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Abstract

This Master’s thesis investigates the dynamics and impacts of DNS amplification attacks
within a virtual environment. DNS amplification, a significant threat in the cybersecu-
rity domain, exploits DNS protocol vulnerabilities to generate large volumes of traffic,
potentially crippling target infrastructures. This study aims to provide a comprehensive
understanding of these attacks and evaluate various mitigation strategies.

An optimized virtual laboratory was configured to simulate DNS amplification attacks
under controlled conditions. This environment was designed to be highly vulnerable, fa-
cilitating detailed observations of attack mechanisms and impacts. Custom scripts were
developed to accurately reproduce attack scenarios, measure amplification rates, and mon-
itor DNS traffic on the victim side.

The analysis involved multiple series of measurements to compare findings with existing
scientific literature and explore various factors influencing amplification rates. Mitigation
techniques such as optimal DNS server configurations and rate limiting mechanisms were
evaluated for their effectiveness in countering amplification attacks.

Future work suggestions encompass optimizing the developed scripts, enhancing the
web monitoring interface, and applying machine learning algorithms to dynamically adjust
mitigation measures based on legitimate user behavior and network load. The study also
proposes expanding the virtual laboratory to simulate attacks on comprehensive enterprise
networks and deploying these scenarios within the Royal Military Academy’s Cyber Range,
CyRange.

This thesis significantly contributes to the field of cybersecurity by offering practical
solutions and insights for protecting systems against DNS amplification attacks, providing
a foundation for future research and professional training in this critical area.
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Preface
This Master’s thesis in cybersecurity explores the complex dynamics and practical impli-
cations of a DNS amplification attack in a virtual environment. The aim of this work is to
contribute to the understanding and prevention of this type of attack, which is becoming
increasingly common and a threat to network security.

The initiative for this project was born of a deep interest in computer security and a
desire to push back the current limits of our knowledge of cybersecurity. The research and
development carried out in the course of this work required scientific rigor and a robust
methodology for simulating and analyzing attacks in a controlled environment.

In the course of this dissertation, we discuss the theoretical foundations of the DNS
protocol, the amplification mechanisms of DDoS attacks and possible mitigation measures.
Through in-depth experimentation and analysis, we aim to offer fresh insights and practi-
cal solutions for strengthening system resilience against these threats.

This dissertation is the fruit of a collective effort and a personal commitment, aimed
at making a significant contribution to the scientific community and to the practice of
cybersecurity. I hope that readers will find in this document relevant information and food
for thought for their own work and projects.
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Chapter 1

Introduction
1.1 Motivations

Cybersecurity has become a crucial issue in today’s society, where computer networks and
information systems are ubiquitous. DNS amplification attacks, in particular, represent a
serious threat, as they exploit protocol flaws to generate huge volumes of traffic, which can
paralyze entire infrastructures, including critical infrastructures such as hospitals. This
study is part of an effort to gain a deeper understanding of the mechanisms, impacts and
mitigation measures of these attacks, with the aim of reinforcing the security of IT systems.

There are many reasons for this research project. On the one hand, it aims to respond
to a growing concern among IT industry players about the increase and sophistication of
DDoS attacks. On the other hand, this dissertation aims to make a significant academic
contribution by exploring innovative solutions and developing practical tools for the study
of DNS amplification attacks, enabling us to learn how to detect and prevent these attacks.
In addition, this dissertation is also intended to serve as an educational resource, enabling
other students and professionals to gain a better understanding of this attack and how
it works, and to encourage future work aimed at constantly improving knowledge of this
threat and ways of protecting against it.

1.1.1 Context

The DNS (Domain Name System) is a fundamental element of the Internet infrastructure,
enabling the resolution of domain names into IP addresses and vice versa. However, this
same infrastructure can be exploited for amplification attacks, where small DNS queries
can generate much larger responses, flooding targets with unwanted traffic. The DNS
amplification attack is a particular form of DDoS (Distributed Denial of Service) attack,
which takes advantage of the vulnerabilities of misconfigured DNS servers.

Historically, several notable DDoS attacks have highlighted the vulnerabilities of DNS
systems. For example, in 2016, the DDoS attack against Dyn, a DNS management com-
pany, caused major disruptions to websites such as Twitter, Netflix, and Reddit. This
attack mainly exploited vulnerabilities in security cameras and other IoT devices to gen-
erate massive traffic. Another notable attack was that of 2013, which targeted Spamhaus,
an anti-spam organization, and is considered one of the largest DNS amplification DDoS
attacks ever recorded, with traffic peaks of up to 300 Gbps. These incidents show just how
devastating DNS amplification attacks can be, and underline the importance of ongoing
research in this field.

In this context, the need for in-depth study and experimentation in a controlled envi-
ronment is imperative. By simulating these attacks in a virtual environment, it is possible
to understand the underlying mechanisms, carry out a series of measurements to assess the
impact of such attacks, and point the way to possible mitigation measures against them.

1



2 1.2. PROJECT STATEMENT & CONTRIBUTIONS

This approach contributes to overall network security by offering solutions that can be
applied in real-life contexts.

1.1.2 Problem statement

Despite advances in security, DNS amplification attacks remain a significant threat. They
exploit inadequate DNS server configurations and the inherent functionality of the DNS
protocol to generate massive attacks. The main problem lies in the difficulty of preventing
and detecting these attacks before they cause significant damage. What’s more, current
mitigation solutions are not always sufficient or suitable for all situations.

This thesis focuses on the study of DNS amplification attacks in a virtual environment,
highlighting the technical challenges and specific vulnerabilities associated with such at-
tacks. It also aims to assess the strength of such attacks, and to initiate the study of
various existing mitigation methods. This dissertation is the starting point for a series of
other projects aimed at improving our knowledge of this attack and inventing or improving
mitigation methods against it.

1.2 Project statement & contributions

The main objective of this project is to develop a detailed understanding of DNS amplifi-
cation attacks and to evaluate some mitigation strategies proposed by various experts in
the field. The specific contributions of this dissertation are as follows:

1. Development of a virtual laboratory environment: Setting up a virtual in-
frastructure to simulate and analyze DNS amplification attacks under controlled
conditions. The infrastructure was configured to be as vulnerable as possible in or-
der to optimally observe attack mechanisms and their impact. In addition, the DNS
infrastructure has been configured in such a way as to reproduce and observe the
results found in the scientific literature.

2. Development of attack, measurement and monitoring scripts: Scripts have
been developed to reproduce this type of attack, to perform the various amplification
measures and to monitor DNS traffic on the victim’s side. These scripts enable
faithful reproduction of attack scenarios and accurate data analysis.

3. Analysis of amplification mechanisms: Detailed study of the different types
of DNS queries and their amplification potential. Several series of measurements
were carried out to provide a variety of comparisons, including comparisons with the
scientific literature and analysis of various factors influencing amplification rates.

4. Evaluation of mitigation techniques: Analysis of the effectiveness of certain
mitigation measures, such as the optimal configuration of DNS servers and the im-
plementation of mechanisms to limit amplification factors such as limiting the number
of responses or minimizing the size of these responses.

5. Suggestions for improvement: Open up different avenues for possible improve-
ment of this thesis, in particular by detailing the various works that could result from
this thesis.
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1.3 Organization of this document

This report is structured to guide the reader through the various stages of the study.
Chapter 1 introduces the motivations, context, issues and contributions of the project.
Chapter 2 presents a review of the scientific literature on the DNS protocol, DDoS attacks
and existing mitigation methods. Chapter 3 describes the implementation of the virtual
environment and DNS services used for the experiments. Chapter 4 details the imple-
mentation of the attack, measurement and monitoring scripts, and presents the results
obtained. Chapter 5 explores some mitigation methods for DNS amplification attacks and
analyzes their effectiveness. Chapter 6 suggests future work and avenues for improvement.
Finally, Chapter 7 summarizes the main results and contributions of the dissertation.



Chapter 2

Literature review, state of the art (SotA)
2.1 DNS Protocol Review

First of all, it’s worth taking a look at the purpose of the DNS protocol, the architecture
behind it and the mechanisms behind it.

2.1.1 Purpose and structure of the DNS protocol

The DNS protocol translates domain names or host names into IP addresses. The domain
name space, a major component of DNS, has a tree structure made up of nodes and leaves.
Each node and leaf in the domain name space has a label and a set of information. This
information is contained in records called Resources Records. It is possible for a node or
leaf to contain no resource records. The tree is subdivided into zones starting at the root
zone. [27]

A DNS zone is a specific portion of the DNS namespace and is managed by an
organization or administrator. This enables decentralized resource management. [6,
27]

Definition

DNS is in fact a distributed database using the client-server model. The nodes men-
tioned above are in fact name servers.1 It is these name servers that provide information
on a domain or host name. A very important name server is the authoritative name server.
This name server knows the information relating to the zone it manages, and is authorized
to respond to DNS requests for the zone it manages. [27]

2.1.2 Domain name resolution

Domain name resolution [5] is a multi-stage process, involving several DNS servers.

1https://en.wikipedia.org/wiki/Domain_Name_System
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1. First of all, the customer queries his DNS resolver, generally by making a recursive
request for the domain name he’s looking for.

2. This DNS resolver then queries each DNS server required to obtain the final answer.
It will start by querying the root name server, which is the reference server for other
DNS servers containing the specific information.

3. If the information is not contained in the root name server, the latter will reply to the
DNS resolver to query the TLD name server corresponding to the requested domain
name. This TLD name server will send the DNS resolver a list of authoritative name
servers for the requested domain name.

4. With this list of authoritative name servers for the requested domain, the DNS
resolver will be able to query the correct DNS name server containing the information
for the requested domain name, and thus obtain the information requested by the
customer.

5. Once the information has been obtained, the DNS resolver sends it back to the client.

The client generally makes a recursive request to its DNS resolver, but the DNS
resolver in turn makes iterative requests to other DNS servers to avoid overloading
the other DNS servers.

Side note

2.1.3 DNS packet details

Before going any further and detailing the operation of the DNS protocol’s request-response
mechanism, it is necessary to detail the format of DNS messages.

All communications within the DNS protocol follow a format called a message. This
message is made up of different sections, as can be seen in the previous image. [28]

The Header section is present in all messages. The Question section contains fields
describing a question posed to a name server. Finally, the 3 other sections follow the same
format: a set of resource records, which can of course be empty. The Answer section
contains, as its name suggests, all RRs responding to the question asked. The Authority
section contains RRs pointing to the authoritative name server(s) for the requested zone.
And finally, the Additional section contains additional RRs relating to the request, but
these RRs are not necessarily answers to the question posed. [28]
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Details of the formats of the Header and Question sections and of the Resource
Records making up the Answer, Authority and Additional sections can be found in
RFC 1035. [28]

Side note

2.1.4 Transport mechanism

Messages are generally sent via the UDP protocol on server port 53. Initially, these mes-
sages were limited to a size of 512 bytes (excluding IP and UDP headers). However,
the introduction of the EDNS0 extension made it possible to specify message sizes larger
than 512 bytes. Messages exceeding the size limit were truncated (Truncated bit set to
1), meaning that transmission of the message was retried via TCP. As data sizes became
increasingly large, the EDNS0 extension made it possible to extend this size and avoid
this retransmission mechanism via TCP having to be constantly implemented. However,
as mentioned in RFC 6891, this extension can also create a number of vulnerabilities,
including a denial-of-service attack, which will be discussed in more detail later in this
report. [28]

As mentioned in RFC 6891, the EDNS extension is a hop-by-hop extension, which
means that its use must be negotiated between all servers involved in the resolution
process. [14]

Side note

Messages can also be sent via TCP on server port 53. TCP is generally used when
Truncated bit is enabled. This protocol is also used for zone file transfers between the
primary name server and the secondary name server. [28]

The primary name server is the authoritative server hosting the master copy of
data for the DNS zone for which it is authoritative. This server is also responsible
for the management and direct updates of its zone. [7]

Secondary name servers obtain read-only copies of zone files from the pri-
mary name server. These secondary name servers enable data redundancy and load
balancing by also responding to requests for the zone concerned. [7]

Definitions

2.2 DNSSEC Protocol Overview

Before starting, it’s very important to note that the details in this section are based on
Cloudflare’s article detailing the DNSSEC protocol. [8]

On September 10, 2014 researchers at Carnegy Mellon University published an article in
which they detailed having discovered that emails destined for Yahoo!, Hotmail and Gmail
servers were traveling through unauthorized mail servers, in other words that a kind of
Man-In-The-Middle was in place. The DNS protocol vulnerability exploited here is that
authentication information is not verified by the domain name system before accepting a
response. [33]
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A Man-In-The-Middle Attack is a technique whereby an attacker secretly inserts
himself between the communications of two parties, intercepting and potentially mod-
ifying the data exchanged.

Definitions

The solution to this problem is provided by the DNSSEC protocol. This protocol se-
cures the authenticity of DNS protocol information. To fully understand how the DNSSEC
protocol works, it’s essential to detail several components: the new DNS record types
added, the RRsets, the various keys, the Delegation Signer records and the chain of trust.
Once these details have been covered, domain name resolution with DNSSEC can be ex-
plained.

2.2.1 Added DNS record types

The DNSSEC protocol strengthens the security of the domain name system by integrating
cryptographic signatures into the DNS records already in place. DNS name servers retain
these digital signatures along with the usual record types such as A, AAAA, MX, CNAME,
TXT, etc. By checking the signature associated with a DNS record, it is possible to
verify that the origin of this record is indeed its authoritative name server, and that it
has therefore not been modified by a Man-in-the-Middle attacker. To simplify signature
verification, DNSSEC introduces several new DNS record types:

• RRSIG: a cryptographic signature of the corresponding RRset.

