
Facial Recognition Prevention
Face web scraping

Alexandre De Groodt

Academic year
2024 - 2025

Research and Development project owner:
Prof. Thibault Debatty

Master thesis submitted under the supervision of
Prof. Thibault Debatty

the co-supervision of
Dr. Charles Beumier in order to be awarded the

Degree of
Master in Cybersecurity

Corporate Strategies

text

This is done in order to skip the first half of the page

I hereby confirm that this thesis was written independently by myself without the use of any sour-
ces beyond those cited, and all passages and ideas taken from other sources are cited accordin-
gly.

The author(s) gives (give) permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-
right terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

The author(s) transfers (transfer) to the project owner(s) any and all rights to this master disserta-
tion, code and all contribution to the project without any limitation in time nor space.

02/06/2025

Title: Facial recognition prevention
Author: Alexandre De Groodt
Master in Cybersecurity – Corporate Strategies
Academic year: 2024 - 2025

Abstract

Facial recognition technology has become a central issue in the debate over digital privacy.
While it provides powerful tools for security and law enforcement, it also poses serious
risks of intrusion into individuals’ private lives. With the increasing availability of facial
recognition algorithms and the vast amount of imagery available online, the boundary
between personal and professional spheres is increasingly vulnerable. This thesis presents
an open-source Python script intended for government and companies. The script combines
web scraping with facial recognition to assess the online presence of selected individuals
based on reference images, and notify them. The tool is designed to operate within legal
and ethical boundaries, focusing exclusively on publicly accessible content. It may also
be combined with mechanisms such as image takedown requests or obfuscation tools like
Fawkes to reduce digital traceability. In addition to the technical implementation, this
work explores the legal landscape and societal implications of facial recognition, discussing
both its legitimate applications and potential for misuse. Finally, the thesis examines
available countermeasures and highlights how tools like this can be used responsibly to
raise awareness about digital exposure and promote personal privacy.

Keywords: facial recognition, prevention, privacy, AI, scraping, smart cities

I

Preface
This master thesis was a wonderful opportunity for me to learn more on the academic
world independantly, and a way to bring attention to the subject of privacy that concerns
us all.

This is a very interesting subject in the context of cybersecurity, in fact the reason I
joined the field was to protect people from the risks they face in this expanding digital
world, and I found myself informing many on this very actual subject.

I myself did not realize the extent of this technology and its significant presence, even
as a cybersecurity student.

I am unsure whether I should be impressed or scared by these impressive advances in
facial recognition.

Finally I’m able to learn to be more professional in my work, to make it easier to col-
laborate with others in the future, and get more hands on experience in coding, and put
my cybersecurity and computer science background in practise in a practical situation. I
can only hope this contribution will be useful.

On a more personal note, this thesis was an amazing journey. I started intrigued by
the subject, learning about it slowly and doing tests to figure out where I was going.

Then I started talking more about it, getting a clearer picture of it in my head. I had
to write it, so I did, but reading the articles was no longer such a daring task. I read them,
wrote down my comprehension and used AI to make it clearer by section, so I had a solid
base to work on again and improve.

Eventually I became passionate about it, when the coding phase really kicked in. I
remembered how fun it is to code, and even writing was in a state of flow, fully absorbed.
I let quite a few eggs overcook because of this, but it was worth it.

I now have a clearer vision on the state of the world in terms of AI and facial recognition
and how this thesis can hopefully contribute.

II

Acknowledgements

I thank my supervisor for the help and direction provided as well as my promoter for
the opportunity to work on this project and direction in completing it. Great thank comes
to my family members for supporting me in the making of this thesis. I also thank the
template authors to facilitate the thesis by providing a basis for it.

I have used chatgpt solely for reformatting purpose in order to write in a more struc-
tured English, and used that as a new base to rewrite upon. I believe this is an appropriate
use of the tool, since it was made to recognize and predict speach patterns, making it more
than able to rephrase content in a more structured and formal format. It also proved useful
in coding to suggest small code segments and fix bugs.

III

Table of Contents
Abstracts I

Abstract . I

Preface II

Table of Contents VI

List of Figures VI

List of Tables VI

List of Abbreviations VII

1 Introduction 1
1.1 Motivations . 1

1.1.1 Context . 2
1.2 Project Statement & Contributions 4

1.2.1 Problem Statement . 4
1.2.2 Contributions . 4

1.3 Organization of this Document . 5

2 Background 6
2.0.1 Facial Recognition . 6
2.0.2 Web Scraping . 7
2.0.3 Online Recognition Platforms 8
2.0.4 Legal Considerations . 9
2.0.5 Defensive Techniques and Limitations 9

3 Literature Review, State of the Art, Definitions, and Notations 11
3.1 Introduction . 11
3.2 From Research Problem to Sub-Questions 11
3.3 Definitions . 12
3.4 Principles and Operation of Facial Recognition 14

3.4.1 Overview of Deep Learning Approaches 14
3.4.2 Facial Recognition . 14
3.4.3 Models Limitations . 16

3.5 Mitigations . 16
3.5.1 Algorithmic Bias in Facial Recognition 17
3.5.2 Mitigation Strategies . 17
3.5.3 Web Scraping for Facial Recognition: Practical and Ethical

Considerations . 18
3.6 Real-World Applications and Effects 20

3.6.1 Deployment Contexts . 20
3.6.2 Deepfakes and Their Interplay with Facial Recognition 21
3.6.3 Impact on Human Performance 22
3.6.4 Clearview AI and the European Perspective 23

IV

3.6.5 Potential Solutions and the Path Forward 23
3.6.6 Techniques for Avoidance . 24
3.6.7 Effectiveness and Limitations 25

3.7 Review Methodology . 26
3.7.1 Literature Review Methodology 26

3.8 Summary of the State of the Art . 27

4 Project Mission, Objectives, and Requirements 28
4.1 Overview and Objectives . 28
4.2 Anticipated Risks and Limitations . 28
4.3 Requirements . 29

4.3.1 List of Requirements and Dependencies 29
4.3.2 Requirements Covered by the State of the Art 30
4.3.3 Requirements Not Fully Covered by the State of the Art 30

4.4 Project Scoping . 31
4.4.1 Mission Statement . 31
4.4.2 Explicit Out-of-Scope Elements 31

4.5 Testing . 32

5 Good Practice Guide 33

6 Implementation & Testing 34
6.0.1 Methodology . 34

6.1 Planning . 34
6.2 Setup, Requirements, Environment, Tools & Materials 35

6.2.1 System Requirements . 35
6.2.2 Virtual Environment Setup (Recommended) 35
6.2.3 Package Installation . 35

6.3 Implementation Overview . 36
6.3.1 Script and Folder Structure . 36
6.3.2 OpenCV Integration . 36
6.3.3 Initial Face Capture . 37
6.3.4 Basic Facial Recognition . 37
6.3.5 Picture Annotation . 38
6.3.6 Dataset . 39
6.3.7 Logging System . 42
6.3.8 Audit System . 42
6.3.9 Threading and Performance Considerations 44
6.3.10 Web Scraping . 47
6.3.11 Final Tests . 52

6.4 Final Script . 53
6.4.1 Recovery . 53
6.4.2 Usage Overview . 53
6.4.3 Code Execution Graph . 54
6.4.4 Configuration . 56
6.4.5 Security Flaws and Limitations 56
6.4.6 Areas for Improvement . 57

6.5 Experimentation Conclusions . 58

V

7 Conclusions 60
7.1 Privacy Concerns . 61
7.2 Future Work . 61

A main.py 63

B scripts/settings.py 76

C face.py 81

D README.md 86

E scraping.py 91

F ui.py 96

G scripts/app.py 101

H requirements.txt 104

I .gitignore 106

Bibliography 110

List of Figures

1.1 AI act overview [47] . 2

2.1 Facial recognition pipeline [38] . 6
2.2 Neural network architecture used in recognition [7] 7
2.3 Facial recognition extracted key points example [3] 8

3.1 Generative Adversarial Network view [32] 15
3.2 Deepfake example [36] . 21

6.1 Audit GUI for manual validation of detected faces. 43

List of Tables

6.1 Overview of script arguments and default settings 46

VI

List of Abbreviations

AI Artificial Intelligence
API Application Programing Interface
CNN Convolutional Neural Network
DSA Digital Services Act
GAN Generative Adversarial Network
GDPR General Data Protection Regulation
NIST National Institute of Standards and Technology
openCV Open Source Computer Vision Library

VII

Chapter 1

Introduction
Facial recognition is a rapidly evolving technology at the intersection of biometrics and
machine learning. While it promises convenience and innovation - such as seamless device
authentication and security - it also raises significant ethical, legal, and societal concerns.

Deployment One concerning development is the emergence of public-facing tools like
Pimeyes and Facesearch, which combine facial recognition with web scraping. These
platforms allow anyone to trace an individual’s online presence using only a single photo,
effectively linking public and private personas without consent. [22] Such capabilities rep-
resent a growing privacy risk in a world where images are shared ubiquitously.

Meanwhile, facial recognition is also being deployed at scale by private companies
and governments. Firms like Clearview AI offer advanced tools capable of identifying
individuals in real time across vast image databases. The acceleration of these technologies,
fueled in part by global events such as the COVID-19 pandemic and heightened security
concerns, has outpaced existing legal safeguards that now have to decide how to respond
to it [37,44].

Social Media. One of the most critical concerns in the digital age is the extensive
presence of individuals on social media platforms. These platforms often contain a wealth
of personal information, frequently shared with limited awareness of the associated privacy
implications. As such, social media represents not only a valuable source for information
gathering but also an important source of privacy breach. Even if we ourselves do not
post directly on social medias, we may be on other’s pictures, and considering that "social
media users share at least 3.5 billion images everyday", this is not a risk we can ignore. [18]

Legal aspect In this context, this thesis explores the technical and legal feasibility of
building a facial recognition-based search system within the bounds of European data
protection law. The goal is to create a free and open-source framework that allows users
to assess their own exposure online. Such a tool could support takedown or obfuscation
strategies using technologies like Fawkes, which make the face unrecognizable to machines
whilst keeping it roughly the same for humans. Fawkes is a promising means to help
individuals defend against unauthorized facial recognition by modifying the images for IA
agents but not for the human eye [49].

1.1 Motivations

Facial recognition technology is advancing rapidly, but public understanding, legal frame-
works, and technical countermeasures have not kept pace in most countries. While com-
panies and state actors increasingly deploy these systems for surveillance and commercial
purposes, individuals and civil society are left without effective tools to assess or resist
such tracking. robot.txt files to enforce the terms of service can be ignored, and defences
in place against web scraping can be avoided, such as was the case with youtube. [?]

1

Figure 1.1: AI act overview [47]

→ This asymmetry creates a significant privacy threat. A single photo can now enable
the identification and tracing of individuals across the web without their consent, through
systems powered by massive datasets and machine learning. The fact that even small,
widely available camera devices can now perform real time facial recognition using micro
controllers highlights the urgency of addressing this issue, given they can be used to iden-
tify us.

Despite growing regulatory efforts such as the GDPR and AI act in Europe, enforce-
ment is often behind when compared to the speed at which private companies innovate.
Public-facing tools are costly, offering little transparency to the average person, who often
ignore their very existence, and their right to request takedowns.

Awareness This thesis aims to raise awareness of these challenges and contribute a
practical prototype for facial recognition-based image discovery, still for use for resourceful
individuals, but mostly for internal use by companies and governments who can raise
awareness. This means no longer limiting the use of such tools to the few individuals that
are aware enough of the risk linked with their online presence. The goal is not only to make
these mechanisms understandable and visible, but also to empower users to take action -
whether by requesting image removal or applying obfuscation techniques like Fawkes.

Understanding the inner workings of these algorithms is key. Only by exposing how fa-
cial recognition functions, and where it fails, can we have meaningful discussions about its
regulation, ethical use, and role in society. Our work seeks to bridge the gap between tech-
nical capability and individual rights - especially those at high risk - laying the foundation
for more awareness and better safeguards.

1.1.1 Context

Facial recognition technologies are rapidly being deployed across the globe, raising critical
questions about privacy, consent, and surveillance.

2

• In China, these systems are deeply embedded in public infrastructure, enabling
real-time tracking and social monitoring of citizens by identifying them in the many
camera systems, and linking all this information together, and keeping track of people
on watch lists. This "sharp eyes" program was put in place in 2015. [11]

• In the United Kingdom, law enforcement has trialed facial recognition vans in
public spaces, prompting public backlash over issues of algorithmic bias and lack of
transparency. [4]

• In the United States, the NYPD and other police departments accross the states
have adopted facial recognition systems for crime prevention with Clearview since
2019 [55], while some states like Ohio have begun to push back, due to cases of miss-
identifications, and multiple companies have chosen to stop selling facial recognition
tools to police departments [50].

