficient method than brute
force attacks for guessing passwords. By using common words and applying systematic
variations, attackers can generate a wide range of possible passwords. But then again, the
effectiveness of this attack mainly depends on how good the dictionary itself is and what
rules have been applied for mangling words. Possessing knowledge about these attacks can
assist in creating better preventive measures against them.

4.2.5 Hybrid Attacks [12,18]

Hybrid attacks combine both dictionary and brute force attacks into one very effective
method. These attacks start with a list of widely used passwords (a dictionary) and then
apply systematic variations to enhance the success rate. Combining the two methods helps
attackers guess slightly modified common words or phrases for passwords much faster than
using just one method alone.

A hybrid attack is based on a base dictionary of likely passwords, to which various mod-
ifications are applied, similar to those made by users to meet complexity requirements.
These include adding numbers or special characters to the beginning or end of a word,
substituting characters with look-alike symbols, or using multiple words. For example,
"password" can be changed to "Password1," "P@ssword," or even "123password."

The strength of hybrid attacks lies in their ability to cover a broad range of potential
passwords without actually trying every possible combination. By focusing on typical
patterns and predictable variations, these attacks can easily break passwords based on
simple modifications of dictionary words. This method is most effective against passwords
that users believe are secure because they contain some additional characters but are based
on recognizable patterns.

Hybrid attacks exploit the predictability of human behavior in creating passwords, making
them very effective in the hands of an attacker. Most users create their passwords from
known words with minor modifications, believing this will be enough to be secure. On the
other hand, hybrid attacks take advantage of these predictable patterns to guess passwords
more easily.

For example, a user might start with a known word such as "password" from the dictionary
and then apply a rule to add a number at the end, resulting in guesses like "password1,"
"password2," and so on. One might also use common substitutions, such as replacing
"a" with "@," resulting in "p@ssword." Another strategy is combining words like "pass-
word123admin."

17

4.2.6 Rainbow Table Attacks [3, 7]

Rainbow table attacks are a form of attack against cryptographic hash functions wherein
huge communities of precomputed values are passed to reverse hash functions, very often
more effectively than in standard rainbow attacks. So, if one user chooses a password,
it gets hashed by a cryptographic hash function and then stored in a database. This is
mapped back by rainbow tables to its plaintext passwords, bypassing the generation and
comparison of hashes on the fly by attackers.

To construct a rainbow table, attackers apply a reduction function that will take a hash
and revert it back to a plaintext guess. Chains of plaintext-hash pairs are built from this
data and stored in the table. At attack time, the attacker looks up the target hash in the
table and traces through the chain to recover the password.

The rainbow table attack is way faster than the brute force attack because it makes use of
pre-computed data. Another drawback of these tables is that they require a huge amount
of storage and computational resources for generation. They then become quite poorly
performing under robust hashing algorithms with salting mechanisms in their design—for
instance, adding a unique value to each password before hashing and eventually producing
two different hashes from similar passwords.

Rainbow table attacks can be limited to a substantial extent by using robust hash functions
with good salting. Enforce multi-factor authentication and train the end-users to change
their passwords frequently. The complex password policies can help in preventing such an
attack to a huge extent.

4.2.7 Phishing Attacks

Phishing is a web-based attack whereby the attacker misleads the user into giving out
sensitive information like passwords or PIN codes through redirection to similar-looking
websites. For example, when one inputs "www.yahoo.com" with an intent to visit, they
may actually be directed to "www.yah0o.com," which is identically made to look like the
latter. Thus, under the impression that it is real, one will enter the login details grasped
by the attacker. After gathering the login credentials, the attacker may redirect the user
to the real website, logging him or her in without the user noticing that anything has
happened [22].

The phishing attacks, therefore, cash in on the trust users have in familiar websites, thereby
making it hard for any vigilant user to differentiate between the two. Though various
phishing filters and controls are put in place, they cannot be entirely trusted since a
majority of the phishing sites end up bypassing these defenses. This form of attack is very
hazardous since such an attack could result in high-security breaches as the attackers get
personal and financial information.

Knowledge of phishing and how it works is quite important in enhancing cybersecurity
awareness and the implementation of better protective means. Always validate the URL,
be suspicious if unsolicited requests for personal information are made, and use security
software that aids in the detection of such phishing attempts. User education on indicators
of phishing, combined with careful online behavior, is a critical defense against this very
common threat.

18

4.2.8 Shoulder Surfing

Shoulder surfing is a very basic yet effective technique where the attacker observes the
user while he/she enters their password. The attacker can acquire the information directly
by watching the victim or with the aid of tools. Despite the simplicity of this attack
technique, it has turned out to be quite effective due to the human tendency to ignore
physical security.

The most straightforward form of shoulder surfing involves an attacker who gets close
enough to the target to view both the keyboard and monitor while the victim is inputting
their password. Crowded places like cafes, airports, or even offices may provide such
chances. However, it is in no way limited to direct observation. Attackers can implement
many methods to spy on targets from a distance. For instance, they may use binoculars
to observe from a distance because by doing so, they can remain unnoticeable themselves
yet obtain the required information [22].

More sophisticated methods include the use of hidden cameras, such as CCTV, to record
what a victim does. Cameras can be strategically placed to get good views of the keyboard
and the monitor from very advantageous angles. Sometimes, attackers even use audio cues.
By the number of keystrokes, they could determine the length of the password and then try
all possible combinations of that many characters in length, as shown by Raza et al. [22].

Although it doesn’t need a lot of technology, the threat posed by shoulder surfing can be
quite significant. This involves hanging about in public or at least semi-public settings
where sensitive information is frequently accessed. Users must, therefore, become all the
more aware of their surroundings, taking precautions like shielding keyboards when typing
and becoming conscious of who might be watching. There are also screen privacy filters
that blur a monitor from side views to a degree where an attacker may struggle to get
information.

4.2.9 Summary

19

Attack Type Description
Online vs Offline
Password Guessing

Whereas the online attack requires several login attempts di-
rectly to a system, it is usually very limited due to defenses
added within the system, such as account lockout. The of-
fline attacks will happen if the hashed passwords have been
attained, making it possible for an attacker to make limitless
guesses outside the system constraint.

Targeted vs Trawling
Attacks

Targeted attacks are when somebody is particularly target-
ing a few persons, mostly playing with personal information
to make educated guesses, and trawling attacks aim to com-
promise any account by using common passwords across a
large user base.

Brute Force Attacks This technique works on the logic wherein all possible com-
binations of passwords are tried until the right one is found.
Clearly, this could end up being very time-consuming and
resource-intensive for long passwords

Dictionary Attacks Uses rainbow tables of common passwords and a list of
"word-mangling" rules to generate all the possible variations.
Much faster than a brute-force attack but is still limited by
the comprehensiveness of the dictionary.

Hybrid Attacks This combines dictionary and brute-force attacks, starting
with common words and applying systematic variations, thus
being effective against slightly modified passwords.

Rainbow Table At-
tacks

This type of attack involves using precomputed tables that
hold hash values to reverse engineer hashed passwords. Ef-
fectively used against unsalted hashes, it is mitigated with
salting techniques.

Phishing Attacks Fooling users to get their passwords through fake websites
or emails.

Shoulder Surfing A physical attack where the attacker looks over your shoulder
as you type in your password. Simple but effective under the
right conditions.

Table 4.1: Summary of Password Guessing Attack Types

4.3 Advanced Password Guessing Techniques

4.3.1 Probabilistic Context-Free Grammar (PCFG)

Probabilistic Context-Free Grammar (PCFG) is an advanced technique used in password
cracking that leverages the structure and patterns found in human-generated passwords.
This method prioritizes the generation of password guesses based on their likelihood derived
from previously observed password data.

PCFG makes use of a process in which the generation of passwords is entirely modeled
based on grammar. Characterizing variables are defined for the different types of char-
acters, like letters or digits, together with their arrangement rules to form a password.
The real key to the strategy of PCFG is the assignment of probabilities to these rules in
accordance with their frequency in a training set of existing passwords.

20

Training phase: The first step in using a PCFG-based password cracker is the training
phase. In this phase, a large set of previously disclosed passwords is analyzed for common
patterns and structures. Such passwords are parsed down into what is called a base struc-
ture, which is simply a sequence of character types. For example, "P@ssw0rd123" would
be parsed into the structure L1S1L3D1L2D3 where L = letters, S = special characters,
and D = digits.

Every base structure in the training set is followed by its corresponding frequency. All this
frequency data comes into the calculation of probabilities of different structures. Besides,
probabilities of certain digits and special characters in passwords have been deduced. For
example, a base structure like S1L8D3 could have occurred with a probability of 0.1 in
the training set. The second type of information obtained from the training set was the
probability of digit strings and special strings appearing in the training set.

Using context-free grammar: For the longest time, context-free grammar has been
part of any natural language designed to obtain strings with specified structures through
generation or parsing. PCFG uses this same approach for guessing passwords that are
similar in form to those created by humans. As explained by Weir et al. [34] a context-free
grammar may be defined as G = (V,Σ, S, P), where:

• V is a finite set of variables (or non-terminals)

• Σ is a finite set of terminals

• S is the start variable

• P is a finite set of productions of the form α → β where α is a single variable and β

is a string consisting of variables or terminals

Probabilistic context-free grammars assign a probability to each production, in such a way
that for any particular left-hand-side variable, all the productions with this variable as the
LHS add up to 1. Given these training sets, PCFG produces one set of productions that
generates base structures and another set that generates terminals comprising digits and
special characters. An example of such a set of production that generates base structures
is as follows:

S → L1D1S1 (P = 0.50)

S → L3D1S1 (P = 0.30)

S → L2D1S1 (P = 0.20)

An example of such a set of production that generates terminals is as follows:

D1 → 1 (P = 0.50)

D1 → 2 (P = 0.25)

D1 → 3 (P = 0.25)

S1 → ! (P = 0.40)

S1 → @ (P = 0.30)

S1 → # (P = 0.30)

The probability of a sentential form, which is a string derived from the start symbol, is the
product of the probabilities of the productions used in its derivation. For example, with

21

the grammar S → L3D1S1 → L32S1 → L32#, the pre-terminal L32# will have probability
0.3 ∗ 0.25 ∗ 0.3 = 0.0225.

The grammars we derive are unambiguous context-free grammars. Given a pre-terminal
structure, a dictionary is used to derive a terminal structure, and this is your password
guess. For example, if you have a dictionary that contains {cat, hat, stuff, monkey},
the pre-terminal structure L34! would generate the following two guesses, the terminal
structures: {cat4! hat4!} since those are the only two dictionary words of length three.

22

4.3.2 Markov Models [31]

Markov Models are a major password-cracking technique and were popular, especially be-
fore the inception of deep learning. More specifically, Markov Models gained such great
popularity in the natural language processing and text area because they are conditioned
to predict the order of characters based on probability relations. They are used to guess
the following characters in a password, given patterns of characters used by real users to
formulate passwords, and they perform very well in creating probable password permuta-
tions.

The main idea behind Markov-based password guessing is to use the relationships between
adjacent characters in a password to predict the next character. This concept is based on
the observation that letters in human-generated passwords are not chosen independently
but follow certain regular patterns. For example, in English, the sequence "th" is much
more common than "tq," and the letter "e" is likely to follow "th."

In a Markov Model, the probability of a password of length m (denoted as c1c2 . . . cm) is
estimated using the formula:

P (c1c2 . . . cm) = P (c1c2 . . . cn)

m∏
i=n+1

P (ci|ci−n+1 . . . ci),

Where n defines the number of history characters used to predict the next character. This
is also referred to as the order of the model. The combination of n history characters
and the predicted character forms an (n + 1)-gram fragment. For instance, in a 2-gram
(bigram) model, the next character is predicted based on the previous character.

Before using Markov Models to guess passwords, we need to train it on a real pass-
word dataset to infer the initial probabilities, P (c1c2. . . cn), and transition probabilities,
P (ci|ci−n+1. . . ci), with respect to a given order n, in order to use them for password guess-
ing. Actually, this will cut each password in the training set into (n+ 1)-gram fragments.
All the (n + 1)-gram fragments in the training dataset are sorted with respect to their
conditional characters, that is, the first n characters of each fragment. Then, for every
group, the probability of each (n + 1)-gram is calculated.

Suppose an example of training a 2-order Markov Model with the following passwords in
the training dataset: "password," "passphrase," and "passcode." Sure, the train breaks
these passwords down into bigrams (2 grams) like "pa," "as," "us," etc. Then, it will
determine transition probabilities, for instance, the likelihood that "a" follows after "p"
or that "s" succeeds "a." These probabilities are used to predict the next character when
generating new password guesses.

For example,

• The probability of "a" given "p" might be high if many passwords in the training set
contain "pa.".

• Similarly, "ss" might frequently follow "as."

These probabilities are then used by the Markov Model in the generation of probable
password guesses by predicting the next character with respect to the previous characters.

23

4.3.3 Machine Learning-Based Attacks [31]

Machine Learning methods have improved password-guessing strategies. The techniques
leverage high-end algorithms that enable the prediction of passwords more effectively than
traditional methods. In this section, an overview is presented of how different Machine
Learning techniques have been applied in password guessing.

Recurrent Neural Network (RNN)

Recurrent Neural Networks are specialized for sequential data, as in time series signals and
natural language. This processing step by sequence can be done one at a time, with the
output from one influencing the next. However, it has been shown that standard RNNs
do not work too well on very long sequences due to the vanishing gradient problem. Long
Short-Term Memory Networks were created to resolve this problem. LSTMs are basically a
type of RNN designed to handle long-term dependencies. The first LSTM-based password
model was presented by Melicher et al. [16]. This model uses a 3-layer LSTM to predict the
next character of a password based on previous characters. For example, for the password
"pass12", it first predicts the probability of ’p.’ Using this ’p,” it predicts ’a’a, and so on,
until the whole password is predicted. One-hot encoding is applied, where each character
gets converted into a numerical vector, and the characters correspond to unique vectors.
This does quite a good job of predicting the probability distribution of every subsequent
character in a password.

Encoder-Decoder Architectures

The Encoder-Decoder architecture is another approach that captures how people reuse
passwords. The pass2path model is one such example which uses a 2-layer LSTM with
residual connections. For example, this architecture predicts transformation paths such
as substituting, inserting, or deleting characters to form new passwords. That is, the
encoder maps the input password into a latent vector, whereas the decoder generates
transformation sequences to produce new password candidates. This method emphasizes
password distribution and transformation rather than direct prediction.

Deep Generative Models

DGMs learn the distribution of training data to generate new passwords. Among them,
two common approaches are Generative Adversarial Networks and Autoencoders.