• DNSKEY: a public signing key.

• DS: cryptographic hash of a DNSKEY record

• NSEC and NSEC3: for explicit denial of DNS record existence. With DNSSEC,
DNS zones can include cryptographic proofs, in the form of NSEC (Next Secure) or
NSEC3 (Next Secure version 3), which explicitly specify which records exist between
two consecutive records in a secure DNS zone. These proofs provide irrefutable
evidence that a certain DNS record does not exist in a given zone. Thus, "explicit
denial of existence" means that the DNS server can verifiably prove that a specific
record does not exist in the DNS zone.

• CDNSKEY and CDS: when a child zone requests updates for one or more DS
records in the parent zone.

2.2.2 RRsets

The first step in implementing the DNSSEC protocol is to group DNS records of the same
type into a set of RRs called an RRset. For example, if a zone contains three records of
type AAAA with the label www.example.com, these records will be grouped into a single
AAAA RRset. It is this RRset that will be signed, and will then get an associated RRSIG
record.
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Figure 2.1: RRset illustration [8]

2.2.3 Zone-Signing Keys and Key-Signing Keys

The DNSSEC protocol introduces 2 types of signing keys: zone-signing keys and key-
signing keys. Each zone is provided with a zone-signing key pair called ZSK. The private
ZSK will sign each RRset of the zone concerned, while the public ZSK will verify the sig-
nature of these RRsets. Each RRSIG obtained as a result of the RRset signing process,
thanks to the private ZSK, is stored in the corresponding name server. Each RRSIG allows
to specify that the corresponding DNS records belong to it, that their origin is the name
server holding this RRSIG, and what these records should look like.

The DNS zone administrator will also publish its public ZSK within its name server
in a DNSKEY resource record. When a DNSSEC resolver requests a particular record,
the name server will return the RRSIG associated with that record, along with the zone’s
DNSKEY record to obtain the zone’s public ZSK. It is this triplet [RRset, RRSIG and
public ZSK] that validates the DNS response.

However, this public ZSK must also be validated to ensure that it has not been com-
promised. This public ZSK is validated by introducing a key-signing key pair. This works
in a similar way to signing a DNS zone. The private KSK will be used to sign the zone’s
public ZSK, producing an RRSIG for the DNSKEY record corresponding to this public
ZSK. The name server will also publish its public KSK in a DNSKEY-type RR at the
same time as signing this public KSK using the private KSK, thus producing an RRSIG.
Resolvers are now able to validate the public ZSK registration thanks to the public KSK
registration.

2.2.4 Delegation Signer Records

All that remains now is to establish trust in the rest of the DNS hierarchy. The Delegation
Signer record will establish this trust. This record is in fact the hash, produced by the
child zone, of the DNSKEY record containing the zone’s public KSK. This record is then
transmitted to the parent zone so that it can publish this DS record. To verify the public
KSK of a child zone, the resolver will hash this KSK and compare this hash with the
DS record supplied by the parent zone. If the two hashes match, then the public KSK is
validated and therefore trustworthy.
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Figure 2.2: Delegation Signer Record illustration [8]

2.2.5 The chain of trust

The DNSSEC protocol therefore introduces the notion of a chain of trust through the
various keys and DS records. To establish this chain of trust, it is necessary to repeat
the validation process described above, right down to the root zone. It’s important to
note that there is no DS record for the root zone, so there’s a ceremony called the Root
Signing Ceremony [9] to produce the RRSIG record that can be used to verify the root
name server’s public KSK and ZSK.

The illustration of the chain of trust mechanism can be found in the appendix.
Side note

2.2.6 Name resolution and validation with DNSSEC

Now that all the elements of the DNSSEC protocol have been introduced, it’s time to
explain how DNSSEC-based name resolution works in practice.

Figure 2.3: Name resolution and validation with DNSSEC [22]
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1. When the validating resolver receives a DNS request with the DNSSEC flag set,
meaning that the client wants DNSSEC responses, this resolver will follow the stan-
dard DNS protocol to find the name server for isc.org and will ask it to send a
DNSSEC request to obtain the type A record from www.isc.org.

2. The isc.org name server supporting the DNSSEC protocol will respond with the type
A record and the corresponding RRSIG so that the validation process can proceed.

3. The validating resolver will ask isc.org for its cryptographic keys in order to validate
the RRSIG obtained.

4. The isc.org name server will respond with DNSKEY records and corresponding
RRSIGs. The validating resolver will now be able to verify the responses received in
step 2.

5. The validating resolver will ask the .org name server for all the information needed
to verify its isc.org child.

6. The .org name server will respond with the corresponding DS record and the cor-
responding RRSIG. The validating resolver can now calculate the hash of isc.org’s
public KSK and compare it with the DS record returned by .org. If the 2 match, this
will prove the authenticity of isc.org.

7. The validating resolver will ask .org for its DNSKEY records in order to verify the
signatures it received in step 6.

8. .org will respond with its DNSKEY records and associated RRSIGs. The validating
resolver can now verify the answers obtained in step 6.

9. The validating resolver will now ask the root zone for all the information needed to
verify the authenticity of .org.

10. The root name server will then return the corresponding DS record and the associated
RRSIG. The validating resolver will repeat the same process as in step 6 to validate
the authenticity of .org.

11. The validating resolver will request DNSKEY records from the root zone in order to
validate the information received in step 10.

12. The root name server will respond with the associated DNSKEY and RRSIG records.
The validating resolver, which trusts the root zone thanks to the Root Signing Cere-
mony concept attesting to the root zone’s identity, will validate the responses received
in step 10 and consequently validate the entire chain of trust, which will at the same
time validate the validity of the response. The validating resolver will then send the
verified response to the client.

2.3 Distributed Denial-of-Service Attack (DDoS)

Before describing a DDoS attack in detail, it’s important to define a DoS attack. A DoS
attack is an attack designed to alter or even render unavailable the services of a machine
or network. The attack does not affect the data itself, but rather its availability. Most
DoS attacks aim to saturate the target’s bandwidth or connectivity. To achieve this, the
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attacker will generally send such a flow of traffic or requests that it will consume all avail-
able network resources, preventing legitimate users from accessing the network or machine
normally. [16]

A DDoS attack is a distributed DoS attack, i.e. one launched from multiple devices.
During this type of attack, the attacker will generally use a set of machines to launch DoS
attacks from each of these machines.

This type of attack has particularly flourished since the emergence of botnets. Botnets
are a collection of infected machines known as bots or zombies, controlled by an attacker.
The creation of such a botnet has become the activity of choice for attackers since the
emergence of the IoT and all connected devices. Typically, attackers will attempt to infect
as many machines as possible using malware such as Mirai 2. They then control and coor-
dinate DDoS attacks from a platform known as the Command and Control Center. These
botnets enable attackers to launch large-scale DDoS attacks by exploiting the resources of
infected machines, thus saving the attacker a great deal of resources. [15, 34] Obviously,
the larger the botnet, the more powerful the attack will be, as the network of bots will be
able to send a large number of requests or generate a huge network flow. [3, 16]

In these DDoS attacks, we can find several classes of attacks, including the Flooding
Attack, the Reflection Attack, the Coremelt Attack, the Land Attack, the Amplification
Attack and many others. Among all these attack classes, the best known are probably the
flooding attack, the reflection attack and the amplification attack. [15]

Flooding attacks consist in sending a very large amount of traffic to a victim using
bots, also known as zombies. [15] These flooding attacks include such popular attacks as:

• SYN flood attack: This attack consists of repeatedly sending a large number of
SYN packets. The attacker is attempting to exploit a vulnerability in the TCP
protocol. When the server receives a SYN packet, it responds with a SYN/ACK
packet, allocating the resources required for the connection while waiting for the
final stage of the connection, i.e. the reception of an ACK packet. As a result, the
server will receive a large number of SYN packets from the attacker, and will allocate
resources for each requested connection without ever finalizing them, thus consuming
all its available resources. [11]

2https://github.com/jgamblin/Mirai-Source-Code

https://github.com/jgamblin/Mirai-Source-Code
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Figure 2.4: SYN Flood

• HTTP flood attack: This attack aims to overload a server by sending a large
number of HTTP requests. There are 2 types of HTTP flood attack: HTTP GET
attack and HTTP post attack. The idea of the HTTP GET attack is to flood the
server with GET requests. This type of request typically asks the server to return
a specific resource to the client. This mass of GET requests will therefore cause the
HTTP server to consume large amounts of resources, thereby overloading the server.
The idea behind the HTTP POST attack is similar to that of the HTTP GET attack,
but with POST requests. POST requests are used to send data to the server. The
server must then manage and process this data. As a result, this mass of POST
requests will consume a huge amount of resources on the server side, overloading
it. [10]

Figure 2.5: HTTP Flood
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• UDP flood attack: This attack simply involves sending a large number of UDP
packets. Since the UDP protocol does not require a connection to be established, the
attacker can easily send a huge number of packets via his botnet. When receiving a
UDP packet on a specific port, the server will consume resources by checking whether
a program is running on the specified port and replying to the client with an ICMP
packet specifying whether the destination is reachable or not. It is this verification-
response mechanism that will cause the server to overload when faced with a large
number of UDP requests. [12]

A reflection attack is a special type of DoS attack. During a reflection attack, the
attacker will launch a DoS or DDoS attack by spoofing the victim’s IP address in order to
direct the attack towards the victim. Next, the attacker will typically direct the destination
of the requests to a server acting as a reflector. This server will then direct all responses to
the victim, as its address will have been usurped by the attacker. The difference between
reflection attacks and classic DDoS attacks is that reflection attacks don’t target the des-
tination directly, but rather use the destination to reflect all the requests that can be sent
to it. The target here is really the spoofed source IP address.

Figure 2.6: Reflection Attack

It’s very important not to confuse reflection attacks with amplification attacks. In fact,
the difference between these two attacks is that reflection attacks are not amplified and
therefore have an amplification factor equal to one, but this will be detailed in the next
section.

2.4 Amplification DDoS attack

As mentioned above, amplification attacks use the same mechanism as reflection attacks,
with the difference that amplification attacks use protocols that amplify network traffic.
What is meant here by amplifying network traffic is that the size of the responses sent from
the server to the victim will be larger than the size of the requests sent by the attacker to
the server. The server will therefore be called an amplifier instead of a reflector. To add
even more detail, reflectors will only allow IP address spoofing on the part of the attacker,
whereas amplifiers will allow the victim’s IP address to be spoofed at the same time as
sending responses of a much larger size than the requests initially received. [23,32]
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Before launching a DDoS amplification attack, an attacker will first seek to collect a
list of amplifiers enabling the attack to be carried out. Next, the attacker will gather
information about these amplifiers, such as the amplifier’s maximum bandwidth, whether
there is a waiting mechanism between responses or whether a blacklisting mechanism is in
place. Once all this information is in hand, the attacker can launch his attack. [23]

Amplification attacks are often carried out via the UDP protocol, since this makes it
easy to spoof the victim’s IP address. The TCP protocol is actually not preferred, as it has
a three-way handshake mechanism initially in place to validate the identity of the entity
behind the communication. However, the article of Ismail and al [23] based on the article
of Kührer and al [24] shows that the TCP protocol can be used to carry out amplification
attacks, and in particular highlights the protocols using TCP that can be used to carry
out this type of attack.

Figure 2.7: TCP based protocols for amplification attacks [23]

The article of Ismail and al [23], again based on the article of Kührer and al [24],
highlights UDP-based protocols for amplification attacks. These are the protocols gener-
ally favored for amplification attacks, since the UDP protocol allows attackers to hide by
usurping the victim’s IP address.

Figure 2.8: UDP based protocols for amplification attacks [23]

When we talk about amplification attacks, there is one measure that is important in the
choice of the protocol to be used in the attack. This measure is called the amplification rate
and depends on a number of factors, including the target’s protocol environment and all
the measures it has taken to defend itself against these attacks. In reality, the amplification
rate is divided into 2 amplification rates: the Bandwidth Amplification Factor (BAF) and
the Packet Amplification Factor (PAF). According to article of Ismail and al [23], article
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of Rossow and Görtz [32] and the article of Anagnostopoulos and al [3], the size of packet
headers should not be taken into account when calculating amplification rates. Their
justification is that this size may change if the protocol used evolves. However, a choice
will be made later in this thesis on this subject. The calculations for these amplification
rates are as follows:

• The Bandwidth Amplification Factor is the ratio between the size of the UDP payload
sent by the amplifier to the target and the size of the UDP payload sent by the
attacker to the amplifier.

• The Packet Amplification Factor is the ratio between the number of packets sent by
the amplifier to the target and the number of packets sent by the attacker to the
amplifier.

In addition, Rossow and Görtz’s article [32] presents a study of these two amplification
rates for UDP-based protocols enabling these amplification attacks.

Figure 2.9: Amplification factors for some UDP based protocols [32]

The article of Ismail and al [23] also produced a taxonomy of ADDoS. It states that this
type of attack can be divided into two broad categories: flow multiplication attacks and
payload magnification attacks. Each of these categories then contains a series of known
attacks, such as the Smurf attack, or a series of known protocols, such as TCP and UDP.
In this article, you can also find a table from the article Kührer et al showing the number
of amplifiers and amplification rates for the TCP protocol.

Figure 2.10: Amplification factors for some TCP based protocols [23,24]

And a final point to note about these amplification attacks is that they can be carried
out using a botnet, but also without a botnet. The advantage of the botnet here is that
the attacker will use the botnet’s resources to carry out the attack, sending all the requests
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where he would use his own resources without a botnet. However, a botnet requires a
certain architecture and specific mechanisms.

