
Dataset of APT Persistence Techniques on
Windows Platforms Mapped to the MITRE

ATT&CK Framework
1st Khaled Rahal
Cyber Defence Lab

Royal Military Academy
Brussels, Belgium

2nd Arbia Riahi
Cyber Defence Lab

Royal Military Academy
Brussels, Belgium

3rd Thibault Debatty
Cyber Defence Lab

Royal Military Academy
Brussels, Belgium
t.debatty@cylab.be

Abstract—Securing against intrusions is a crucial aspect of
cybersecurity defense. As systems become more complex and
new technologies are introduced, new threats are constantly
emerging, putting all aspects of information systems at risk.
To detect these threats and put in place effective response
strategies, security professionals must test their solutions on
real-world data. This underscores the importance of datasets
to provide a simulation of attack scenarios. Advanced Persistent
Threats (APT) carry out multi-stage attacks on an organization’s
network, often spanning extended periods. Existing datasets on
APT mainly focus on the different kill chain stages such as initial
intrusion, privilege escalation, lateral movements, and command
and control. However, the persistence phase, which is crucial for
the sustainability of attacks, is often neglected [10]. In this work,
we propose a dataset specifically dedicated to the persistence
techniques employed by the threat actor targeting the Windows
platform. Our work offers a detailed analysis of persistence
mechanisms, relying on realistic virtualized environments and
attack simulation tools, based on MITRE ATT&CK TTP
(Tactics, Techniques, and Procedures) used by known APT
groups. Publicly available at [26], the datasets include detailed
instructions for access and use, ensuring reproducibility and
usability for researchers and cybersecurity practitioners.

Index Terms—Persistence Techniques, Advanced Persistent
Threat, Mitre Att&ck, Datasets

I. INTRODUCTION

As systems become increasingly complex and new
technologies are introduced, the defense against intrusions
becomes a fundamental pillar of cybersecurity. Then, the threat
landscape is continually evolving, and new risks are emerging
to compromise every aspect of organization’s information
infrastructure, leading to significant financial losses, from
$9.22 trillion to 2024 and $13.82 trillion by 2028 [1]. APT
represent a type of sophisticated cyberattacks orchestrated by
attacker groups often operating under state sponsorship, but
could also be financed by a company for competitiveness
reasons. Their main goals include espionage, financial gain,
intelligent property theft, sabotage, etc. Consequently, APT
pose significant challenges to organizations by employing
persistence techniques to maintain access to compromised
systems over long periods. In particular, these techniques
are essential to APT strategies, enabling attackers to
survive system reboots, updates, and even some defensive

interventions. Their complexity and variety, especially in the
Windows environment, make detecting and mitigating them
a significant challenge for security professionals. While the
MITRE [3] framework provides a comprehensive taxonomy
of persistence techniques and sub-techniques, There is a
significant gap in publicly available datasets that specifically
focus on how APT manifest in real-world Windows systems.
[10]. Addressing this gap, our work aims to analyze APT
persistence techniques to create a new dedicated dataset. The
main contribution of this paper is fourfold:

• Creation of a comprehensive dataset centered around the
persistence techniques used by APT.

• Detailed Analysis of Persistence techniques employed
by APT, providing a deeper understanding of how these
threats sustain their foothold in target environments.

• Utilization of multiple attack tools (atomic red team,
metasploit, caldera, etc.) to simulate a variety of
persistence techniques in controlled environments, to
ensure a broad coverage of potential APT tactics; and
enhance the realism and applicability of the dataset.

• YAML-based configuration containing system versions,
software details, and ground truth for persistence attacks
to enhance the reproducibility of virtual machines.

Although the proposed dataset focuses primarily on the
persistence techniques employed by APT groups, it also
provides valuable insights for enhancing cybersecurity
defenses and enables other researchers and practitioners to
reproduce or extend our work for further studies or defensive
measures. By analyzing the actions and tactics of these
threat actors, security teams can use it to enhance their
detection systems, improve threat intelligence, and refine
incident response plans. As a result, our dataset serves as an
essential tool for building more robust defenses against APT
attacks.