• The Royal Canadian Mounted Police in Canada has been using facial recognition
to help in their investigations, with Clearview [37].

• Even in Serbia, in Europe, security cameras equipped with facial recognition and
bought from China have been installed. [46] The watch lists can be consequent, and
we do not know who is being watched. For instance, whilst this technology is banned
for mass surveillance, in France it can be used by the police in order to find individuals
from their databases. [1]

Thankfully laws and comitees exist to keep this in check. Facial recognition is not
inevitable, but it is certainly increasing in presence around the globe, in "smart cities".

Societal context The convergence of ubiquitous cameras and powerful machine learning
algorithms has made continuous population monitoring a real possibility. This capability is
no longer limited to state surveillance; it extends to what is often referred to as surveillance
capitalism, where personal data is harvested, analyzed, and monetized by private compa-
nies for targeted advertising and behavioral profiling, learning the preferences of everyone
so that they can be sold products more effectively. Hence data is worth money, meaning
there is a risk of facial recognition being used for profiling.

Regulations such as the European Union’s General Data Protection Regulation
(GDPR) offer some degree of protection, but they were not designed with the full impli-
cations of facial recognition in mind. Traditional legal concepts like the “right to image”
are difficult to enforce in a context with facial-enabled surveillance cameras, where we
have to distinguish between the will to keep citizens safe by monitoring with protecting
their private lives. Thankfully a new comitee has been formed in 2024, and a new AI
act was voted in june of that year, notably banning "untargeted scraping of the inter-
net and closed-circuit television (cameras) material to create or expand facial recognition
databases". Europe is ahead in this regard, although laws always take 2 years before being
enforced [17,20].

Tools like Pimeyes and Facesearch demonstrate the accessibility and power of this
technology. With just a single photo, users can discover where a person appears across
the web. Despite nominal opt-out mechanisms, the barrier to entry for building similar
facial recognition and scraping systems remains low, thanks to open-source libraries such
as OpenCV and widely available online tutorials. This democratization of surveillance

3

tools creates significant risk and highlights the need for public awareness, legal reform, and
technical countermeasures.

1.2 Project Statement & Contributions

1.2.1 Problem Statement

Despite regulatory efforts such as the GDPR and emerging discussions about banning
facial recognition surveillance (e.g., in Canada [37]), enforcement often lags behind techno-
logical progress, although Europe is ahead with the AI act mentionned before. This gap
is especially evident in the case of automated facial recognition systems that scrape and
analyze web-based images, frequently operating in legal grey areas—as shown by Clearview
AI, which continues to function despite cease-and-desist orders from major platforms like
Google [8].

New threats With off-the-shelf tools and minimal technical skills, anyone can build
systems to collect facial data from public sources and analyze it at scale, or use existing
tools to do so. These capabilities pose serious privacy risks, as individuals can be tracked
and profiled online without their knowledge or consent. Furthermore, said individuals can
lack knowledge of their rights to ask the pictures to be removed, of the privacy risks they
pose, or even of the picture’s very presence, and the existence of tools to find it. This is
where a tool with transparent code aimed at companies can make sense. This is especially
true for important companies like banks, military organisation,or any other company or
organization operating in a strategic domain, where employee profiling in order to find their
whereabouts to deceive or impersonate them is most troublesome, potentially breaching
the gap between private and public life. Online presence If we want protection, we may

try to control our online presence, but unfortunately sites like clearview keep a local copy
of all pictures, meaning that once a picture has been online, it is already too late, and
modifying or removing it would not be effective. If we instead wish to use the online facial
recognition tools to protect ourselves by checking our presence on their website, we need to
trust that these companies are not going to keep the images, as claimed, and will also have
to spend a significant sum in order to get access to advanced searches, on an individual
level.

Project This project investigates the feasibility of creating a local facial search system
while staying within European legal frameworks. The goal is to identify publicly available
images of individuals, especially on social medias but on the web as a whole, with the
intent to be aware of this presence, and having the option to either remove them or make
them unrecognisable to facial recognition systems. Finally, we aim to highlight the risks
of uncontrolled facial data exposure and underscore the need for stronger regulatory and
technical safeguards.

1.2.2 Contributions

This thesis makes both conceptual and practical contributions:

• Insight: We present the concepts in a concise way to give the necessary context to
understand facial recognition, the code and reasoning behind it.

4

• Prototype Tools: We present a suite of scripts for image gathering and face de-
tection, demonstrating the feasibility of building a custom recognition pipeline using
public data and tools, usable for companies, state actors and individuals.

• Legal and Ethical Framing: We contextualize our technical findings within ex-
isting European laws (e.g., GDPR), emphasizing the limitations of current privacy
protections.

• Awareness and Empowerment: We explore methods for defending against recog-
nition, such as image obfuscation, and discuss how individuals and institutions can
audit their online exposure.

Due to the terms of service of the various social media platforms preventing scraping,
the project does not include a complete end-to-end implementation of public search, but we
detail the system components and their interactions for transparency and reproducibility,
as well as future work.

1.3 Organization of this Document

• Section 1 – Introduction: The reasoning behind the thesis was presented, and
keys notions were mentionned.

• Section 2 – Background & Technical Foundations: An overview of facial
recognition algorithms and web scraping techniques and tools, along with their legal
and ethical implications.

• Section 3 – State of the Art: A review of the existing literature on facial recog-
nition from a technical as well as a legal perspective.

• Section 4 – Planning: Presentation of the code design, legal constraints, and
prototype functionality.

• Section 5 – Implementation: Explanation of the code and testing.

• Section 6 – Conclusion: An overview as well as a reflection on the risks this can
cause, and direction for future work in this matter.

5

Chapter 2

Background
This section introduces the technical and contextual knowledge necessary to understand
the rest of the thesis, into which we will dive in greater details in the state of the art. As
these are not very advanced notions by themselves, this section will consist more in general
internet research rather than research papers. This should serve as a refresher into these
notions, and make the thesis more accessible.

We concisely cover facial recognition algorithms, as well the web scraping process that
powers large-scale image harvesting, and current legal protections. These topics form the
foundation for evaluating the feasibility and ethical implications of our proposed system.

2.0.1 Facial Recognition

Facial recognition systems attempt to identify individuals by analyzing their facial features.
These systems rely on the assumption that every face is unique and can serve as a biometric
identifier.

Biometrics

Biometric systems authenticate individuals based on inherent physical or behavioral char-
acteristics — "what we are" — rather than "what we know" (passwords) or "what we have"
(tokens). Fingerprint scanners are a common example; facial recognition is increasingly
used in consumer electronics for device unlocking. [54].

The other aspect is that the biometric data must be stored safely, thankfully there
are methods such as homographic encryption that allow operations to be performed on
encrypted data, such as verification. [2] However, identity verification is not the focus of
this thesis.

Machine Learning

Modern facial recognition systems rely heavily on deep learning, particularly Convolutional
Neural Networks (CNNs), which are capable of learning and generalizing complex visual
patterns, using large datasets. Generative Adversarial Networks (GANs) also play a role
in augmenting training datasets or generating realistic synthetic faces [34].

Figure 2.1: Facial recognition pipeline [38]

6

Figure 2.2: Neural network architecture used in recognition [7]

Deep learning models are trained by reinforcing connections that yield correct predic-
tions during the learning phase. Once trained, these models can be reused to detect and
match new faces, often by comparing feature vectors and calculating similarity scores.

However, deep learning is probabilistic in nature - false positives and false negatives
can occur, sometimes with serious consequences in law enforcement, and even in shops
where the technology was installed against potentially thieves. Although systems like
Clearview claim near-perfect performance [30], they should never be used in isolation for
legal decision-making.

Algorithmic Workflow

Typical facial recognition workflows involve:

1. Detection: Locating face regions within images.

2. Feature Extraction: Encoding facial features into vectors.

3. Matching: Comparing the query vector with a database of known identities.

Different systems may use different models for detection and recognition, optimizing
each for speed, accuracy, or resource constraints [40].

2.0.2 Web Scraping

Web scraping involves the automated retrieval of online content using scripts or software.
While scraping text is relatively common, gathering images and videos presents challenges
due to bandwidth, data volume, and legal restrictions.

Major social platforms and other websites often prohibit scraping in their terms of
service and provide APIs as controlled alternatives. However, these APIs are intended for
advertising and simple apps, and they often do not give access to images. This makes
scraping an attractive workaround due to limited enforcement of the policies.

7

Figure 2.3: Facial recognition extracted key points example [3]

2.0.3 Online Recognition Platforms

Several public tools already implement facial recognition search engines, the most well
known ones being:

• PimEyes: Allows users to search for appearances of a face across the web, but
excludes social media, probably due to GDPR restrictions.

• FaceSearch: Targets social media content and includes features such as sex offender
checks. It excludes European users, likely due to GDPR restrictions.

Both platforms offer free limited search previews, but require payment for full function-
ality. For Pimeyes, this includes the possibility to send take down requests to the websites
that hold our pictures, however this comes at a price which would scale quite rapidly for
an entire company. This is rather intended for individual use. Free opt-out mechanisms
also exist for both tools, which are either image-specific, or requiring identity verification.
We have tested both the procedure to remove images one by one and the one to remove a
person by providing an anomyzed ID card with Pimeyes, and can confirm they do work.
However these free options only remove someone from this one specific tool’s search results,
leaving them on other platforms.

There are free alternatives for face searching, notably [14], but none fit our require-
ments. Some only look for similitude in images, are from a non trustworthy source and most
importantly they lack transparency or the implicit assurance that comes with a company
having a reputation to maintain.

Clearview AI is a more powerful tool marketed to law enforcement. It claims un-
matched accuracy, backed by a vast training dataset, though independent verification is
lacking [16]. Clearview and similar tools pre-index massive datasets to improve search
speed, likely constructing internal dossiers for each detected face [22].

8

2.0.4 Legal Considerations

Legal frameworks such as the General Data Protection Regulation and AI act aim to
protect individual rights in the EU, but enforcement remains challenging, since some of
these laws are subject to interpretation and good understanding of the context they exist
in. Key GDPR principles include:

• Proportionality: Data collection must be justified and minimal. For instance, it
would be hard to justify tracking the whole country through the means of facial
recognition in order to catch a few criminals, especially if this is maintained over
time.

• Consent: Individuals must be informed and, when applicable, provide explicit con-
sent that their data is used in this way. There is more lenience in research contexts,
and the law applies differently for criminal matters, as we’ll explore in greater de-
tails [44].

The AI act entered into force on 1 august 2024, and will be fully applicable as of 2
august 2026, two years later. It is more focused on AI in particular. It classifies multiple
levels of risks, and many within the unacceptable risks are of high interest to us. These are
completely banned, whilst for others there can be more leniance. They include, (quoting):
[17]

• Social scoring

• Individual criminal offence risk assessment or prediction untargeted scraping of the
internet or CCTV material to create or expand facial recognition databases

• Emotion recognition in workplaces and education institutions

• Biometric categorisation to deduce certain protected characteristics

• Real-time remote biometric identification for law enforcement purposes in publicly
accessible spaces

There are other laws that aim to protect individual’s privacy, for instance in Canada,
but we have chosen to focus on Europe in this thesis.

We should already note that Clearview’s activities have drawn criticism for violating
these principles, especially regarding mass data collection without consent. [44]

2.0.5 Defensive Techniques and Limitations

To counter facial recognition, two main strategies exist:

• Detection and Removal: Find and eliminate existing online images, according to
the GDPR, Digital Millennium Copyright Act, and Takedown Notices. Our
presence in the picture is enough to request its takedown. [29]

• Obfuscation: Prevent recognition by altering images as our face is being captured,
for instance with physical disguise or specific make-up techniques. This can also
be used on already existing online images, although if the company doing facial
recognition already has a local cache of our picture, it will prove to be ineffective.

9

Tools like Fawkes [39] can manipulate existing images to disrupt recognition algo-
rithms, though success depends on the strength of the obfuscation and the resilience of the
recognition model. Adversarial make-up may be able to fool a face recognition equipped
basic camera but not a full script.

It is important to note that no single strategy offers full protection. Advanced recog-
nition systems can adapt to new defences (e.g., bypassing COVID mask interference [53]),
and not all individuals will employ such methods. Thus, protective techniques must evolve
alongside threat models.

10

Chapter 3

Literature Review, State of the Art,
Definitions, and Notations
3.1 Introduction

The purpose of this chapter is to explore the scientific and technological foundations rel-
evant to the use of facial recognition algorithms, and to establish the context for their
real-world application, limitations, and legal implications.
The approach follows a series of research sub-questions derived from the main problem,
ensuring comprehensive coverage of the technical, ethical, and societal issues at stake.