• Generative Adversarial Networks (GANs): Proposed by Ian Goodfellow [8], GANs
consist of a generator and a discriminator. The generator generates the password
samples that are, in nature, fake, while a discriminator is trained to distinguish
between the real and fake samples. In the process of this adversarial training, the
generator learns to generate very realistic passwords.

• AutoEncoders (AE): These map the input data to a latent space and reconstruct it
from there. Examples include variational AEs (VAEs) and adversarial AEs (AAEs),
where the latent space follows some distribution that allows one to sample new data.
They can learn complex distributions over passwords and generate a variety of high-
quality password guesses.

24

Hybrid models

Hybrid approaches combine several methods for guessing passwords. For instance, we
can combine probabilistic context-free grammars with BiLSTM (Bidirectional LSTM) net-
works. In this approach, PCFG is used to create the base structure of the passwords, and
then these structures train a BiLSTM network. This will enable us to use all the power-
ful features of grammar and neural network approaches in one approach since it returns
structurally correct, contextually accurate passwords.

4.3.4 Summary

Technique Description
Probabilistic
Context-Free Gram-
mar (PCFG)

Generates password guesses using a probabilistic model fol-
lowing linguistic patterns and structures from known pass-
words. Effective at real password guessing.

Markov Models This technique makes use of Markov chains in guessing prob-
able character sequences involved in passwords and is there-
fore based on some statistical analysis of password datasets.

Machine Learning-
Based Attacks

This makes use of machine learning algorithms that learn
patterns from large datasets of passwords, hence improving
the efficiency and success rate of these guessing attacks.

Table 4.2: Summary of Advanced Password Guessing Techniques

25

4.4 Password cracking tools

A good number of tools and software have been developed to help with password cracking
and security analysis processes in cybersecurity. These range from very simple scripting
tools targeting brute force attacks to very complex programs that make use of advanced
techniques such as John the Ripper, Hydra, and Hashcat.

4.4.1 John The Ripper

John the Ripper1 is a very popular and powerful open-source password-cracking tool. Most
importantly, it is applied in the recovery of passwords from hash values, and so is an offline
password-cracking tool. Most security professionals and ethical hackers use it to test the
strength of passwords and to validate how many weak passwords are assigned in a system.
John the Ripper has many types of password-cracking attacks built in, which include
dictionary attacks, brute force attacks, and hybrid attacks. It works against a great variety
of hash types and encryption algorithms, such as DES, MD5, SHA-1, SHA-256, SHA-512,
and many more. The user can configure this tool according to his requirements. The tool
supports custom rules and expands with extra applicable modules and plugins.

John the Ripper is performance-optimized. Indeed, it uses multiple CPUs and even hard-
ware accelerations like GPUs to increase performance in the cracking process. There is a
large, active community supporting the development and upkeep of this tool. There’s also
a commercial version called John the Ripper Pro, which has a lot of extra features and
optimizations.

The very first step in using John the Ripper is to obtain the password hashes that are to
be cracked. For instance, the /etc/shadow file for UNIX-based systems contains hashes.
Users choose the crack mode that is appropriate for them.

The most common modes are:

• Single Crack: the info from the username and related, etc., is used in guessing pass-
words.

• Wordlist Mode: One uses a dictionary list for common passwords with rules to create
variations.

• Incremental Mode: It tries all permutations of characters (brute-force).

The selected mode and options will start processing the given hashes by running John
the Ripper, which will keep trying different passwords one after another until it finds
corresponding ones or runs out of possibilities. Once you have finished pausing the at-
tack, check your cracked passwords, and accordingly, you can take necessary action, like
informing users to change weak passwords or to make the system more secure.

Ethical hackers use John the Ripper to test password strength in a system and find weak
passwords. System administrators use it to check password policies and enforce stronger
password requirements. In digital forensics, it can be used to recover passwords from seized
devices or data. John the Ripper is a very useful and powerful tool for password cracking
and security testing. Its support in hash types, cracking methods, and customization makes
it invaluable for security professionals in their mission to better systems.

1https://www.openwall.com/john/

26

https://www.openwall.com/john/

4.4.2 Hashcat

Hashcat2 is another very popular and powerful offline password-cracking tool that has been
designed specifically for high-performance cracking. It’s very fast, flexible, and able to
harness a number of hardware accelerations. HashCat is optimized for better performance
and can utilize the power of GPUs, CPUs, and other hardware accelerators. This makes
it considerably faster compared to many password-cracking tools.

Hashcat supports a lot of hash algorithms, such as MD5, SHA-1, SHA-256, SHA-512,
NTLM, WPA/WPA2, bcrypt, Kerberos, and many more. It also supports several attack
modes designed for different reasons of cracking. It could use:

• Dictionary Attack: runs a preset list of possible passwords

• Brute Force Attack: takes all possible combinations of characters

• Mask Attack: similar to brute force but with more control over the pattern of char-
acters

• Rule-based Attacks, which apply rules in modifying entries in a dictionary

• Combination Attack: two or more dictionaries combine words

• Hybrid Attack: combination of dictionary attacks and brute force

It allows users to granularly configure the tool with respect to certain rules, masks, attack
strategies, etc., so as to have an optimum cracking process.

Hashcat works on Windows, Linux, and macOS. It is open source; thus, its development
and improvement are open to the community. To get started in using Hashcat, you must
first gather the hashes you want to crack. These can come from files or databases, among
others. You select the appropriate attack mode depending on the scenario. You define
parameters such as the setup of an attack through the definition of a hash type, dictionary
file, mask, or rules. Then, you successfully run Hashcat with the set options, and it will
efficiently total an attack using available hardware. You then look through the cracked
passwords and perform relevant actions for security enforcement.

4.4.3 Hydra

Hydra3 is a very efficient and widely applied password-cracking tool; this tool is majorly
aimed at network protocol brute force attacks unlike tools like John the Ripper and Hash-
cat, which are primarily used for offline password cracking, Hydra has been designed to
attack online services targeting several network services in a search for valid login creden-
tials.

Hydra comprises many network protocols and thus can be used to test security in various
services. Some of the supported protocols include HTTP, HTTPS, FTP, SSH, Telnet,
SMTP, IMAP, POP3, SMB, RDP, MySQL, PostgreSQL, Oracle, LDAP, VNC, SNMP, and
many others. Hydra attempts logins parallel, so brute-forcing against sequential attempts
is very fast. It allows users to set several options and parameters that adapt the attack
according to their needs by using usernames, passwords, wordlists, and other protocol-
specific options. Hydra is modular. That means it is relatively easy to add new protocols

2https://hashcat.net/hashcat/
3https://salsa.debian.org/pkg-security-team/hydra

27

https://hashcat.net/hashcat/
https://salsa.debian.org/pkg-security-team/hydra

and improve existing functionality. It can either be interactive or run in batch mode, so
it’s flexible for use-case scenarios.

First of all, to use Hydra, you have to identify the target service and the protocol that
you’re going to test. This can be everything from a web login form to an SSH service to
an FTP server.

Gather information; this may further include possible usernames and passwords. Either
predefined wordlists or self-made lists can be used for this purpose. Set a target, protocol,
and other options; list username and password in the Hydra command. After doing that,
run Hydra with the set options. It should be noted that Hydra will try to log into the
service using the provided credentials. Finally, go through the results and see what are
the valid login credentials. If successful, take appropriate actions to secure the service and
prevent unauthorized access.

4.4.4 Medusa

Medusa4 is a robust and fast parallel password cracker. It’s mainly used for online brute-
force attacks against various network protocols and services. In most cases, it plays the
same role as Hydra, although with a few minor differences. Medusa offers support for a large
number of network protocols and services, including FTP, HTTP, IMAP, MSSQL, MySQL,
NCP, POP3, PostgreSQL, RDP, SMB, SMTP, SSH, Telnet, VNC, and many others. This
means that Medusa is able to perform independent login attempts simultaneously, thus
speeding up the brute force process.

Medusa has been designed to be modular, so new modules for extra protocols can be added
straightforwardly. This design finally enables users to change attacks according to their
needs.

The options Medusa provides range from specifying username and password lists down
to specific user–password pairs, with the addition of delay between attempts and other
parameters controlling the process of brute force. It also provides advanced logging and
output options for tracking the progress of any attacks and thus analyzing their results
effectively. To use Medusa, first, the target service and protocol to be tested must be iden-
tified. You can either use the already available large wordlists or create your own. Finally,
specify the target and protocol with other target options like username and password lists
in the Medusa command. Finally, run Medusa with the options configured.

Medusa will attempt to log in to a target service in parallel with the given credentials. After
that, analyze the results for valid login credentials. If successful, do what is necessary to
secure the service and avoid further access by unauthorized entities.

4.4.5 Summary

4https://salsa.debian.org/pkg-security-team/medusa

28

https://salsa.debian.org/pkg-security-team/medusa

Tool Description
John The Ripper One of the most popular open-source password-cracking

tools, designed for brute-force and dictionary attacks, sup-
porting a vast array of password hashes.

Hashcat Very good at password cracking, uses GPUs to enable fast
hashing and supports many different algorithms like MD5,
SHA-1, etc.

Hydra Very fast network logon cracker, which supports many dif-
ferent protocols as well as performs dictionary or brute-force
attacks against remote authentication services.

Medusa This is similar to Hydra, but designed for speed and large-
scale brute-force attacks against remote authentication sys-
tems.

Table 4.3: Summary of Popular Password Cracking Tools

4.5 Password dictionary generator tools

To perform a dictionary attack, we need a good dictionary to enhance the chances of
guessing the password. A password dictionary generator tool helps in the creation of
comprehensive and effective word lists targeting specific targets. This includes common
passwords, phrases, and patterns that users would use, hence increasing the chance of
success in an attack.

4.5.1 Crunch

Crunch5 is a wordlist generator program that is run from the command line and became
very famous due to its usage in password cracking. This tool is very flexible and able to
produce a wordlist based on criteria specified by the user, like character sets, lengths, and
patterns.

The tool supports custom character sets, which means users can specify which characters
are to be used in generating the wordlist; this could be letters, numbers, and special
characters. In addition, it generates variable lengths that can go from a minimum length
to a maximum of user choice in creating passwords of specific lengths.

Then, Crunch allows pattern-based creation. Users can create patterns that can tell how
the generated passwords should look, including the fixed and variable characters. Moreover,
it is possible to save this wordlist into a file or pipe it to other tools directly, like John the
Ripper or Hashcat.

Finally, Crunch can compress the output through gzip. This reduces the storage require-
ments of large-word lists.

Here’s a step-by-step process on how to use crunch:

1. character set definition: This defines what characters to use in generating passwords.
These can comprise letters, either lower or upper-case, numbers, or even special
characters.

5https://github.com/jim3ma/crunch

29

https://github.com/jim3ma/crunch

2. Set the length: This is where you specify the minimum and the maximum password
length for which one is to be generated.

3. Create pattern: Build up patterns as desired to structure the passwords one way or
another. You could, for example, fix some of the characters at particular positions
or maybe vary them within a given set.

4. Generate wordlist: Just simply run the Crunch command prior to specifying all
options. This will have Crunch generate the wordlist, output it to the screen, save it
in a file, or pipe it down to another tool.

30

4.5.2 Cewl (Custom Word List generator)

Cewl6 is a wordlist generator whose referenced words are crawled and scraped from a
website. It is particularly useful for penetration testers or security professionals when they
want to generate any word lists that will have specifications toward a target, like password
cracking or even other social engineering purposes.

Cewl can crawl the target website for words on its pages and compile them into a wordlist.
The depth of the crawl is configurable to specify how many levels of links it should follow.
Cewl can also display the frequency of each word found so users know which words are
most common on a target site.

Besides this, Cewl can extract metadata from the web pages in general for inclusion into
the wordlist. Other various parameters, like minimum word length and user agent string,
can also be defined by the user if needed to further fine-tune how the wordlist is generated.
It can handle words in multiple languages according to the content received from a target
site. Cewl works by crawling a given website to extract words from the HTML content of
pages.

Here’s a step-by-step process to use Cewl:

1. Specify the target URL: This is the source or starting point for where to begin
crawling; users specify this by providing a website URL.

2. Set crawl depth and options: You can set how deep to crawl in addition to other
options to be used, such as a minimum word length and whether to use metadata or
not.

3. Run Cewl: Run the Cewl command with these parameters. It will crawl the site for
you, extract the words, and make a wordlist.

4. Review and use of the wordlist: The above wordlist may be used as it is further
processed for whatever purposes, such as password cracking.

4.5.3 CUPP (Common User Passwords Profiler)

CUPP7 is a wordlist generator designed specially to build custom wordlists based on the
target’s personal information. In this case, it will come in very handy while performing
social engineering attacks since it will generate password lists that have been tailored to
the habits and preferences of a certain individual.

CUPP is a tool that can generate a personalized wordlist through personal information:
it makes use of names, birthdays, anniversaries, hobbies, pet names, and other details.
In interactive mode, CUPP will prompt for words connected with the target to be used
to generate a more personalized wordlist. Also, it has predefined profiles and common
password patterns, which enable the quick generation of wordlists without much input
from the user. CUPP can combine and permute the given data, increasing all kinds of
possibilities regarding the wordlist.

It is still possible, though, to configure input data and settings further in order to get
a more fitted wordlist. In addition, CUPP can merge existing wordlists and introduce

6https://github.com/digininja/CeWL
7https://github.com/Mebus/cupp

31

https://github.com/digininja/CeWL
https://github.com/Mebus/cupp

variations such as leetspeak and many other modifications to increase the quality of a
wordlist.

CUPP gathers information about a target and then uses that information to construct a
wordlist specifically tailored for that target. That procedure comes in the following steps:

1. Gather information: Collect personal information about the target, such as their
name, birthdate, pet names, favorite hobbies, and other relevant details.

2. Information input: This information is requested by CUPP when in interactive mode.
Alternatively, one can load predefined profiles or existing data files.

3. Generate wordlist: Based on the provided information, the wordlist generator of
CUPP creates a wordlist considering several combinations, permutations, and usual
patterns of human-made passwords.

4. Review and use wordlist: One can use this generated wordlist directly for a number
of purposes, such as cracking passwords.

4.5.4 Summary

Tool Description
Crunch This is a wordlist generator tool used in making custom pass-

word dictionaries by specifying character sets, lengths, and
patterns.

Cewl (Custom Word
List generator)

A tool that generates custom wordlists by crawling websites
and collecting keywords, often used to create dictionaries
tailored to specific targets.

CUPP (Common
User Passwords Pro-
filer)

Generates wordlists based on personal information, making
it particularly effective for targeted password guessing at-
tacks.