This paper is organized as follows: Section II presents a
literature review, summarizing existing research and datasets
related to APT. Section III provides an in-depth discussion
of Windows persistence techniques. Section IV details the
dataset design process, outlines the installation procedure, and

discusses the tools used for setup, emulation of red team
attacks, and data collection. Section V describes the simulation
and validation methods employed to ensure the dataset’s
reliability and applicability. Finally, the paper concludes with
a summary of findings and potential future directions for
research.

II. LITERATURE REVIEW

A. APT and Persistence Techniques

1) APT: A sophisticated, prolonged cyberattack in which
an attacker quietly infiltrates a network, maintaining a
hidden presence over an extended period to steal sensitive
information. APTs are meticulously orchestrated, targeting
specific organizations, bypassing security defenses. [2]. APT
often exploit living-off-the-land binaries (LOLBins) that are
pre-installed on Windows systems. These binaries are trusted
by the system and are usually whitelisted by security solutions,
making them ideal for bypassing detection mechanisms [4].
Persistence techniques are integral to APT strategies, enabling
attackers to maintain long-term access to systems even after
reboots or security interventions.

2) Persistence Techniques: According to MITRE [3],
persistence techniques consist in access gained by adversaries
to system across system restarts, credential changes, and
other disruptions. Persistence techniques involve any actions,
configurations, or access modifications that allow attackers
to retain control over systems. These methods may include
replacing or hijacking legitimate code or adding startup entries.
Figure 1 illustrates the various stages of the cyber kill chain

Fig. 1. APT feature taxonomy framework

[5] and highlights the related persistence techniques commonly
used on Windows platforms, such as modifying registry keys,
DLL hijacking, startup folder manipulation, scheduled tasks,
and COM hijacking. The MITRE database has mapped these
techniques comprehensively, as shown in figure 2, where key
examples of persistence mechanisms employed by APT groups
are presented.

Several groups, such as APT41, FIN13, APT29, APT28, and
APT3, utilize multiple persistence techniques across different
stages of an attack. This underscores the need for a dedicated
dataset focused on persistence techniques. Understanding the
variety of techniques employed is crucial for developing more
effective detection and mitigation strategies.

Fig. 2. Examples of persistence techniques used by APT groups

B. Related Works: Existing Datasets for APT

In this section, we explore existing datasets focused on APT,
which are integral to advancing cybersecurity research and
serve as the foundation for developing more effective detection
systems. By comparing and analyzing the available datasets,
we can identify gaps in APT research and demonstrate how
our work contributes to addressing these critical voids. Several
datasets have been developed to study the tactics, techniques,
and procedures (TTPs) used by adversaries, capturing various
stages of the kill chain, such as network infiltration, lateral
movement, and data exfiltration. However, few resources
provide detailed insights into the persistence techniques
employed by APT groups. In this section, we review
existing datasets related to APT behavior, emphasizing their
strengths and limitations, particularly concerning persistence
mechanisms.

The DAPT2020 dataset, introduced by Myneni et al. (2020)
[7], covers four main stages of APT attacks: reconnaissance,
foothold establishment, lateral movement, and data exfiltration.
These stages involve a variety of attacks, such as network
scans, brute force attempts, SQL injections, backdoors, denial
of service (DoS), and privilege escalation. The dataset employs
web shell technique for persistence and primarily focuses on
network-based activities.

The SCVIC-APT-2021 dataset [9] models a multi-domain
environment to simulate APT attacks. Covers several
stages of APT attacks, including reconnaissance, initial
compromise, lateral movement, pivoting, and data exfiltration.
Unfortunately, it focuses on exploiting known CVEs, such as
VSFTPD, and does not address any persistence mechanisms.
Additionally, it emphasizes network-based activities.

Myneni et al. also developed a novel cybersecurity dataset
called Unraveled [6], which provides a comprehensive view
of APT attacks, addressing elements like attack planning,

deployment strategies, and attacker stealth. This dataset
integrates APT attack information from reputable sources,
such as MITRE’s APT group database. For persistence, it
is limited to the Hijack Execution Flow technique (path
interception by modifying the environment variable) only.