3.2 From Research Problem to Sub-Questions

To systematically address the main problem, we decompose it into specific sub-questions:

• How do facial recognition algorithms work?

• What already exists to satisfy our use case in terms of facial recognition algo-
rithms?

• What are the limitations of these algorithms? Their mitigation?

• To what extent are facial recognition systems discriminatory?

• How does it connect to web scraping?

• What are the good practices for web scraping?

• What are the current real-world applications of facial recognition?

• What impact do they have on human performance?

• How can individuals protect themselves against facial recognition?

• What about the impact on society as a whole?

• What legal restrictions govern the use of this technology?

• What broader implications does facial recognition have for privacy?

• What means can we use to combat this technology?

Research Sub-Questions

These sub-questions will guide the development of subsequent sections.

11

3.3 Definitions

• API (Application Programming Interface): A set of protocols and tools that al-
low different software applications to communicate. In the context of face recognition,
APIs provide developers with access to pre-built recognition models and services.

• Bias: Systematic deviation in algorithmic performance that disproportionately af-
fects certain demographic groups (e.g., by age, gender, or ethnicity), often due to
imbalanced training data or design flaws.

• CNN (Convolutional Neural Network): A deep learning architecture particu-
larly effective at processing grid-like data such as images, widely used in face detection
and recognition tasks.

• ANN (Artificial Neural Network): A computational model inspired by the hu-
man brain, consisting of interconnected nodes (neurons) that can learn patterns from
data.

• GAN (Generative Adversarial Network): A class of neural networks used to
generate synthetic data. It consists of two competing networks (generator and dis-
criminator), and is often used to create deepfakes.

• GDPR (General Data Protection Regulation): A comprehensive data protec-
tion law in the European Union that governs how personal data must be collected,
stored, and used. It includes specific provisions on biometric data, including facial
information.

• DSA (Digital Services Act): A regulatory framework by the European Union
aimed at increasing transparency and accountability of online platforms. It indirectly
affects facial recognition by setting content moderation and algorithmic transparency
requirements.

• Eigenfaces: Eigenfaces are a set of eigenvectors derived from the covariance matrix
of facial images, typically used in Principal Component Analysis (PCA) for face
recognition. They represent the principal components of facial variation in a training
set, allowing for dimensionality reduction and simplified facial comparison in early
facial recognition systems.

• Layers (in Neural Networks): Layers are the fundamental building blocks of
neural networks, comprising groups of interconnected neurons. They typically in-
clude input layers (receiving data), hidden layers (performing transformations), and
output layers (producing predictions). In Convolutional Neural Networks (CNNs),
layers can include convolutional layers (for feature extraction), pooling layers (for
dimensionality reduction), and fully connected layers (for final classification).

• OpenCV (Open Source Computer Vision Library): OpenCV is an open-
source software library designed for real-time computer vision and machine learning
applications. It provides a wide array of tools for image processing, object detec-
tion, facial recognition, and camera calibration, and supports integration with deep
learning frameworks such as TensorFlow and PyTorch.

12

• Computer Fraud and Abuse Act (CFAA): The Computer Fraud and Abuse Act
is a United States federal law enacted in 1986 to combat cybercrime. It prohibits
unauthorized access to computers and networks, including the theft of sensitive data
or misuse of digital systems. The CFAA has been criticized for its broad language,
which some argue can criminalize minor or ethical activities like security research or
data scraping.

• Face Decoy (Foggysight): The face decoy method, proposed by the Foggysight
project, is a privacy-preserving technique where users upload images containing syn-
thetic or manipulated faces to confuse facial recognition systems. These decoy faces
act as adversarial noise in datasets, thereby reducing the effectiveness of automated
face identification by contaminating training or inference inputs with misleading data.

• ArcFace Loss: ArcFace loss is a loss function designed specifically for face recog-
nition tasks. It introduces an additive angular margin penalty to the softmax loss
function, which enhances the discriminative power of face embeddings by enforcing a
larger angular separation between identities. This approach ensures that embeddings
for the same person are clustered more tightly together in the feature space, while
embeddings for different people are pushed further apart. ArcFace is mathematically
grounded in hypersphere geometry, improving both the accuracy and robustness of
recognition systems, especially under unconstrained conditions.

13

3.4 Principles and Operation of Facial Recognition

By introducing the vulnerabilities of facial recognition with basic machine learning notions,
we will be able to understand its limitations, and avenues to address them.

3.4.1 Overview of Deep Learning Approaches

From Pixels to Faces. To a computer, an image is simply a matrix of pixel values.
Extracting meaningful information such as the presence of a face requires several processing
steps. All faces share structural similarities, such as the relative position of eyes, nose, and
mouth - which machine learning models can exploit to perform detection and recognition.

Face Embeddings. Most recognition systems transform faces into fixed-length feature
vectors called embeddings. These vectors capture the essential characteristics of a face in
a compressed format. Recognition is performed by comparing these embeddings using
similarity metrics such as cosine distance or Euclidean distance. The lower the distance
between two embeddings, the more likely they represent the same individual.

Machine learning Modern facial recognition systems predominantly use deep learning,
especially Convolutional Neural Networks (CNNs), which are well-suited for visual pattern
recognition. These networks are composed of layers that convolve the image to detect
features such as edges, textures, and shapes. Through training on large datasets, CNNs
learn to distinguish subtle differences between faces.

Unlike traditional neural networks, CNNs include pooling and fully connected layers
that allow the models to retain spatial hierarchies while reducing computational complexity.
They are trained using backpropagation, where the network adjusts its internal parameters
based on the error between predictions and ground truth.

Traditional vs Deep Learning Approaches. Before the advent of deep learning,
techniques like eigenfaces and Local Binary Patterns (LBP) were popular. These relied
on dimensionality reduction methods such as Principal Component Analysis (PCA) to
compress facial data into representative features. However, these methods often failed
under real-world conditions like poor lighting or varied expressions. CNNs, in contrast,
are more robust and generalizable. [2]

Generative Adversarial Networks (GANs). Recent advances have introduced
GANs, which consist of two networks: a generator and a discriminator. These compete
to create increasingly realistic synthetic images. In facial recognition, GANs can augment
training datasets, improving model performance when data is scarce or imbalanced [34].

Our Approach: Pre-trained Models. In this project, we rely on pre-trained models,
which have been trained on large-scale facial datasets and can generate embeddings from
input images without additional training. This approach is both practical and legally
safer, as it avoids the need to collect extensive amounts of personal data. While data
augmentation using GANs is possible, it was not used here due to the project’s privacy
considerations and resource constraints.

3.4.2 Facial Recognition

There is no universally optimal algorithm or model for facial recognition. Performance de-
pends on a range of factors including available computational resources, time constraints,

14

Figure 3.1: Generative Adversarial Network view [32]

dataset size, and the expected variability in image quality and content. Each model
presents trade-offs between speed, accuracy, memory usage, and robustness to
adversarial conditions. These performance differences often stem from the choice of
training data and architecture-specific optimizations.

As such, it is common practice to combine different models, using one optimized for
fast and reliable face detection and another one for more computationally intensive face
recognition. For this project, we consider several modern approaches:

• YuNet: A lightweight, high-speed face detection model integrated with OpenCV’s
deep learning module. It is particularly well-suited for real-time video processing
and low-power devices [56]. OpenCV holds other models and also works with many
different data formats and allows video capture, helping us get the pictures we need
for the database.

• YOLO (You Only Look Once): A family of object detection models that can be
adapted for face detection. While more computationally demanding than YuNet, it
may provide improved accuracy and flexibility in complex scenes.

• InsightFace: A high-performance face recognition framework that employs ArcFace
loss to generate highly discriminative face embeddings. It is considered one of the
most accurate open-source solutions available.

• DeepFace: As discussed in [34], DeepFace offers strong performance with relatively
modest resource demands. It represents a balance between accuracy and efficiency,
although its preprocessing requirements make it less suitable for large-scale, resource-
constrained tasks like web scraping.

• Dlib: This option has more false negatives in terms of recognition, and runs slower
than both InsightFace and OpenCV, notably due to it being older, thus making it a
less interesting choice [25]. It can also be used for detection, but will be slower than
more recent options such as yunet.

15

According to [40], combining YOLO for detection with InsightFace for recognition
provides strong results, benefiting from YOLO’s versatility and InsightFace’s embedding
precision. However, given our need to process large numbers of images at scale - similar
to adversaries like Clearview AI - we may prefer faster alternatives such as YuNet. We
intent to evaluate both detection options by comparing their speed and accuracy in realistic
scenarios before making a final selection.

New developments While this study focuses on these specific models, it is worth noting
that the field is evolving rapidly, with many options available. This means that our system
design should be as modular as possible to accommodate future advances or changes in
performance requirements. The issue that comes with this these can come in different
formats (for instance, facial points for yolo) for detection and recognition, sometimes they
expect a given size for detection or recognition, and we will have to make sure to interpret
the images in the different model specific ways. This could cause complications especially
in the clarity of the code if we add many different models with different expectations.

3.4.3 Models Limitations

Despite advancements in performances and accuracy, facial recognition systems face inher-
ent limitations [2]:

• Sensitivity to illumination, posture, and occlusion: Especially for 2D models
(as opposed to 3D ones [43]), small changes in conditions can significantly impact
performance, due to the heavy reliance on some areas of the face being immobile,
and using light in order to assess depth and recognize the shape of the face. The
posture importance is due to having to normalize the faces for comparison. This can
be exploited, but modern models perform better in this way.

• Performances: A lot of resources are still required to run the model, making it less
practical on smaller devices, where simpler versions have to be run, leading to lower
accuracy [41].

• Generalization issues: Performance may drop when encountering faces or demo-
graphics under-represented in the training data. We should prioritize the models that
perform better for diversirty, such as openCV and InsightFace, and avoid relying on
other algorithms in contexts like criminal investigations [13,48].

3.5 Mitigations

A good method to help with posture and light limitations is to build a better representation
of the person we are trying to identify, by capturing their face under different poses and
ambient light, or at least with sufficient quality. Note that there is no need to have a studio
to take the pictures, but the higher quality and more varied they will be, the easier it will
be to differentiate the person.

Pre-processing. It is also possible to pre-process data in order to make recognition
easier, however we will not do this because of performance concerns.

The resource concerns can be mitigated by being careful not to over-use our model, for
instance by only running the face recognition once on every picture online, remembering
it, and then comparing them with all the faces in our database at once. Big companies

16

like Clearview AI hold the data in their data centers, allowing them to already pre-sort
faces of people, reducing how many comparisons are necessary [16].

3.5.1 Algorithmic Bias in Facial Recognition

Despite their technical sophistication, machine learning models are not inherently neutral
or objective. The accuracy and fairness of facial recognition systems are deeply influenced
by the potentially unbalanced datasets they are trained on. Often white adult males-
models tend to perform significantly better on those groups, while underperforming on
others, including women, children, and individuals with darker skin tones.

This disparity is often not the result of explicit intent, but rather a reflection of systemic
biases in data collection practices and the composition of research teams [48].

Implications The implications are particularly serious in high-stakes domains like law
enforcement, where misidentifications can lead to wrongful arrests, surveillance, or de-
nial of services. In several countries, including the U.S., law enforcement agencies have
adopted facial recognition tools without robust oversight, prompting concerns about legal
accountability and civil liberties.

It is also important to note that performance gaps are not always consistent across
demographic categories. For instance, some systems may accurately distinguish gender for
one ethnic group but struggle with others, revealing the nuanced and multi-dimensional
nature of algorithmic bias.

Evolution Comparative evaluations, such as that by Fabian et al. [25], indicate that
some modern frameworks, such as OpenCV and InsightFace - which we will be using -
exhibit more balanced performance across demographic groups than older algorithms such
as Dlib. Nevertheless, disparities persist, especially under challenging conditions such as
poor lighting or non-frontal facial angles.

Finally, evaluations by the U.S. National Institute of Standards and Technology (NIST)
have shown that the most accurate facial recognition algorithms often also exhibit the least
bias [13], they have also shown that the most disparity is for african women, for which the
false match rate was 100 times worse than for white men. We recommend the reading of
the 2019 report on demographic effects [27].

3.5.2 Mitigation Strategies

There are a few ways to address the remaining biases, focusing on the training of said
algorithms:

• Balanced and representative training datasets: Increasing diversity in datasets
across ethnicity, gender, age, and geographic origin helps ensure that models gener-
alize well across populations.

• Corrective learning objectives: Some training algorithms now incorporate con-
straints or loss functions that penalize disparities in performance across groups, en-
couraging more equitable model behavior.