Table 4.4: Summary of Popular Password Cracking Tools

32

4.6 Defenses Mechanism

4.6.1 Strong Password Policies

Password policies are essential for the security of online systems. They ensure that rules
are put in place, which will allow the user to choose strong and hard-to-guess passwords.
Indeed, much of the recent research done on various facets of password policies has elicited
very useful insights into how they should be designed for security and usability.

According to Sahin et al., [24], the will of the administrators of the websites is one of
the main determinants of how effective password policies will be. Their decisions are
guided by various aspects that address security concerns, compatibility with their systems,
usability based on experience, and compliance with recommended guidelines. For example,
quite often, system administrators choose a certain password length and complexity, which
considers their system limitations while balancing security and user convenience.

A study by Shay et al. [25] has assessed various password-composition policies for their
effect on password security and memorability as a function of both password length and
character requirements. In particular, their results indicate that requiring longer pass-
words, say 12 or 16 characters, with fewer character-class requirements, can be more secure
and more usable than the traditional policy emphasizing complexity over length. This will
help users to construct passwords that are hard to guess but easier to remember.

Tan et al. [30] provided empirical evidence through large-scale analysis regarding password
policies in the wild. Their results show that while a lot of websites require strong or
stringent password compositions, actual implementation varies greatly, and these rules are
far from the latest best practices. The misalignment underlines how key it is to have one
unified message that administrators can easily implement for assurance of security while
ensuring usability.

There are challenges in setting effective password policies. First, the technical and logistical
issues involve the deployment of new policies, one of the common challenges administra-
tors come across. Compatibility constraints, especially knowing that database character
limitations and software limitations frequently fail to allow the kind of passwords that
can be implemented. Second, the establishment of much safer policies is hindered by out-
dated mental models and reluctance to change. Modern password policy is hard to deploy
and maintain at the best level without better software support and educational means for
administrators [24].

Guo et al. [9] proposed a dynamic, personalized password policy based on individual per-
sonality traits. This strategy was designed to enhance both security and usability by
tailoring the policies to users’ preferences and cognitive competencies. They showed in
their experiment that DPPP could generate stronger passwords against guessing attacks;
at the same time, usability is at least comparable with the traditional policy.

33

4.6.2 Hashing and Salting

Hashing and salting are two important and widely used techniques to make password
security powerful. These approaches guarantee protection of the original passwords from
a number of different attacks, including guessing attacks, even in the case when password
databases have been compromised.

Hashing is a cryptographic procedure in which plaintext passwords are transformed into a
fixed-length string of characters, making it look like random data. This process is one way:
it is computationally impossible to reverse the hash and discover the original password.
Common hashing algorithms are MD5, SHA-1, and SHA-256.

The first major advantage of hashing is its one-way nature; it actually makes sure that the
password will not be easily recovered. Still, hashing in itself is not nearly enough to secure
a password from all kinds of attacks. For instance, attackers may use rainbow tables to
compare hash values against their corresponding plain text passwords. This then brings
in the role of salting.

Salting is the process of performing additional operations on the original data before that
data is hashed. In this case, a unique, randomly generated string of characters is added to
each password before it becomes hashed. This guarantees that even if two users share the
same password, their hashes will be different due to the presence of unique salts, which
effectively prevents using precomputed tables to crack the passwords.

Ebanesar and Suganthi [28] showed the practical implementation of salted hashing in their
work using the SHA-256 algorithm. They used a strong random generation of salts for
each password, and thereby, the hashed values that were salted correspondingly. They
have increased security to a feasible extent since every user’s password gets concatenated
with a different salt, so no attacker can use either brute force or dictionary attack efficiently
in their application.

In 2019, Sutriman and Sugiantoro [27] established that there are several schemes for com-
bining passwords and salts that enhance hash algorithm security. They had implemented
different schemes of combining passwords and salts before applying the hash function.
Such complex combinations of passwords and salts help to increase the difficulty of crack-
ing hashes and eventually increase the level of security.

The study examined three different schemes:

1. hash(rearrangement(password, salt))

2. hash(rearrangement(password, salt) + salt)

3. hash(hash(rearrangement(password, salt)))

Scheme 2, whereby the salt is included after permutation of the password and salt combi-
nation, is highly secure since it prolongs the cracking time to the optimum. This illustrates
the point that it is not just the salt that is added but the very structured way in which
the way it is added brings about enhanced security.

Karrar et al. [11] explored the use of swapping elements in an array as part of a salting
technique to enhance password security. Their approach involved rearranging passwords
and salt characters to create more complex inputs for the hash function. This method

34

adds an additional layer of security by making the hash values even harder to predict or
reverse-engineer.

Finally, hashing and salting are two inseparable techniques in password protection. Al-
though password protection is guaranteed with storage by hashing, salting creates a unique
password for storage. These well-enforced strategies greatly reduce the risk of password-
guessing attacks, consequently improving security overall.

4.6.3 Rate Limiting and Account Lockout

Password rate limiting and account lockout are two of the major security features against
password-guessing attacks. These techniques can make a difference in mitigating the risk
of unauthorized access by controlling how many login attempts an attacker may attempt
within any given timeframe.

Basically, the principle of rate limiting ensures that only a specified number of attempts
is allowed for successful login within a certain period. This security measure is put in
place to help decelerate attacks in the event that attackers automate their activities using
automated tools to crack your passwords. Rate limiting helps prevent password-guessing
attacks by reducing the speed of logins against the system.

Lu et al. (2018), for instance, conducted a study on authentication rate-limiting mecha-
nisms for 182 websites in the Alexa Top 500 list. Their results showed that 72% of these
websites (131 out of 182) would permit frequent, failed login attempts without appropriate
mechanisms to rate-limit them. In fact, a study showed how poor rate-limiting implemen-
tations are common and pointed out how strong a defense needs to be implemented. The
researchers suggested a black-box approach to modeling and validation of rate-limiting
mechanisms, showing that many websites allowed attackers to test passwords at rates that
could lead to account compromise. They suggested that websites create much stricter
rate-limiting policies in order to enhance security.

In addition to rate limiting, account lockout mechanisms turn off a user account temporarily
based on the number of failed login attempts made. In this manner, attackers cannot keep
guessing but are forced to wait or contact support to recover an account.

Liu et al. [15] have assessed the vulnerability of account lockout attacks at the organiza-
tional level and suggested various countermeasures against this vulnerability. Their study,
in the context of Microsoft services, revealed that 58%–77% of the studied organizations ex-
posed authentication portals to lockout attacks. The countermeasures are, therefore, very
important to know—keeping in mind their easy performance and minimal requirements.

In view of these vulnerabilities, Liu et al. [15] proposed some lockout bypass mechanisms
for legitimate users. The evaluation results of those solutions show very high effectiveness,
and the overhead of the network and systems was minimal. These mechanisms include:

• Strict authentication pools: These create separate pools for the authentication at-
tempts based on user behavior and network characteristics, so legitimate access can
preclude lockouts.

• Residential Network Tokens: Using TCP cookies, requests from known residential
networks can be authenticated so that under all circumstances, including attack,
unlimited access is provided to legitimate end users’ accounts.

35

• User-Supplied Tokens: This would involve embedding non-public values within user-
names in a bid to differentiate the legitimate request from malicious attempts.

Advanced techniques, on the other hand, for example, DALock by Blocki and Zhang [4],
fortify the conventional mechanisms of rate limiting and account lockout. It maintains
awareness of password distribution through a strike count and a hit count, which considers
the popularity associated with the frequency of incorrect passwords guessed. Frequency
oracles model the popularity of passwords using the hit count and the strike count to drive
these lockout decisions.

Simulations demonstrated that DALock also offers a much better security/usability trade-
off when compared to traditional K-strike mechanisms (account locked after K failed
attempts). By distinguishing common typographical errors from suspicious behavior,
DALock lowers the success rate of guessing attacks without unreasonably locking out le-
gitimate users.

In conclusion, rate limiting and account lockout are important parts of password security.
Properly designed rate limiting and account lockout mechanisms, in combination with
adaptive policies and more advanced techniques, such as DALock, would improve system
security without usability implications. Therefore, reaching a balance between user con-
venience and blocking unauthorized access to organizational systems would protect them
against denial-of-service attacks and create a safe yet friendly environment for authentica-
tion.

4.6.4 Multi-Factor Authentication (MFA)

Multi-factor authentication (MFA) is important in security strengthening. In this regard,
MFA makes any access considerably more secure by requiring users to provide several forms
of identification before access is granted.

MFA involves the use of two or more independent credentials from different categories:
knowledge-based authentication (e.g., password), possession-based authentication(e.g., smart
card), and biometric-based authentication (e.g., fingerprint). It is by these factors that
MFA gains its inherent layered defense through their combination, which makes it much
harder for an attacker to gain access.

One of the strengths of MFA is that it reinforces the reduction of risks in security breaches.
According to Papathanasiaki et al., [20], MFA indeed mitigates vulnerabilities associated
with single-factor authentication (SFA). In most scenarios, passwords alone turn out weak
and are easily compromised, but a second factor coupled with them improves security
considerably.

For example, even if the attacker does manage to get a user’s password, a second factor
(whether it be a physical token or biometric verification) will still be required to enable
them to log in. This multilayer approach creates a critical layer of protection for informa-
tion and protection of the integrity of systems.

Where the security benefits of MFA are obvious, their implementation and usability matter
equally. Singla and Verma [26] underline that the effectiveness of MFA depends on how
frictionless it can be integrated into the workflow of the user. If it creates too much
friction in the process, users may find ways to bypass it, and this situation will undermine
its security benefits.

36

To address this, modern MFA solutions try to strike a balance between security and usabil-
ity. For instance, biometric methods, either fingerprint or face recognition, are user-friendly
but very secure. These can be used quickly and with much ease, and they do not require
any extra information to be memorized or an extra device to be carried.

Even with its advantages, MFA is not free from challenges. Probably the most important
among these is usability issues, mainly when extra steps needed for authentication are
perceived as inconvenient. According to Papathanasaki et al., [20], user acceptance plays
an important role in the success of MFA implementations. Being secure and convenient
must, therefore, be mandatorily designed into a system.

Another problem is integrating MFA within existing systems and applications. Singla and
Verma [26] describe the complexities in diffusing MFA across different platforms and guar-
anteeing compatibility with a number of technologies; this quite often requires expensive
resources and high-level expertise that may not be available in every organization.

Modern developments in MFA are heading toward supporting both security and usability,
such as adaptive MFA. It adjusts the level of authentication based on the context of a login.
These factors include a user’s location, device, and standard use patterns to determine
whether further verification is necessary or not.

According to Singla and Verma [26], adaptive MFA would further smoothen the user ex-
perience while keeping the high-security levels intact. For instance, in such a system, if
one attempts it from trusted devices at usual locations, then probably one factor will be
required. On the other hand, in case of attempts from unknown devices or locations,
multiple factors would be required.

Multi-factor authentication is one of the most promising ways to secure digital systems,
imperfections and all. Backed by multiple verification modes, MFA builds a very strong
defense against unauthorized access, thus raising the security bar. However, careful im-
plementation with a balance between security and usability is still required. It will be an
adaptive, user-friendly MFA in times ahead that will play an important role in shielding
sensitive information in a more digital world.

4.6.5 Summary

37

Defense Mechanism Description
Strong Password
Policies

Ensures that a long and complex password is necessarily used
to reduce the probability of successful password-guessing
attacks. Encourage the use of passphrases, avoiding pre-
dictable patterns.

Hashing and Salting use of cryptographic hashing and adds salt to each password
individually before hashing, so rainbow table attacks would
not work anymore

Rate Limiting and
Account Lockout

The constraint on the number of login attempts within a
time period evades online brute-force attacks. Principally,
account lockout or CAPTCHA techniques are used after a
certain number of failed attempts.

Multi-Factor Au-
thentication (MFA)

It will require other forms of verification, like security tokens
or biometric verification, in addition to the password. This
would bring down the risks associated with unauthorized
access in case your password gets compromised..

Table 4.5: Defensive Mechanisms Against Password Guessing

38

Chapter 5

Role of PII in Password Guessing

5.1 Introduction of PII

During password guessing attacks, there is one important factor that really separates tar-
geted from trawling, and this is the use of data specific to a user, variously called either
personal information or personally identifiable information (PII). Personal information
forms the basis necessary for making the targeted guessing attack more accurate and ef-
ficient. PII simply refers to any information that identifies an individual, and this may
include data such as names, birthdates, addresses, phone numbers, and even social media
information.

Personal information can be divided into three major categories [32], each having a different
level of secrecy and relevance to the passwords:

1. Personally Identifiable Information (PII): This category represents semi-public data
such as a name, birth date, and phone number. These are typically known to friends,
colleagues, and acquaintances but private beyond these circles. PII can further be
broken down into:

• Type-1 PII: These are the basic building blocks of passwords, such as names
and birth dates, and users often set them in as parts of their passphrases.

• Type-2 PII: like gender and education which might influence password creation
behaviors, but which are not used in the password themselves

2. User identification credentials: These could be usernames and passwords. A user-
name would be the end user’s public identification, while a password would be con-
sidered private and secure.

3. Other personal data: Generally not used for the guessing of passwords, such as the
person’s employment records or financial data.

Attackers make use of PII to guess passwords more efficiently and effectively. Most people,
in most cases, develop their passwords using their personal information. This implies that
if this information is compromised, it is a simple guess of their password. For example, a
person’s name and date of birth can be used to derive passwords such as "John1985" or
"JaneDoe123.".

Also, users tend to reuse or slightly modify their passwords across different sites. In fact,
sister passwords may be easily retrievable by the attacker due to data breaches [10], making
the benefits of targeted guessing attacks generally worse.

In other words, the role of PII in targeted password-guessing attacks is big. To that end,
highly targeted guesses regarding personal details will then be made by the attackers, rais-
ing the possibility of success to a larger extent. In that regard, users and organizations

39

should always be aware of these risks. We can minimize the threats that emanated previ-
ously from the misuse of PII in password guessing through strong password practices and
being careful with what we share online.

5.1.1 Summary

Aspect Description
PII information that can directly or indirectly identify an indi-

vidual, including names, birthdates, addresses, phone num-
bers, and social media information. Attackers normally use
PII to target guessing attacks in order to increase the chances
of success in password guessing.

Types of PII There can be two types of PII: Type-1 and Type-2 PII. Type-
1 holds the basic blocks of PII that are usually used in a
password. Examples include names, birth dates, etc. Type
2 includes information like gender and education that affect
password formation behavior but are not used in passwords
as such.

PII and Password
Reuse

With users usually either just repeating or only slightly mod-
ifying passwords at hundreds of sites, compromised PII will
make password guessing much easier since the attackers can
predict the variations from the available personal informa-
tion.