The ATLASv2 dataset [11] captures realistic system logs
by simulating both benign user behavior and attack scenarios.
It includes attacks, such as exploiting known CVEs on victim
machines, without utilizing persistence techniques [10].

Karim et al. [8] proposed a dataset that captures the
Tactics, Techniques, and Procedures of APT attacks in
Linux environments. Their dataset simulates various privilege
escalation payloads for Linux, recent CVEs, and keylogger
emulations. It also includes emulations of well-known APT
groups such as APT41, APT28, APT29, and Turla, using
persistence techniques like Account Manipulation, Create
Account, and Web Shell. Although Karim et al. emulate APT
groups in a Linux environment, their work lacks representation
of Windows-based systems.

Although existing datasets are extensively focused on
various attack techniques, they often overlook a crucial
aspect-persistence mechanisms. Many attacks aim to
maintain persistent access, existing datasets primarily focus
on exploiting known vulnerabilities, without thoroughly
addressing the persistence techniques commonly used
in APT attacks. To the best of our knowledge, none of
the previously presented dataset specifically focuses on
persistence techniques.

Building on the insights gained from reviewing these
datasets, we now focus on the specific persistence techniques
employed on Windows, the most widely used operating
system, accounting for approximately 73% of systems
worldwide [25]. These techniques are essential for APT groups
to maintain long-term control over compromised systems.
Understanding them is crucial to enhance detection and
defense strategies. In the following, we explore how these
persistence techniques are utilized by APT groups in Windows
environments, shedding light on their impact and effectiveness
in real-world scenarios.

III. WINDOWS PERSISTENCE TECHNIQUES

A persistence technique allows an adversary to maintain
access to a compromised machine by creating a backdoor,
even after the system is rebooted. MITRE has documented 19
persistence techniques and 67 sub-techniques used by threat
actor in Windows environments [3]. In this section, we focus
on the most commonly used persistence (sub-)techniques [10].
Figure 3 illustrates the anatomy of persistence mechanism
utilized in our proposed solution. We include a variety of
techniques commonly exploited by attackers to maintain long-
term access to compromised Windows environments. These
techniques involve the creation and modification of Windows
services, enabling the launch of malicious processes at system
startup or specific intervals. We also investigate different DLL
hijacking methods, such as DLL search order hijacking, side-

loading, which allow attackers to replace legitimate DLLs with
malicious alternatives.

Furthermore, we integrate Windows Management
Instrumentation (WMI) techniques that use Query Language
to execute persistent scripts in response to specific system
events. Scheduled tasks are another key component of our
dataset, using tools like schtasks.exe and powershell.exe to
create tasks that execute malicious programs at specified
times or during system startup. Lastly, we incorporate
changes to registry keys, in HKEY CURRENT USER
and HKEY LOCAL MACHINE, to ensure that malicious
applications are automatically launched during system boot
or triggered by certain actions.

A. Registry Run keys /Startup Folder
Leveraging registry run keys or the startup folder are

among the most methods used by malware and threat actors
to achieve persistence. Figure 4 illustrates the behavior of
Lokibot malware, which typically creates a payload file within
hidden system folders, such as AppData.

In this instance, the payload is named jkcgjj.vbs. It is
registered as a new value in the Run registry key, allowing
it to execute automatically upon system startup. This ensures
persistence and continued access to the compromised system.

B. Scheduled Task
The Windows Task Scheduler is a tool that enables users

to automate tasks, executing them at specified times or
in response to particular events. This includes launching
programs, running scripts, and performing various actions
without the need for human intervention. The schtasks.exe
utility can be used from the command line or the Task
Scheduler GUI with administrative privileges. APT29, use
schtasks to create new tasks on remote hosts [18]. Additionally,
they may modify existing legitimate tasks to execute their
malicious tools. In our dataset we use schtasks.exe and
GhostTask [19].