• Independent evaluation and auditing: This makes sense before employing the
technology on a greater scale, especially for law enforcement. As [48] points out,
there were legitimate concerns around DNA identification at first as well.

17

While human oversight remains a critical layer in mitigating the consequences of al-
gorithmic errors, the influence of algorithmic outputs on human judgement should not be
underestimated, and go beyond simple confirmation bias, as we will detail further.

3.5.3 Web Scraping for Facial Recognition: Practical and Ethical Con-
siderations

In the context of facial recognition, scraping images from the web can be a valuable method
for assembling large datasets necessary for training and evaluating algorithms. However,
this practice presents several technical, legal, and ethical challenges that must be consid-
ered, as guided in [9]. This paper’s first focus was the USA, but they also mention the
case of the GDPR, as we will expand upon later.

Scraping as a technology can be used in many different ways, notably for profit by
analyzing market trends and more, but also for research and the training of various machine
learning algorithms. It can be done by simply making sense of the html code of websites
or using custom APIs.

Legal and Ethical Considerations

The legality of web scraping is nuanced and varies across jurisdictions. In the United
States, for instance, the Ninth Circuit Court ruled in hiQ Labs, Inc. v. LinkedIn Corp.
that scraping publicly accessible data does not violate the Computer Fraud and Abuse Act
(CFAA) [35].

Scraping for research. This decision does not grant freedom for all scraping, given
that websites often include terms of service that explicitly prohibit automated data col-
lection. Violating these terms can lead to legal repercussions, and should normally be
informed within the robot.txt, which can explicitely give permission to third parties for
scraping, often corresponding to legal contracts. Twitter used to give access to researchers,
but has transitioned to a paying system since April 2023, and access to it must now be
granted per project. In August 2024, Meta shut down CrowdTangle. This is making it
much harder to use that data for research purposes [35] .

There is also the matter of copyrights and individual property of images, that can be
ignored by the various scraping tools or even websites which may repost content without
particular attention.

Ethical issues of scraping Ethically, scraping images for facial recognition raises signif-
icant privacy concerns. Individuals whose images are collected have most often consented
to such use, especially when images are sourced from social media platforms or personal
websites. The case of Clearview AI exemplifies these issues: the company scraped billions
of images from the web to build a facial recognition database used by law enforcement,
sparking much criticism, and legal challenges in the EU [44], leading to fines in France and
the Netherlands. With the new AI act such scraping in order to make facial recognition
models will be banned, and although ClearView might try to get it to work before it is
implemented, this seems unlikely to work [17].

Researchers and practitioners must also consider the potential for algorithmic bias
introduced by these unbalanced online datasets. It is reasonable to assume the different
demographics do not post in the same frequency, neither are they of the same proportions,
leading to imbalances. If certain demographic groups are under-represented in the scraped

18

data, the resulting facial recognition models may exhibit reduced accuracy for those groups,
leading to discriminatory outcomes [9].

Best Practices for Ethical Scraping

These are practices we should consider, to avoid legal and ethical problems when doing
web scraping in this research context:

• Respect Website Policies: Always review and adhere to a website’s terms of
service and robots.txt file to determine permissible scraping activities.

• Safeguard Data: Protect the collected data against unauthorized access or breaches.
Indeed our prototype will produce a file that will contain the results of the search,
and should be safely guarded once it is deployed.

• GDPR: For web scraping researchers are left with more freedom than most, so long
as no personal information has been collected, they do not have to send privacy notice
under the GDPR. Ironically doing so would require identifying the persons in the
pictures. They should be able and willing to demonstrate the proportionality [9].
Researchers are also able to request large content provider platforms to provide them
with access under certain conditions, with the DSA in Europe.

• Privacy: For now we do not keep the images, still we should never identify persons
not from our database or not having given consent for us to do so. However, we
should also add that the data collected should be of justifiable size and purpose.
Under these considerations, the GDPR states that we do not have to inform and
ask for consent when looking for information, due to the enormous effort that would
be required. Indeed, this is not considered human subject research, but more like
observation, but this remains open to interpretation.

• Picture context: We should consider the context in which users will be placing
pictures online, and not try to access any private pictures or "hot" websites. With
all of these concerns, we should keep in mind we may miss some pictures, but there
is so much data to find that we should have enough information already. We will
also not be looking on the dark web.

• Website scale: We should also be mindful not to place too much on a drain on
websites themselves, and instead place most of the load on big websites if possible
(for instance avoid scraping a small video platform). This is also a concern for us,
which will be explored in the next section.

• Variability: Even though we are not doing machine learning we still have to concern
ourselves with taking data from varied website sources in order to have a represen-
tative web presence.

This makes a scraping strategy that should be kept transparent by adding it to the
script’s readme.md. It should be kept in mind when performing web scraping, or using
the prototype, and updated. Furthermore, the script itself should also remain as human
understandable and well explained as possible, to make it possible to review it by a more
varied audiance.

19

Technical Challenges

While scraping text is relatively straightforward, collecting images poses issues. High-
resolution images consume bandwidth and/or storage resources. In order to optimize the
scraping process for facial data collection, focusing on saving bandwidth, we can think of
multiple mitigation strategies:

• Storage: Store processed image URLs to avoid looking at them multiple times over
different searches if no new person has been added to the database. Eventually we
could even store the pictures within a database of consequent size, to not have to
query them anymore, as is the case for Clearview, according to its representative [16].

• Frequency: Limit the frequency of scans to reduce server load, for instance by doing
weekly updates and only checking for new online pictures then.

• Videos: The bandwidth cost of videos is much worse than for pictures, one mitiga-
tion would be to only look at key frames from videos, every few seconds for instance,
but we will most likely still have to download the whole video from the website,
and can only save on performance costs by reducing the amount of face scanning
performed. This could be improved later on, for instance by choosing the frames
better. ’Thankfully’ for us, youtube and twitter refuse such scraping, reducing the
total load.

• Metadata: Filter images using available metadata, such as geographic location, to
ensure dataset diversity - or the opposite, if we want to focus on a specific country
for instance. The issue is that this information is often missing from pictures, and
could easily be manipulated, preventing us from relying on it. Instead, we can choose
to scrape the websites that are relevant to the location of interest to us.

3.6 Real-World Applications and Effects

Before addressing the legal frameworks that govern facial recognition technologies, it is
essential to understand the current landscape of their deployment and the real-world impact
they exert across different sectors.

3.6.1 Deployment Contexts

Facial recognition technologies are being increasingly integrated into a wide variety of
applications, both commercial and governmental:

• Law enforcement: Police use facial recognition to identify suspects, locate missing
persons, and corroborate investigative leads [1].

• Public surveillance: In countries like China, facial recognition supports compre-
hensive citizen monitoring systems; in the United States, numerous law enforcement
agencies have adopted it for crowd scanning and suspect identification [11].

• Commercial use: Biometric authentication such as Apple’s Face ID demonstrates
the growing consumer-facing deployment of facial recognition. Some stores use the
technology to identify repeat customers or known shoplifters, sometimes raising con-
cerns about consent and profiling.

20

Figure 3.2: Deepfake example [36]

• Border control and airport security: Facial recognition streamlines passenger
processing and improves security at international transit hubs [2].

In addition to identification tasks, research has explored future applications such as
facial reconstruction in medical contexts [41], as well as emotion and age estimation based
on facial data [43].

3.6.2 Deepfakes and Their Interplay with Facial Recognition

Deepfakes, primarily generated through Generative Adversarial Networks (GANs), are
synthetic media in which a person’s likeness is manipulated or entirely fabricated. These
technologies can produce highly realistic facial images and videos, often indistinguishable
from genuine ones to the human eye [52]. While deepfakes have legitimate applications
in entertainment and accessibility, they are increasingly used for malicious purposes, in-
cluding defamation, identity theft, and political misinformation. We will focus on facial

deepfakes, synthetic content that manipulates facial expressions, replaces identities with
face swapping, or animates still images. Such alterations can be performed starting from
a single image, using techniques like Video-Driven Facial Re-enactment, in which a source
actor’s facial movements are transferred to a target individual. These methods can produce
videos that appear authentic but are entirely fabricated.

Combined risks The integration of deepfake generation with facial recognition tech-
nologies introduces a critical risk. If law enforcement or forensic investigators rely on facial

21

recognition as evidence, the existence of convincing deepfakes undermines the reliability
of visual data. As facial recognition is increasingly used by police and border control, the
potential for evidentiary manipulation or wrongful identification grows in parallel [23]. The
use of deepfakes in criminal or adversarial contexts - such as framing individuals, imper-
sonating suspects, or fabricating alibis - poses a serious threat to the integrity of digital
evidence.

To mitigate these risks, one potential enhancement to our facial recognition prototype
would be the integration of a deepfake detection module, which typically works by detecting
small perturbations made with the generation. The verification system could be used to
verify whether a given input has been synthetically manipulated, however this should
be done manually due to the performance trade-off, and will be left for future optional
development if the technology develops further. Several detection methods have been
proposed in the literature, often based on inconsistencies in eye movement, head pose,
illumination artifacts, or subtle temporal anomalies not present in real recordings.

Future development The proliferation of tools capable of generating convincing deep-
fakes means that the prevalence of manipulated facial data is likely to rise significantly in
the coming years. As such, any serious deployment of facial recognition in public or legal
contexts must consider not only the risks of bias and surveillance, but also the growing
possibility of synthetic deception.

3.6.3 Impact on Human Performance

Facial recognition is not intended to replace human judgment but to augment or guide
it. However, several studies have shown that this combination can paradoxically degrade
human performance. Operators tend to place too much confidence in algorithmic sug-
gestions, which introduces cognitive biases. [15] shows that identification is more difficult
when individuals look similar, and that pre-selection by an algorithm can obscure human
discernment, reducing overall accuracy.

Recognition experts. [24] argues that identity verification is a complex and expert-
driven task. Not all operators are equally trained, and many lack the visual expertise
required to make reliable decisions based on facial similarity. Judges and legal practition-
ers should recognize that identification from images is inherently subjective and must be
treated with corresponding caution.

Framing [19] emphasizes that algorithmic framing shapes human decision-making. If a
system suggests a match, users are more inclined to confirm that match - even if uncertain.
The authors argue that how the system is used matters more than its technical specifi-
cations. They also highlight the role of surveillance infrastructure: camera angles, image
quality, and coverage zones all affect the reliability of identification. While these technolo-
gies can help identify suspects who might otherwise evade detection, they simultaneously
raise the risk of misidentification and over-reliance.

Growing concerns. As surveillance becomes more pervasive, it fosters a shift in
societal attitudes, encouraging suspicion and redefining the boundary between legitimate
investigation and invasive monitoring. This evolution raises deeper concerns about bias,
over-policing, and the erosion of civil liberties.

22

3.6.4 Clearview AI and the European Perspective

A particularly controversial example of real-world deployment is Clearview AI. This U.S.-
based company scraped billions of facial images from publicly accessible websites, including
social media platforms - without user consent. The collected data was used to develop a
facial recognition platform, which has since been adopted by over 600 law enforcement
agencies in the U.S [51].

Clearview’s approach raised significant ethical and legal concerns. Besides breaching
the terms of service of several major platforms (e.g., Google, Facebook), the company’s
practices drew criticism for their potential to facilitate mass surveillance. A data breach in
2020 further exposed the risk of large-scale misuse, though only the client list was leaked
at the time.

European context In the European Union, such practices are subject to stricter legal
scrutiny, even before the AI act comes into play. Under the General Data Protection
Regulation (GDPR), facial images may be considered biometric data if used for identifi-
cation purposes. In addition to the GDPR, the EU has a dedicated law enforcement data
protection directive (LED), which governs the processing of personal data for crime pre-
vention and prosecution. According to [44], the use of Clearview’s technology in Europe
would likely contravene these frameworks. The study emphasizes that unlike ad hoc data
requests traditionally made by law enforcement to social media platforms, Clearview’s
systematic data scraping and storage introduces a new paradigm of persistent biometric
surveillance.

Company stance Clearview’s CEO has claimed that the company’s methods are law-
ful in the U.S. and have contributed to solving crimes. However, European regulations
require that any processing of biometric data must be necessary, proportionate, and car-
ried out with clear safeguards. Additionally, Clearview’s business model - a for-profit
service provider - complicates its legal standing. The study notes that "facial images per
se do not constitute biometric data under the EU data protection legislation," but the
moment they are used for identification purposes, they fall within the scope of GDPR
protections.

The Clearview case illustrates the tension between technological capabilities and le-
gal frameworks. It also highlights the regulatory divergence between the U.S. and the EU,
where the latter places a stronger emphasis on data protection, consent, and proportion-
ality.