Table 5.1: Overview of PII in Password Guessing

40

5.2 Password Guessing Frameworks based on PII

5.2.1 Personal-PCFG

Personal-PCFG was proposed in 2016 by Li et al. [14] and is based on the basic idea of the
PCFG method developed by Weir et al. [34] (described in section 2.5.2) and provides an
extension to further improve its efficiency.

Instead of only using L, S, and D symbols, it uses more semantics symbols like, for example:
"B" for birthdate, "N" for name, "E" for email address, "A" for account name, "C" for
cellphone number, and "I" for ID number.

Personal-PCFG contains 4 phases [14]:

• Personal Information Matching: For every password, the algorithm searches for its
presence or substring in a user’s personal information. The length of each matched
segment is recorded, and each unmatched segment of the password is left as it is.
For instance, if Alice’s birth date is 16th August 1988 and she uses her password to
log "helloalice816!" then in the matching phase, the word "Alice" will be replaced by
"N5" and "816" would be replaced by "B3". The other part that is left is "hello."
Hence, the resultant string will be "helloN5B3!".

• Password Pre-processing: This stage is similar to the original PCFG pre-processing
routine but eliminates segments matched to personal information from additional
analysis. The output of the personal information matching stage then gets incorpo-
rated back to update the password structure. For instance, the string "helloN5B3!"
is then converted into "L5N5B3S1".

• Guess Generation: The procedure of this step is similar to the underlying PCFG,
whereby all "D" and "S" symbols are replaced with some actual strings of words seen
in the training set. "L" symbols are replaced with words from a dictionary. Guesses
are continually formed without waiting for all possible guesses to be computed and
sorted. For instance, the phrase "L5N5B3S1" gets converted to "helloN5B3!" if the
very first 5-letter word in the dictionary is "hello" and the most probable special
symbol is "!" having only one character. In this regard, it is assumed that all words
with the same length would have an equal probability within the dictionary.

• Adaptive substitution: Unlike the original PCFG, Personal-PCFG requires guesses
to be further instantiated with user-specific personal information. Each personal
information symbol is replaced with the corresponding user-specific information of the
same length. Multiple candidates of the same length are included for trial if available.
For instance, in "helloN5B3!", the substring "N5" is replaced with "Alice." For "B3",
multiple substrings of "19880816" are tried, resulting in guesses like "helloalice198!,"
"helloalice988!,"..., "helloalice816!" Each candidate guess is tested until one matches
the target password.

Personal PCFG outperforms regular PCFG significantly, both in online and offline attacks.
For instance, for the moderate-sized 500,000-guess corpus, Personal-PCFG demonstrates
the same recognition rate that the original PCFG does with over 200 million guesses. It will
be only efficient across various tests insofar as Personal-PCFG will be capable of cracking
a good number of passwords with a restricted number of guesses. The numbers in the
results point out that Personal-PCFG can crack up to 4.8% of passwords within just five

41

guesses compared to only 0.9% for the original PCFG.

42

5.2.2 TarGuess-I

Targuess-I [32] is a model to guess a user’s passwords online using type-I PII, for instance,
name and birthdate. The approach of the authors is primarily based on the algorithm by
Weir et al. [34] using PCFG. This has already been significantly successful in password-
guessing trawling scenarios. In its training process, PCFG sees that these passwords are
made up of letter, digit, or symbol segments. For instance, the password "iloveyou@1314"
can be parsed to obtain the L-segment "iloveyou", the S-segment "@", and the D-segment
"1314" to form the basic structure L7S1D4. Similarly, "wanglei1982" is then parsed into
L7S1D4.

The TarGuess-I algorithm introduces type-based PII tags like N1, B1, or N7. The subscript
number defines the subtype of the PII tag. For instance, N1 uses the full name, whereas an
abbreviation of the full name uses N2, and B1 refers to a full birthdate in year-month-day
format. This technique refines conventional PCFG by the inclusion of PII segments in
a manner supporting more personalization in guessing. This gives rise to a PII-enriched
context-free grammar GI = (V,Σ,S,R),where [32]:

1. S ∈ V is the start symbol.

2. V = {S;L,D, S;N1, , N7;B1, , B10;A1, A2, A3;E1, E2, E3;P1, P2; I1, I2, I3} is a finite
set of variables, where:

• N : Name

– N1: full name (e.g., johndoe)

– N2: abbreviation of the full name (e.g., jd)

– N3: last name (e.g., doe)

– N4: first name (e.g., john)

– N5: 1st letter of the first name + last name (e.g., jdoe)

– N6: for last name + the 1st letter of the first name (e.g., doej)

– N7: last name with its 1st letter capitalized (e.g., Doe)

• B: Birthday

– B1: full birthday in YMD format (e.g., 20000101)

– B2: full birthday in MDY (e.g., 01012000)

– B3: full birthday in DMY (e.g., 01012000)

– B4: date in birthday (e.g., 0101)

– B5: year in birthday (e.g., 2000)

– B6: Year+Month (e.g., 200001)

– B7: Month+Year (e.g., 012000)

– B8: last two digits of year + date in MD format (e.g., 000101)

– B9: date in MD format + the last two digits of the year (e.g., 010100)

– B10: date in DM format + the last two digits of the year (e.g., 010100)

43

• A: Account name

– A1: full account name (e.g., jdoe123)

– A2: the (first) letter segment of account name (e.g., jdoe)

– A3: the (first) digital segment of account name (e.g., 123)

• E: Email

– E1: full email prefix (e.g., johndoe00)

– E2: first letter segment of email prefix (e.g., johndoe)

– E3: first digital-segment of account name (e.g., 00)

• P : Phone number

– P1: full number (e.g., 0123456789)

– P2: first three digits (e.g., 012)

– P3: last four digits (e.g., 6789)

• I: Chinese National Identification Number

– I1: last 4 digits

– I2: first 3 digits

– I3: first 6 digits

3. Σ = {95 printable ASCII codes, Null} is a finite set disjoint from V and contains all
the terminals of GI .

4. R is a finite set of rules of the form A → α, with A ∈ V and α ∈ V ∪ Σ

Such a guessing process will exploit the longest prefix rule and incorporate all valid PII
segments learned during the training phase to achieve possible accuracy. For example,
assuming that john06071982 is matched to John Smith’s account name "john0607", under
the longest-prefix rule, it will parse A1B5 and not N3B2. Provided that abbreviations occur
on the birth date, the corresponding tag will be replaced by the full segment so that both
full and abbreviated data segments are created. For example, both "john06071982" and
"john671982" will be generated provided that the pattern N4B2 is employed for password
guessing.

These tags based on types of PII can be easily extended to support any type of PII.
For example, if a researcher wants to consider new semantic usages like a hobby, then
corresponding type-based tags like H for a hobby can be added. During the generation
phase, the guessing algorithm will not parse passwords with tags and symbols undefined
in the training data to make the model robust.

TarGuess-I is evaluated against the 12306 dataset. It can account for a target user given
only the email; name and birthdate are very successful in TarGuess-I’s guessing of a target
user’s password at an average chance of 20.18% within the first ten guesses. It drops
to 13.61% with name and birthday only. This proves that email, account name, and
birthdate are of high value regarding online attacks, tremendously increasing the success
rate compared to Personal-PCFG.

44

By combining type-based PII tags and PCFG, TarGuess-I gives a more accurate and ef-
ficient model for password guessing. It outperforms the previous models across many
scenarios.

45

5.2.3 Targuess-II

TarGuess-II [32] is a method for guessing a given user’s password, PWx, at a given service
using his sister password, PWs, at another service. This problem is quite challenging
because of the usually small number of allowed guesses in online attacks and the large
existing number of transformation rules applicable to passwords.

TarGuess-II is data-driven. Here, it reuses password pairs: a password leaked from some
other similar service and the target password. The underlying concept is to match email
and username pairs, creating valid non-identical sister password pairs. This creates a set
of transformations applied to PWs to generate possible PWx guesses.

Now, the training process of TarGuess-II is to measure how likely PWs is derived from
PWx. If PWs happens to be a popular password, then this increases the likelihood of
matching. The technique encompasses parsing passwords into segments like L, D, and
S and further applying several kinds of transformations in the line of insertion, deletion,
capitalization, and string movement.

1. Segment-level Training: This first step is done in calculating the segment similarity
of PWA and PWB by implementing structure-level insert and delete rules using the
Levenshtein distance (LD) algorithm to modify the segments.

2. Training Transformations: Training of several transformation rules can be done, such
as:

• Insertion/Deletion: Training includes rules at both the structure and segment
level. (e.g., L3D3 → L3D3S2 or even L3 : abc → L2 : bc))

• Capitalization: Training includes odds on various types of capitalization. (e.g.,
abc123 → Abc123)

• Leet: Training includes odds on various types of leet transformation. (e.g., L1:
a ↔ @)

• String Movement: Looks for the movement of substrings in the password. (e.g.,
abc123 → 123abc)

• Reverse Operations: Training to reverse segments or the entire password. (e.g.,
abc123 → 321cba)

46

5.2.4 Targuess-III

TarGuess-III [32] guess a user’s password by exploiting one of the user’s sister passwords
alongside some PII. Actually, this is realistic since, after knowing a user’s sister’s password,
an attacker can obtain most of the PII, like email addresses or even names. This method
focuses mainly on type-1 PII uses, such as name and birthday-related cues.

While more available information may sometimes complicate guessing due to the challenge
of having few guesses available, it usually makes guessing more complicated. Suppose
an attacker is to guess the eBay password of Alice Smith. The password has to be at
least eight characters. An attacker knows that Alice was born in 1978 and that one of
her passwords that was revealed after the leak from Yahoo was "Alice1978Yahoo.". They
might make guesses like "Alice1978eBay," "Alice1978," and "12345678." Determination of
which to mention first needs an adaptive model that includes PII.

Targuess-III achieves this by extending the grammar used in TarGuess-II with PII-based
tags. This means it is a PII-enriched, password reuse-based grammar. It includes six types
of PII usages as with Targuess-I and adds a number of type-based PII tags. In the training
phase of TarGuess-III, the parsing of passwords annotated by PII tags undergoes execution
before applying six structure-level transformation rules. During the guess generation phase,
terminals and pre-terminals are produced by the grammar. Pre-terminals are intermediate
guesses containing PII-based tags.

Suppose Alice’s password at Yahoo was "Alice1978Yahoo." TarGuess-III is able to parse
this into something such as N5B5W1, where N4 stands for the first name, B5 for the birth
year, and W1 for the website. This structure could then create a guess like "Alice1978eBay"
with high probability because it entails minimal transformations.

Experiments have shown that TarGuess-III performs very well. Even in the cases where
a user does not reuse exactly the same passwords among different services, TarGuess-III
can still achieve a success rate as high as 23.48% within 100 guesses. Besides, out of those
passwords that TarGuess-III failed to guess, over 80% of them have a huge difference from
the original one.

47

5.2.5 Targuess-IV

TarGuess-IV [32] is a rich password-guessing model that enhances its power by integrating
both type-1 and type-2 PII with a sister password of the user. This method solves the
problem of integration of type-2 PII, such as gender, which cannot be directly measured
in the classical sense through methods such as PII tag-based PCFG grammars or Markov
n-grams. In this regard, TarGuess-IV makes use of Bayesian theory and by proving the
following theorem:

Let pw denote the event that the password pw is selected by U for a service, pw′ denote
the event that pw′ was selected by U for another service and was leaked, and Ai (where
i = 1, 2, . . . , n) denote one kind of user PII attributes, including both type-1 and type-2
ones. The theorem states:

Pr(pw|pw′, A1, A2, · · · , An) =

∏n
i=1 Pr(pw|pw′, Ai)

Pr(pw|pw′)n−1
,

Under the assumptions that A1, A2, · · · , An are mutually independent and that they are
also mutually independent under the events pw and (pw, pw′).

The key insight with TarGuess-IV is that the blend of type-1 and type-2 PII increases the
rate of password-guessing successes. Given a sister password to that user from another
service, together with multiples of PII attributes, a model can make better guesses. This
theorem applied in TarGuess-IV details how to compute the probability of guessing a
user’s password given the inclusion of those PII attributes and thus represents a "divide-
and-conquer" approach for the integration of multiple types of PII.

It is also reflected in the improvements of TarGuess-IV over its previous versions. For
instance, these are 24.51% and 30.66% with 100 and 1,000 guesses correspondingly when
this type-2 PII, like gender, is used by TarGuess-IV to achieve very remarkable success
rate improvements. This already outperforms TarGuess-III due to the consideration it has
for type-2 PII.

This clearly devolves to the fact that including more personal information within the algo-
rithm very highly improves the attack success rate in password guessing, making TarGuess-
IV a very effective tool.

48

5.2.6 Targuess-I-H and TarMarkov-H

Targuess-I-H

In addition to type-based PII tags from Targuess-I [32], Targuess-I-H [6] use HFS as a new
grammar tag. Its grammar GTarGuess−I−H = (S,V,Σ,R) is described as below by Dong
et al. [6]:

1. S ∈ V is the start symbol;

2. V = {S;Ln, Dn, Sn;Nn, Bn, An, En, In, Pn;H
i
n; ϵ} is the set of grammar tags, where

(a) Ln, Dn, Sn are the grammar tags of basic PCFG [34], representing the letter,
digit, and symbol strings of length n, respectively;

(b) Nn, Bn, An, En, In, Pn are the grammar tags of TarGuess-I [32], representing the
different forms of Name, Birthday, User name, Email, ID number, and Phone
number distinguished by the number n;

(c) H i
n is proposed in the paper [6] for the first time, representing the set of strings

ranked i among those substrings of length n in descending order of frequency;

(d) ϵ is the terminator;

3. Σ is the set of 94 printable ASCII characters.

4. R is a finite set of rules of the form A → α, with A ∈ V and α ∈ V ∪ Σ

TarMarkov-H

TarMarkov is a sequence model predicting the next state of a string conditioned on its
current state at time t. Dong et al. [6] introduced a new state, HFS, into TarMarkov
and a new targeted password probabilistic model entitled TarMarkov-H. Its grammar
GTarMarkov−H = (S,V,Σ,R) is described as below by Dong et al. [6]:

1. S ∈ V is the start symbol;

2. V = {S;Nn, Bn, Un, En, In, Tn, H
i
n,Σ; ϵ} is the state set, where

(a) Nn, Bn, Un, En, In, Tn and H i
n have the same meaning as the corresponding

grammar tags in TarGuess-I-H, except that they represent different states in
TarMarkov-H;

(b) Σ is the set of 94 printable ASCII characters;

(c) ϵ is the terminator;

3. R is a finite set of markov state transition rules of the form s1 → s2, with s1, s2 ∈ V∗.

HFS

In a password dataset, HFSs are password substrings with a frequency exceeding a certain
threshold, and they can be identified by taking the following steps [6]:

1. Record the count C(ps) of each password substring ps with the length n ≥ 3;

2. Set the threshold T1 and delete the substrings with a count less than T1;

49

3. Modify the substring count record as

C(ps)
new = C(ps)

old −
∑

c∈Σ [C(c+ ps)
old + C(ps + c)old],

where C(ps)
old is the original count record of ps, and c + ps and ps + c respectively

mean that the character c is concatenated to the beginning and end of ps;

4. Set the threshold T2 and identify ps as a HFS if C(ps)
new ≥ T2;

5. Store HFSs with the same length n into the set Hn(n ≥ 3), arrange them in descend-
ing order of count, and denote the set of substrings ranked i in Hn as Hi

n.