2.5 DNS Amplification Attack

A DNS amplification attack is a particular type of amplification attack. In this attack, the
attacker takes advantage of the fact that the size of DNS queries is smaller than the size of
DNS responses. The attacker will, through a botnet or not, use one or more machines to
act either as DNS servers or DNS forwarders, sending DNS responses back to the victim.
This type of attack is particularly popular with attackers for a number of reasons. Firstly,
it allows the attacker to be “anonymous”, since the UDP protocol can be used to spoof the
victim’s IP address. Secondly, as DNS is used worldwide, it provides a large attack surface
and a wide choice of victims. And finally, if the victim has little or no protection against
this attack, the DNS amplification attack is fairly easy to carry out.

Figure 2.11: DNS Amplification Attack

In an article by Anagnostopoulos and al [2], you can find a schematic of the typical
architecture of a DNS amplification attack. In this schematic, it is interesting to note that
an attacker could typically set up an authoritative DNS server containing a large number
of DNS records, with the aim of generating a very large response. In this architecture, a
botnet would be used to send DNS queries to several recursive DNS servers, potentially
including Open DNS servers. These queries would typically contain a request to resolve
the domain name set up by the attacker. The DNS servers receiving these requests would
then query the attacker’s DNS server to resolve the domain name, eventually returning an
amplified response to the victim.

In the article by Anagnostopoulos and al [2], it’s also possible to find a very important
point about the DNS amplification attack. The adaptation of the EDNS0 extension has
made it possible to create responses much larger than the initial 512-byte limit. This ex-
tension therefore considerably increased the amplification rates of the DNS amplification
attack and consequently considerably increased the impact of this attack. This article also
mentions that an attacker will generally place a very large TXT DNS record (around 4KB)
in order to maximize the size of the DNS response and therefore maximize the amplification
rate of the attack. Still in the same article, the authors present the attack scenario ac-
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companied by pseudo code using the Scapy library of the Python programming language.
Next, the authors describe the results of executing their attack scenario in 3 countries:
Greece, Ireland and Portugal. In particular, these results concern the percentage of open
forwarders per country in regards to the size of response they return. These results also
concern the impact on performance for the victim.

In another article by Anagnostopoulos and al [3], the authors explain their process of
discovering Open DNS Resolvers and DNS forwarders, which is a crucial step in the devel-
opment of a DNS amplification attack. Indeed, as seen previously, one of the first steps in
this type of attack is to collect a set of amplifiers to be used in the attack in question. In
this study, it is important to note that the authors once again carried out their study in
Greece and Portugal, but this time replaced Ireland with Singapore. The authors also carry
out a study of amplification rates for different types of queries with different parameters.
This article is also interesting in that it mentions that the DNSSEC extension consider-
ably increases the Banwidth Amplification Factor. This is because the DNSSEC extension
introduces signatures and public keys into DNS responses, thereby increasing the size of
these responses and thus the BAF. A final important point made by this article is that the
scientific literature, in particular the article about the influence of TLDs in a DNS ampli-
fication attack [1], reveals that the use of Top-level domains would once again increase the
BAF. Finally, like many scientific studies, this article studies BAF for different query types.

Finally, the article by van Rijswijk-Deij and al [31], highlights and studies the fact that
using the DNSSEC extension in a DNS amplification attack considerably increases the
BAF, particularly with ANY queries. This increase in BAF comes, as mentioned above,
from the fact that the DNSSEC extension will add a series of DNS records including sig-
natures (RRSIGs) and public keys (DNSKEY). This addition of DNS records will increase
the impact of ANY queries. Indeed, this type of query will return all the DNS records
available for the requested domain name, and the response will therefore include all the
signatures and keys for the zone. This will considerably increase the size of DNS responses,
the BAF and consequently the impact of the attack.

2.6 Mitigation mesures against DNS Amplification attacks

In this section, when any type of DNS server is mentioned, it will be referring to DNS
relay servers, or in other words the DNS servers used to amplify this attack, as shown
in Figure 2.11.

In addition, the victim here can be another server of any type, an individual
machine or an entire network.

Side note

As mentioned in an article written by Cloudflare [4], a single individual or company
has limited defense capabilities against DNS amplification attacks. Indeed, the effects of
such an attack will be felt across the entire infrastructure surrounding the actual target
of the attack. Apart from defense solutions offered by external services, the main mitiga-
tion strategies are preventive measures. In fact, Cloudflare offers two preventive measures
against this type of attack: reduce the total number of open DNS resolvers and check the
source IP address. It’s important to note that not leaving your DNS server open to the
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Internet is a best practice documented by BIND9. Indeed, reducing the number of open
DNS servers makes it more difficult for attackers to find amplifiers to carry out their attack.
Source IP addresses will be verified by Internet Service Providers (ISPs). Cloudflare’s logic
here is that a DNS packet sent from inside a network with a spoofed source IP address that
makes it look like an external host will surely constitute a spoofed packet and can therefore
be dropped. Finally, Cloudflare has solutions to mitigate DNS amplification attacks. In
fact, its Anycast3 network and other solutions4 enable the weight of the attack to be spread
over numerous datacenters, and thus over a larger surface area, to better absorb the load
of this type of attack.

Fortinet’s article [17] details 10 ways in which their FortiDDoS solution can mitigate a
DNS amplification attack and thus protect your DNS infrastructure.

First of all, the authors advise against allowing DNS responses that have no corre-
sponding DNS query, i.e. DNS responses that have not been requested. A classic DNS
exchange consists of sending a DNS request from a DNS resolver to a DNS server, followed
by a response from the DNS server to the DNS resolver. A legitimate DNS response will
therefore always be preceded by a DNS request. Based on this principle, their solution
analyzes whether each DNS response has an associated DNS query.

Figure 2.12: Blocking unsolicited DNS responses [17]

Their second recommendation is to drop retransmissions that are too fast. Indeed,
a legitimate DNS client will never send the same DNS query many times consecutively
within a short time interval. Their logic is therefore that if the same DNS query arrives
too quickly from the same IP address, such DNS queries will simply be dropped.

3https://blog.cloudflare.com/a-brief-anycast-primer/
4https://www.cloudflare.com/fr-fr/ddos/

https://blog.cloudflare.com/a-brief-anycast-primer/
https://www.cloudflare.com/fr-fr/ddos/
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Figure 2.13: Drop Quick Retransmissions [17]

Secondly, the authors also recommend applying the Time-to-Live (TTL) principle, i.e.
not accepting the same requests too quickly if the DNS server has recently sent the response
to this request. Indeed, if a DNS client receives a DNS response to its query, this client will
cache it thanks to the Time-to-Live specified in the response, and will therefore normally
not need to request this information again, since it will already contain it in cache.

Figure 2.14: Enforce TTL [17]

It is also recommended not to accept DNS requests or DNS responses that are abnormal.
Indeed, as this type of attack is most often carried out via scripts, these may contain bugs
and therefore build incorrect or non-standard DNS packets. Such malformed packets should
therefore be dropped.
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Figure 2.15: Drop Anomalous DNS Packets [17]

Their solution forces the DNS client to prove that it is who it claims to be, and therefore
that it has not been spoofed. To do this, they will force retransmissions via TCP. Fortinet
also recommends using the Access Control Lists mechanism. In fact, a very important
feature of this mechanism is its ability to filter traffic by IP address, and thus block IP
addresses for which you do not wish to authorize traffic.

Articles from the Internet System Consortium (ISC) [20,21] and Imperva [18] also rec-
ommend adopting best practices for configuring DNS servers to make them less vulnerable
and more robust against this type of attack. Examples of best practices include limiting
recursive queries to authorized IP addresses, or limiting the size and rate of DNS responses.
The Imperva article also mentions setting up rate-limiting mechanisms to limit the volume
of DNS traffic. An article by America’s Cyber Defense Agency (CISA) [13] also supports
the implementation of best practices for configuring DNS servers, implementing mecha-
nisms such as source IP address verification, and advising the implementation of Response
Rate Limiting mechanisms, while cautioning that this mechanism could also impact legit-
imate traffic.

The article by MacFarland et al [25] mentions that the US CERT (United States Com-
puter Emergency Readiness Team) recommends the use of this Response Rate Limiting
mechanism with a limit of 5 identical responses per second for the same origin. This article
also mentions that the US CERT agrees that this mechanism could also impact legitimate
traffic and therefore cause unanswered DNS responses.

Finally, RFC8482 [19] recommends minimizing responses to ANY DNS queries. Cloud-
flare implements this mechanism and details part of its implementation in its article [26] on
the subject. The idea would be to provide a special HINFO record mentioning RFC8482
and possibly the title of this RFC.

A DNS Record HINFO (Host Information) is used to store information about a host’s
hardware and software characteristics.

Definition



Chapter 3

Configuration of virtual lab environ-
ment and DNS services
The main problem addressed in this thesis is the difficulty of preventing and detecting DNS
amplification attacks before they cause significant damage. Current mitigation solutions
are not always sufficient or suitable for all situations, hence the need for this in-depth
research. The development of a particularly vulnerable virtual laboratory environment is
essential to understand the underlying mechanisms of these attacks and assess the effec-
tiveness of different mitigation strategies.

For the purposes of this thesis, it was crucial to set up an infrastructure for simulating
and analyzing DNS amplification attacks under controlled conditions. This infrastructure
was configured to be as vulnerable as possible, in order to optimally observe attack mecha-
nisms and their impact. In addition, it has been designed to reproduce and observe results
found in the scientific literature, thus providing a solid basis for empirical comparisons and
validating theoretical observations through practical experimentation.

The state of the art highlighted the importance of understanding the DNS protocol and
the vulnerabilities exploited by DDoS attacks, particularly amplification attacks. Notable
incidents such as the attacks on Dyn in 2016 and Spamhaus in 2013 have demonstrated the
seriousness of these threats and the potentially devastating impact of DNS amplification
attacks. By reproducing these attack scenarios in a virtual environment, it is possible to
explore amplification factors in depth and assess the effectiveness of proposed mitigation
measures.

The detailed configuration of this virtual environment and DNS services is therefore
a crucial step in addressing the issues raised and achieving the objectives defined in this
thesis.

3.1 Set up the virtual laboratory environment

3.1.1 Hypervisor selection

Before deploying any virtual environment, it was necessary to choose a hypervisor to run
the entire laboratory. VirtualBox was chosen for several reasons.

Firstly, as VirtualBox is open source software, it was obvious that it would be a good
choice for the development of a master’s thesis. What’s more, its active community means
that the software is well maintained and responsive to bug fixes.

Secondly, VirtualBox offers a range of additional features compared with VMware
Workstation Player. VirtualBox enables Software Virtualization. VirtualBox naturally
supports more Host and Guest Operating Systems, such as Solaris, FreeBSD and macOS,

21
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where VMware requires VMware Fusion. VirtualBox also enables snapshots to be taken,
whereas VMware only offers this functionality with the paid version of the product. Virtu-
alBox supports more Virtual Disk Formats such as VDI, VHD and HDD. VirtualBox also
offers, free of charge, all the Virtual Network Models needed to develop any type of lab,
whereas you’d have to pay to access such features with VMware. And finally, VirtualBox
natively offers a wide range of integrations such as Vagrant and Docker, whereas VMware
requires an additional conversion utility for more VM types. [29]

And finally, as VirtualBox is widely used in the student community, it seemed a wise
choice for the development of a laboratory for observing and experimenting with a DNS
Amplification attack.

3.1.2 Topology and Set up of virtual environments

3.1.2.1 Laboratory Topology

Before going into detail about setting up the laboratory environment, we need to describe
its topology. This virtual laboratory will contain 3 virtual machines:

• A machine representing the DNS server to be used in the attack. It is through this
DNS server that all DNS queries intended to overload the victim will pass. This
server will also be the subject of amplification rate studies in the remainder of this
thesis.

• A machine representing the attacker, which will be used to run the script launching
DNS queries used to measure amplification rates, as well as the attack script. This
machine will also act as a DNS client.

• A machine representing the victim of the attack, which will be used to observe DNS
traffic via a web interface. This machine will also act as a DNS client.

Figure 3.1: Laboratory Topology

3.1.2.2 Laboratory set-up

Given the popularity and ease of use of the Ubuntu 22.04 LTS Jammy Jellyfish operating
system, this was chosen as the operating system for the various virtual machines. This
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choice also seemed judicious in view of the students’ familiarity with this operating system.
Once this choice of operating system had been made, it was necessary to make choices
concerning the virtual machine configuration. These choices were as follows:

• RAM: 2GB.

• CPU: 1.

• VDI: normal 25GB.

• Network Interface: one single network interface in bridge access mode. In the ad-
vanced settings, the interface type is Intel PRO/1000 MT Desktop (82540EM), the
promiscuity mode is set to Allow All and the connected cable box is checked.

Once the virtual machines had been correctly configured, Guest Additions were in-
stalled to ensure that there would be no future problems with any action, and above all to
obtain additional functionalities such as automatic screen adjustment and the creation of
a shared folder on the virtual machine to serve as a DNS server. To achieve this, several
installation steps1 had to be followed:

1. Installing requirements.

2. Go to the Devices tab and select "Insert Guest Additions CD Image", which mounts
the Guest Additions image in the virtual machine.