C. DLL Side-Loading
The Dynamic Link Library (DLL) is Microsoft’s version

of a shared library system. These libraries store code
and data that multiple applications can access concurrently.
The MuddyWater group uses DLL side-loading to maintain
persistence on compromised networks, tricking legitimate
programs into executing malicious payloads. Below, is an
example of the attack chain involving DLL side-loading by
MuddyWater [20]:

• The legitimate GoogleUpdate.exe loads the genuine
goopdate86.dll module into memory.

• goopdate86.dll uses the DLL side-loading technique to
load the malicious goopdate.dll into memory.

• The rogue goopdate.dll triggers rundll32.exe with the
DllRegisterServer argument.

• goopdate.dll loads goopdate.dat, an obfuscated
PowerShell script, into memory.

• The PowerShell script establishes communication with
the Command and Control (C2) server.

Fig. 3. Anatomy of persistence mechanism used in our dataset

Fig. 4. LokiBot persists via Run registry [17]

D. Windows Service

Attacker create or modify Windows services to execute
malicious payloads persistently. These services, which run
in the background to perform essential system functions, are
automatically started when Windows boots, allowing attackers
to maintain their foothold on the system with each reboot.
APT19 [22] utilizes this technique to maintain persistence
within a compromised system.

E. Domain Accounts

An attacker creates a domain account to ensure long-term
access to compromised systems. Managed by Active Directory
Domain Services, this configuration sets access controls and
permissions, allowing attackers to exploit shared resources and
maintain persistence.

F. Windows Management Instrumentation (WMI) Event
Subscription

WMI event subscription is a Windows feature that enables
applications and scripts to receive notifications about system
events. This management framework offers a standardized
approach for administrators to query, monitor, and manage
system resources efficiently. APT29 [24] has used WMI event
subscriptions for persistence.

G. DLL Search Order Hijacking

Windows systems follow a specific sequence when
searching for DLLs to load into programs. By exploiting this
process, attackers can establish persistence, ensuring that their
malicious code is loaded instead of legitimate DLLs. APT41
[23] use these techniques to execute malware by using benign
and malicious code-signed Windows binaries.

IV. DATASET DESIGN

The dataset is designed to represent techniques employed
by adversaries to maintain access to compromised systems
across different stages of an attack. It encompasses a variety
of persistence mechanisms observed in real-world scenarios.

A. System Setup

To build the dataset, we configured around 120 Windows
virtual machines, including 85% benign systems and 15%
infected ones. This setup mimics real-world scenarios and
ensures comprehensive data collection, each virtual machines
configured with specific user profile to simulate diverse
environments. Each profile was customized with relevant
software and configurations to accurately reflect the typical
use cases of each role. Additionally, we connected all the
virtual machines to Wazuh, an open-source platform for threat

Fig. 5. Design architecture

detection and security monitoring according to predefined
security rules [12]. Figure 5 illustrates the different Windows
systems used in the creation of the dataset. Our focus is on
persistence techniques at the endpoint level, rather than on
network-related aspects.

1) User Profile Simulation and Software Automation
for Realistic Windows Environments: To mimic real-world
environments while creating the Windows machines, we
designed distinct profiles for each system, representing
different types of users including:

• Users,
• IT Administrators,
• Database Administrators,
• Security Specialist,
• DevOps Engineer,
• Developers,
• Financial Analyst,
• Designers,
• Video Editor,
• Researchers.

This diversity of profiles reflects the variety of users in
real-world scenarios. For each profile, we installed unique
software tailored to the specific needs of that user group.
To automate the software installation process, we utilize
Chocolateys [13], a powerful package manager for Windows,
designed to simplify software installation and management,
and ensure consistent and efficient deployment across all
machines. Before installing the software, we first deployed
Sysmon [16] on each machine, as it plays a crucial role in
logging detailed system activity, such as process creation,
network connections, file modifications, and registry changes.
This level of monitoring is essential for detecting suspicious
behavior and identifying persistence techniques used by
adversaries. We also use mapped Sysmon events to the MITRE
with a tailored schema. This configuration enables correlating
specific Sysmon logs with MITRE techniques and activates
various audit logs to ensure comprehensive data collection,
including:

• Logon events,
• Object access,
• System events,
• Account logon,
• Process tracking,
• Policy change,

Fig. 6. Adversary operations and persistence techniques overview

• Privilege use,
• Directory service access,
• Account management.