5.2.7 Summary

Framework Description
Personal-PCFG An extension of the method of probabilistic context-free

grammars, this framework personalizes information such as
names and birth dates as part of the password structure,
hence increasing the efficiency in guessing passwords tremen-
dously by using semantics specific to the individual.

TarGuess-I A framework designed to utilize Type-1 PII for generating
the targeted password guesses. It exploits common PII ele-
ments, like names and birth dates, to improve the probability
of guessing.

TarGuess-II Focused on guessing a user’s password based upon knowledge
of a sister password from another service. Different types of
transformations, according to personal information, generate
all possible passwords for this target service.

TarGuess-III Makes targeted guesses by combining a user’s sister pass-
word with PII. That is, this approach uses the structure
of known passwords but generalizes them using PII-specific
tags, thereby improving guessing accuracy.

TarGuess-IV Represents an extension of past TarGuess frameworks to
front-run more complex transformations and added PII data
types for even more precise password guessing.

TarGuess-I-H A further improvement on TarGuess-I by incorporating into
the grammar an HFS tag that ranks password substrings
based on their frequency of use, improving guess accuracy
by focusing on commonly used substrings more.

TarMarkov-H A model that puts a combination of Markov models with
the High-Frequency Substring approach to build a sequence
model, which is going to predict what the next likely pass-
word substring will be, given frequency and the current state,
making highly probable password guesses.

Table 5.2: PII-Based Password Guessing Frameworks

50

Chapter 6

Project’s mission, objectives and re-
quirements
In this project, we create a password generation tool using PII and a detailed analysis
tool for the PII inside passwords. We aim to improve accuracy and efficiency in guessing
passwords by making use of large PII datasets and adapting to ever-changing password
policies and user habits.

6.1 Requirements

6.1.1 List of requirements and how they relate one to another

1. PII datasets: These will form the basis of modeling and analysis and, hence, our
password generation tool. The choice of the training dataset is crucial since the
guessing tool only relies on this. So, it is important to choose a training dataset that
uses the same policy as the targeted website policy.

2. Data processing capabilities: The processing of these sets needs treatment and anal-
ysis of a high order; this is the essence of merging PII into our algorithms.

3. Password policies and user behavior: We want to understand better how these inter-
act in reality to adapt our tools for real-world use cases, thus impacting their design
and functionality.

4. Integration frameworks: These would, of course, be necessary to integrate PII into
password-guessing algorithms.

5. Testing environments: These testing environments are needed to test the efficiency
and accuracy of the developed tools for their practical applicability.

6. An analysis tool that produces statistics and graphs on the usage of PII in passwords

7. A password generation tool based on an advanced guessing model.

6.1.2 Requirements covered by state of the art

1. There is a large amount of leaked PII and password datasets on the internet

2. Password policy and human behavior have been the subject of much research these
last years (section 2.4.3 and section 2.4.4)

3. PII password generation tool to test against: This is already covered through tools
like CUPP (section 2.5.4).

4. Advanced guessing models: The TarGuess-I-H framework make good model for this
(section 2.6.2).

51

5. I will use my personal computer as a testing environment

6.1.3 Requirements not covered by state of the art

1. Handling huge and diverse PII data sets: Resulting from this is the lack of effi-
cient handling provided by existing tools when handling huge and diverse sets of PII
datasets.

2. There is a lack of tools for PII analysis within password security.

3. There is no wordlist generation tool based on PII using advanced techniques

6.2 Project scoping

6.2.1 Mission statement of this project

The mission of this project is to develop and create one PII analysis tool and a PII-based
password generation tool to use as a wordlist in a password-guessing tool like Hashcat. We
want to improve the precision and performance of already existing PII password generation
tools by several folds. We will use enormous PII datasets to get the best probabilities for
guessing passwords.

6.2.2 Explicit out-of-scope definition

• Non-PII-Based Password Guessing Techniques: The thesis will only be concerned
with PII-based approaches and password structure probabilities.

• Other than type-1 PII: We only identify type-1 PII since we only implement the basis
of a more developed tool.

52

Chapter 7

Implementation
7.1 Methodology

7.1.1 Implementing Basis for Tools

High Frequency Substring (HFS) Generation

To effectively use the Targuess-I-H method for password guessing, we first need to imple-
ment the HFS generation, as detailed in section 2.6.2. This step is important because
HFS will help rank the most likely password candidates based on their structure and fre-
quency in a given dataset. This is implemented in the file hfs.py.

Generating PII Variations

Once the HFS generation is in place, the next step involves generating all possible variations
of Personally Identifiable Information (PII) as follows:

• N : Name

– N1: full name

– N2: abbreviation of full name

– N3: last name

– N4: first name

– N5: 1st letter of the first name + last name

– N6: for last name + the 1st letter of the first name

– N7: family name with its 1st letter capitalized

• B: Birthday

– B1: full birthday in YMD format

– B2: full birthday in MDY

– B3: full birthday in DMY

– B4: date in birthday

– B5: year in birthday

– B6: Year+Month

– B7: Month+Year

– B8: last two digits of year + date in MD format

– B9: date in MD format + the last two digits of year

53

54 7.1. METHODOLOGY

– B10: date in DM format + the last two digits of year

• A: Account name

– A1: full account name

– A2: the (first) letter segment of the account name

– A3: the (first) digital-segment of account name

• E: Email

– E1: full email prefix

– E2: first letter segment of email prefix

– E3: first digital-segment of account name

• Ph: Phone number

– Ph1: full number

– Ph2: first three digits

– Ph3: last four digits

In addition to these PII variations, we add H i
n representing the set of strings ranked i

among those substrings of length n in descending order of frequency that we get from the
previously implemented HFS generation. This part is implemented in file structure.py.

Identifying Password Segments

Now, with the generation of HFS and PII variations, we can easily identify PII and non-PII
(L, S, D, P, H) segments within a password. This segmentation will allow us to map the
structure of a password, which forms the basis of the password-guessing tool that we seek
to implement. After doing that, we already have almost everything for our PII analysis
tool. This is also implemented in file structure.py.

Training the Password Generation Tool

Now, having the basis for our guessing methodology, we move toward implementing the
training part of our password generation tool. To begin with this task, a training dataset
is further needed. This dataset will be used to generate three dictionaries (letters, specials,
and digits) and a list of different password structures, along with associated probabilities.
That is the frequency at which each structure occurs in the dataset with respect to the
total size of the dataset.

How to Generate New Passwords

Now that we have the dictionaries and structure-probability pairs, the generation of new
passwords based on a set of PII is possible. This will incessively be the taking of each
structure-probability pair to create a list of new pairs by replacing each segment of the
structure systematically with corresponding elements from our PII variations and HFS
dictionary along with other relevant dictionaries.

CHAPTER 7. IMPLEMENTATION 55

Statistics Computation

Now that we have everything but statistics computation to build our analysis tool, we have
to define what statistics we want to compute and show to users.

First, we’ll compute some statistics about the length of the passwords in the dataset:

1. The length distribution in the dataset

2. The minimum length in the dataset

3. The maximum length in the dataset

4. The average length in the dataset

5. The standard deviation

Then, we compute statistics on the different types of characters in the password dataset:

1. The average distribution of letters in a password in percentage

2. The average distribution of digits in a password in percentage

3. The average distribution of specials in a password in percentage

4. The most common characters in passwords

5. The percentage of passwords containing letters

6. The percentage of passwords containing digits

7. The percentage of passwords containing specials

8. The percentage of passwords containing uppercase letters

9. The percentage of passwords containing lowercase letters

After that, we implement every function to compute statistics on the distribution of PII
types and sub-types in passwords:

1. Distribution of passwords (not) containing at least one PII subtype.

2. Distribution of PII types in passwords containing PII

3. Distribution of PII subtypes in passwords containing the corresponding PII type

Finally, we compute statistics on password structures in PII-based and non-PII-based
passwords:

1. Distribution of structures

2. Average structure length (number of segments)

3. Structure diversity (the number of unique structures in the dataset)

7.1.2 Main Tools

Now that we have everything we need, we can start implementing the main tools with the
previously implemented functions.

56 7.1. METHODOLOGY

Analysis Tool

To run the tool, the user opens the terminal in the project directory and runs one of the
following commands:

• run by taking dataset in a mysql database: python analyzer.py mysql –-host
<host> –-user <username> –-password <password> –-database <database> –-table
<table> –-fields <fields_list>.

With <host> the MySQL host, <username> the MySQL username, <password> the
MySQL password, <database> the database name, <table> the table name in the
database, <fields_list> the list of field to extract from the database (the valid fields
are: "firstname", "lastname", "username", "birthday", "email", "phone", "pass-
word") in addition to these options the user can use optional options:

1. –-condition <condition> with <condition> some conditions for SQL query
(e.g., "’username’=’John’")

2. –-additional <additional> with <additional> some additional SQL clauses
(e.g., "LIMIT 1000")

• run by taking dataset from a file: python analyzer.py <path_to_dataset> –-delimiter
<delimiter>

In addition to these options, the user can choose the file to use as an HFS dictionary with
the option –-hfs <path_to_hfs> with <path_to_hfs> the path to the HFS dictionary

If the user runs the tool with a file dataset, then he has to choose the birthday format used
in the given file (Figure 7.1).

Figure 7.1: Birthday format choice

After the birthday format has been chosen, the user sees the main menu, where he can
put the number associated with the statistics he wants to explore, or he can exit the tool.
(Figure 7.2)

Figure 7.2: Main menu

Once the user makes his choice, he has four options (Figure 7.3):

1. Display statistics tables (see tables content in next section)

2. Display statistics plots (see different plots in next section)

CHAPTER 7. IMPLEMENTATION 57

3. Export the statistics in CSV format

4. Return to the main menu

Figure 7.3: Statistics menu example - Password length distribution menu

When the user finishes what he wants to do, he can go back to the main menu and exit
the tool.

Password Generation Tool

To run the tool, the user opens the terminal in the project directory and runs one of the
following commands:

• run by taking training dataset in a MySQL database: python generator.py mysql
–-host <host> –-user <username> –-password <password> –-database <database>
–-table <table> –-fields <fields_list>.

With <host> the MySQL host, <username> the MySQL username, <password> the
MySQL password, <database> the database name, <table> the table name in the
database, <fields_list> the list of field to extract from the database (the valid fields
are: "firstname", "lastname", "username", "birthday", "email", "phone", "pass-
word")

• run by taking dataset from a file: python generator.py <path_to_dataset> –-delimiter
<delimiter>. The used file should contain the fields name in the first line, separated
by the delimiter (the valid fields are: "firstname", "lastname", "username", "birth-
day", "email", "phone", "password").

In addition to these options, the user can:

• Choose the probability threshold for the created wordlist, i.e., we take every guess
with a probability of success greater than the threshold. The user uses the option
–-threshold <threshold> with <threshold> the probability threshold (between 0
and 1). The default threshold is 0.00001.

• Choose the path for the output file with the option –-output <output> with <output>
the path to the output file. The default output is in the output directory, with the
filename being the first name of the target.

• Add a condition to the SQL query with the option –-condition <condition> with
<condition> some conditions for SQL query (e.g., "’username’=’John’")

• Add additional restriction to the SQL query with the option –-additional <additional>
with <additional> some additional SQL clauses (e.g., "LIMIT 1000")

• Choose the file to use as HFS dictionary with the option –-hfs <path_to_hfs> with
<path_to_hfs>, the path to the top 100 HFS dictionary. The top_hfs_500_50.json
file in the default/hfs directory is used by default

58 7.1. METHODOLOGY

• Choose the special characters dictionary with the option –-s_dictionary <path_to_s_dictionary>
with <path_to_s_dictionary, the path to the special character dictionary. The de-
fault used file s_dictionary.json is in the default/dictionary directory

• Choose the digits characters dictionary with the option –-d_dictionary <path_to_d_dictionary>
with <path_to_d_dictionary, the path to the digits characters dictionary. The de-
fault used file d_dictionary.json is in the default/dictionary directory

• Choose the letters characters dictionary with the option –-l_dictionary <path_to_l_dictionary>
with <path_to_l_dictionary, the path to the letters characters dictionary. The de-
fault used file l_dictionary.json is in the default/dictionary directory

As for the analysis tool, if the user runs the tool with a file dataset, he has to choose the
birthday format used in the file (Figure 7.1).

After that, the user is asked to enter the target personal information according to the ones
used in the training dataset (e.g., if the training dataset does not contain the phone field,
then the user is not asked to enter the target phone number Figure 7.4)

Figure 7.4: Target personal information

Once the user enters every asked personal information, the tool asks him for validation
(Figure 7.5) before proceeding to the dictionary generation (Figure 7.6).

Figure 7.5: Target personal information validation

Figure 7.6: Dictionary generation

At the end of the generation, a new file is created with the generation content.

CHAPTER 7. IMPLEMENTATION 59

7.1.3 Secondary Tools

Besides the main tools that I developed, I also implemented some secondary tools that can
be very useful in supporting the main tools.

HFS Generation Tool

The aim of the HFS Generation Tool (hfs_dictionaries.py) is to take a dataset and return
the top 100 substrings from that dataset. These substrings categorize frequently occurring
strings of characters users more often include in their passwords.

To run the tool, the user opens the terminal in the project directory and runs the following
command:

• python hfs_dictionary.py <path_to_dataset> <output_file>. With <path_to_dataset>
the path to the password dataset and <output_file> the path to the file to create.
The used file should contain one password per line.

In addition to this, the user can:

• Choose the thresholds as described in section 2.6.2 with options –-T1 <first_threshold>
and –-T2 <second_threshold>. By default, they are set to 500 and 50, respectively.

• Choose the minimum and maximum length for the substrings with options –-min
<minimum_length> and –-max <maximum_length>. By default, they are set to 3 and
8, respectively.

After running the tool, a file is created to the specified output path with the top 100 hfs
in the used dataset.

Dictionaries Generation Tool

The other supporting tool that I developed is the Dictionaries Generation Tool (dictionar-
ies.py). This tool is used to generate dictionaries from a training dataset, which are in turn
fed to the wordlist generation tool as an essential input for it to work. The dictionaries
generated by this tool will be used to map correctly the components that compose the
passwords throughout the phase of guessing.