3. Go to the folder containing the Guest Additions image.

4. Install VirtualBox Guest Additions.

5. Restart the virtual machine.

1 sudo apt update
2 sudo apt install build-essential linux-headers-$(uname -r) -y
3 cd /media/<username>/VBox_Gas_7.0.12/
4 sudo ./VBoxLinuxAdditions.run
5 sudo reboot

Once these Guest Additions had been installed, a shared folder2 was created for direct
access to the project code.

The next step was to configure a static IP address for the virtual machine containing
the DNS server. The IP of a DNS server is never supposed to change. To achieve this, we
had to follow a number of steps:

1. Modify the netplan configuration file with the configuration shown in the following
image.

2. Apply changes.

1 sudo nano /etc/netlan/01-network-manager-all.yaml
2 sudo netplan apply

1https://www.linuxtechi.com/install-virtualbox-guest-additions-on-ubuntu/
2https://carleton.ca/scs/tech-support/troubleshooting-guides/creating-a-shared-folder-in-virtualbox/

https://www.linuxtechi.com/install-virtualbox-guest-additions-on-ubuntu/
https://carleton.ca/scs/tech-support/troubleshooting-guides/creating-a-shared-folder-in-virtualbox/
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Figure 3.2: Netplan Configuration

The final step in configuring each virtual machine was to install Python and the Scapy
library. It was also necessary to install the Flask and Flask-SocketIO libraries on the
virtual machine playing the role of the victim. For the Python installation, version 3.9 of
this programming language was chosen, as it is recognized as stable, particularly with the
Scapy library. It was therefore necessary to follow six steps3 in order to achieve optimum
installation of Python 3.9.

1. Install all necessary dependencies.

2. Download the configuration file, unzip the archive and move to the unzipped folder.

3. Run the configuration script and compile the result.

4. Install Python 3 binaries.

1 sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev
libnss3-dev libssl-dev libreadline-dev libffi-dev libsqlite3-dev wget
libbz2-dev -y

↪→

↪→

2 wget https://www.python.org/ftp/python/3.9.10/Python-3.9.10.tgz
3 tar -xvf Python-3.9.10.tgz
4 cd Python-3.9.10/
5 ./configure --enable-optimizations
6 make
7 sudo make altinstall

And finally, in order to develop the script for sniffing DNS traffic and displaying this
traffic in a web interface, it was necessary to install the Flask and Flask-SocketIO libraries
on the virtual machine playing the role of the victim.

1 pip install scapy
2 pip install Flask
3 pip install flask-socketio

3https://vegastack.com/tutorials/how-to-install-python-3-9-on-ubuntu-22-04/

https://vegastack.com/tutorials/how-to-install-python-3-9-on-ubuntu-22-04/
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3.2 Set up the DNS services

The second crucial step in this project was to configure a DNS server as well as the clients
of this DNS server. The choice made here was to do this with BIND9, which is very famous
in the field. Installation was based on a tutorial4.

The first step was to configure the hostname and Fully Qualified Domain Name (FQDN)
of the DNS server.

1 sudo hostnamectl set-hostname amaury.thesis.io
2 echo '192.168.68.53 amaury.thesis.io ns1' | sudo tee -a /etc/hosts

The second step was to install the BIND9 services and configure their default options
to work only with IPv4 addresses.

1 sudo apt install bind9 bind9utils bind9-doc dnsutils
2 echo 'OPTIONS="-u bind -4"' | sudo tee -a /etc/default/named
3 sudo systemctl restart named
4 sudo systemctl status named

The third step was to configure the DNS server itself. It’s very important to note that
the architecture here was intended to be simple, i.e. there would be just one Master DNS
server with no Slave servers. This DNS server was also configured in such a way as to make
it completely vulnerable to a DNS Amplification attack. The first step was to configure all
DNS server options in the /etc/bind/named.conf.options file. DNS server configuration is
as follows:

• In order to make the DNS server vulnerable to the desired attack, it was necessary
to make the server accept large UDP packets as input and output. This was made
possible by the edns-udp-size, max-udp-size and nocookie-udp-size options.
These options control the size of packets received and set the maximum size of UDP
responses sent, respectively.

• Recursion was enabled by setting the recursion option to yes. It was also speci-
fied that any IP address could accept recursive DNS queries, thanks to the allow-
recursion and allow-recursion-on options.

• It has been specified that any machine can send DNS requests to the server using
the allow-query option.

• It was also necessary to specify the IPv4 address on which the server would listen for
DNS queries, using the listen-on option.

• Zone transfer has been disabled as no slave server is in place. This was done using
the allow-transfer option.

4https://www.howtoforge.com/how-to-setup-dns-server-with-bind-on-ubuntu-22-04/

https://www.howtoforge.com/how-to-setup-dns-server-with-bind-on-ubuntu-22-04/
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• Google’s DNS servers 8.8.8.8 and 8.8.4.4 have been defined as forwarders using the
option with the same name. A forwarder is a server that resolves a domain name if
the local DNS server is unable to do so.

• Since the first phase of this lab is to observe the DNS Amplification attack without
deploying the DNSSEC protocol, DNSSEC validation has been disabled using the
dnssec-validation option.

Figure 3.3: Configuration of /etc/bind/named.conf.options

After configuring the DNS server options, it was necessary to configure the domain
name zones. These 2 zones are called the Domain Transfer Zone and the Reverse Lookup
Zone. The DNS server configuration simply involved specifying the location of the zone
files, i.e. the file containing all the zone’s Resource Records. The subtlety here lay in the
creation of custom zone files with the aim of reproducing results observed in the scientific
literature. The zone file of most interest to us was the Domain Transfer Zone.

The contents of the zone files can be found in the appendix.
Side note

Figure 3.4: Configuration of /etc/bind/named.conf.local

And finally, the last step in this configuration was to configure the DNS resolver of the
attacking and victim virtual machines. This configuration consisted in ensuring that the
DNS server previously configured was used as a priority when DNS requests were made
by the attacking and victim machines. A Google DNS server was configured as the second
DNS server to be contacted if DNS resolution could not be achieved via the laboratory’s
DNS server.



CHAPTER 3. CONFIGURATION OF VIRTUAL LAB ENVIRONMENT AND DNS
SERVICES 27

1 sudo unlink /etc/resolv.conf
2 sudo nano /etc/resolv.conf #See the configuration in the following figure
3 sudo apt install dnsutils bind9-utils

Figure 3.5: Configuration of /etc/resolv.conf



Chapter 4

Implementation & Results
4.1 DNS Query Script for Amplification Rate Calculation

Before going into detail about the scripts, their purpose and results, it’s important to note
that they have been implemented in Python. The choice of this programming language
was simply made out of familiarity and deeper knowledge of this programming language.
What’s more, this language has a highly reputed library for manipulating and sending net-
work packets. This is the Scapy library. Scapy can be used to build network packets of any
type, such as ARP, DNS, TCP, etc. This library can also be used to send these previously
constructed packets. Finally, this library can be used to sniff the network to collect the
various packets passing through it, which can then be manipulated and analyzed. The
strength of this library will become clearer as we go on to describe the various scripts.

The source code for the entire project can be consulted on the GitHub repositorya

for this thesis.
ahttps://github.com/Amauvp/dns-amplification.git

Side note

The first step in the implementation phase was to create a script to send all the main
types of DNS requests. The aim of this script is to be able to study the amplification
rates on the vulnerable DNS server. The purpose of this study of amplification rates is
to determine the type(s) of queries that will be particularly interesting and impactful for
the attacker. In other words, the aim is to select the types of requests that will cause the
most damage on the victim’s side, i.e. the types of requests that will most quickly overload
the victim’s bandwidth. This script was initially designed to send DNS queries without
including the DNSSEC security extension. It was essential that this script respect the
basics of a DNS Amplification attack, i.e. usurpation of the victim’s IP address, sending
DNS queries to the vulnerable DNS server and the target domain name.

import argparse
from scapy.all import *
import time

def sendQueries(dnsSource, dnsDestination, queryName, duration):
"""
Send DNS queries to a DNS server
:param dnsSource: Source IP
:param dnsDestination: Destination IP
:param queryName: Query name
:param duration: Duration in seconds
"""
queryTypes = ["ALL", "A", "AAAA", "CNAME", "MX", "NS", "SOA", "TXT"]

Listing 1: sendQueries function specification and DNS types declaration

28
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This script will therefore have as parameters the victim’s IP address (source IP address),
the IP address of the vulnerable DNS server (destination IP address), the target domain
name and finally the time during which the queries will be sent, i.e. the measurement time.
In the implementation of this script, before building the DNS packets and sending them,
the different types of DNS queries of interest to us in the measurements were declared.
These are as follows:

• A type is used to obtain IPv4 addresses relating to the requested domain name. The
associated DNS response will therefore contain all the IPv4 addresses associated with
the domain name.

• AAAA type is used to obtain IPv6 addresses relating to the requested domain name.
The associated DNS response will therefore contain all the IPv6 addresses associated
with the domain name.

• The CNAME type is used to obtain the canonical name (also known as the alias) of
the requested domain. The associated DNS response will therefore contain a domain
name. For example, the DNS request for the domain name www.amaury.thesis.io
will return a CNAME record containing the domain name amaury.thesis.io.

• The MX type is used to obtain DNS records for mail servers in the requested domain.
DNS responses will contain a list of mail servers with their priorities associated with
their names.

• The purpose of the NS type is to find authoritative name servers for the requested
domain. DNS responses will therefore contain a list of authoritative nameservers
for the requested domain. For example, if the DNS request is for the domain name
amaury.thesis.io, the associated response might contain the authoritative DNS server
name ns1.amaury.thesis.io.

• SOA type provides Start of Authority information for the requested domain. This
information is fundamental to the efficient management of DNS zones, as it provides
precise details of the authority, synchronization parameters and critical administra-
tive information required for DNS services to function correctly. The DNS response
associated with this type will therefore contain all related information, such as the
name of the primary server, the Serial Number of the zone, the Refresh Interval, the
Retry Interval, the Expire Interval, the Minimum TTL, and so on.

• TXT type is used to retrieve the textual information associated with the requested
domain name. The associated DNS response will therefore contain all textual records
for the requested domain name. This textual data can be of any type. It can include
domain-specific data, service definitions, arbitrary texts, etc.

It’s important to note that when the DNSSEC extension is used, one or more
RRSIG records will be added to each DNS response.

Side note
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• ANY meta type is used to obtain all available information concerning the domain
name specified in the DNS query. The response to this query will contain all available
DNS records for the specified domain. For example, the response will contain all
records of type A, AAAA, MX, NS, SOA, CNAME, TXT. If the DNSSEC security
extension is used, DNS responses will also contain all records related to this extension,
i.e. DNSKEY, RRSIG, DS, etc. records.

A DNS meta type is a special query or command that is not itself a specific
record type, but is instead used to obtain global or complete information on the
DNS records available for the given domain. The ANY type is an example of a
DNS meta type, as it can retrieve all the DNS record types associated with a
domain name in a single query.

Definition

Then, the various DNS packets are built up in a loop until the measurement time timer
expires. The IP layer will contain the victim’s spoofed IP address as the source IP address
and the target DNS server’s IP address as the destination IP address. The UDP layer will
contain a random port number as the source port and port number 53 as the destination
port. And finally, the DNS layer will contain an incremental number as the identifier or
packet number, the rd (Recursion Desired) flag set to 1 to specify that DNS recursion is
enabled, the target domain name and the type of queries. This DNS layer also contains a
series of flags:

• The QR (Query/Response) flag, set to 0, indicates that the packet is a DNS request.

• The CD (Checking Disabled) flag set to 1 indicates that the resolver requires the
DNS server to disable authenticity checking for the DNS request.

• The AR (Additional Records) flag set to DNSRROPT(rclass=8192) is intended to
include DNS options specific to the DNS query. The value mentioned here and thus
implemented in the script is intended to indicate that responses can be up to 8192
bytes in size. The aim is to increase the size of DNS responses as much as possible
without truncating them.

packetNumber = 0
endTime = time.time() + duration

while time.time() < endTime:
for queryType in queryTypes:

packetNumber += 1
dnsQuery = IP(src=dnsSource, dst=dnsDestination) / UDP(sport=RandShort(),

dport=53) / DNS(id=packetNumber, rd=1, ad=0, cd=1,
qd=DNSQR(qname=queryName, qtype=queryType), ar=DNSRROPT(rclass=8192))

↪→

↪→

Listing 2: Crafting DNS queries
Once the packet has been built, it is simply sent using Scapy’s send() function. To launch
this script, simply open a command terminal on the attacker’s side, move to the folder
containing the entire project and enter the following command:
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1 sudo python3.9 attack/sendQuery.py -s <victimAddress> -d 192.168.68.53 -q
amaury.thesis.io -t 60↪→

It’s important to note that this script can already constitute a DNS Amplification attack.
Indeed, this script respects all the codes of such an attack and will therefore amplify the
DNS responses returned. However, an enhancement will be made to the attack script
itself to send the most impactful DNS query type(s) through several processes in order to
maximize the number of DNS queries sent and thus increase the impact of the attack.