3.6.5 Potential Solutions and the Path Forward

Addressing the risks posed by facial recognition technologies requires a multi-pronged ap-
proach:

• Public education and digital hygiene: Individuals should be made more aware
of the implications of uploading personal photos online. The "privacy paradox",
the gap between privacy concerns and actual behavior, remains a central challenge,
especially for younger generations who are more active on social media.

• Legislative reform and moratoria: As suggested by [37], temporary bans on
facial recognition deployment may be necessary until proper regulations are enacted.

23

Public consultation and democratic oversight must play a central role in determining
acceptable uses.

• Corporate responsibility and transparency: Private companies should adopt
clear policies about how facial data is collected, stored, and used. This includes
transparency around partnerships with law enforcement.

Ultimately, unregulated facial recognition turns individuals into “walking ID cards,” as
McSorley puts it. This metaphor captures the fundamental risk: that constant identifi-
cation becomes normalized, while the technology itself remains flawed and biased. Even
companies like Facebook have withdrawn from facial recognition deployment in November
2021, they say that with concerns on the impact on society they have chosen to remove it
for now [26]. Facebook used to give the option to recommend who to tag in pictures, and
be notified when they appeared in photos, based on opt-ins.

As this technology advances, the need for a rights-based, accountable, and transparent
approach becomes more urgent - especially in democratic societies committed to individual
autonomy and rule of law.

3.6.6 Techniques for Avoidance

By understanding the inner workings of facial recognition we can surmise countermea-
sures. For instance, the algorithms rely most on parts of our face that do not move to
perform recognition, and on light in order to assess depth, making it possible to deceive
less advanced ones with the right technique, as shown in this video [28].

Several methods have been developed to reduce detectability by facial recognition sys-
tems:

• Adversarial makeup.

• Use of infra-red LEDs to interfere with image capture.

• Strategic occlusions (e.g., hats, scarves) to disrupt key facial landmarks.

Naturally this poses the issue that most of these cannot be worn in public without
attracting attention, which is the opposite of what we would like to do. Modern facial
recognition tools like face++ are also very resilient against these methods [49]. The only
solution may be to dress with masks like robbers, or else, which could be imagined for the
police for instance, although it is not the most elegant solution, and even then the models
might be able to adapt eventually.

Machine Learning Model Attacks

Even with increased public awareness about digital privacy, users need effective techni-
cal tools to protect themselves, beyond simply refraining from posting images online or
resorting to adversarial make-up techniques.

Protection methods. There are preventative protection techniques, to be applied be-
fore the image is posted. Once an image is online, it can be scraped and incorporated into
facial recognition databases, making post hoc protection far less effective. These methods
aim to preserve human interpretability i.e. humans should still be able to recognize the
individual in the modified photo, while misleading machine learning (ML) models.

24

Training data One class of countermeasures involves poisoning the training data.
This refers to the manipulation of images found online so that, during model training,
the algorithm learns misleading or incorrect features for an individual’s face. This attack
can be highly effective due to the sensitivity of ML models to even minor perturbations.
However, research in this area is limited and often theoretical, as noted by [21].

Fawkes More attention has been given to post-training perturbation techniques,
which require some knowledge of the facial recognition model (a white-box setting). These
techniques exploit the fact that machine learning models sometimes memorize specific as-
pects of their training data, leading to privacy leakage. One defense mechanism proposed
in this context is differentially private model training, which aims to limit such mem-
orization [49].

Foggysight Approach Foggysight proposes a decoy-based approach, where fake or mod-
ified images resembling other individuals are uploaded in bulk. This confuses the model
during inference by presenting multiple potential matches. They also propose collaborative
systems for automating this type of protection. However, the effectiveness of this method
is conditional:

• It requires a significant number of decoy images, about five times more than the
unmodified ones to reduce model accuracy below 50%.

• It depends heavily on wide user adoption.

• There is a risk that users may start being misclassified as someone else, especially if
decoys flood the online space.

Fawkes Cloaking Tool The Fawkes project offers a more targeted approach, modifying
facial features in a way that disrupts how the model encodes identity. The cloak works by
shifting the model’s feature extraction to a different class label - essentially making the AI
"think" the person is someone else. Key points include:

• Claims of 80% protection even when public photos already exist, and up to 95%
under certain conditions.

• The transformation remains recognizable to humans but is misinterpreted by the
algorithm.

• According to the authors, cloaks are resilient to conventional image transformations
(cropping, scaling, compression).

• Fawkes allegedly evades detection by outlier detection algorithms used to identify
tampered images.

3.6.7 Effectiveness and Limitations

While promising, these defence mechanisms come with important caveats and limitations
that affect their real-world viability:

• Limited effectiveness against advanced models: Most avoidance techniques
work better against less robust or poorly trained systems. Highly optimized models
such as those used in law enforcement or corporate applications are significantly
harder to fool, especially in controlled environments.

25

• Existing images cannot be retroactively protected: Any image that has al-
ready been scraped and stored in a facial recognition database cannot be cloaked
after the fact. These images contribute to the model’s accuracy and can still be used
for identification.

• Model retraining circumvents many countermeasures: Due to the adaptive
nature of machine learning, even if a technique temporarily reduces recognition ac-
curacy, a retrained model can often learn to ignore or bypass the perturbations. This
was evident in the development of facial recognition models that work despite face
masks [53].

• Risk of reverse identification: If cloaked and uncloaked images of the same person
are available, the model may eventually learn to associate them, thereby reducing
the effectiveness of the defence.

• Detection risk: As mentionned in the paper, cloaking methods such as Foggysight
and Fawkes may be detected, in which case they will most likely be ignored - in
the paper they showed that existing anomaly detection would likely not work. In
case of detection, this would mean the images would not be used to produce face
embeddings.

• Dependence on mass adoption: In the case of decoy-based methods like Fog-
gysight, effectiveness is contingent on a high participation rate. Without widespread
use, their ability to meaningfully lower recognition accuracy is diminished.

• Multiple methods approach: Given the arms race between privacy defenses and
recognition technologies, no single method is sufficient. Effective protection likely
requires a combination of approaches such as cloaking, adversarial perturbations,
legal takedown tools, and differential privacy.

In conclusion, while technologies like Fawkes and Foggysight show promise in limiting
facial recognition, their success depends on many variables: adversary capabilities, deploy-
ment scale, and user cooperation. Furthermore, ongoing improvements in machine learning
mean that privacy-preserving tools must continually evolve to remain effective.

3.7 Review Methodology

3.7.1 Literature Review Methodology

The literature review was conducted to establish a solid understanding of the technical, le-
gal, and ethical dimensions of facial recognition technology. Primary sources were retrieved
using the ULB Cible+ academic portal, prioritizing peer-reviewed articles, conference pa-
pers, technical reports, and white papers.

Searches were performed using keywords including but not limited to: "facial recogni-
tion", "facial recognition bias", "facial recognition algorithms", "Clearview AI", "PimEyes",
"web scraping", "facial recognition countermeasures", "deepfake detection", and "face ver-
ification pipeline".

In addition to academic databases, relevant industry reports and technical documen-
tation were also reviewed, especially where they offered practical insights into existing
implementations (e.g., InsightFace, OpenCV, or YOLO-based detectors). Where access

26

was limited due to paywalls, Google Scholar was used to locate openly available versions.
ChatGPT was also used as a supplementary tool to clarify concepts, track citations, and
explore related research directions that emerged during implementation, although any fac-
tual claims were verified via peer-reviewed sources. Zotero was used to keep track of the
papers and review them later for more information, as well as putting important parts in
evidence and generating the bibliography.

The selection criteria emphasized recent publications (mostly post-2020) and included
works that offered comparative evaluations of algorithms, legal and regulatory analysis
(e.g., GDPR, AI Act), or proposed novel methods of privacy protection (e.g., Fawkes, Fog-
gySight). Sources were documented in a BibTeX database and cited consistently through-
out the thesis.

3.8 Summary of the State of the Art

This chapter has provided a comprehensive overview of facial recognition technology in
both its technical and societal dimensions, offering essential context for the development
of the proposed prototype.

We began by examining how facial recognition systems function, including the deep
learning models that enable them, which provided a foundation for understanding their
strengths and limitations. From this, we identified promising algorithms to integrate into
our prototype and outlined approaches to optimize their performance while mitigating
known biases, particularly those related to demographic disparities.

We then turned our attention to web scraping, a critical component of data acquisition
for such systems. This included an analysis of its technical implementation and the ethical
and legal considerations that govern its use, especially under European data protection
laws.

Special attention was given to the risks posed by deepfakes, which could both chal-
lenge recognition systems and be countered by them. While not the primary focus of this
work, such risks remain relevant to the broader context of identity verification and digital
manipulation.

Real-world applications across law enforcement, surveillance, and commercial platforms
were reviewed, revealing both the capabilities and consequences of deploying such technol-
ogy at scale. Importantly, we considered the human factors involved—such as operator
trust in automated systems—and the societal implications of widespread recognition de-
ployment.

Finally, we reviewed current legal frameworks, particularly within the European Union,
and highlighted existing and emerging countermeasures individuals can take to protect their
facial privacy, including adversarial tools like Fawkes and Foggysight.

Together, these insights inform the design choices of our prototype and frame its ethical
boundaries. They also underscore the urgency of providing transparent, user-empowering
tools in a space dominated by opaque, proprietary systems.

27

Chapter 4

Project Mission, Objectives, and Re-
quirements
4.1 Overview and Objectives

The primary objective of this project is to design a script capable of scanning publicly
accessible areas of the web, identifying online images and videos containing faces, and
detecting the presence of specific individuals based on a reference dataset. The script
should function as an investigative tool, enabling visibility into a person’s online presence
via facial recognition. Later on it can be expanded to faciliate sending takedown requests,
or requests for passing the picture through an algorithm making facial recognition more
difficult - such as Fawkes, if a company or government organisation wishes to protect its
members.

State-of-the-art facial recognition models already provide robust tools for identity
matching, and various web scraping techniques allow automated media retrieval from on-
line sources. However, an open-source integration of these components - built to prioritize
scalability, privacy protection, and usability - is not yet widely available. Commercial
solutions like Pimeyes and Facesearch exist but are financially inaccessible for large-scale
monitoring or activist-oriented initiatives, often costing up to €40 per person per month.
There are other tools available, but none fit our specific use case effectively, due to only
using generic recognition or looking only within a set database, or for social media profiles.
We would also prefer the algorithm to be open source and transparent.

This project assumes the user will obtain and supply a dataset of known individuals
(e.g., images from a webcam using a provided script, or other photos) to initialize the
recognition process. Legal constraints and terms of service limit the scraping of certain
platforms, meaning Meta and Twitter are the only available social media platforms with
their respective APIs. Naturally the limitations are respected in our design.

4.2 Anticipated Risks and Limitations

There are multiple challenges we will have to overcome or find our way around when
scanning most of the web for public pictures:

• Bandwidth and Scalability: The volume of data to be scanned is large. Unlike
commercial providers, we do not cache the entire web or maintain a centralized media
database. I will try to use multi-threading to improve performances.

• Scraping Limitations: Social media platforms increasingly restrict scraping via
technical (e.g., rate limiting, obfuscation) and legal mechanisms. The project will
only target legally accessible and permitted sources.

• Legal Compliance: Compliance with GDPR and platform-specific terms of service
is critical. Takedown or media obfuscation requests will be left to the user to initiate,
based on local laws.

28

• Ethical concerns: The script could be misused, for instance in order to perform
some form of background checks on employees. In order to address this, as much
transparency as possible is advised, and a guide provided with the script. If the
database is protected, the script will always be run in the same way and cannot be
targeted at anyone who did not give consent to be present in the database. It should
not be ran by anyone with conflict of interests such as asserting employee’s reliability.
A potential system would be for the script to run automatically and directly contact
the concerned employees.

• False Positives, False Negatives: Face recognition systems are not infallible,
forcing the presence of a human double checking the script’s results. We will not be
able access every pictures, nor will we be able to find and accurately recognize all
faces.

• Inaccuracy issues: We may lack enough images, or in bad conditions, not sufficient
to recognize the given individuals in different light conditions and poses. This means
we may have a lot of pictures with people identified with an accuracy too low to warn
them, but also too high to ignore. An auditing system may be required to have a
human verify the results.

• Performance limitations: The facial recognition algorithms take a lot of resources
to run. There is however a possibility of relying on cloud resources for running
this script for deployment, and a modern computer is sufficient for testing of the
prototype.

4.3 Requirements

4.3.1 List of Requirements and Dependencies

The project’s functionality depends on satisfying the following key requirements, listed in
their logical flow:

1. Input Dataset Collection:

• Collect decent quality images of each target individual, ideally in different light-
ing and poses.