To run the tool, the user opens the terminal in the project directory and runs one of the
following commands:

• run by taking training dataset in a mysql database: python dictionaries.py mysql
<output_s_dictionary_path> <output_d_dictionary_path> <output_l_dictionary_path>
–-host <host> –-user <username> –-password <password> –-database <database>
–-table <table> –-fields <fields_list>.

With <output_s_dictionary_path> the output path of the special characters dic-
tionary, <output_d_dictionary_path> the output path of the digits characters dic-
tionary, <output_l_dictionary_path> the output path of the letters characters dic-
tionary, <host> the MySQL host, <username> the MySQL username, <password>
the MySQL password, <database> the database name, <table> the table name
in the database, <fields_list> the list of field to extract from the database (the
valid fields are: "firstname", "lastname", "username", "birthday", "email", "phone",
"password")

60 7.1. METHODOLOGY

• run by taking dataset from a file: python analyzer.py <path_to_dataset> <output_s_dictionary_path>
<output_d_dictionary_path> <output_l_dictionary_path> –-delimiter <delimiter>.
The used file should contain the fields name in the first line, separated by the delim-
iter (the valid fields are: "firstname", "lastname", "username", "birthday", "email",
"phone", "password").

In addition to these options, the user can:

• Choose the file to use as HFS dictionary with the option –-hfs <path_to_hfs> with
<path_to_hfs>, the path to the top 100 HFS dictionary. The top_hfs_500_50.json
file in the default/hfs directory is used by default

The tool generates three kinds of dictionaries, all sorted by length and then by frequency:

1. Specials Dictionary: This is the dictionary keeping all sequences of special characters
associated with their frequency in the training dataset.

2. Digits Dictionary: This dictionary consists of all numeric characters associated with
their frequency present in the dataset.

3. Letters/Words Dictionary: The dictionary consists of all single or sequence of letters
and frequent words from the training dataset.

These dictionaries are created and written into the respective files. Later on, they can be
imported into the generation tool.

Chapter 8

Experimentation preparation & data
collection

8.1 Setup, Requirements, Environment, Tools & Materials

8.1.1 Hardware and software setup

For the experiment, I used my personal computer, which has the following system:

• CPU: 12th Gen Intel(R) Core(TM) i5-12400F, 2.50 GHz

• GPU: NVIDIA GeForce GTX 1050 Ti

• RAM: 16,0 Gb

• Storage: 930 Gb

• OS: Windows 10 Pro 22H2

• Python 3.12.

8.1.2 Tools and libraries

• Pycharm for development

• GitLab as version control

• Python libraries. These libraries can be installed with the command pip install
-r .\src\requirements.txt in the project repository.

1. argparse

2. datetime

3. mysql.connector

4. tqdm

5. statistics

6. matplotlib

7. tabulate

8.2 CUPP Tool

First, we need to install the CUPP repository from github1.

1https://github.com/Mebus/cupp

61

https://github.com/Mebus/cupp

62 8.3. DATA SOURCE

Figure 8.1: Added function in cupp.py

To use the wordlist generation methodology used by the CUPP tool, we change the func-
tion generate_wordlist_from_profile to return unique_list_finished and we write a
function in cupp.py named generate_wordlist_for_eval to get the generated dictionary
in a list format instead of a .txt file so we can use it in our evaluation.

8.3 Data Source

For my experiments, I used different datasets:

1. A leaked database from 2016 as a training and test dataset. This dataset contains
user information such as first name, last name, username, birth date, email, and
plain text passwords.

2. The rockyou.txt2 file containing passwords to build the HFS dictionary

Since the database file is a .sql file, I had to set up a mysql database. For that, we have
to install mysql server3. After installation, run mysql in the terminal with the command
mysql -u <USERNAME> -p, with <USERNAME> the mysql username.

Then, create an empty database with the SQL command CREATE DATABASE <DB_NAME>;,
with <DB_NAME> as the name of the database.

When this is done, exit mysql and enter the following command in the terminal: mysql
-u <USERNAME> -p <DB_NAME> < <PATH_TO_DATABASE_FILE> with <USERNAME> the
mysql username, <DB_NAME> the name of the database, and <PATH_TO_DATABASE_FILE>
the path to the sql databasee file.

8.3.1 Leaked database data preprocessing

First, since my tool only accepts a defined set of field names, I had to change some column
names of the user table before importing it into my database. The column names are
changed as follows:

• first_name → firstname

• last_name → lastname

• date_of_birth → birthday

After the database is in place, we extract the firstname, lastname, username, email, birth-
day, password of every row in the user’s table that satisfies the following restrictions:

1. Each field must be different from "NULL"
2https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
3https://dev.mysql.com/downloads/installer/

https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://dev.mysql.com/downloads/installer/

CHAPTER 8. EXPERIMENTATION PREPARATION & DATA COLLECTION 63

2. Each field must not be empty

3. The birth date must be ≥ ’1900-01-01’ and ≤ to the current date

This gives us 2,210,953 rows of the table. After gathering these rows from the table, we
still apply another restriction: each field must be decodable in ’utf-8’ (excepted birth date,
which has type datetime.date)

We now have the complete dataset, which contains 2,210,941 rows, for our experiment.

Chapter 9

Experiment’s output/Data Analysis
9.1 Database dataset analysis

Before doing experiments with the dictionary generation tool, we’ll first analyze the database
dataset with our analysis tool.

9.1.1 Length distribution

The distribution of password lengths detailed in tables 9.1, 9.2 and figure 9.1, 9.2
reveals that the most common lengths range between 6 and 10 characters, with the peak
frequency at 8 characters (524,627 instances). Notably, passwords shorter than 11 charac-
ters dominate the dataset. The average password length is 8.73 characters, with a standard
deviation of 2.35, indicating a moderate variance in length. The minimum recorded pass-
word length is 6 characters, while the maximum length is 25 characters, even though
passwords with 21 characters and more are rare.

Table 9.1: Length distribution

Length Count
6 405774
7 284504
8 524627
9 313603
10 285214
11 148242
12 99317
13 53425
14 36354
15 22623
16 15056
17 7466
18 5282
19 3303
20 6136
21 1
22 2
23 1
25 11

64

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 65

Figure 9.1: Passwords length distribution in database dataset

Table 9.2: Length statistics

Statistic Value
Minimum Length 6
Maximum Length 25
Average Length 8.73
Standard Deviation 2.35

9.1.2 Character distribution

The table 9.3 and figures 9.3, 9.4, 9.5 gives us information about character statistics.

The analysis of password characters reveals some trends in how characters are used. The
most flagrant and obvious observation is that the majority of passwords (82.09%) contain
letters, with each password containing an average of 65.52% letters. Among these, lower-
case letters dominate, appearing in 80.25% of passwords, while uppercase letters are much
less common, present in only 7.39% of passwords.

Numbers are also recurrent in passwords, found in 62.40% of passwords and contributing
to an average of 33.90% of the character composition. Special characters, however, are
rarely used. Indeed, a password contains an average of 0.56% of special characters and
appears in just 3.94% of all passwords.

The most common characters across the dataset are ’a’, ’1’, ’e’, ’i’, and ’n’, with ’a’
being the most frequent, appearing 1,653,590 times in the dataset. This suggests that
while passwords can include a mix of characters, users prefer simpler, letter-dominated
combinations.

66 9.1. DATABASE DATASET ANALYSIS

Figure 9.2: Passwords length statistics in database dataset

Table 9.3: Password character statistics

Statistic Value
Average Percent Letters 65.52%
Average Percent Numbers 33.90%
Average Percent Specials 0.56%
Most Common Characters a (1653590), 1 (1133517), e (1042851), i (907775), n (839879)
Percent Passwords with Letter 82.09%
Percent Passwords with Number 62.40%
Percent Passwords with Special 3.94%
Percent Passwords with Uppercase 7.39%
Percent Passwords with Lowercase 80.25%

9.1.3 PII distribution

In table 9.4 and figure 9.6, we can see that there are 28.33% of passwords that contain
PII, while the remaining 71.67% do not. So, approximately a third of the password database
contains at least one PII information.

Table 9.4: Table for percentage of passwords containing PII in a set of passwords

Total Count Percentage
Containing PII 626282 28.33%

Not containing PII 1584659 71.67%

This breakdown highlights the patterns and prevalence of specific keys and sub-types within
passwords that contain PII, providing important insights for improving password security.

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 67

Figure 9.3: Average password character distribution in database dataset

Figure 9.4: Character types presence in passwords from database dataset

From table 9.5 and figure 9.7, "N" which is first name and last name variations, is found
in 33.89% of the passwords containing PII, making it one of the most frequent. The key
"E" for email variations is present in 9.88% of these passwords, indicating a lower but still
significant occurrence. The key "A" for account name variations appears in 29.21% of the
passwords, and "B", for birthdate variations, has the highest occurrence, being present in
35.90% of the passwords containing PII.

Table 9.5: Table for main keys presence in passwords containing PII

Main Key Total Count Total Percentage
N 212223 33.89%
E 61895 9.88%
A 182935 29.21%
B 224813 35.90%

68 9.1. DATABASE DATASET ANALYSIS

Figure 9.5: Uppercase vs. lowercase presence in passwords from database dataset

Figure 9.6: Overall PII presence in passwords from database dataset

For sub-types within these key, the tables 9.6,9.7,9.8,9.9 and figures 9.8,9.9,9.10,9.11
show that:

• In "N" sub-types "N4" (for first name) appears 43.13%, followed by "N3" (last name)
(26.77%) and "N2" (full name abbreviation) (21.73%).

• In "A" sub-type "A3" (the (first) digital segment of account name) dominates with
59.23%, followed by "A1" (the (first) digital segment of account name) (30.09%) and
"A2" (the (first) letter-segment of account name) (12.09%).

• In the "B" category, "B5" (year in birthday) is the most common sub-type. It
appears in 58.83% of cases, with "B4" (date in birthday) (10.65%) and "B10" (full
birthday in DMY) (8.44%) also notable.

• For "E," the sub-type "E3" (first digital segment of account name) is overwhelm-
ingly the most common, accounting for 77.10%, while "E2" (first letter segment of
email prefix) and "E1"(full email prefix) are less prevalent, at 12.65% and 11.00%
respectively.

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 69

Figure 9.7: PII types in passwords containing PII from database dataset

Table 9.6: Table for A sub-types presence in passwords containing A

Sub PII Count Percentage
A1 55036 30.09%
A2 22113 12.09%
A3 108354 59.23%

9.1.4 Structures distribution

The most common structures in the general dataset of passwords (table 9.10) are L6,
occurring 151,012 times and accounting for 6.83% of all occurrences; this is closely followed
by L8, occurring 134,142 times and accounting for 6.07% of all occurrences; next in line
is L7, with 112,216 occurrences and accounting for 5.07% of all occurrences; followed by
L9, with 82,506 occurrences and accounting for 3.74% of all occurrences; lastly, D6 occurs
66,416 times, accounting for 3.00% of all occurrences. Other structures like L10, D10,
letter-digit combinations like L6 D2, and so on, are also found but are less frequent. In
table 9.11 we can see that the average structure length is 1.86 on average for all passwords,
while the total structure diversity comes to 97,803 unique structures.

70 9.1. DATABASE DATASET ANALYSIS

Figure 9.8: A sub-types distribution in passwords containing type A PII in database dataset

Table 9.7: Table for B sub-types presence in passwords containing B

Sub PII Count Percentage
B1 2949 1.31%
B10 18966 8.44%
B2 4860 2.16%
B3 17646 7.85%
B4 23947 10.65%
B5 132259 58.83%
B6 555 0.25%
B7 2394 1.06%
B8 8878 3.95%
B9 14556 6.47%

The most common structure among passwords with PII (table 9.12) is A1, which appears
34,941 times (5.58%). Other popular structures include N4 (2.42%), B3 (2.21%) and N3
(2.02%). Structures like L6 A3 and L7 A3 occur rather frequently, too, even though they
are combinations of some sort. In table 9.13, we can see that the average structure length
(number of segments in a structure) for passwords that contain PII is 2.28, and there are
55,056 different structures that contain PII.

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 71

Figure 9.9: B sub-types distribution in passwords containing type B PII in database dataset

Table 9.8: Table for E sub-types presence in passwords containing E

Sub PII Count Percentage
E1 6810 11.00%
E2 7827 12.65%
E3 47724 77.10%

9.1.5 Analysis conclusion

First, the analysis gives us some critical insights concerning the database dataset. Most
important is the fact that a large majority of passwords are short. In most cases, they
are between 6 to 10 characters long, with 8 as the most common. This trend shows that
users tend to create passwords of only the minimum required lengths and do not further
use longer ones in order to enhance their security. Significantly, very few passwords have a
length greater than 11 characters, suggesting ease of use as against the improved security
gained with longer passwords.

The distribution of characters in the dataset clearly shows that letters are the most pre-
ferred in passwords, with special dominance by lowercase letters over uppercase letters.
This pattern most likely suggests that, while users do include letters in their passwords,
they tend not to use enough other available characters that would really help to increase
the complexity of the passwords, such as uppercase letters and special characters. Special
characters are rarely used and turn up in a very small percentage of all passwords, hence
likely weakening the overall strength of passwords and increasing vulnerability to attacks.

Another important finding is that about 28.33 % of the passwords examined contain some
form of personally identifiable information, which exposes those kinds of passwords to a
high level of security risk since they are easy to guess or crack. The rest, 71.67 %, do not
contain any PII, which would seem like good news. However, it is a serious concern that
such a large number of these passwords contain PII. Most common PII elements include
first and last names, birthdates, and account names, so it follows that most users would
include easily guessable pieces of personal information when choosing passwords.

Finally, the structure of the passwords contributes, with the dataset having the majority
of passwords made up of simple structures, such as only L6, L8, and L7, indicating basic

72 9.1. DATABASE DATASET ANALYSIS

Figure 9.10: E sub-types distribution in passwords containing type E PII in database
dataset

Table 9.9: Table for N sub-types presence in passwords containing N

Sub PII Count Percentage
N1 14247 6.71%
N2 46125 21.73%
N3 56807 26.77%
N4 91526 43.13%
N5 3193 1.50%
N6 2830 1.33%
N7 394 0.19%

letter sequences with predictable patterns. Passwords containing only digits and simple
letter and digit combinations are also quite common. Despite the prevalence of these simple
structures, this dataset is very diverse, with nearly 100,000 unique structures identified.
That said, the mean structure length is relatively small, indicating that even within such
diversity, many passwords aren’t really complex.

Further password profiling with respect to PII-based passwords includes overly common
structures, for example, those beginning with an account name segment or including first
and last name segments.