4.2 DNS Server Amplification Rate Calculation Script

The purpose of this script is to calculate amplification factors at DNS server level. In the
context of a DNS Amplification attack, the amplification factor to be calculated will be
the Bandwidth Amplification Factor, as this is the most relevant amplification factor for
this attack. To achieve this, the script comprises 4 functions:

1. packetHandler : this function filters all sniffed packets to retain only DNS packets.
More specifically, this function will only retain DNS packets (requests and responses)
concerning the domain name amaury.thesis.io, as well as the IP addresses of the
victim and the DNS server used for the attack. This script will also store in two
global dictionaries (one for queries and one for responses) the size and type of DNS
queries and responses that may have been retained. The sizes and types of DNS
packets will then be used to calculate amplification factors.

if IP in packet and UDP in packet and DNS in packet:
if packet[IP].src == srcIP and packet[IP].dst == dstIP and

packet[DNS].qr == 0 and str(packet[DNS].qd.qname.decode()) ==
qname + '.':

↪→

↪→

queryInfo = [packet[DNSQR].qtype, len(packet[DNS])]
queriesInfo[packet[DNS].id] = queryInfo

elif packet[IP].src == dstIP and packet[IP].dst == srcIP and
packet[DNS].qr == 1 and str(packet[DNS].qd.qname.decode()) ==
qname + '.':

↪→

↪→

responseInfo = [packet[DNS].qd.qtype, len(packet[DNS])]
responsesInfo[packet[DNS].id] = responseInfo

Listing 3: The packetHandler function

2. sniffPackets: as its name suggests, this function sniffs network traffic passing through
the machine’s network interface. To do this, this function calls Scapy’s sniff()1 function,
directly applying the packetHandler function to each packet captured.

sniff(filter=f"udp and port 53", timeout=25, prn=lambda x:
packetHandler(x, srcIP, dstIP, qname))↪→

Listing 4: The sniffPackets function

1https://scapy.readthedocs.io/en/latest/api/scapy.supersocket.html

https://scapy.readthedocs.io/en/latest/api/scapy.supersocket.html
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3. calculateAmplificationFactors: this function calculates the amplification factor for each
request/response pair and stores the result in a data structure for each pair. The calculation
is based directly on the Bandwidth Amplification Factor formula described in the state-of-
the-art section previously described (See section 2.4). The amplification factor is therefore
equal to the ratio between the size of the DNS response and the size of the corresponding
DNS request.

results = {'255': [], '1': [], '28': [], '5': [], '15': [], '2': [],
'6': [], '16': []}↪→

for queryId in queriesInfo:
for responseId in responsesInfo:

if queryId == responseId:
amplificationFactor = responsesInfo[responseId][1] /

queriesInfo[queryId][1]↪→

results[str(queriesInfo[queryId][0])].append(amplificationF ⌋

actor)↪→

return results

Listing 5: The calculateAmplificationFactors function

4. meanAmplificationFactor : as its name suggests, this function calculates the average
amplification factor for each query type. To do this, this script will, for each query type,
calculate the ratio between the sum of all amplification factors previously calculated for
the query type concerned and the number of amplification factors contained in the data
structure, or in other words, the number of query/response pairs observed.

meanFactors = {}
for queryType in allFactors:

meanFactors[queryType] = sum(allFactors[queryType]) /
len(allFactors[queryType])↪→

return meanFactors

Listing 6: The meanAmplificationFactor function

To run this script, simply open a command terminal on the laboratory’s DNS server,
navigate to the folder containing the entire project and execute the following command:

1 sudo python3 server/calculateAF.py -s <victimAddress> -d 192.168.68.53 -q
amaury.thesis.io↪→

Once the script has been executed, the results will be displayed in the terminal and written
to JSON files to keep track of them. These results include: the number of DNS requests,
the number of DNS responses, the distribution of the different types of DNS requests and
the amplification factors for each type of DNS request.

4.3 DNS Traffic Sniffing Script: Web Interface for Real-Time
Monitoring and Machine Performance Metrics

The purpose of this script is to display DNS traffic passing through the victim’s network
interface. The web interface used to display this traffic is based on what can be done in
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the Wireshark interface, to give a fairly clear and quick overview of DNS traffic. This web
interface also displays the CPU usage percentage, RAM usage percentage and bandwidth
consumption of the machine. The purpose of displaying both DNS traffic and machine
performance is to observe the impact of the DNS Amplification attack directly on the
victim machine.

Figure 4.1: Web interface appearance

To implement all these functionalities, several libraries were used. Firstly, the Flask2

library was used to implement the web interface. The choice of this library was motivated
by the fact that it is extremely easy to use, lightweight and offers good performance for
small to medium-sized applications. Secondly, the Flask-SocketIO3 library was used to send
data relating to DNS packets and machine performance in real time to the web interface.
The choice of this library was motivated by the fact that Flask-SocketIO provides Flask
applications with a low-latency and bi-directional communication channel. Moreover, the
client-side can use the library to connect to a socket of its choice, so Flask-SocketIO is not
restrictive for the client-side. And finally, the last crucial library in this implementation
is Python’s native threading4 library. This allows network traffic to be sniffed, machine
performance to be calculated and the Flask application to be run simultaneously in real
time. On the server side, the implementation includes 2 major functions:

1. packetHandler: the purpose of this function is to be called by Scapy’s sniff()
function in order to filter DNS traffic so as to retain only DNS packets concerning
the amaury.thesis.io domain. This function will then retrieve all relevant data from
these DNS packets, such as the packet number, the time at which the packet was
captured, the source IP address of the packet, the destination IP address of the
packet, the packet size and the type of DNS packet (ANY, A, AAAA, etc.). All the
data extracted from the packets is stored in a dictionary, which is then sent through
the socket to be processed on the client side for display. When the DNS packet is a

2https://flask.palletsprojects.com/en/3.0.x/
3https://flask-socketio.readthedocs.io/en/latest/
4https://docs.python.org/3/library/threading.html#module-threading

https://flask.palletsprojects.com/en/3.0.x/
https://flask-socketio.readthedocs.io/en/latest/
https://docs.python.org/3/library/threading.html##module-threading
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DNS query, a character string is constructed to specify that the packet is a standard
query, specifying the type of query and the domain name requested. When the DNS
packet is a response, this character string will specify that the packet is a response,
again specifying the type of response and the domain name associated with the
response. However, this character string will also contain all the information relating
to all the DNS records in the response, so that each DNS record can be displayed
on the web interface. It’s important to note that additional DNS information and
records have not been processed here, to avoid overloading the web interface display,
which will already be quite large by displaying all non-additional DNS records. This
character string will in turn be stored in the dictionary containing the other data.
Finally, this function will also store in the dictionary a summary of the DNS packet,
which can be displayed on request. And finally, as mentioned above, the dictionary
containing all the DNS packet data is sent across the socket to be processed and
displayed by the client-side JavaScript code.

2. getPerformances: as its name suggests, this function is used to obtain machine
performance data. More specifically, this function will store in a dictionary the
percentage of CPU utilization, the percentage of RAM utilization and the bandwidth
utilization. The data will then be sent through the socket to be displayed on the
client side by the JavaScript code.

while True:
cpuPercent = psutil.cpu_percent()
memoryPercent = psutil.virtual_memory().percent
bandwidth = (psutil.net_io_counters().bytes_sent +

psutil.net_io_counters().bytes_recv) * 8/1000000↪→

performanceData = {'CPU': cpuPercent, 'memory': memoryPercent,
'bandwidth': bandwidth}↪→

socketio.emit('performanceData', performanceData)
time.sleep(2)

Listing 7: The getPerformances function

To launch this script, simply open a command terminal on the victim’s side, move to the
folder containing the entire project and enter the following command:

1 sudo python3 victim/viewTraffic.py

4.4 Analyzing Results Without DNSSEC

Before detailing the various amplification factors observed during this measurement phase,
it is interesting and important to detail several points to be taken into consideration in
order to best interpret these results. First of all, the BAF calculation depends directly
on the size of DNS queries and the size of DNS responses. Query size depends on a
number of factors, including the domain name requested. As shown in the article by
R. van Rijswijk-Deij and al [31], very small domain names will have a smaller query
size than very large domain names. This article highlights this through an example,
mentioning that a one-character-long domain name will have a query size of 34 bytes
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versus 96 bytes for a 63-character-long domain name. The article of Anagnostopoulos and
al [1] supports this finding, arguing that TLDs are particularly interesting for this type of
attack, given their very short domain names and the fact that the list of different TLDs
is publicly available. For the purposes of this thesis, the domain name amaury.thesis.io
is 16 characters long, which will undoubtedly have an impact on the size of queries and
therefore on the amplification factors observed. More precisely, the query size for this
laboratory’s domain name is 45 bytes. Response sizes will depend on the DNS records
available in the zone. Indeed, some zones will have few DNS records and therefore a
relatively small response size. On the other hand, other zones will contain a large number
of records, resulting in a large DNS response size. Generally speaking, an attacker
will create a very large DNS zone, thanks in particular to TXT records, in order to
maximize the size of the zone and therefore the size of DNS responses. This was de-
scribed in detail in section 2.5 and in particular in the article by Anagnostopoulos and al [2].

For the purposes of this thesis, the zone was arbitrarily created with the aim of creating
a relatively large zone in order to attempt to reproduce the results that may have been
observed in the article by S. Ismail [23].

It is therefore very important to note that the results observed in this thesis will not
correspond exactly to everything that has been observed in the scientific literature, as this
depends directly on the size of the queries, the domains queried, the size of the responses
and potentially on the different measurement environments. Furthermore, few scientific
articles have measured these amplification factors for each type of DNS query, detailing
the measurement environment, the measurement scripts and the different DNS zones
studied. This is the main contribution of this thesis.

DNS query types
Length of DNS packets

Length of DNS query Length of DNS response

A 45 109

AAAA 45 185

CNAME 45 90

MX 45 158

NS 45 79

SOA 45 90

TXT 45 607

ANY 45 999

Table 4.1: DNS query types and the length of DNS packets

The Table 4.1 details the DNS query and response sizes for the main query types detailed
above. As mentioned above, the size of DNS queries is constant at 45 bytes. Response
sizes, on the other hand, vary considerably, as expected. In this laboratory, response
sizes range from 79 bytes to 999 bytes. As observed in the scientific literature and as
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expected from the purpose/content of each type of DNS query, the ANY and TXT types
have the largest response sizes. There are 2 reasons for this. The first reason is that, for
the purposes of this thesis, the size of each TXT record has been maximized in order to
obtain the largest possible response size for this type of DNS query. However, several
TXT records could have been added in order to obtain the largest possible response size
for this type of query, as detailed in the article by Anagnostopoulos and al [2]. The few
TXT records therefore serve more as a proof of concept to demonstrate the power of
this type of DNS record. The second reason explains why ANY queries have the highest
amplification factor and the highest response size. This is because, as explained above,
the aim of this type of query is to obtain all the information or DNS records available for
the domain name requested. In the context of this thesis, the response size for a TXT
query is already large. This size, combined with the size of all the other records, will make
the ANY response as large as possible.

DNS query types Amplification factors

A 2.4

AAAA 4.1

CNAME 2.0

MX 3.5

NS 1.8

SOA 2.0

TXT 13.5

ANY 22.2

Table 4.2: DNS query types and their amplification factors

With these DNS query and response sizes, it is now possible to detail the amplification
factors for the different types of DNS queries. The amplification factors for this laboratory
range from 1.8 to 22.2 when the DNSSEC extension is not used. Once again, it’s interesting
to note that ANY and TXT query types have the highest amplification factors. This
observation is a direct consequence of the observation concerning the size of responses
to these 2 DNS query types. It is also interesting to observe that the amplification factor
corresponding to the ANY query type approaches the lower bound mentioned in the article
of Ismail and al [23] and in the article of Rossow and Görtz [32]. However, the latter does
not correspond exactly to this lower bound. In order to reach this lower bound, it would
have been possible to add a few DNS records such as TXT records to increase the size
of ANY responses and thus the corresponding amplification factor. It is also possible to
compare the amplification factors of this laboratory with those observed in the article of R.
van Rijswijk-Deij and al [31]. First of all, it is interesting to observe that the amplification
factors in this article vary greatly from one field to another. This can be explained by the
fact that query and response sizes are highly dependent on the domains queried and the
content of the various DNS zones. It is rather difficult to interpret the results presented in
this article, given the wide variation in amplification factors in the various graphs. However,
by trying to pick out the peaks in these graphs to extract the most frequent amplification
factors, it is possible to extract a kind of norm for the different types of DNS queries. It
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is this standard that will be used for comparison, and the various peaks will represent the
results column in Table 4.3. Secondly, it’s interesting to note that some of the results of
this thesis may correspond to the peaks observed in the graphs of this article. Indeed,
similar results can be observed for query types A, AAAA and MX. On the other hand,
some results diverge sharply, such as those for NS, TXT and ANY query types. These
observations once again highlight the importance of detailing the size of DNS queries and
responses, the configuration of the environment, the content of DNS zones and the various
measurement scripts.

DNS query types Amplification factors

Laboratory results Article results

A 2.4 2-4

AAAA 4.1 3-4

CNAME 2.0 /

MX 3.5 2-5

NS 1.8 3-4

SOA 2.0 /

TXT 13.5 3

ANY 22.2 6

Table 4.3: DNS query types and their amplification factors from laboratory and scientific
literature results

4.5 DNS Amplification Attack Script

Based on the results detailed previously, an attack script has been implemented. The
logic of this script is exactly the same as that of the first script (See section 4.1).
However, this script will only send ANY DNS requests, as this type of request has the
highest amplification factor. This script will build ANY DNS requests and send them
through the number of processes specified in the parameters. The greater the number of
processes specified in the parameters, the more the victim will be saturated with DNS
requests. However, it’s important to note that, since the attacker here is an isolated
attacker and doesn’t use a botnet, he will very quickly consume the entire resources
of his machine if the number of processes he requests is too high. On the other hand,
this script is advantageous when the attacker is using a botnet, as the load will be dis-
tributed across the entire botnet. Indeed, the resources used will be those of the bots and
not those of the attacker, which is particularly interesting in the scenario of such an attack.