• Normalize and crop these images to feed the recognition model.

2. Web Scraping Engine:

• Extract publicly accessible media content from websites (news archives, public
forums, media repositories).

• Filter for image and video content.

3. Face Detection Algorithm:

• Identify faces in static images or video frames with low latency and acceptable
accuracy.

• Prioritize lightweight models.

4. Face Recognition Algorithm:

29

• Match detected faces against the whole known dataset.

• Return confidence scores to support manual validation.

5. Result Logs:

• Aggregate matches in a structured output format.

• Offer logs for the one running the script and the concerned individuals.

6. Best Practices:

• Include a text on how this code should be used.

7. Legal Compliance Layer (optional):

• Provide metadata to support takedown or scrambling requests (e.g., URL, times-
tamp, matched identity).

4.3.2 Requirements Covered by the State of the Art

The following components are well-supported by existing tools and research:

• Media scraping: Python libraries such as requests, BeautifulSoup, and yt-dlp
support scraping and downloading.

• Face detection: Tools like YuNet and YOLO provide fast and lightweight face
detection.

• Face recognition: InsightFace and similar models offer high accuracy using deep
embeddings and cosine similarity.

• Best Practices: We have seen the legal requirements to keep in mind as well as
potential effects on human operators and what to be mindful of.

4.3.3 Requirements Not Fully Covered by the State of the Art

The innovation of this project lies in integrating the above components:

• Pipeline Integration: No existing open-source framework combines scraping, de-
tection, recognition, and export in a user-friendly, legal-compliant and free way.

• Scalability Optimization: Handling multiple identities within the database in an
efficient manner.

• Ethical Controls: Most facial recognition libraries do not embed safeguards for
abuse prevention or usage audit.

• Robust Output Interface: Aggregated, human-readable summaries of results for
end users are missing in low-level tools.

30

4.4 Project Scoping

4.4.1 Mission Statement

To build a lightweight and modular script that can identify the presence of specific indi-
viduals in publicly available media on the internet, using existing deep learning models for
face recognition and legally permissible scraping methods.

The script will be aimed at organisations and come with a guide for best practices.
The guide will include legal information as well as intended use, and what should be kept
in mind when using it.

Compliance

This project was made taking into account legal and ethical requirements. As such, it will
come with a guideline for best use within the readme.md, and built-in safegards such as
verifying scraping permissions of the various websites.

GDPR We will be performing identification for the persons present in the database,
that will have to explicitly state their agreement. As we will not try to identify anyone
outside of these, and respect the website’s scraping policies as defined in their robot.txt,
this project should be compliant with the law.

We will not be keeping the scraped pictures any longer than required for research
purposes, and only keep the ones that are likely to contain one of our protectees for
auditing. Naturally consent for the pictures used to scan will be taken in full awareness
and can be withdrawn.

AI act As we are not building a better facial recognition database or training an AI
model, our judgment is that we are compliant with this law.

4.4.2 Explicit Out-of-Scope Elements

• No scraping of websites that prohibit such access via their Terms of Service (e.g.,
Google).

• No integration with APIs that require corporate registration or paid access (e.g.,
Twitter API, limited meta integration).

• No legal automation: Takedown requests or enforcement actions are left to the user.

• No ongoing monitoring infrastructure: the tool is intended for ad-hoc, on-demand
analysis only.

Many websites refuse acces to crawlers, and the API provided by most social me-
dia companies often do not include image gathering (such as the one from Tiktok and
Linkedin). Instead it is limited to other informations more useful for advertisers. Only
meta allows restricted access to public groups, provided we have a corporate registration.

However, like mentionned in the state of the art, it is possible to get access to the
twitter API for research purposes thanks to the DSA act, by using this form. However,
this is limited in time and goal, meaning eventually one would have to pay for a more
advanced version.

31

4.5 Testing

Once the code is functional, we will experiment with the sufficient amount of protectee
pictures for proper recognition, as well as investigate the requirements for specific light
conditions or varied ones.

Once this has been found, we will acquire a dataset to test our recognition on, preferably
including unusual cases like partial occlusion or lighting to test the limits of our algorithm.

Testing will be made easier by an added logging system. Throughout the development
of the script, we will focus on keeping the code readable and well organised.

Once we reach the final versions, we will end by experimenting with the scraping
mechanisms to get a concrete idea of how much time the process will take, and how we
can improve it.

32

Chapter 5

Good Practice Guide
As discussed in the preceding sections, the software accompanying this thesis will include
a usage guide. This guide will be integrated into the README.md file and will provide
essential instructions and ethical considerations for operating the script.

It is strongly recommended that users first read the associated master’s thesis and
the "Web Scraping for Researchers" guide by Brown (2024) [9] to gain a foundational
understanding of both web scraping and facial recognition technologies, as well as the
context, objectives, and limitations of the tool. The important points of the state-of-the-
art web scraping discussion (see Section 3.5.3) will also be reproduced in the guide for
quick reference.

Intended use The purpose of the script is to scan publicly available websites to detect
the presence of individuals listed in a predefined facial database. However, it is important
to consider how to manage the outcomes of such detection. While it is technically feasible
to compile all results into a single comprehensive report, doing so over a wide scope (e.g.,
crawling the open web) may yield an excessive number of findings, leading to information
overload. Furthermore, if the review process is handled by a single individual or centralized
body, this may introduce bias or conflicts of interest.

To mitigate these risks, we recommend that the script be executed in smaller, controlled
batches, and that the resulting reports be distributed directly to the relevant individuals.
This decentralized approach empowers the data subjects to assess the findings and deter-
mine appropriate actions for themselves. The individuals should also be trained in how
to use the tool, but also be made more aware of the privacy risks that come with our
online lives, and be able to ask questions on these critical subjects to really grasp the
consequences. It may seem like a stretch at first to imagine someone tracking our location
from pictures, but when considering the amount of photos uploaded per year it sounds
more plausible.

Consent and awareness Crucially, explicit consent from all individuals included in the
facial recognition database is required prior to deployment. To remain compliant with
the General Data Protection Regulation (GDPR) and to uphold fundamental principles
of cybersecurity, the database must be secured and encrypted. The use of an unprotected
directory structure—as presented in this proof-of-concept implementation—is insufficient
and poses a significant privacy risk. Without adequate safeguards, the tool could be
misused to facilitate facial recognition surveillance against the very individuals it is meant
to protect, or even contribute to the generation of deepfakes and other forms of synthetic
identity abuse.

In summary, ethical deployment of this system requires informed consent, robust data
protection, and responsible operational practices.

33

Chapter 6

Implementation & Testing
This chapter details the development process, environment setup, and testing of our facial
recognition prototype, as described earlier. The implementation is broken down into logical
components to ensure modularity and simplify debugging and performance evaluation.
Furthermore, the code was clarified after each phase, to ensure it remained clear and easy
to modify and improve later on, with proper commenting, file and function separation.
This means the code will be easier to maintain and improve.

Another key objective in the implementation of this tool was to ensure ease of use,
even for users without programming expertise. To this end, the system was designed to
minimize the need for direct interaction with the underlying code. Usability is facilitated
through comprehensive installation guides, inline instructions displayed during execution,
and support for command-line arguments following standard conventions. Users can in-
voke the –help flag to receive additional contextual information on script usage. The tool’s
workflow is streamlined, requiring manual interaction with only two primary scripts. Addi-
tionally, a detailed ‘README.md‘ file is provided, offering clear, step-by-step instructions
for both Windows and Linux platforms, thus enhancing accessibility and promoting wider
adoption.

6.0.1 Methodology

Foundational knowledge was gained through a combination of online courses and reputable
websites, which will be properly referenced, including this course to acquire the necessary
basis to understand facial recognition in python, with openCV [33]. Additionally, review
of official documentation, along with the use of Visual Studio Code’s autocomplete and
function insight features supported the development process.

ChatGPT was used as an aid for debugging and to generate initial drafts of code
segments.

6.1 Planning

The project was developed incrementally to ensure each component functioned indepen-
dently before integration. The planned development stages are as follows:

1. Face Acquisition and Pre-processing: Collect facial images and convert them
into a machine-readable format. This is accomplished using the OpenCV library and
converted with InsightFace.

2. Local Testing: Perform facial recognition tasks on local images to validate recog-
nition before incorporating any online data or APIs.

3. Script Customization: Implement script modularity, allowing users to switch be-
tween different models, adjust granularity, and process video input in addition to
images.

34

4. UI and logging: Add UI functionalities to analyze the pictures for which we are
not sure, and include a proper logging system to keep track of operations and make
testing easier.

5. Web Integration: Add web scraping functionality and deploy the full tool. Per-
formance will be measured in terms of image processing time (excluding download
latency, as it can vary depending on proxy usage and network conditions).

This stepwise methodology allows for systematic testing, making it easier to isolate
issues and verify the success of individual components.

6.2 Setup, Requirements, Environment, Tools & Materials

The tool was developed and tested primarily on Kubuntu 24.04 and Windows 11, using a
Samsung Galaxy Book2 4050 laptop with the appropriate nvidia graphics drivers installed,
16gb of RAM, and using intel processor. Note that webcam functionalities were unavailable
on this version of Kunbuntu due to lack of appropriate drivers, and the setup for GPU
usage was only done on Linux.

This section outlines the necessary setup steps and required dependencies for running
the script.

6.2.1 System Requirements

Before proceeding, ensure that the following tools are installed on your system:

• Python 3.x

• pip (Python package manager)

• CMake

Installation instructions vary depending on the operating system and are included in
the readme.md of the code.

6.2.2 Virtual Environment Setup (Recommended)

To maintain dependency isolation, it is recommended to use a virtual environment:

sudo apt install python3-venv python-is-python3
python -m venv venv
source venv/bin/activate

6.2.3 Package Installation

Install the required Python packages using the following commands (the second one is only
for linux):

pip install opencv-python numpy insightface onnxruntime imutils bs4 requests
sudo apt-get install python3-tk

Alternatively we can use pip install -r requirements.txt
Facial recognition models are provided with the script. However, alternate models can

be specified as arguments if needed.

35

6.3 Implementation Overview

This section presents the implementation details of the main components in the project.

6.3.1 Script and Folder Structure

The project structure is organized as follows:

• offline_files/: Contains 38 test images and one video used for offline experiments.

• protectees/: The facial database of individuals to be protected. This folder should
be encrypted and access-controlled. It also stores audit logs and detection events.

• results_YYYYMMDD/: Results are stored in date labeled folders. By default, each run
gets a unique subfolder. Face matches are placed in the found/ subfolder; unidentified
detections can optionally go to a different miss/ folder. When the option is turned
on, all detected face crops are stored in detected_faces/. Videos receive their own
named subfolder, that follow the same logic but are separated for clarity. Finally,
these folders include log.txt files that detail the proceedings to be reviewed later,
and audit.txt files that detail the pictures needing auditing.

• face.py: Used to populate the protectees/ database via webcam, one person at a
time. It captures 50 face images by default.

• main.py: The main script entry point. Accepts arguments for model selection,
online/offline modes, urls to scan, and more.

The following are used by the main script during execution:

– settings.py: Handles all the settings for the main script and their explanation,
and will be used to parse the arguments used to run it.

– ui.py: Contains the audit interface, shown at the end of the results .

– scraping.py: Has a few functions necessary for web scraping whilst taking
robot.txt rules into account. The root of the folder also includes a scanned_url.txt
file that details the urls that have been scanned by this script.

6.3.2 OpenCV Integration

OpenCV is utilized as the core library for image processing, video capture, and display
operations. Key functions include [5]:

• cv2.imread(): Load images from disk. A similar function exists for videos.

• cv2.imshow(): Display the images. We use this to show the progress of the main
script and the facial capture of face.py.

• cv2.imwrite(): Saves images to the disk at the specified location, after desired
modifications such as extra annotations and cropping.

OpenCV’s ease of use and pre-trained model support make it ideal for rapid computer
vision prototyping.

36

6.3.3 Initial Face Capture

Face detection is initialized via a pre-trained model. Initial trials using haarcascade_frontalface_default.xml
proved insufficient, particularly in cases of partial occlusion (e.g., hair, head angles). As
a result, the more robust yunet.onnx model was adopted, offering improved performance
and real-time detection.

Model Initialization

The yunet.onnx detector is initialized as follows:

face_detector = cv2.FaceDetectorYN.create(
"yunet.onnx", "", (640, 480),
score_threshold=0.6, nms_threshold=0.3, top_k=5000

)

Parameter Description:

• "yunet.onnx": ONNX model for face detection using OpenCV.

• (640, 480): Detection window size. Faces larger than this may not be captured
entirely.

• score_threshold: Minimum confidence for a valid detection.