These findings mean that a large number of users tend to create passwords that are far less
secure than they could be, tending strongly toward too-short lengths, simple structures,
and the inclusion of easily guessable personal information.

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 73

Figure 9.11: N sub-types distribution in passwords containing type N PII in database
dataset

Table 9.10: Structure distribution in overall passwords

Structure Count Percentage
L6 151012 6.83%
L8 134142 6.07%
L7 112216 5.07%
L9 82506 3.74%
D6 66416 3.00%
L10 55604 2.51%
D10 44212 1.99%
L6 D2 38726 1.75%
D8 38218 1.73%
A1 34941 1.58%

9.2 Password Generation Tool Experimentation

9.2.1 Comparisons rules

To test our generation tool against the CUPP tool, we must define a fair way to compare
the two tools. To do so, we follow the following rules:

1. We use the same training and testing dataset for the two tools

2. We use the same dictionaries (letters, digits, specials)

3. Since the CUPP tool is not designed to handle large datasets as input, we limit the
dictionaries to 50 elements by length (e.g., a letters dictionary contains 50 elements
of length six, and this is the same for every length)

4. We use the HFS dictionary in each tool

5. From the dataset analysis, we know that password length varies between 6 and 25,
so we only generate passwords in this length range.

6. We also do not use the digits and symbols at the end options and leet speak option
because it would generate too large dictionaries. So, we only compare our tool to the
basic functionalities of CUPP.

74 9.2. PASSWORD GENERATION TOOL EXPERIMENTATION

Table 9.11: Structure statistics in overall passwords

Average Structure Length 1.86
Structure Diversity 97803

Table 9.12: Top 10 password structures in passwords containing PII

Structure Count Percentage
A1 34941 5.58%
N4 15183 2.42%
B3 13844 2.21%
N3 12656 2.02%
B10 11712 1.87%
L6 A3 11354 1.81%
N1 10389 1.66%
L6 B5 10362 1.65%
B9 9004 1.44%
L7 A3 7088 1.13%

Then, to run our comparison, we will use the database. However, since using the entire
database would take too much time (more than 2 million rows to process for each iteration),
we run ten iterations, each time with a randomly chosen training dataset of 5000 rows and
a testing dataset of 1000 rows. This will still take some hours, but less than the entire
database.

We randomly selected the training and testing dataset using ten different seeds: 245783, 918274, 562914, 837219, 142658, 394876, 675421, 983162, 731546, and489721.

For the tool to generate dictionaries in moderate time, we use a probability threshold
0.000005, which means that we only take passwords with a higher probability than 0.000005

9.2.2 Comparisons metrics

We will compare the two tools on different metrics:

1. The average number of password guesses generated by the tools

2. The average success rate in guessing a password

3. The average number of passwords generated before a guess (rank)

4. The median of the number of passwords generated before a guess

5. The standard deviation of passwords generated before a guess

6. The number of successes below 1000 guesses

7. The time taken

9.2.3 Comparisons results

After running the evaluation that opposes the CUPP tool to the implemented generation
tool, we get one table per iteration, a summary table, and some graphics in the "Gathered
comparisons tables and figures" section.

From these tables, we can make the following observations:

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 75

Table 9.13: Structure statistics in passwords containing PII

Average Structure Length 2.28
Structure Diversity 55056

1. Average passwords generated per second: The CUPP tool consistently generates more
than 1000 passwords per second with an average of 1017, while my tool consistently
generates approximately 250 passwords per second with an average of 254.26.

2. Success rate: My tool consistently manages to guess more passwords than the CUPP
tool successfully. Indeed, my tool managed to guess an average of 10.09% of the
tested passwords, while the CUPP tool had an average success of 6.27

3. Average and median rank: The average rank (where a lower rank is better) and
median rank for my tool are significantly lower than those for cupp. This means that
the successful password guesses from my tool rank way better than those from the
CUPP tool. More than that, we can see that my tool successfully guesses a password
with a median of 92.95 guesses, while the CUPP tool manages it with a median of
763904 guesses (way, way more).

4. Standard deviation of rank: as showed by the median rank, the average standard
deviation of both tools show that my tool has more consistency than the CUPP tool.

5. Number of successes below 1000 guesses: This shows that the CUPP tool never
managed to guess a password with less than 1000 guesses, while most passwords my
tool guessed are below 1000.

9.2.4 Gathered comparisons tables and figures

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 997565 8.7 635347 705679
evaluate_my_tool 81595.2 11.6 2492.27 98.5

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 318533 0 967.142
evaluate_my_tool 9299.11 90 328.213

(b) Rank Variability and Successes

Table 9.14: Iteration 1: Comparison of Password Evaluation Methods

76 9.2. PASSWORD GENERATION TOOL EXPERIMENTATION

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 1.01434e+06 5.7 694756 792364
evaluate_my_tool 108822 11.1 3046.5 52

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 313100 0 978.748
evaluate_my_tool 11328.4 80 375.469

(b) Rank Variability and Successes

Table 9.15: Iteration 2: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 987824 6.3 663018 772647
evaluate_my_tool 77974.2 9.3 4627.78 51

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 330328 0 988.943
evaluate_my_tool 12733 65 345.661

(b) Rank Variability and Successes

Table 9.16: Iteration 3: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 1.00824e+06 5.1 611482 755576
evaluate_my_tool 104111 9.4 2310.5 76

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 364392 0 989.586
evaluate_my_tool 4605.56 66 447.037

(b) Rank Variability and Successes

Table 9.17: Iteration 4: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 1.00412e+06 5.8 712772 836656
evaluate_my_tool 106258 10.5 4476.17 109

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 324942 0 1003.5
evaluate_my_tool 13925.5 71 468.799

(b) Rank Variability and Successes

Table 9.18: Iteration 5: Comparison of Password Evaluation Methods

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 77

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 987686 7.6 726477 846570
evaluate_my_tool 103569 10.1 3500.7 89

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 308719 0 971.4
evaluate_my_tool 9924.54 71 420.375

(b) Rank Variability and Successes

Table 9.19: Iteration 6: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 997924 5.9 546275 698602
evaluate_my_tool 93436.4 10.3 3023.94 119

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 363734 0 969.869
evaluate_my_tool 7632.61 66 399.001

(b) Rank Variability and Successes

Table 9.20: Iteration 7: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 992145 4.8 589915 695294
evaluate_my_tool 118360 8.4 2277.24 99

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 331356 0 983.584
evaluate_my_tool 4787.77 63 387.717

(b) Rank Variability and Successes

Table 9.21: Iteration 8: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 999785 5.7 613771 779590
evaluate_my_tool 89886.5 9.2 2025.24 144

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 354062 0 987.637
evaluate_my_tool 4976.53 65 363.315

(b) Rank Variability and Successes

Table 9.22: Iteration 9: Comparison of Password Evaluation Methods

78 9.2. PASSWORD GENERATION TOOL EXPERIMENTATION

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 990167 7.1 626376 756658
evaluate_my_tool 110297 11 3913.18 92

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 337626 0 974.032
evaluate_my_tool 15980.9 80 375.901

(b) Rank Variability and Successes

Table 9.23: Iteration 10: Comparison of Password Evaluation Methods

Method Average passwords generated Success Rate (%) Average Rank Median Rank
evaluate_cupp 997979 6.27 641929 763904
evaluate_my_tool 99430.9 10.09 3169.35 92.95

(a) Password Generation and Ranking

Method Standard deviation of Rank Number of Successes within Top 1000 Time (seconds)
evaluate_cupp 334679 0 981.436
evaluate_my_tool 9519.4 71.7 391.149

(b) Rank Variability and Successes

Table 9.24: Average Results After Multiple Iterations

Figure 9.12: Average password generated per dictionary

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 79

Figure 9.13: Average success rate

Figure 9.14: Average rank

80 9.2. PASSWORD GENERATION TOOL EXPERIMENTATION

Figure 9.15: Average Median rank

Figure 9.16: Average Standard deviation rank

CHAPTER 9. EXPERIMENT’S OUTPUT/DATA ANALYSIS 81

Figure 9.17: Average Number success

Figure 9.18: Average success below 1000 guesses

82 9.2. PASSWORD GENERATION TOOL EXPERIMENTATION

Figure 9.19: Average time taken to generate 1000 dictionaries

Chapter 10

Discussion

10.1 Comparison with state of the art/related works

This thesis is aimed at developing and evaluating a new password generation tool against
one of the currently available tools, the CUPP (Common User Passwords Profiler) tool.
Basically, this would aim to increase the efficiency and effectiveness of the methods of
password guessing, especially in targeted attacks where personal information is important.

One of the most visible differences between the developed tool and CUPP is, therefore,
the efficiency of the password generation part. For instance, while CUPP generates over
1 million passwords at each iteration, our tool makes the generation process considerably
more refined with many fewer passwords: from 80,000 to as high as 118,000 in each iteration
(with a probability threshold of 0.000005). Our tool, even though generating less quantity
of passwords, terminated with a lot higher success percent that averaged at 10.09% in
comparison to the cupp tool 6.27%. This illustrates that the refined approach reduces not
only the number of attempts required but also increases the chances of one successfully
cracking a password.

This can be attributed to the fact that our generated passwords are very near the target
set. Our tool also performed better than CUPP for the average and median ranks. This
great gain in rank effectiveness means it is better at ordering more likely words to the top
of the list and, hence, more efficient in practical password guessing.

This was evidenced more by our tool’s performance stability, with a lower standard de-
viation in the rank of guessed passwords compared to CUPP, which had a very high
standard deviation of over 300,000, ranging between 4,600 and 15,900. Consistency is a
very important property in cybersecurity applications since predictability and reliability
of performance are the major considerations for these applications.

Our tool shows massive improvement over CUPP by integrating PII into the guessing and
creating passwords. While CUPP broadly finds ways for password creation, our tool uses
personal information to narrow guessing. With an era concentrating on technology, this
comes in handy because most patterns of attackers deliver their ways clearly as a result of
personal data at their disposal due to breaches or social engineering.

Results from this thesis can contribute to the prolonged view of security discussion on the
use of brute force versus more focused attacks in cybersecurity applications. Proving that
a more focused approach could bring better results with fewer guesses will further support
the development of tools that rely on personal and contextual information to improve the
hacking process. The improvements in success rates and efficiency that this thesis shows
indicate that this avenue should always be pursued by future tools, even more so in sensitive
data security. Thus, these features show that our tool improved relative to state-of-the-
art solutions like CUPP in efficiency, effectiveness, and, more importantly, consistency.

83

84 10.2. LIMITATIONS OF VALIDITY

This indicates new potential in adopting more refined and targeted approaches to the idea
themselves in generating passwords, potentially radically improving cybersecurity.

10.2 Limitations of validity

10.2.1 Use of Basic Functionality of CUPP

The CUPP tool has multiple features, so one of the main limitations of this work was
that only the basic ones were employed. The excluded features were options of digits
and symbols and leet speak options to ensure a comparison on level ground with the
developed tool; it may be presumed that this restriction affected the evaluation of overall
performance. Where these could be relevant features in the real world, this comparison
may not accurately reflect the relative strengths of the CUPP tool.

10.2.2 Limitation on Dictionary Size

Since the CUPP tool can not handle large datasets, we were doomed to limit the size of
dictionaries to 50 elements per length. While this ensures that the tool will keep clear of
performance problems, it simultaneously limits the generation process for passwords; an
extended dictionary might give different results.

10.2.3 Probabilistic threshold and dataset size

The methodology adopted for this research was first and foremost influenced by time
constraints. The practical need to constrain the size of the generated dictionaries meant
that only a probabilistic threshold was included. It was secondly decided to train and test
only 5,000 and 1,000 rows, respectively. While these choices have enabled the research to
be completed in a given timeframe, they’ve also constrained its scope. Given more time,
larger training and test datasets would have been possible, which would have made the
results more robust and allowed greater insight into this tool’s performance.

10.2.4 Dependency on a Single Leaked Dataset

The training and test datasets come from the same leak (that of the database, dated 2016).
The dataset was picked since it holds enough variations of PII types that could be relevant
for the analysis and generation tool. This is, however, a limit to the generalizability that
can be derived from a single data set. The performance might be different if applied to
more recent and diverse datasets. It should be validated against additional databases in
order to validate the results.

10.2.5 Conclusion

These limitations thus somewhat attenuate the estimation of the generalizability of re-
sults. This tool was tested under conditions with limited dataset diversity and dictionary
sizes. Given that real-world applications are characterized by highly prevalent password
characteristics and user behavior diversity, effectiveness may differ. Furthermore, learning
from only one data source could also give less than full weight to a tool’s potential when
applied over time in different environments and datasets. In sum, although this thesis has
very useful contributions about generating or guessing passwords, one should keep these
limitations at the back of one’s mind. Recognizing these constraints is therefore useful not

CHAPTER 10. DISCUSSION 85

only to do justice to this research but also to open up new avenues for improvement in the
future with respect to dataset diversity, dictionary size, and feature completeness.

Chapter 11

Future work
Most of the limitations identified in this thesis are primary focuses that will be addressed
in future work. This includes the refinement of the tool concerning dependencies on certain
datasets, small dictionary size, or more sophisticated handling of PII, as well as developing
a regime for resolving these limitations to enhance the accuracy and reliability of the tool
and its overall utility.

Since new forms of PII will always be emerging, it goes without saying that this tool should
be updated to include these new types in the future. Further research involves integrating
such PII variations into this tool to enhance the capacity to create effective and complete
password dictionaries. Guessing strategies can be made very effective by noticing how
personal information is used differently across cultures, languages, and regions.

The tool should perform better while generating the dictionaries. One may further imple-
ment several algorithms to improve the processing speed and reduce the resources being
used by the system. This parallel processing could do quite well when making good use of
the advanced hardware options available, such as GPU acceleration. This would greatly
improve the efficiency of the tool and, hence, make it suitable for managing larger data
sets.

This has to be relevant and up-to-date since the threats in cybersecurity are never static.
An architecture, therefore, has to be provided in which datasets, algorithms, and the tool’s
user interface could be updated, potentially periodically, to handle new developments in
password-guessing techniques or any other PII uses.

Future work needs to make this tool more effective and efficient. For example, it may entail
adapting machine learning models via the evolving patterns of passwords or state-of-the-
art heuristics to predict password structures more accurately with minimal input. This
could be very helpful, provided there are studies about user evaluations of its practical
effectiveness in real-world settings.

The tool could be taken in a completely different direction by building online password
guessing directly into the tool, from which dictionaries generated with this tool will be used
to guess passwords in runtime environments exactly mirroring current attacks underway
in life. This added feature gives more reach to assessing vulnerabilities of passwords and
real-world practical applicability for cybersecurity testing.