This script could also be improved by alternating the sending of ANY and TXT DNS
requests. However, the amplification factor of TXT requests is highly dependent on the
DNS zone configuration. If the attacker were to configure his DNS zone for TXT queries
in the way it has been configured in this laboratory, or even more powerfully, alternating
the sending of these types of queries would be particularly relevant. Indeed, this would
enable the attacker to try avoiding defense mechanisms such as BIND9’s Response Rate
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Limiting, which will be detailed in the next chapter of this thesis.
To launch this script, simply open a command terminal on the attacker’s side, move to the
folder containing the entire project and enter the following command:

1 sudo python3.9 attack/dnsAttack.py -s <victimAddress> -d 192.168.68.53 -q
amaury.thesis.io -t 60 -n <Number of process>↪→

4.6 DNSSEC Deployment

In order to deploy the DNSSEC extension, BIND9 provides documentation5 on how to do
this. Their basic tutorial allows you to deploy DNSSEC almost automatically. However,
for the purposes of this thesis, this tutorial didn’t work, so it was necessary to deploy the
DNSSEC extension manually, using a mix of information from the BIND9 documentation
and a DigitalOcean6 tutorial.

The first step in deploying DNSSEC is to generate the various key pairs, i.e. the pairs
(public ZSK, private ZSK) and (public KSK, private KSK). These are the keys that will
be used to sign the zone and create DNSSEC-related DNS records. To generate these
keys, simply navigate to the directory containing the BIND files and run the following
commands:

1 dnssec-keygen -a ECDSAP256SHA256 amaury.thesis.io
2 dnssec-keygen -a ECDSAP256SHA256 -f KSK amaury.thesis.io

Here the choice of digital signature algorithm was ECDSA7 Curve P-256 with SHA-256.
The choice of this algorithm was simply made because it was the algorithm mentioned
for manual key generation in the BIND9 documentation. However, a Cloudflare article8

has highlighted a number of interesting points in the adoption of this signature algorithm,
which may help to justify future results in terms of amplification factors. The most
interesting point in the context of an Amplification attack, as mentioned by Cloudflare, is
that the RSA key size required for a certain level of security is considerably higher than
the ECDSA key size. Indeed, to achieve 128-bit security, the RSA key size needs to be 12
times larger than the ECDSA key size. However, Cloudflare mentions that this 12-fold
factor is not the norm. Despite the fact that this 12-fold factor is not the norm, it’s worth
noting that using RSA instead of ECDSA potentially returns larger answer sizes, thereby
increasing amplification factors. Last but not least, Cloudflare also mentions a major
drawback of ECDSA. According to Cloudflare, this signature algorithm offers poorer
performance than RSA when it comes to signature validation. According to the article,
ECDSA is 6.6 times slower than RSA when it comes to signature validation.

5https://bind9.readthedocs.io/en/v9.18.14/dnssec-guide.html
6https://www.digitalocean.com/community/tutorials/how-to-setup-dnssec-on-an-authoritative-bind-

dns-server-2
7https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
8https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/

https://bind9.readthedocs.io/en/v9.18.14/dnssec-guide.html
https://www.digitalocean.com/community/tutorials/how-to-setup-dnssec-on-an-authoritative-bind-dns-server-2
https://www.digitalocean.com/community/tutorials/how-to-setup-dnssec-on-an-authoritative-bind-dns-server-2
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/
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After generating the key pairs, it was necessary to include the public ZSK and KSK in the
zone file, so that these keys could be taken into account when signing the zone. To do this,
simply modify the zone file and include the following 2 lines at the end of this zone file:

1 $INCLUDE Kamaury.thesis.io.zsk.key #Replace zsk with the digits of the generated
key↪→

2 $INCLUDE Kamaury.thesis.io.ksk.key #Replace ksk with the digits of the generated
key↪→

Once this step has been completed, the zone can be signed using the following command:

1 dnssec-signzone -A -3 $(head -c 1000 /dev/random | sha1sum | cut -b 1-16) -N
INCREMENT -o amaury.thesis.io -t db.amaury.thesis.io↪→

Once the zone had been signed, it was necessary to modify the named.conf.local file to
indicate that the reference file for the zone was now the signed zone file.

Figure 4.2: Configuration of /etc/bind/named.conf.local with DNSSEC

It was also necessary to modify the named.conf.options file to enable DNSSEC validation.

Figure 4.3: Configuration of /etc/bind/named.conf.options with DNSSEC

The last step was to restart the BIND9 services with the following command:

1 service bind9 reload

It’s important to note that DS records were not configured here, as this would require
the domain name to be purchased/rented. Furthermore, as the zone is a self-signed zone
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and the environment is a laboratory environment, there was no need to check the chain of
trust for DNSSEC deployment. However, this will have a direct impact on the size of DNS
responses, as DS records will not be present in these responses.

4.7 Adapting Scripts for DNSSEC Protocol

In order to adapt the various scripts to the DNSSEC extension, it was necessary to modify
them. The main modifications involved processing the various DNS records relating to the
DNSSEC extension, i.e. the RRSIG, DS, DNSKEY, NSEC and NSEC3 records.

4.7.1 Adapting The DNS Query Script for Amplification Rate Calcula-
tion

The first script to be modified was the script for sending the different types of DNS requests,
in order to measure the amplification factors of these types of requests. First of all, a
parameter was added to the script call. The purpose of this parameter is to specify whether
the use of the DNSSEC extension has been requested by the user. When this is the case,
two modifications have been made to this script:

1. The first change is to add the relevant DNS query types to the tables of query types
to be sent when the use of the DNSSEC extension is requested. For the purposes of
this thesis, the types added are RRSIG, DNSKEY and NSEC. Indeed, when we look
at the signed zone, it quickly becomes apparent that we can’t observe the NSEC3
and DS types. It would therefore be irrelevant to calculate amplification factors for
these query types, which is why they have not been added to the table of DNS query
types.

2. The second change is to set the CD (Checking Disabled) flag to 0 when the use of the
DNSSEC extension is requested by the user. This ensures that the resolver checks
DNSSEC signatures to ensure the integrity and authenticity of DNS records.

queryTypes = ["ALL", "A", "AAAA", "CNAME", "MX", "NS", "SOA", "TXT"]

if use_dnssec:
dnssecRecordTypes = ["RRSIG", "DNSKEY", "NSEC"]
queryTypes.extend(dnssecRecordTypes)

Listing 8: Adding DNSSEC-related DNS records

if use_dnssec:
dnsQuery[DNS].cd = 0
dnsQuery[DNS].qr = 0
dnsQuery[DNS].ar = DNSRROPT(rclass=8192)

else:
dnsQuery[DNS].cd = 1
dnsQuery[DNS].qr = 0
dnsQuery[DNS].ar = DNSRROPT(rclass=8192)

Listing 9: Adapting the various flags
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4.7.2 Adapting The DNS Server Amplification Rate Calculation Script

The modification made to this script lies, firstly, in the addition of the same parameter as
the previous script, to ask the user if they want the DNSSEC extension to be used. Where
required, DNSSEC-related DNS query types have simply been added to the dictionary
storing the various amplification factors. Next, the number of DNSSEC-related query-
response pairs sniffed by the script was displayed when this extension is used.

4.7.3 Adapting The DNS Traffic Sniffing Script

The most important script to modify was the one used to sniff DNS traffic on the victim
machine. Indeed, the complexity of the modifications here lay in correctly processing the
various DNS records relating to the DNSSEC extension so that they could be correctly
displayed in the web interface. The other difficulty in this modification phase was to
factorize all the code in this script, which was beginning to be totally incomprehensible
due to the repetition of the same portions of code and successive conditions. As regards the
processing of DNS records relating to the DNSSEC extension, these were simply processed
using the relevant attributes that Scapy was able to obtain. The logic here was to select
only those attributes that could be observed in the result of the dig command. As regards
code factorization, two functions have been created. The first function retrieves the DNS
query type identified for a number and associates it with a textual query type to make it
more comprehensible in the web interface. The purpose of the second function is to extract
information from various DNS records that have a few special fields and therefore cannot be
processed like other DNS records. These record types are SOA, MX, DS, RRSIG, NSEC,
DNSKEY and NSEC3.

if record.type == 6: # SOA
return f"{record.mname.decode()} {record.rname.decode()} {record.serial} {record.refresh}

{record.retry} {record.expire} {record.minimum}"↪→

elif record.type == 15: # MX
return f"{record.ttl} {record.preference} {record.exchange.decode()}"

elif record.type == 43: # DS
return f"{record.keytag} {record.algorithm} {record.digesttype} {record.digest.decode()}"

elif record.type == 46: # RRSIG
return f"{record.typecovered} {record.algorithm} {record.labels} {record.originalttl}

{record.expiration} {record.inception} {record.keytag} {record.signersname.decode()}
{base64.b64encode(record.signature).decode('ascii')}"

↪→

↪→

elif record.type == 47: # NSEC
return f"{record.nextname.decode()} {record.typebitmaps}"

elif record.type == 48: # DNSKEY
return f"{record.flags} {record.protocol} {record.algorithm}

{base64.b64encode(record.publickey).decode('ascii')}"↪→

elif record.type == 50: # NSEC3
return f"{record.hashalg} {record.flags} {record.iterations} {record.salt.decode()}

{record.hashalg} {record.nexthashedownername.decode()} {record.typebitmaps}"↪→

return ''

Listing 10: Processing of specific records

4.7.4 Adapting DNS Server And Victim Configurations

In order to be able to sniff all DNS packets and avoid their fragmentation, it was necessary
to make a slight modification to the DNS server configuration and to the configuration
of the victim machine. The use of the DNSSEC extension considerably increased the size
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of the DNS responses to be sniffed. This increase in response size caused DNS responses
to become fragmented. Before modifying the configuration of the DNS server and the
victim machine, an attempt was made to manage the fragmented DNS packets within the
code itself. However, this attempt failed due to the fact that handling fragmented packets
with Scapy is quite complex. Indeed, some layers cannot be rebuilt or are very complex
to rebuild. Following this failure, it was decided to modify the DNS server and victim
configuration to avoid packet fragmentation, so that DNS responses could be sniffed in one
piece. To achieve this, the MTU (Maximum Transmission Unit) was set at 2800, which
defines the maximum size of data packets that can be sent over a network interface without
needing to be fragmented. To achieve this configuration, we simply ran the following
commands and set up the following configurations:

1 cd /etc/netplan
2 sudo nano 01-network-manager-all.yaml

Figure 4.4: MTU configuration of the DNS server

Figure 4.5: MTU configuration of the victim machine

The last step in this configuration is to apply the netplan configuration changes with the
following command:

1 sudo netplan apply

4.7.5 Adapting The DNS Amplification Attack Script

As far as the modification of this script is concerned, the same parameter as in the previous
scripts has been added to specify once again whether the user wishes to use the DNSSEC
extension. Then, the only change made was to set the CD (Checking Disabled) flag to 0,
once again requiring the DNS resolver to check DNS record signatures. However, another
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modification could be made to this script. Depending on the amplification factors observed
when using DNSSEC, other types of DNS requests could be sent in addition to ANY
requests. This would have the advantage of evading defensive measures such as Response
Rate Limiting.

4.8 Analyzing Results With DNSSEC

As regards this phase of measuring the amplification factors of different types of DNS
queries using the DNSSEC extension, it is also important to take into account all the
factors, previously detailed in section 4.4, that can influence these measurements. As a
reminder, this laboratory’s DNS zone was signed using the ECDSA Curve P-256 with
SHA-256 digital signature algorithm. This choice of algorithm obviously has an influence
on the results obtained in this laboratory (see Section 4.6).

DNS query types
Length of DNS packets

Length of DNS query Length of DNS response

A 45 221

AAAA 45 297

CNAME 45 357

MX 45 606

NS 45 303

SOA 45 202

TXT 45 719

RRSGIG 45 1053

DNSKEY 45 429

NSEC 45 200

ANY 45 2658

Table 4.4: DNS query types and the length of DNS packets using DNSSEC

The table 4.4 shows how the use of the DNSSEC extension greatly increases response
sizes for each of the DNS query types. For some query types, response sizes have literally
exploded. These include CNAME, MX, NS and ANY. For CNAME, MX and NS, the
size of DNS responses has increased by a factor of 4. For the ANY type, response size
increased by a factor of 2.2, from 999 bytes without DNSSEC to 2658 bytes with DNSSEC.
It’s also interesting to note that response size for the TXT request type didn’t increase
significantly, rising from 607 bytes without DNSSEC to 719 bytes with DNSSEC.