• nms_threshold: Non-Maximum Suppression threshold to eliminate overlapping boxes.

• top_k: Limits the number of bounding boxes processed; 5000 is a safe upper limit.

The detector is applied to frames captured via cv2.VideoCapture(0). A rectangle is
drawn around detected faces, and images are only saved every 10 frames to avoid redun-
dancy.

Captured faces are resized to 150×150 pixels whilst maintaining aspect ratio (by adding
white borders) in order to improve the facial recognition capabilities, as they perform better
under a consistent format.

Two individuals were recorded under consistent lighting, with and without glasses,
resulting in 50 images per person for training and validation purposes. This number was
deemed necessary due to many unpredictabilities in the capture process, mostly due to
operator movements.

6.3.4 Basic Facial Recognition

This section describes the second stage of the system, which evaluates whether any of the
protected individuals appear in the analyzed images. It continues to use yunet.onnx for
face detection and introduces InsightFace for face recognition.

While the detection model remains the same, its parameters are adjusted slightly for
this task. In particular, the detection resolution is reduced to 320×320 and the confidence
threshold is set to 0.6 but can be adjusted further if too much effort is spent on faces.
Furthermore we have added a size check for faces smaller than 32 × 32 as we deem them
too small for accurate recognition.

The InsightFace recognizer is initialized as follows:

37

1 app = FaceAnalysis(name="buffalo_l",
providers =["CPUExecutionProvider"])

2 app.prepare(ctx_id=0, det_size =(320 , 320))

The "buffalo_l" model was selected for its balance of accuracy and efficiency in real-
time settings, and for being well-supported within the InsightFace framework.

Model Performance and Similarity Metrics

The recognition process computes the similarity between detected faces and those stored
in the reference database. Both input and reference faces are transformed into 128-
dimensional embedding vectors. These embeddings encode facial features and enable com-
parison.

Two common similarity metrics are [42]:

• Cosine Similarity: Measures the angle between two embedding vectors.

• Euclidean Distance: Measures the straight-line distance between two vectors.

In this implementation, we adopt cosine similarity, which normally gives a value be-
tween -1 and 1, normalized to a percentage scale to improve interpretability:

1 similarity = ((np.dot(embedding , ref_embedding) /
2 (np.linalg.norm(embedding) *

np.linalg.norm(ref_embedding))) + 1) * 50

This calculation returns values between 0% and 100%, more easily interpretable. A
configurable threshold determines when two embeddings are considered to represent the
same individual.

6.3.5 Picture Annotation

Each detected face is annotated on the image using a color-coded bounding box, according
to its similarity to the most likely match in the database:

• Red: Similarity score below 60%. No further action is taken, as the likelihood of a
match is low.

• Green: Similarity score between 60% and 70%. The detection is subject to human
auditing before any notifications are sent.

• Blue: Similarity score above 70%. These are considered strong matches and flagged
for review.

In all cases, the annotation displays the identity of the individual in the database
with the highest similarity score. For simplicity, we do not currently account for potential
matches with other individuals in the database who may have slightly lower similarity
values.

This process ensures that protectees are only alerted when the resemblance is sig-
nificant, reducing the likelihood of false positives while maintaining a human-in-the-loop
validation strategy.

38

6.3.6 Dataset

Facial recognition was evaluated using a curated dataset of 38 images. Within this dataset,
Protectee One appears in 20 images, and Protectee Two in 18. Several images contain
both individuals, while others feature unrelated subjects, including family members and
strangers. The inclusion of family members is intentional, as it introduces subtle similarities
that may challenge the recognition algorithm and better simulate real-world conditions
from a limited dataset.

While a larger dataset would allow for more robust statistical conclusions, it would
also complicate manual analysis. For this reason, we reserve large-scale testing for the
web scraping phase. Not focusing too much on our own database should also helps prevent
overfitting by avoiding over-adjustment of recognition thresholds to a limited dataset. Once
deployed, the system’s ability to process high volumes of images will naturally expose any
false positives and inform future tuning.

Initial recognition was performed using the InsightFace model, which demonstrated
promising performance:

• Both protectees were correctly identified in nearly all cases, including challenging
scenarios such as reflections in mirrors, variable lighting conditions, different facial
angles, partial occlusion (e.g., facial mask, sunglasses, clay mask), and even older
photographs.

• No false positives were recorded when a similarity threshold of 60% was applied with
the InsightFace model.

• The average runtime to analyze the full dataset of 38 images was approximately 20
seconds (201.5 seconds over 10 trials).

These results suggest that, on this dataset, the Yunet detector reliably identified facial
regions, while the InsightFace recognizer achieved a high degree of precision. Notably,
initial iterations of the algorithm failed to detect certain faces, but performance improved
significantly after resizing images to standardized dimensions.

The most interesting test cases highlight the model’s robustness. The first test im-
age required longer processing, likely due to complexity. Subsequent cases confirmed that
the system could accurately recognize individuals under a wide range of real-world condi-
tions—including significant age differences, obscured features, and unconventional appear-
ances. All faces in visual outputs were blurred to protect the privacy of the individuals
involved.

39

40

Pre-processing Effective pre-processing is critical for both the accuracy and consistency
of facial recognition. This applies to both the database images (reference data) and the
images being analyzed.

We resize the images to a standard squared format (by default 800x800), which is also
the display window size. Higher sizes will lead to more recognitions by yunet, but we
found current performances to be sufficient. Resizing the pictures in the facial database to
150px and the ones to analyze to 800px caused more detections and improved recognition,
going from, from the logs "alex: 28 times stephane: 16 times detected, and 54 unknowns"
in 25 seconds to "Alexandre: 49 times Stephane: 16 times detected, and 73 unknowns"
in 28 seconds - many of the subject one’s faces were found within a video that is now
properly resized, but more subjects were detected overall as well. The accuracy seems to
have improved as well, but it would be unwise to draw too many conclusions from such a
limited dataset as we would risk overfitting it. Tests with a larger controled dataset would
help determine the preferred scanning parameters.

41

6.3.7 Logging System

After preliminary testing of the recognition components, a logging system was implemented
to store execution data and support further testing. This system is also intended to be a
core feature of the final deployment.

Recognition results are saved within a folder named results_{YY-MM-DD}, correspond-
ing to the current execution date. If such a folder already exists, a subdirectory with an
incrementing numerical suffix (e.g., results_{YY-MM-DD}/1, /2, etc.) is created to store
the new results.

Within these folders, the system stores the analyzed images, annotated with rectangular
overlays highlighting detected faces. Each rectangle is labeled with the predicted identity
(if applicable) and the similarity score. Only matches exceeding a 60% similarity threshold
are logged in this manner, other pictures are instead stored in the textttmiss/ folder if
desired.

If a detected face matches an entry in the protected facial database with high confidence
(above a 70% similarity threshold by default), the corresponding image is also copied into
a dedicated subfolder associated with that individual. Additionally, an entry is appended
to the individual’s personal log file, detailing the detection event and relevant metadata.
In a deployment scenario, the protectee should be notified and allowed to decide how to
handle this information.

Each execution folder includes a log.txt file containing a summary of detections and
processing metadata. This includes timestamps for the beginning and end of execution,
as well as the total processing time. Optionally, these details can also be displayed in
real-time in the terminal, controlled via a script variable.

In cases where multiple individuals are recognized in the same image, each relevant
protectee receives a copy of the picture within their personal result folder. For privacy,
only their own face is marked and identified in these copies. Although individuals may
recognize each other from context, this design choice ensures data minimization and indi-
vidual privacy—especially important in scenarios such as corporate environments, where
this tool may be scaled and used across broader teams.

6.3.8 Audit System

An audit mechanism was integrated into the script to enhance traceability and account-
ability during the face recognition process.

During execution, images are displayed in real time as they are processed. Following this
initial stage, an audit window is triggered, prompting the user to input their name. This
input is recorded in an audit_logs.txt file, providing a traceable record of all interactions
with the system.

Once a name is entered, the audit interface is displayed, as shown in Figure 6.1. The
interface allows users to navigate through processed images using arrow keys or on-screen
buttons.

Users can confirm the presence of individuals with an accuracy above 50% in images by
clicking on a detected face and then selecting the "Confirm" button. Upon confirmation,
a notification email is sent to the identified individual, mimicking the process followed for
high-confidence matches (i.e., similarity above 70%). However, in this case, the notifica-
tion explicitly notes that the identification was confirmed via manual audit. All actions
performed through this interface are logged.

42

Figure 6.1: Audit GUI for manual validation of detected faces.

43

To ensure continuity, the system maintains an audit.txt file that tracks which images
have already been audited. This allows the script to be rerun with auditing enabled
and picture analysis disabled—useful for situations where human validation is performed
separately.

The audit feature can be disabled entirely by passing the –noAudit argument when
executing the script.

6.3.9 Threading and Performance Considerations

To optimize performance during image processing, we explored the use of concurrent exe-
cution, with threads or in this case through multiprocessing with InsightFace and yunet.
This was motivated by the relatively long runtime associated with scanning large batches
of images during the offline tests. We used Pool, from the multiprocessing library, and its
pool.map function to launch the functions. This function takes a list of arguments to give
to the function that each correspond to a process to be run indenpendantly.

The following results summarize the runtime (in minutes:seconds) when scanning the
local dataset of 38 images four times using different numbers of parallel processes:

• 1 thread: 1:38

• 2 threads: 1:48

• 4 threads: 1:51

However, this did not seem to yield performance improvements. On the contrary, results
indicated a slight degradation in processing time, likely due to the overhead introduced by
initializing multiple face detectors concurrently.

This limited empirical evaluation suggests that multiprocessing is not beneficial in the
current implementation, at least on windows upon execution of the code. The most likely
reason is due to the CPU-heavy nature of insightface leaving little resources for other
threads. Other potential explanations include inefficient thread/process management or
resource contention when initializing multiple instances of the recognition models.

Take-away The code was nevertheless adapted to be able to support multi-processing
at this early stage, which will prove useful later on. This was done by moving the main
code into a if __name__ == ’__main__’: section, and giving all variables to the various
functions, instead of relying on them being available globaly. Windows causes more issues
with this, as the processess do not have access to global constants or variables. Indeed,
multi-processing is not the same on windows as it is on linux, as linux processes will also
run any code found in the global scope of the script, as is detailed more here [12].

These changes in this version of the script will make it easier to add multi-processing
later for the final product.

Core Functional Modules

The script provides several key features that can be toggled independently:

• Face Detection and Recognition: Users can select between YUNet, InsightFace
and OpenCV models for both detection and recognition.

44

• Media Input Modes: The script supports image directories or video streams as
input sources.

• Audit and Logging: Optional modules include an interactive audit interface and
logging system to review or validate detections.

• Offline vs Online Modes: The script can operate either with pre-downloaded files
or scrape online sources.

• Web Scraping Depth: Users can specify a list of URLs and how extensively each
should be scanned.

Design Philosophy To accommodate a variety of operational contexts, the script was
developed with strong modularity and configurability in mind. It is designed to support
both testing and deployment scenarios through a flexible set of command-line arguments,
allowing fine-grained control over performance, thresholds, model selection, and behavior.
The codebase was built to be easily maintainable and extensible.

This configuration model ensures reproducibility, scalability, and adaptability across a
wide variety of environments and use cases.

Command-Line Arguments Overview

This argument class, named args, is used to pass the arguments around to the functions
that require them. This gives a lot of freedom without having to modify the script, and
allows the code to function with multi-processing under windows, where global arguments
from the main code instance are not accessible.

Key settings All of these arguments are provided to the main script as follows: main.py
–argument, for non boolean variables the argument will be followed by an = and the desired
value. For instance giving a custom url list can be done using: main.py –urlList=https://site.com,https://site2.com.

We recommend using –scanDepth=X where X is the desired depth in order to control the
desired depth (and thus time) of the search. Scanning with a depth of 0 and consequently
one of 1, or even 2 or more will not reScan the previously scanned pages, unless the option
–reScan is specified. –help can be used to get the above table when executing the script.

For testing purposes one can use –offlineTests, which will not do any online querying
and thus allow testing only the recognition part of the code. –incrementingFolders can
then be used to keep traces of all executions, and we can use –showAll in order to display
all pictures, even the ones that do not have a potential protectee in them.

The arguments also allow changing the models provided and the folders to use, and
audit and log file names, with the goal of facilitating automatic tests that would run
independently or consequently without human interaction.

State of the art note

Yolo We had considered Yolo for recognition, however this would mean requiring in-
stalling torch for users, and taking at least a gigabyte of additional space whilst also
making the script more complex to install.

Furthermore, yunet detection was deemed satisfactory both in terms of speed and
precision for our use case, as during testing it found all but a few faces, and InsightFace
takes more processing time.