The combination of Sysmon and audit logs enables capturing
a wide range of system activities to provide a rich source of
data for analyzing persistence techniques and security events.
Additionally, we installed the Wazuh agent on each machine
for monitoring purpose, as outlined in figure 5. It provides
enhanced visibility and additional data [8], complementing
the logs generated by Sysmon and the activated audit. This
integration allowed us to capture a more comprehensive
dataset, enriching the analysis of persistence techniques with
Sysmon.

2) Simulating APT Persistence Techniques Using Emulation
Tools: As illustrated in figure 6, we employed the Caldera
platform [21], an open-source adversary emulation tool
developed by MITRE, to simulate real-world attack scenarios.
It allows automated execution of adversary behaviors based on
the MITRE ATT&CK framework, making it ideal for testing
and analyzing persistence techniques. By using Caldera,
we were able to execute controlled attacks across the
Windows machines, replicating APT tactics in a consistent and
repeatable manner. This helped us to validate the effectiveness
of the persistence techniques used and to ensure the dataset
reflects authentic attack patterns. Besides, we integrated
Metasploit with Caldera to add complexity to the attacks and
create more realistic chaos.

Besides, we utilized Atomic Red Team [14], an open-
source testing framework that provides a set of small, easily
executable tests mapped to the MITRE ATT&CK framework.
Atomic Red Team allowed us to simulate a wide range of
persistence techniques across different versions of Windows.
By executing atomic tests, we were able to verify the presence
of various attack techniques, capturing detailed logs for
analysis. This tool was useful to ensure that our dataset
includes a broad spectrum of APT-like behaviors, making
it more comprehensive and reflective of real-world attack
patterns.

To generate realistic background noise, we integrated the
GHOSTS [15] non-player character (NPC) Framework into
our environment. It is an open-source framework designed
to replicate user interactions with systems in a realistic
and automated manner. This allowed us to test persistence

techniques in environments that closely resemble real-world
usage patterns, and to validate the relevance and applicability
of the dataset.

We manually collected logs from key sources, including
Sysmon, Application, System, Security, and Task Scheduler
files. This manual collection process closely mirrors real-world
scenarios where centralized log collection systems may not
always be available, offering a more realistic representation of
how logs are gathered in different organizational settings.

B. Data Collection and Organization

We collected logs in EVTX format from Windows
machines, capturing events from various system components.
For each machine monitored by wazuh, we also gathered logs
in JSON format generated by the wazuh agent. Additionally,
we created a YAML file for each machine, containing a
detailed description of the operating system and the installed
software versions.

To facilitate reproducibility, we included a PowerShell script
for automating the installation of the necessary software
and configurations. The folder structure was organized
systematically, as shown in Figure 7. For the malicious
machines, we added a separate YAML file containing ground
truth data, which will be used to detect malicious activities.

Fig. 7. Dataset folder Structure for logs, ground truth, and system components

V. SIMULATION AND VALIDATION

For our analysis, we selected two scenarios, each
representing commonly observed APT behaviors. The
techniques used in these scenarios, particularly persistence
mechanisms, have been widely documented [3] as part of the
tactics employed by several APT groups.

A. Scenario 1

As shown in Figure 8, the simulation included several
techniques. It began with remote system discovery, enabling
the identification of systems within the network. To establish
persistence, techniques such as scheduled tasks and boot or
logon autostart execution were employed, ensuring malicious

code execution during startup or user logon. Additional
methods included creating Windows services and exploiting
office application startup settings to execute malicious code
upon application launch.

B. Scenario 2

We simulated APT29 attack using various techniques:

1) Execution and Discovery (Scripting): create a
PowerShell script in the user’s directory for execution.