Two types of DNS records become potentially interesting for a DNS Amplification attack.
Indeed, the response size for the RRSIG and DNSKEY query types is relatively high,
which will undoubtedly produce a potentially interesting amplification factor for this type
of query.
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DNS query types Amplification factors

A 4.9

AAAA 6.6

CNAME 7.9

MX 13.5

NS 6.7

SOA 4.5

TXT 16

RRSIG 23.4

DNSKEY 9.5

NSEC 4.4

ANY 59.1

Table 4.5: DNS query types and their amplification factors using DNSSEC

As expected, the increase in response size for each type of DNS query has caused an increase
in the various amplification factors. The amplification factors for this lab now range from
4.4 to 59.1 when the DNSSEC extension is used. It is now interesting to note that the
DNS query types with the highest amplification factors are MX, TXT, RRSIG and ANY.
The amplification factor for the ANY type approaches and even exceeds the upper bound
mentioned in the paper of Ismail and al [23] and in the paper of Rossow and Görtz [32]. It
is again interesting to compare the laboratory results of this thesis with the results drawn
up in the paper of R. van Rijswijk-Deij and al [31]. Once again, the amplification factors in
this article when the DNSSEC extension is used vary greatly from one domain to another.
This is again due to the various factors that can influence the size of DNS responses, but
also to the way in which DNS zones have been signed. It is rather difficult to interpret
the results presented in this article, given the wide variation in amplification factors in the
various graphs. However, by trying to pick out the peaks in these graphs to extract the
most frequent amplification factors, it is possible to extract a kind of norm for the different
types of DNS queries. It is this standard that will be used for comparison, and the various
peaks will represent the results column in Table 4.6. In this article, the amplification factor
for the ANY type is lower than the amplification factor observed in this thesis. For types
A, AAAA , NS and TXT, the amplification factors observed in this thesis match some of
the peaks observed in the article. And finally, this laboratory’s amplification factors for
MX, DNSKEY and NSEC types do not match what can be observed in this article. It is
also important to note that this article mentions outliers for which amplification factors
can exceed 100. The article of Anagnostopoulos and al [3] also mentions an amplification
factor that can exceed 230 for ANY query types. However, it’s important to note that
these outliers are not the norm and, once again, amplification factors vary widely from one
domain to another.
The most important information to be drawn from these results is that the ANY query
type does indeed have the highest amplification factor. Other query types may also be of
interest for a DNS Amplification attack, such as TXT, RRSIG and MX.
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DNS query types Amplification factors

Laboratory results Article results

A 4.9 5, 10 and 15

AAAA 6.6 5 and 15-18

CNAME 7.9 /

MX 13.5 6-8

NS 6.7 6 and 9

SOA 4.5 /

TXT 16 6 and 16-18

RRSIG 23.4 /

DNSKEY 9.5 13-28

NSEC 4.4 15

ANY 59.1 40

Table 4.6: DNS query types and their amplification factors from laboratory and scientific
literature results using DNSSEC

4.9 Signing The Zone With RSA

As the Cloudflare article9 mentions that the use of the RSA digital signature algorithm
could potentially produce interesting answer sizes, it was interesting to carry out a mea-
surement phase by first signing the area of this laboratory with the RSA algorithm. The
article by R. van Rijswijk-Deij [31] mentions that the most common key sizes are 1024-bits
and 2048-bits long. In this thesis, only the 1024-bit key size will be tested for performance
reasons. Indeed, in the laboratory environment, the 2048-bit key size could be much too
greedy and would not bring any new results than the 1024-bit one. It’s also important to
note that there are 2 RSA signature algorithms: RSASHA256 and RSASHA512. For the
purposes of this thesis, the RSASHA256 signature algorithm has been chosen to match the
ECDSA Curve P-256 with SHA-256 algorithm initially selected.
To do this, it is necessary to generate the RSA key pairs using the following commands:

1 dnssec-keygen -a RSASHA256 -b 1024 amaury.thesis.io
2 dnssec-keygen -a RSASHA256 -f KSK -b 1024 amaury.thesis.io

After the key pair generation, the zone is signed exactly as explained in section 4.6.

4.10 Analyzing Results With DNSSEC and RSA Signed
Zones

Before analyzing the various results obtained, it’s important to note that in order to avoid
packet fragmentation once again, the MTU had to be increased to 4000 using the following
commands:

9https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/

https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/
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1 cd /etc/netplan
2 sudo nano 01-network-manager-all.yaml
3 sudo netplan apply

It’s interesting to note that, as the Cloudflare article mentions, the size of DNS responses
has indeed exploded, which has also caused the amplification factors of the various DNS
query types to explode. Indeed, amplification factors now range from 5.9 to 80.2. Com-
paring these results with those obtained previously with the ECDSA Curve P-256 with
SHA-256 signature algorithm, it is interesting to note that the RSA algorithm does indeed
offer higher amplification factors, as Table 4.7 shows. For example, the amplification factor
for the ANY query type increases from 59.1 to 80.2. The amplification factor for the MX
query type rises from 13.5 to 19.2. And finally, the amplification factor for the RRSIG
query type rises from 23.4 to 36.2. An attacker would therefore be well advised to sign his
zone with the RSA algorithm, or to target a DNS zone signed with this algorithm.

DNS query types Amplification factor

ECDSA RSA

A 4.9 6.3

AAAA 6.6 8.0

CNAME 7.9 11.8

MX 13.5 19.2

NS 6.7 9.6

SOA 6.7 5.9

TXT 16 17.4

RRSIG 23.4 36.2

DNSKEY 9.5 15.4

NSEC 4.4 11.8

ANY 59.1 80.2

Table 4.7: DNS query types and their amplification factors for ECDSA and RSA

Finally, it is important to note that amplification factors also depend on the type of digital
signature algorithm used to sign the zone. The extremely high amplification factors re-
ported in the scientific literature are therefore possible depending on the zone configuration,
the environment configuration and the way the zone was signed.

The remainder of the same will be processed with the signed zone using the ECDSA
Curve P-256 with SHA-256 digital signature algorithm for performance reasons, to
make it less cumbersome in the laboratory environment.

Important remark



Chapter 5

Exploring Mitigation Methods for
DNS Amplification Attacks
In this chapter, various mitigation methods against a DNS Amplification attack will be
investigated and evaluated in order to observe what can be put in place by an individual
to try and protect against this type of attack. The methods covered in this chapter are:
the best practices for a DNS server configuration, the mechanism for minimizing response
size and in particular the size of responses to ANY queries, the Response Rate Limiting
mechanism, and the use of TCP protocol for DNS name resolution instead of UDP.

5.1 Best DNS Server Configuration Practices

As the laboratory’s DNS server is an authoritative DNS server for its zone, an article from
the Internet Systems Consortium (ISC) [20] was consulted to analyze the best practices
that could be implemented to achieve the best possible configuration. The first best prac-
tice given by this article is to configure the DNS server on a dedicated machine, mainly
to ensure that other services are not impacted in the event of an attack, or for various
performance reasons. The second best practice is to separate authoritative DNS servers
from recursive DNS servers. More concretely, this means deciding which DNS servers will
play the role of authoritative DNS servers and which will play the role of recursive DNS
servers. Authoritative servers will only return information relating to the zone for which
they are authoritative. For the purposes of this thesis, recursion should be disabled on
the DNS server, as it is authoritative for the zone it serves, the zone of this laboratory.
And finally, the last major best practice to be implemented according to this article is to
configure the Response Rate Limiting mechanism. The implementation of this mechanism
will be detailed in another section of this chapter. Based on these best practices, the only
thing to do on this laboratory’s DNS server is to disable recursion and see if this changes
anything in the results observed.

Figure 5.1: Configuration with best practices of /etc/bind/named.conf.options

47
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Unfortunately, after running a test to see if this reduced the number of responses sent
or the amplification factors observed, this test showed that following best configuration
practices made no difference. This result was expected. Indeed, simply respecting best
DNS server configuration practices does not protect against a DNS Amplification attack.

5.2 Minimizing Response Size

The first technique for minimizing the impact of a DNS Amplification attack is a piece of
advice found in RFC8482 [19]. This article advises minimizing the size of ANY responses
through 3 main behaviors:

1. The responder could choose a subset of DNS records to return when it receives an
ANY request.

2. The responder could send back a HINFO record in order to send back a synthesized
response. Cloudflare [26], for example, has implemented this mechanism by specifying
in this record that according to RFC8482 the size of ANY responses is minimal.
However, in discussions with the BIND9 community, a certain Mark Andrews from
ISC highlighted what was really behind this RFC and why it had been written.
In his words: “This RFC was written for database servers where getting an ANY
response is actually difficult. Cloudflare was using a response pattern that most
people thought wasn’t really correct, but wasn’t broken enough to say: Don’t do
this. If their customers were happy with that behavior, then okay. This RFC was
written to allow them to keep doing what they were doing without having to fight
the fact that they weren’t RFC-compliant. It wasn’t written to say that this is the
way to respond to ANY”. His words make it clear that it wouldn’t really be right to
implement the same mechanism that Cloudflare has deployed to minimize the size of
ANY responses.

3. The resolver can try to return the DNS records they think are most suitable/probable
for the requester.

To minimize the size of responses, BIND9 has implemented several mechanisms. Firstly,
the minimal-responses1 option controls whether the server can add additional records to
the authority and additional data sections. Setting this option to yes has the effect of
“adding records to the authority and additional data sections only when such records are
required by the DNS protocol”, according to the BIND documentation. Next, the minimal-
any2 option attempts to minimize the size of ANY responses by returning as few RRsets
as possible. This option will therefore be set to yes in order to minimize the size of ANY
responses.

1https://bind9.readthedocs.io/en/v9.18.25/reference.html#namedconf-statement-minimal-responses
2https://bind9.readthedocs.io/en/v9.18.25/reference.html#namedconf-statement-minimal-any

https://bind9.readthedocs.io/en/v9.18.25/reference.html##namedconf-statement-minimal-responses
https://bind9.readthedocs.io/en/v9.18.25/reference.html##namedconf-statement-minimal-any
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Figure 5.2: Minimizing Response Size: Configuration of /etc/bind/named.conf.options

During the test phase of this mitigation method, several very interesting results emerged.
Table 5.1 shows the new query and response sizes observed. It can be seen that some
DNS response sizes have been drastically reduced. The most impressive reduction is in the
size of ANY responses. These responses go from a size of 2658 bytes without the use of
countermeasures to a size of 202 when the two options detailed above are used. RRSIG
responses undergo the same significant reduction in size. Indeed, the size of this type of
response drops from 1053 bytes without the use of this mitigation measure to 157 bytes
when using this mitigation technique. And finally, the last type of response to undergo
a reduction in size is the MX type. This type of response goes from a size of 606 bytes
without the use of these two options to a size of 222 bytes. These three response types have
therefore seen their size reduced by a factor of 13, 7 and 3 respectively. Unfortunately,
the other DNS response types did not experience any reduction in size. For some response
types, this is still not too problematic. On the other hand, it is still a problem for the TXT
response type, which is still very large and now has the largest response size. However,
by simply analyzing this reduction in size, it is possible to deduce that this mitigation
measure has a positive impact on protection against this type of attack. In addition, it
remains interesting to observe the impact of this technique on the various amplification
factors.

DNS query types
DNS responses length

Before mitigation After mitigation

A 221 221

AAAA 297 297

CNAME 357 357

MX 606 222

NS 303 303

SOA 202 202

TXT 719 719

RRSGIG 1053 157

DNSKEY 429 429

NSEC 200 200

ANY 2658 202

Table 5.1: DNS query types and the length of DNS responses before and after mitigation
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The same observation can be made for the different amplification factors of the ANY, MX
and RRSIG query types. In fact, the reduction in response size for these types leads to
a proportional decrease in their amplification factor. The amplification factor for ANY
queries drops from 59.1 to 4.5, corresponding to a reduction of a factor of 13, as previously
observed. Next, the amplification factor for the RRSIG type drops from 23.4 to 3.5, which
again corresponds to a reduction of a factor of 7. And finally, the amplification factor for
the MX type suffers the same fate. In fact, this amplification factor fell by a factor of 3,
from 13.5 to 4.9. However, the same observation as for the response sizes of other query
types can be made for the amplification factors. Indeed, the amplification factors for the
other query types remain unchanged, as do their sizes. This invariability therefore still
poses a problem for some query types, such as TXT or DNSKEY queries, which retain
the highest amplification factors. However, an analysis of the various observations on this
mitigation method shows that it is indeed effective and delivers the expected results. It
is important to note, however, that a single mitigation method will not be sufficient to
effectively protect against this type of attack. It is therefore necessary to investigate the
Response Rate Limiting mechanism.

DNS query types
Amplification factors

Before mitigation After mitigation

A 4.9 4.9

AAAA 6.6 6.6

CNAME 7.9 7.9

MX 13.5 4.9

NS 6.7 6.7

SOA 4.5 4.5

TXT 16 16

RRSIG 23.4 3.5

DNSKEY 9.5 9.5

NSEC 4.4 4.4

ANY 59.1 4.5

Table 5.2: DNS query types and their amplification factors before and after mitigation

5.3 Response Rate Limiting Mechanism

Before going into detail about the Response Rate Limiting mechanism, it’s important to
note that all the information in this section is based on two ISC articles34, as well as on
the BIND9 reference manual also written by the ISC5.

The Response Rate Limiting mechanism is a DNS protocol enhancement that serves as
a mitigation technique against the DNS Amplification attack. It is very important to
note that the deployment of this mechanism is only recommended for authoritative DNS
servers. This mitigation measure could therefore make sense in the context of this thesis,
given that the DNS server in this laboratory is authoritative for its zone. The principle

3What is the Response Rate Limiting Feature in BIND?
4Using the Response Rate Limiting Feature
5The BIND 9 Administrator Reference Manual

https://kb.isc.org/docs/aa-01148
https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-01031
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of this mechanism is to avoid excessive UDP responses through various mechanisms such
as the number of responses per second or dropping responses to the same queries too
frequently.

The response rate limiting mechanism is based on a system of “credits” or “tokens”.
For each unique combination of response and customer identity, a virtual “account” is
assigned, accumulating a defined quantity of credits every second. A considered answer
reduces this account by one credit. If the account is negative, responses are either
abandoned or truncated. Responses are tracked within a moving time window, set at 15
seconds by default, but adjustable via the “window” option. If the number of credits allo-
cated to a response category is set to 0, then these responses are not subject to rate limiting.

In the context of this thesis, only a few options will be investigated in order to configure
this mechanism and observe interesting behaviors. These are the following options:

• window: this parameter specifies the time period during which responses are
tracked. The default value is 15 seconds, but it can be set between 1 and 3600
seconds.