86

Chapter 12

Conclusions
This thesis surveyed the current state of the art in password generation and guessing
tools; it examined their vulnerabilities due to PII used in passwords and finally developed
an improved tool that would counter such vulnerabilities. This is intended to fill the gap
between traditional brute-force methods to guessing passwords and more revised techniques
tailored for personally identifiable information.

One of the significant contributions this thesis has to offer is designing and implementing
an entirely new password generation tool that draws on PII to derive more accurate,
faster, and highly efficient password guesses. The tool was designed to rectify some of
the deficiencies in prior tools like CUPP by being much more targeted in its generation
technique. This involved building dictionaries of special digits and letter characters in
addition to probabilistic models that refined the guessing process, resulting in a faster and
more efficient tool for guessing passwords.

The tool’s performance was thoroughly tested against the CUPP tool along a set of metrics:
verification of the average number of passwords generated, success rate, rank consistency,
and time efficiency. The evaluations were performed on a real-world dataset, the 2016
leaked database dataset, which provided an applicable testbed with the challenges asso-
ciated with the tool. The result shows that the developed tool has better results than
CUPP in the majority of tested metrics. Notably, the guessing tool’s success rate was
higher. The ranking is more consistent, and the number of generated passwords is fewer.
It demonstrates how well and how quickly the tool works.

The database dataset showed an even more astonishing state of password security. Among
the overall findings was that a large proportion included personal information, and there-
fore, most are vulnerable or at high risk of targeted attacks. This highlights the need to
educate users about the risk of having personal information in their passwords and also
calls for stricter password policies to prevent such practices. This also supports the idea
that attackers are exploiting this vulnerability. The personal information-based tool easily
makes adaptation to these cybersecurity defenses critical.

Though this research has hit milestones, it had its limitations. First, using only one
dataset, the database, reduces the generalization of findings. The limitation in the size of
the dictionaries and the probabilistic threshold was unavoidable because of the time and
computational limits of the CUPP tool; however, such choices limited the scope of analysis.
Further, excluding some complex CUPP capabilities like leet speak and changing symbols
does not make the test comprehensive. These limitations pointed to further research to
broaden this tool and refine it with potential extension to a more extensive range of datasets
or structures of passwords.

Despite all these limitations, this thesis clearly shows how more advanced tools can be
developed to protect against the increasing threat of targeted password attacks.

87

Bibliography
[1] Abhishek, K., Roshan, S., Kumar, P., Ranjan, R.: A comprehensive study on multifac-

tor authentication schemes. In: International Conference on Advances in Computing
and Information Technology (2012) [Cited on pages 4 and 5.]

[2] Alshahrani, H., Alghamdi, A.: The factors influencing the use of password managers.
Journal of Information Security and Cybercrimes Research 5, 43–56 (06 2022) [Cited on

page 7.]

[3] Beyond Identity: Rainbow table attack. https://www.beyondidentity.com/
glossary/rainbow-table-attack, accessed: 2024-07-10 [Cited on pages III and 18.]

[4] Blocki, J., Zhang, W.: Dalock: Password distribution-aware throttling. Proceedings
on Privacy Enhancing Technologies 2022(3), 516–537 (2022) [Cited on page 36.]

[5] Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of password
reuse (01 2014) [Cited on page 7.]

[6] Dong, Q., Wang, D., Shen, Y., Jia, C.: PII-PSM: A New Targeted Password Strength
Meter Using Personally Identifiable Information, pp. 648–669 (02 2023) [Cited on page 49.]

[7] GeeksforGeeks: Understanding rainbow table attack. https://www.geeksforgeeks.
org/understanding-rainbow-table-attack/ (February 10 2023), accessed: 2024-
07-10 [Cited on pages III and 18.]

[8] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Advances in Neural Infor-
mation Processing Systems 3 (06 2014) [Cited on page 24.]

[9] Guo, Y., Zhang, Z., Guo, Y., Guo, X.: Nudging personalized password policies by
understanding users’ personality. Computers Security 94, 101801 (2020) [Cited on page 33.]

[10] Have I Been Pwned: Pwned websites. https://haveibeenpwned.com/
PwnedWebsites, accessed: 2024-07-10 [Cited on page 39.]

[11] Karrar, A., Almutiri, T., Algrafi, S., Alalwi, N., Alharbi, A.: Enhancing salted pass-
word hashing technique using swapping elements in an array algorithm 9, 21–25 (01
2018) [Cited on page 34.]

[12] Kelseyk: Hybrid password attacks: How they work and how to stop them. https:
//specopssoft.com/blog/hybrid-password-attacks/ (August 31 2023), accessed:
2024-07-10 [Cited on pages III and 17.]

[13] Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N., Cra-
nor, L.F., Egelman, S.: Of passwords and people: measuring the effect of password-
composition policies. In: Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare,
M. (eds.) Proceedings of the International Conference on Human Factors in Com-
puting Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011. pp. 2595–2604.
ACM (2011) [Cited on page 11.]

88

https://www.beyondidentity.com/glossary/rainbow-table-attack
https://www.beyondidentity.com/glossary/rainbow-table-attack
https://www.geeksforgeeks.org/understanding-rainbow-table-attack/
https://www.geeksforgeeks.org/understanding-rainbow-table-attack/
https://haveibeenpwned.com/PwnedWebsites
https://haveibeenpwned.com/PwnedWebsites
https://specopssoft.com/blog/hybrid-password-attacks/
https://specopssoft.com/blog/hybrid-password-attacks/

BIBLIOGRAPHY 89

[14] Li, Y., Wang, H., Sun, K.: A study of personal information in human-chosen passwords
and its security implications. In: IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. pp. 1–9 (2016) [Cited on page 41.]

[15] Liu, Y., Squires, M.R., Taylor, C.R., Walls, R.J., Shue, C.A.: Account lockouts:
Characterizing and preventing account denial-of-service attacks. In: Chen, S., Choo,
K.K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) Security and Privacy in Communication
Networks. pp. 26–46. Springer International Publishing, Cham (2019) [Cited on page 35.]

[16] Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N., Cranor,
L.F.: Fast, lean, and accurate: Modeling password guessability using neural networks.
In: 25th USENIX Security Symposium (USENIX Security 16). pp. 175–191. USENIX
Association, Austin, TX (Aug 2016) [Cited on page 24.]

[17] Nita, S., Mihailescu, M., Pau, V.: Security and cryptographic challenges for authen-
tication based on biometrics data. Cryptography 2, 39 (2018) [Cited on page 5.]

[18] NordVPN: Hybrid attack definition – glossary. https://nordvpn.com/fr/
cybersecurity/glossary/hybrid-attack/ (June 10 2024), accessed: 2024-07-
10 [Cited on pages III and 17.]

[19] Pagnin, E., Mitrokotsa, A.: Privacy-preserving biometric authentication: Challenges
and directions. Security and Communication Networks 2017(1), 7129505 (2017) [Cited

on page 5.]

[20] Papathanasaki, M., Maglaras, L., Ayres, N.: Modern authentication methods: A
comprehensive survey. AI, Computer Science and Robotics Technology 2022, 1–24 (06
2022) [Cited on pages 4, 7, 36, and 37.]

[21] Paul A. Grassi, M.E.G., Fenton, J.L.: Digital identity guidelines: Authentication
and lifecycle management. National Institute of Standards and Technology (2017),
https://pages.nist.gov/800-63-3/sp800-63b.html, accessed: 2024-07-21 [Cited on

pages 4 and 8.]

[22] Raza, M., Iqbal, M., Sharif, M., Haider, W.: A survey of password attacks and
comparative analysis on methods for secure authentication. World Applied Sciences
Journal 19, 439–444 (01 2012) [Cited on pages 16, 17, 18, and 19.]

[23] Redmiles, E., Kross, S., Mazurek, M.: How i learned to be secure: a census-
representative survey of security advice sources and behavior. pp. 666–677 (10 2016)
[Cited on page 7.]

[24] Sahin, S., Roomi, S.A., Poteat, T., Li, F.: Investigating the password policy practices
of website administrators. In: 2023 IEEE Symposium on Security and Privacy (SP).
pp. 552–569 (2023) [Cited on pages 9 and 33.]

[25] Shay, R., Komanduri, S., Durity, A.L., Huh, P.S., Mazurek, M.L., Segreti, S.M., Ur,
B., Bauer, L., Christin, N., Cranor, L.F.: Designing password policies for strength
and usability. ACM Trans. Inf. Syst. Secur. 18(4) (may 2016) [Cited on page 33.]

[26] Singla, D., Verma, N.: Performance analysis of authentication system: A systematic
literature review (01 2023) [Cited on pages 4, 5, 36, and 37.]

https://nordvpn.com/fr/cybersecurity/glossary/hybrid-attack/
https://nordvpn.com/fr/cybersecurity/glossary/hybrid-attack/
https://pages.nist.gov/800-63-3/sp800-63b.html

90 BIBLIOGRAPHY

[27] Sutriman, Sugiantoro, B.: Analysis of password and salt combination scheme to im-
prove hash algorithm security. International Journal of Advanced Computer Science
and Applications 10(11) (2019) [Cited on page 34.]

[28] T. Ebanesar, G.S.: Improving login process by salted hashing password using sha-
256 algorithm in web applications. International Journal of Computer Sciences and
Engineering 7, 27–32 (3 2019) [Cited on page 34.]

[29] Tam, L., Glassman, M., Vandenwauver, M.: The psychology of password management:
A tradeoff between security and convenience. Behaviour IT 29, 233–244 (05 2010)
[Cited on pages 10 and 11.]

[30] Tan, J., Bauer, L., Christin, N., Cranor, L.F.: Practical recommendations for stronger,
more usable passwords combining minimum-strength, minimum-length, and blocklist
requirements. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. p. 1407–1426. CCS ’20, Association for Computing
Machinery, New York, NY, USA (2020) [Cited on page 33.]

[31] Tran, L., Nguyen, T., Seo, C., Kim, H., Choi, D.: A survey on password guessing.
ArXiv abs/2212.08796 (2022) [Cited on pages III, 14, 15, 23, and 24.]

[32] Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guess-
ing: An underestimated threat. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. p. 1242–1254. CCS ’16, Association for
Computing Machinery, New York, NY, USA (2016) [Cited on pages 14, 39, 43, 46, 47, 48, and 49.]

[33] Wash, R., Rader, E.: Prioritizing security over usability: Strategies for how people
choose passwords. Journal of Cybersecurity 7(1), tyab012 (06 2021) [Cited on pages 10

and 11.]

[34] Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using prob-
abilistic context-free grammars. pp. 391–405 (05 2009) [Cited on pages 16, 17, 21, 41, 43, and 49.]

[35] Yu, F., Martin, M.V.: Gnpassgan: Improved generative adversarial networks for trawl-
ing offline password guessing. In: 2022 IEEE European Symposium on Security and
Privacy Workshops (EuroSPW). pp. 10–18 (2022) [Cited on pages 14 and 15.]

Appendix A

Source code
The source code can be found at https://gitlab.com/AliTazribine/password-generator.
Contact at ali.tazribine@ulb.be or alitazribine@gmail.com to get access

91

https://gitlab.com/AliTazribine/password-generator

Appendix B

Documentation
The documentation can be found in the docs directory

92

Appendix C

Experimental data
Although all datasets used in this thesis could easily be accessed publicly, the passwords
are sensitive data. We paid a lot of attention when manipulating the datasets. We reported
aggregated statistics in this work—total number of passwords, common patterns, PII types
distribution, and distribution of characters- to ensure none of the details of the individual
accounts leaked out. Furthermore, to ensure privacy protection to a larger extent, secure
offline systems were used for all data processing; sensitive information was irreversibly
deleted once our analysis was over.

93

	Abstracts
	Abstract

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivations
	Context
	Problem statement

	Project statement & contributions
	Organization of this document

	Authentication
	Knowledge-based authentication
	Property-based authentication
	Biometric-based authentication
	Summary

	Passwords
	Introduction
	Password policies
	Reality of password policies
	Human behavior in password creation
	Password reuse
	Cognitive load and memory challenges
	Simplicity and remembrance capability
	Common patterns and personal information
	Common words and phrases
	Impact of password policies
	User frustration and non-Compliance
	Security/Convenience tradeoff
	Security awareness and its impact on password choices

	Summary

	Password Guessing
	Introduction
	Types of password guessing attack
	Online vs offline password guessing
	Targeted vs trawling password guessing
	Brute Force Attacks
	Dictionary Attacks
	Hybrid Attacks hybrid, hybrid2
	Rainbow Table Attacks rainbowtable, rainbowtable2
	Phishing Attacks
	Shoulder Surfing
	Summary

	Advanced Password Guessing Techniques
	Probabilistic Context-Free Grammar (PCFG)
	Markov Models passGuessSurvey
	Machine Learning-Based Attacks passGuessSurvey
	Summary

	Password cracking tools
	John The Ripper
	Hashcat
	Hydra
	Medusa
	Summary

	Password dictionary generator tools
	Crunch
	Cewl (Custom Word List generator)
	CUPP (Common User Passwords Profiler)
	Summary

	Defenses Mechanism
	Strong Password Policies
	Hashing and Salting
	Rate Limiting and Account Lockout
	Multi-Factor Authentication (MFA)
	Summary

	Role of PII in Password Guessing
	Introduction of PII
	Summary

	Password Guessing Frameworks based on PII
	Personal-PCFG
	TarGuess-I
	Targuess-II
	Targuess-III
	Targuess-IV
	Targuess-I-H and TarMarkov-H
	Summary

	Project's mission, objectives and requirements
	Requirements
	List of requirements and how they relate one to another
	Requirements covered by state of the art
	Requirements not covered by state of the art

	Project scoping
	Mission statement of this project
	Explicit out-of-scope definition

	Implementation
	Methodology
	Implementing Basis for Tools
	Main Tools
	Secondary Tools

	Experimentation preparation & data collection
	Setup, Requirements, Environment, Tools & Materials
	Hardware and software setup
	Tools and libraries

	CUPP Tool
	Data Source
	Leaked database data preprocessing

	Experiment's output/Data Analysis
	Database dataset analysis
	Length distribution
	Character distribution
	PII distribution
	Structures distribution
	Analysis conclusion

	Password Generation Tool Experimentation
	Comparisons rules
	Comparisons metrics
	Comparisons results
	Gathered comparisons tables and figures

	Discussion
	Comparison with state of the art/related works
	Limitations of validity
	Use of Basic Functionality of CUPP
	Limitation on Dictionary Size
	Probabilistic threshold and dataset size
	Dependency on a Single Leaked Dataset
	Conclusion

	Future work
	Conclusions
	Bibliography
	Appendices
	Source code
	Documentation
	Experimental data