2) Privilege Escalation (Sticky Keys Attack):
modify system files like osk.exe, sethc.exe, and
displayswitch.exe to gain privileged access using the
Sticky Keys exploit.

3) Persistence:

• Run Keys/Startup Folder: add an executable to
the registry run keys, ensuring the malware runs
automatically upon system startup.

• Scheduled Task: create scheduled task to run a
malicious update program at a specific time.

4) Credential Access (Keylogging): use powershell script
to log keystrokes.

5) Additional Persistence:

• WMI: register event to trigger the execution of
malware.

• Shortcut Modification: modify shortcuts to maintain
persistence by adding them to the startup folder.

6) Defense Evasion:

• File Deletion: Sdelete to clear temporary folders,
erasing traces of malicious activity.

• Use Rundll32: Execute malicious code via a DLL.

C. Validation

To validate the effectiveness of our dataset, we employed
two attack simulation tools: Caldera and Atomic Red Team.
Both tools are directly mapped to the MITRE framework,
ensuring that the techniques used during validation align
with the TTP employed by APT. We conducted simulation
examples that demonstrate how the dataset successfully
captures activities mapped to the MITRE framework.

1) Registry Run Keys / Start Folder: To validate the
persistence technique T1547.001, we executed the command
described in line 4 Table I to add a registry value that would
trigger the execution of the specified DLL updateall.dll
upon system startup.

The following event logs were captured, confirming the
addition of the registry entry:

Fig. 8. Technique used in scenario 1 generated by caldera

N° Command Description
1 reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options\osk.exe"
Bypass authentication with sticky keys exploit

2 reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v "Run key
persistence" /t REG_SZ /d "C:\tmp\ghost.exe" /f

Add persistence through registry run keys

3 SCHTASKS /create /SC ONCE /TN "spawn" /TR "gosupdate.exe" /ST 18:00 Schedule a task for malicious updates
4 REG ADD HKLM\SOFTWARE\Microsoft\CurrentVersion\RunOnceEx\0001\Depend /v 1

/d "C:\tmp\updateall.dll"
Add registry value for DLL execution

5 sc.exe localhost create AtomicTestService_CMD binPath= "411da5.exe"
start=auto type=Own && sc.exe localhost start AtomicTestService_CMD

Create and start a malicious service

6 schtasks /create /tn updatedaily /tr "C:\Windows\TEMP\stark.exe" /sc
minute /mo 5

Schedule task to run malware repeatedly

7 GhostTask.exe localhost add updats "cmd.exe" "\c notepad.exe" win10 weekly
11:11 monday

Create weekly task to launch Notepad.exe

TABLE I
EXAMPLES OF USED COMMANDS AND THEIR PURPOSES

Log Evidence - Registry Value Set

Registry value set:
RuleName:technique id=T1547.001,
technique name=Registry Run Keys / Start Folder
EventType: SetValue
UtcTime: 2024-10-02 19:16:07.747
ProcessGuid:{30f6f5d4-9bf7-66fd-0505-
000000000700}
ProcessId: 8400
Image: C:\Windows\system32\reg.exe
TargetObject: HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\RunOnceEx\0001\Depend\1
Details: C:\tmp\updateall.dll
User: DESKTOP-0B7RNLE\win10

2) Create or Modify System Process: For technique
T1543.003, we executed the command described in line
5 Table I to create a new service using ‘sc.exe‘ called
AtomicTestService_CMD and sets the executable path
to 411da5.exe, which will be automatically started. The
captured event confirms the alteration of The registry key
associated with the newly created service. This log verifies
that the service was created and successfully registered within
the system:

Log Evidence

Registry value set:
RuleName: -
EventType: SetValue
UtcTime: 2024-10-02 19:18:59.794
ProcessGuid:{30f6f5d4-8a99-66fd-0b00-
000000000700}
ProcessId: 628
Image: C:\Windows\system32\services.exe
TargetObject: HKLM\System\CurrentControlSet\
Services\AtomicTestService CMD\ImagePath
Details: 411da5.exe
User: NT AUTHORITY \SYSTEM

3) Scheduled Task/Job: We ran the command outlined
in line 6 of Table I to create a scheduled task
(T1053.005) named updatedaily that runs every 5
minutes, executing a file stark.exe from the temporary
directory. The task was successfully registered in the
system, as seen from the file creation logs under
C:\Windows\System32\Tasks\updatedaily, and the
related executable stark.exe was launched as foreseen by
the task scheduler.