• responses-per-second: this option limits the number of non-empty responses for
a valid domain name and a certain DNS record type. The default value is 0, i.e. no
limit is imposed.

• slip: the purpose of this option is to limit the size of frequently observed responses or
to drop responses that are too frequently observed. The default value of this option
is 2. According to the documentation, this means that “every other UDP request
without a valid server cookie to be answered with a small response”. The value of
this option can vary between 0 and 10. According to the documentation, a value
set to 0 will result in “no small responses are sent due to rate limiting. Rather, all
responses are dropped”.

• all-per-second: this option limits UDP responses of any type. It is important to
note that the value of this option must be at least 4 times greater than the value of
the responses-per-second option. The value of this option is similar to the throughput
limitation offered by firewalls, but is often lower.

For the purposes of this thesis, the window parameter will be set to its default value,
and will not be modified thereafter, in order to monitor the other parameters much more
precisely. Each option will then be investigated individually to observe its effects.

5.3.1 First Option: responses-per-second

Four configurations were tested in order to study the effects of this option on the number
of responses sent by the DNS server in relation to the number of queries it receives. The
results of the various tests can be seen in Table 5.5. It’s interesting to note that for the first
configuration, no difference was found. However, for the other configurations, a significant
change can be observed. In fact, the number of responses sent equals approximately half
the number of queries received by the DNS server.
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responses-per-second configuration Number of DNS queries Number of DNS responses

5 2852 2852

4 2758 1504

3 2899 1497

2 3017 1521

Table 5.3: responses-per-second configurations and their corresponding DNS queries and
responses

By also analyzing the amplification factors corresponding to each of these configurations,
the same observation can be made (see Table 5.4). Indeed, for the first configuration,
the amplification factors remain unchanged. By contrast, for the other configurations,
amplification factors are drastically reduced. If, in addition to these highly constraining
configurations, response size minimization is applied, these amplification factors could
potentially be further reduced.

Amplification factors responses-per-second configuration

5 4 3 2

A 4.9 1.7 1.2 1.1

AAAA 6.6 1.8 1.3 1.1

CNAME 7.9 2.0 1.4 1.1

MX 13.5 2.8 1.7 1.2

NS 6.7 1.9 1.3 1.1

SOA 4.5 1.5 1.2 1.0

TXT 16 3.4 1.9 1.2

RRSIG 23.4 4.8 2.3 1.3

DNSKEY 9.5 2.4 1.6 1.1

NSEC 4.4 1.6 1.25 1.0

ANY 59.1 11.9 4.4 2.3

Table 5.4: Amplification factors for different responses-per-second configurations

However, it is very important to note that such configurations can be extremely restrictive
for legitimate customers. As discussed with Professor Debatty, a Machine Learning algo-
rithm would be needed here to adapt such a configuration to the behavior of legitimate
users in real time.

5.3.2 Second Option: slip

The slip option was then investigated to see if, on its own, it could mitigate this type of
attack. Once again, four configurations were tested. The values for these configurations
were 0, 1, 2 and 10 respectively. However, no consequences could be observed at the end
of these tests. As a result, this option alone does not appear to influence the impact of the
attack.
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5.3.3 Third Option: all-per-second

With regard to the all-per-second option, three configurations were tested in order to
observe the impact of this option on the attack’s impact. No effect was observed on
amplification factors. On the other hand, the effect of this option was more on the number
of responses sent by the DNS server, as shown by the results in Table 5.5. Indeed, as
the value of this option increases, the number of responses sent by the server decreases
proportionally. For example, for a value of 20, the number of responses decreased by a
factor of 108. For a value of 50, the reduction was very slight. And finally, for value 100,
no decrease could be observed.

all-per-second configuration Number of DNS queries Number of DNS responses

20 2909 27

50 2680 2497

100 2756 2756

Table 5.5: all-per-second configurations and their corresponding DNS queries and
responses

5.3.4 General Conclusion

It’s very important to note that the interpretation of the results could be biased due to the
implementation of the sniffing script running on the DNS server. Indeed, traffic sniffing
may have an indeterminate behavior for each of the options modified here. For example,
some packets might not pass through certain conditions of this script and therefore not be
taken into account in the observed results.

However, the overall conclusion for this mitigation solution remains unchanged. Indeed,
such a rate-limiting mechanism should be studied for implementation through a Machine
Learning mechanism, so that the configuration is the most user-friendly and the least
restrictive for users.

5.4 DNS Traffic using TCP

As mentioned in the state of the art (see Section 2.6), some solutions can force the
retransmission of DNS packets using the TCP protocol and not UDP. In other words,
some solutions would force the use of the TCP protocol for domain name resolution. In
the context of this thesis, this mitigation solution was not implemented. However, some
advantages and some major disadvantages have been examined.

There are two main advantages to using the TCP protocol:

1. IP address spoofing prevention: Since the TCP protocol requires a three-way
connection also known as a three-way handshake, this makes it more difficult for
attackers to spoof the victim’s source IP address or falsify other source IP addresses,
thereby reducing the risk of spoofing attacks.

2. Reduced amplification: As seen in the script details above, UDP requests are
fairly easy to build and send, allowing attackers to amplify requests without too much
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effort. TCP, on the other hand, requires an established connection, as explained in
the previous point, making packet amplification more difficult.

Three main disadvantages were also identified:

1. Server overload: Establishing and maintaining TCP connections is more costly in
terms of server resources (CPU, memory) than UDP requests, which can increase
the load on DNS servers. Indeed, resources are allocated to each TCP connection
attempt, which is more costly than UDP being connectionless. This could also give
rise to other types of attack, such as DRDoS. Indeed, if the attacker sends a large
number of DNS requests via TCP through a botnet, establishing all the connections
could overload the server’s available resources. The victim here would therefore be
the targeted DNS server.

2. Increased latency: The connection establishment process known as three-way
handshake introduces additional latency into communication, which can slow down
DNS name resolutions.

3. Bandwidth consumption: TCP connections consume more bandwidth due to
control and acknowledgement mechanisms, increasing overall network traffic.

Finally, in a discussion with an incident responder6 from the Easi company7, another
major drawback was identified. During a security incident at a company, an attacker had
extracted the company’s data via TXT records. However, as the DNS traffic passed under
TCP, it was encrypted and therefore impossible to decrypt. As a result, it was impossible
to establish which data had been extracted. The attack described here is called a DNS
Tunneling attack.

"Tunneling is a protocol that allows for the secure movement of data from one net-
work to another. It is an interconnection strategy that is used when the source and
destination networks of the same type are connected through a network of different
types. Tunneling is also known as port forwarding." [30]

Definition

6https://linkedin.com/in/jan-marc-munuku
7https://easi.net/en

https://linkedin.com/in/jan-marc-munuku
https://easi.net/en
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The DNS Tunneling attack is often used by attackers to exfiltrate internal data in a
corporate network.
A DNS Tunneling attack uses a client-server model that hijacks the DNS protocol
to transmit malware and other types of data. The process begins with the attacker
registering a domain name. This domain name is configured to point to a server
controlled by the attacker, where a tunneling application is running.

Once the domain name has been established, the attacker infects a target system,
often located behind a corporate firewall, with malware. Since DNS queries are
usually allowed through firewalls, the infected system can send DNS queries to the
DNS resolver. The DNS tunneling client then sends a query to the DNS server, which
then follows the classic DNS name resolution scheme. In the final phase of the DNS
resolution process, the DNS resolver directs the query to the IP address controlled
by the attacker, where the tunneling server program is running. This establishes
a connection between the tunneling client software on the victim machine and the
tunneling server program on the attacker’s infrastructure, via a tunnel through the
recursive resolver.

This DNS tunnel makes it possible to encode and transmit data from other protocols
within DNS queries, facilitating data exfiltration or other malicious actions, such
as command and control (CnC) communications or the installation of additional
malware. The absence of a direct connection between attacker and victim makes
DNS tunnel detection more complex. In theory, as long as data is encoded correctly
and does not exceed UDP packet size limits, any type of data can be sent through
DNS queries.

Working of DNS Tunneling attack [30]



Chapter 6

Future work
In the context of future work, several avenues of improvement and exploration can be
envisaged to deepen and enrich the study of DNS amplification attacks. The following
proposals aim to improve the tools developed, diversify experimental scenarios and extend
the analysis of mitigation and detection measures.

1. Improving the various scripts: A first step would be to optimize the code of
the scripts developed for attack simulation and data collection. These improvements
could include optimizing data processing algorithms, reducing resource consumption
and improving execution speed. More powerful code would enable more complex
experiments to be carried out and more accurate results to be obtained.

2. Improved web interface: The web interface used to monitor DNS traffic and victim
machine performance could benefit from an improved design. A more intuitive and
efficient interface would make it easier to observe and analyze data in real time.
Additional features, such as interactive graphics and customizable dashboards, could
also be integrated to enrich the user experience.

3. Configuration variation: It would be beneficial to carry out configuration vari-
ations in the virtual environment, particularly concerning the DNS server and the
victim machine. By modifying various parameters such as DNS server configuration,
DNS zone configuration, network configurations and security policies, it would be
possible to observe a wider range of amplification factors and results. These vari-
ations would enable more detailed comparisons and a better understanding of the
impact of each configuration on the attack.

4. Broader study of mitigation measures: A thorough analysis of all possible mit-
igation measures against DNS amplification attacks is essential. This study should
include a detailed assessment of the effectiveness of each measure in different sce-
narios. The aim is to identify the most robust mitigation strategies and propose
recommendations for their implementation.

5. Detection measures: In addition to mitigation measures, it is crucial to explore
techniques for detecting DNS amplification attacks. By analyzing the effectiveness of
different detection systems, we can develop preventive solutions capable of identifying
and neutralizing attacks before they cause significant damage.

6. Development of Machine Learning algorithms: The application of Machine
Learning could revolutionize the management of mitigation measures. By developing
algorithms capable of learning and adapting to legitimate user behavior and network
load, it would be possible to automatically configure mitigation measures for optimum
efficiency. These algorithms could detect abnormal patterns and adjust protections
in real time.

7. Enhancing the virtual laboratory: For a more realistic simulation, it would be
appropriate to enhance the virtual laboratory by integrating elements of a complete
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corporate network, including a demilitarized zone (DMZ), for example. This would
make it possible to simulate more complex attacks and observe their impact on a
more diversified network infrastructure.

8. Deployment within the Royal Military Academy’s Cyber Range,
CyRange: Finally, deployment of this attack and study scenario within the Royal
Military Academy’s Cyber Range, CyRange, would provide a realistic and secure
training environment. This deployment would enable mitigation and detection strate-
gies to be tested and validated in an operational setting, thus contributing to the
training of future cybersecurity experts.

By pursuing these lines of research, it will be possible not only to deepen our understanding
of DNS amplification attacks, but also to develop practical and effective solutions to protect
IT systems against these growing threats.



Chapter 7

Conclusions
This Master’s thesis in cybersecurity explored in depth the dynamics and implications of
DNS amplification attacks in a virtual environment. Through a rigorous and methodolog-
ical approach, it has been possible to develop a detailed understanding of these attacks,
examining their mechanisms, their impact, and possible mitigation strategies.

The study began by presenting the motivations and background behind research into
DNS amplification attacks. The growing threats posed by DDoS attacks, particularly
those exploiting DNS vulnerabilities, underlined the importance of in-depth research in
this area. Notable incidents, such as the attacks on Dyn in 2016 and Spamhaus in 2013,
have demonstrated the seriousness of these threats.

In the first part of this thesis, a virtual laboratory environment was set up, designed to
be particularly vulnerable, enabling optimal observation of attack mechanisms and their
impacts. This infrastructure was configured to reproduce and observe results found in the
scientific literature, providing a solid basis for empirical comparisons.

Specific scripts were then developed to faithfully reproduce the attack scenarios, perform
various amplification measurements and monitor DNS traffic on the victim’s side. These
tools enabled a detailed analysis of the different types of DNS queries and their amplifi-
cation potential, comparing the results with those in the literature and exploring various
factors influencing amplification rates.

The final part of this study was the evaluation of mitigation techniques. The effectiveness
of various prevention and response measures, such as the optimal configuration of DNS
servers and the implementation of mechanisms to limit amplification factors, was analyzed.
The results enabled us to identify the most robust strategies and propose recommendations
for their practical implementation.

In addition, suggestions were made for future work, aimed at improving the tools devel-
oped, diversifying the experimental scenarios, and extending the analysis of mitigation
and detection measures. These suggestions include optimizing the script code, improving
the design of the monitoring web interface, varying the configurations of the virtual
environment, and applying Machine Learning to automatically configure mitigation mea-
sures. Enhancing the virtual laboratory to simulate attacks against complete enterprise
networks, and deploying these scenarios within the Royal Military Academy’s Cyber
Range, CyRange, were also suggested.

In conclusion, this thesis has made a significant contribution to the understanding and
mitigation of DNS amplification attacks. The results obtained and the recommendations
made offer concrete avenues for strengthening the security of IT systems in the face of
these threats. This work will serve as a basis for future research and will contribute to
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the training of cybersecurity professionals, enabling critical infrastructures to be better
protected against DDoS attacks.
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Appendix A

DNSSEC Protocol
A.1 Chain of trust mechanism

Figure A.1: Chain of trust mechanism [8]
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Appendix B

DNS Server Configuration
B.1 Domain Transfer Zone

Figure B.1: Domain Transfer Zone Configuration

B.2 Reverse Lookup Zone

Figure B.2: Reverse Lookup Zone Configuration
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