Log Evidence - Task Creation

File created:
RuleName: -
UtcTime: 2024-09-22 18:52:08.376
ProcessGuid:{6a6c6f4d-6224-66f0-1b00-
000000000d00}
ProcessId: 1316
Image: C:\Windows\system32\svchost.exe
TargetFilename: C:\Windows\System32\
Tasks\updatedaily
CreationUtcTime: 2024-09-22 18:52:08.376
User: NT AUTHORITY \SYSTEM

Log Evidence - Task Execution

Task Scheduler launched action:
Command: ”C:\Windows\TEMP\stark.exe”
TaskInstance:{6bd65884-7e1e-4c18-9639-
9743b1f948d3}
Task Name: \updatedaily

CONCLUSION AND FUTURE WORK

Our work presents a novel approach for creating datasets
that focus on persistence techniques to disrupt the prolonged
activity of APT. By concentrating on these mechanisms, we
aim to enhance the detection and mitigation of persistence
strategies employed by APT, ultimately reducing their dwell
time within compromised systems. This approach allows
more targeted defense, improving the effectiveness of security
solutions in real-world scenarios.

Our dataset contains a simulation of the most common
persistence mechanisms mentioned by MITRE ATT&CK [3].
We evaluated these mechanisms across various Windows
versions and configurations, providing the logs in their
raw EVTX format to enable greater flexibility for feature
extraction.

In the future, we aim to preprocess the datasets by
converting raw data into structured formats, performing feature
extraction and engineering, and testing various AI models
to measure the effectiveness of these datasets in detecting
and classifying attack techniques. Additionally, we will study
countermeasures used by APT, particularly focusing on how
they may intentionally adjust their tactics to evade detection,
with the goal of enhancing our detection capabilities. The
datasets are publicly available at [26].

REFERENCES

[1] Statista.“Cybercrime Expected To Skyrocket in Coming Years.”,
[Online]. Available: https://www.statista.com/chart/28878/expected-cost-
of-cybercrime-until-2027/.

[2] CrowdStrike .“What is an Advanced Persistent Threat?.”, [Online].
Available: https://www.crowdstrike.com/cybersecurity-101/advanced-
persistent-threat-apt/.

[3] The MITRE Corporation. “MITRE ATT&CK.”, [Online]. Available:
https://attack.mitre.org.

[4] LOLBAS Project . “Living Off The Land Binaries, Scripts and
Libraries.”, [Online]. Available: https://lolbas-project.github.io/.

[5] Nikkhah Bahrami, Pooneh & Dehghantanha, Ali & Dargahi, Tooska
& Parizi, Reza & Choo, Kim-Kwang Raymond & Haj Seyyed
Javadi, Hamid. (2021). “Cyber Kill Chain-Based Taxonomy of
Advanced Persistent Threat Actors: Analogy of Tactics, Techniques,
and Procedures”. Journal of Information Processing Systems. 15.
10.3745/JIPS.03.0126.

[6] Sowmya Myneni, Kritshekhar Jha, Abdulhakim Sabur, Garima Agrawal,
Yuli Deng, Ankur Chowdhary, Dijiang Huang.Unraveled — A semi-
synthetic dataset for Advanced Persistent Threats.Computer Networks,
Volume 227, 2023, 109688, ISSN 1389-1286.

[7] Myneni, Sowmya, et al. ”DAPT 2020-constructing a benchmark
dataset for advanced persistent threats.” Deployable Machine Learning
for Security Defense: First International Workshop, MLHat 2020,
San Diego, CA, USA, August 24, 2020, Proceedings 1. Springer
International Publishing, 2020.

[8] Karim, Syed Sohaib et al. (2024). “Advanced Persistent Threat (APT)
and intrusion detection evaluation dataset for linux systems 2024.” In:
Data in Brief, p. 110290.

[9] Jinxin Liu, Yu Shen, Murat Simsek, Burak Kantarci, Hussein T.
Mouftah, Mehran Bagheri, Petar Djukic, June 20, 2022, ”SCVIC-APT-
2021”, IEEE Dataport, doi: https://dx.doi.org/10.21227/g2z5-ep97.

[10] Liu, Q., Shoaib, M., Rehman, M. U., Bao, K., Hagenmeyer, V., &
Hassan, W. U. (2024). Accurate and Scalable Detection and Investigation
of Cyber Persistence Threats. arXiv preprint arXiv:2407.18832.

[11] A. Riddle, K. Westfall, and A. Bates. “ATLASv2.”, [Online]. Available:
https://bitbucket.org/sts-lab/atlasv2/src/master/.

[12] Stanković, Stefan, Slavko Gajin, and Ranko Petrović. ”A Review of
Wazuh Tool Capabilities for Detecting Attacks Based on Log Analysis.”
No Nama Agent Integrity File Added Delete Modified 1 (2022).

[13] Chocolatey, [Online]. Available: https://chocolatey.org/install.
[14] Okuma, Momoka, et al. ”Automated Mapping Method for Sysmon Logs

to ATT&CK Techniques by Leveraging Atomic Red Team.” 2023 6th
International Conference on Signal Processing and Information Security
(ICSPIS). IEEE, 2023.

[15] Georgi Nikolov. Simulate user activity with the GHOSTS framework:
Client set-up and Timelines, [Online]. https://cylab.be/blog/81/simulate-
user-activity-with-the-ghosts -framework-client-set-up-and-timelines.

[16] Smiliotopoulos, Christos, Georgios Kambourakis, and Konstantia
Barbatsalou. ”On the detection of lateral movement through supervised
machine learning and an open-source tool to create turnkey datasets
from sysmon logs.” International Journal of Information Security 22.6
(2023): 1893-1919.

[17] Le, Tran Duc & Dinh, Duy & Nguyen T. H., Phuoc & Muthanna,
Ammar & Abd El-Latif, Ahmed. (2023). Exploring Common Malware
Persistence Techniques on Windows Operating Systems (OS) for
Enhanced Cybersecurity Management. 10.1201/9781003369042-7.

[18] Fortinet. ”TeamCity Intrusion Saga: APT29 Suspected
Among the Attackers Exploiting CVE-2023-42793”, [Online]
https://www.fortinet.com/blog/threat-research/teamcity-intrusion-saga-
apt29-suspected-exploiting-cve-2023-42793

[19] Ghost Scheduled Task, [Online] https://github.com/netero1010/GhostTask
[20] TTPs and IOCs Used by MuddyWater APT Group in Latest Attack

Campaign, [Online] https://www.picussecurity.com/resource/blog/ttp-
ioc-used-by-muddywater-apt-group-attacks

[21] Applebaum, Andy, et al. ”Intelligent, automated red team emulation.”
Proceedings of the 32nd annual conference on computer security
applications. 2016.

[22] Analyzing APT19 malware using a step-by-step method, [Online]
https://cybergeeks.tech/analyzing-apt19-malware-using-a-step-by-step-
method/

[23] APT41 Has Arisen From the DUST, [Online]
https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-
from-dust?hl=en

[24] Dissecting One of APT29’s Fileless WMI and PowerShell Backdoors
(POSHSPY), [Online] https://cloud.google.com/blog/topics/threat-
intelligence/dissecting-one-ofap/?hl=en.

[25] Desktop Operating System Market Share Worldwide, [Online]
https://gs.statcounter.com/os-market-share/desktop/worldwide

[26] https://gitlab.cylab.be/cylab/datasets/apt-persistence