45

Argument Description Default Value
Thresholds & Display

-mat,
–minimumAuditThreshold

Minimum similarity score to allow auditing 60

-st,
–similarityThreshold

Threshold to consider face detected 60

-nt,
–notifiedThreshold

Threshold to notify individuals automatically 70

-mfs, –minFaceSize Minimum face size in pixels 32
-igf,
–ignoreFrames

Frames to skip in video input 30

-w, –displaySize The size of display window 800
-sd, –scanDepth The depth of the scan, how many links into the

website it goes
1

Boolean Flags
-nd, –noDisplay Disable display during execution True
–storeFailed Store failed detection images False
-sa, –showAll Show all results, not only matches False
-sp, –skipPictures Skip processing pictures False
-sv, –skipVideos Skip processing videos False
-if,
–incrementFolder

Increment result folder if needed False

-na, –noAudit Disable audit system False
-ot, –offlineTests Run on local files only False
-sr,
–terminalResults

Show detailed terminal output False

-so, –reScan Re-scan images even if already scanned False
-sf, –saveFaces Save cropped face images False

Recognition Model Selection (exclusive)
–openCVRec Use OpenCV recognizer False
(default) Use InsightFace recognition True

Paths and Filenames
–faceDatabase Path to folder with protectee face images protectees/
–offlineFiles Directory with offline media to test offline_files/
–foundDir Output folder for successful detections found/
–missDir Folder for missed/false detections miss/
–detectedFaces Folder for detected face crops detected_faces/
–logFile Main log file name log.txt
–auditFile Audit trace log filename audit.txt
–scannedUrls Record of scraped URLs scanned_urls.txt

Detection Model Settings
–yunetDetector Path to YUNet model models/yunet-
–detSize Detector window size (w,h) (320, 320)
–scoreTreshold Minimum detection confidence 0.7
–nmsTreshold NMS overlap suppression value 0.3
–topK Max faces returned per image 5000
–opencvRecognizer OpenCV recognition model path models/face_rec-
–insightFaceModel InsightFace model name or ID buffalo_l

Web Scraping
–urlList Comma-separated list of URLs to scrape See below.

Table 6.1: Overview of script arguments and default settings
46

Dlib We choose not to include Dlib in the final solution since it required many condi-
tional branches within the code and more complications, as well as being bad in terms of
diversity [25,45].

OpenCV for Recognition

In addition to InsightFace, we experimented with OpenCV’s default facial recognition
model. The primary advantage of this model is its significantly higher speed—up to four
times faster in tests. However, this comes at a cost: the OpenCV model tends to produce
more false positives and misidentifications.

As a result, although the recognition step itself is faster, the increased volume of incor-
rect detections requires more human intervention during auditing, which can negate the
time gains. For this reason, we recommend adjusting similarity thresholds upward when
using OpenCV for recognition to mitigate the higher error rate. Users should consider this
trade-off when choosing between speed and precision.

Video Face Recognition

Since videos are essentially sequences of images, we are able to process them using OpenCV
by treating each frame as a standalone image. To optimize performance, the system per-
forms recognition on every 10th frame by default—roughly once per second for most videos.

Video analysis introduces additional challenges compared to still images. Factors like
motion blur, compression artifacts, and poor lighting can reduce recognition accuracy. For
example, in one test, a subject was incorrectly identified as another due to low lighting
and movement, particularly when using OpenCV’s recognition engine.

While video offers a large pool of frames to analyze, this volume increases processing
time and can exacerbate the impact of misdetections. In our tests, the OpenCV recognizer
proved too imprecise for reliable video analysis, often resulting in excessive false positives.
For improved accuracy, InsightFace remains the preferred option in this context, despite
its slower performance.

Additionally, OpenCV tends to automatically rotate videos to match typical display
orientation, which may affect alignment and should be accounted for when interpreting
results.

6.3.10 Web Scraping

The final phase of development introduces web scraping to gather publicly available images
for use in facial recognition testing. This addition brings the prototype closer to real-world
applications, such as online identity monitoring or privacy auditing. To do this we have
followed instructions for basic functionalities to build upon. [6]

Since image download speeds vary widely depending on website responsiveness, proxies,
and rate limits, scraping times are excluded from performance benchmarks. Instead, we
focus on measuring recognition speed and logging results to assess practical scalability,
although we will mention scraping speed to give an idea of the time and resources required.

Scraping is conducted using a pre-approved list of websites, chosen both for relevance
and to comply with ethical and legal considerations. The script automatically checks each
domain’s robots.txt file to respect scraping policies, since multiple websites now explicitly
block scraping, and larger platforms typically require official API access. Respecting the
robots.txt is not obligated but is considered good practice, and they should reflect the

47

Terms of Service which we do have to respect or risk legal consequences. We used this
script used to verify legal use:

1 def ScrapingAllowed(url , log , terminal_results , user_agent=’*’):
2 try:
3 if(LikelyPrivate(url)):
4 Logs(log , f"[STOPPED]Likely private page: {url}",

terminal_results)
5 return False
6 parsed = urlparse(url)
7 base_url = f"{parsed.scheme }://{ parsed.netloc}"
8 path = parsed.path or "/" # Only the path , not the full

URL
9

10 robots_url = f"{base_url }/ robots.txt"
11 rp = RobotFileParser ()
12 rp.set_url(robots_url)
13 rp.read()
14

15 allowed = rp.can_fetch(user_agent , path)
16 if not allowed:
17 Logs(log , f"[BLOCKED] robots.txt disallows: {path}",

terminal_results)
18 else:
19 Logs(log , f"[ALLOWED] robots.txt allows: {path}",

terminal_results)
20 return allowed
21 except Exception as e:
22 Logs(log , f"[WARNING] robots.txt could not be checked

for {url} (reason: {e}) - defaulting to allowed",
terminal_results)

23 return True

Another part of the script warns when the main url is not accessible for scraping or
invalid, and advises removing it from the list.

To avoid excessive data storage, the script saves only images with a similarity score
above the auditing treshold, which is of 60% by default.

We tried scanning the addresses present in the settings.py file for our 2 protectees,
finding results between 45 and 61%, although after auditing it was found that none matched
their identity. The list contains various news websites as well as blogs, research sites,
universities, cultural centers and more, generated by chatgpt. It included multiple belgian
websites, but about half of them denied scraping.

• https://www.bcg.com

• https://www.cnn.com

• https://www.bbc.com

• https://www.nytimes.com

• https://www.tumblr.com

• https://500px.com

• https://www.wikipedia.org

• https://commons.wikimedia.org

• https://www.ieee.org

• https://www.hln.be

• https://www.rtbf.be

• https://www.vrt.be

• https://www.bruzz.be

• https://www.vtm.be

• https://www.7sur7.be

• https://www.student.be

• https://www.ugent.be

• https://www.uclouvain.be

• https://www.ulb.be

• https://www.vub.be

• https://www.muntpunt.be

• https://www.kvs.be

• https://www.kaaitheater.be

• https://www.debijloke.be

• https://www.culture.be

• https://www.flandersartsinstitute.be

• https://www.passaporta.be

48

• https://www.visitflanders.com

• https://www.ccdeadelberg.be

• https://www.decentrale.be

• https://www.arenberg.be

• https://www.cultuurcentrummechelen.be

• https://www.fomu.be

• https://www.kmska.be

• https://www.mac-s.be

• https://www.wiels.org

First tests Scanning the full list with a depth of 0 (only the main pages), multi-
processing and no displaying of results took 616.03 at first, with shared detectors and
recognizers, including 436.17 of scanning the various urls for pictures and videos, with the
rest spent on facial analyzis. This is reasonable, especially considering the time.sleep(1)
we are using to not overwhelm websites. Multiple exceptions and errors were raised during
the execution of the code online, and all were addressed. Due to the nature of the script
it was possible to continue the process from there, but we choose to rerun it from scratch.
This search yielded 5 candidates for facial recognition above 60%, but during auditing it
was found they were not in fact the protectees.

The depth of 1 changes a lot, since this is not a depth in terms of web pages as one
might expect. Instead, all links present in the first home page will be accessed and checked
for pictures too.

At first we only scanned the main pages for testing purposes, but after making a
recursive search in the urls we have added a log of all of the scanning being performed, so
we can show our output and the code that lead to a page being considered allowed to read
or not. We show the permissions of access for every path we scan.

Multi-processing

In this context of web scraping, multi-processing makes sense, as even if it does not bring
faster recognition, it will allow spreading the search and accelerating it to the limits of the
current computer and speed of download of the various websites, instead of exploring them
fully one by one.

We also added multi-processing to the web scanning phase. To do this, we used this
quite code, which we will detail as it is not easy to read:

1 # The list of arguments provided to the script.
2 info = [
3 [url , args.results_folder +

urlparse(url).netloc.replace(".", "_") + "_" +
"wlog.txt", args.scanDepth , args.scanned_urls ,
args.skipPictures , args.skipVideos , args.terminalResults ,
not args.noThreading]

4 for url in args.urlList
5]
6 if(not args.noThreading):
7 with Pool(cv2.getNumberOfCPUs () - 1) as pool:
8 i = 0
9 for result in pool.map(RecursiveScrape , info):

10 if(result):
11 # The results to analyze , the arguments and the

third element is for file names.
12 text_files_path = info[i][1][: -8]
13 to_scan.append ((result , args , text_files_path))
14 i += 1

49

Parallel Web Scraping To perform web scraping in parallel across multiple URLs,
we begin by constructing a list of arguments required by the scraping function to ana-
lyze each website. This structure is necessary because the pool.map() function accepts
a single function and a list of argument sets, applying the function to each element in
parallel. Therefore, all required parameters for each URL must be encapsulated within
a single argument per entry in the list. While the map() function is used in the current
implementation, future work could explore the use of map_async() [10], which may offer
performance benefits at the cost of added complexity.

Ethical Considerations and Rate Limiting It is crucial to approach web scraping
with caution, especially when employing efficient parallel techniques that may inadvertently
send large numbers of requests in a short period. Excessive or aggressive crawling can lead
to IP blocking or raise legal concerns. To mitigate this, a fixed rate-limiting mechanism
is implemented using time.sleep(1) between requests. This delay is hard-coded rather
than exposed via command-line arguments, intentionally discouraging misuse and promot-
ing responsible scraping behavior. Additionally, the script includes validation checks to
ensure that provided URLs are both syntactically correct and permit scraping according
to standard web protocols.

Implementation Details The scraping process is parallelized using a multi-threaded
approach, wherein each thread executes the RecursiveScrape function to extract links to
publicly accessible images and videos. Each thread receives its own parameter set from
the prepared list. To maintain isolation and clarity, each process writes to its own log
file, which are subsequently merged once the scraping is complete. However, it is worth
noting that this approach may encounter limitations on systems with constrained memory
resources.

1 with Pool(cv2.getNumberOfCPUs () - 1) as pool:
2 info = [
3 [url , results_folder +

urlparse(url).netloc.replace(".", "_") + "_"
+ LOG , scan_depth , scanned_urls ,
skip_pictures , skip_videos , terminal_results ,
not no_threading]

4 for url in url_list
5]
6 for result in pool.map(RecursiveScrape , info):
7 if(result):
8 to_scan.append(result)
9

10 filenames = [text_file for text_file in
os.listdir(results_folder) if text_file [:8] ==
"wlog.txt"]

11

12 scan_log = open(results_folder + "scan.txt")
13 for fname in filenames:
14 with open(fname) as infile:
15 scan_log.write(infile.read())
16 os.remove(fname)

Multiple tests were conducted scanning the whole url_list with a depth of 0, with

50

different numbers of threads.

• 1: 375, 368

• 2: 298, 301

• 4: 290

Considering the powerful computer used for the tests, we set the default amount of threads
to 2 to avoid overwhelming smaller computers.

Improvements made There were freezing issues when multiple threads tried to access
the display window at the same time, which was resolved by forcing the window to be off
in these cases. We will note that it is always possible to view the saved pictures with the
audit window or even a standard image viewer.

Another issue was the fact that windows handles threads in a different way, making
them truly autonomous and unable to access global variables. To combat this the class
argument is passed throughout the code (python will handle it as a reference and not copy
it needlessly). The detection and recognition algorithms could also not be shared, so a new
function was made to generate them for multiple website scans at a time.

The different text files also had to be handled independantly to avoid conflicts in the
writing and because passing them through the argument calss was not a stable solution,
due to how many threads might need to access it at the same time. The different files are
then added by the program at the end of the existing log, audit or urls_scanned txt files,
before the various temporary files are deleted. To simplify their identification their names
end with predefined 8 characters: "plog.txt", "zcan.txt" and "audi.txt".

We also included a count of the amount of pictures scanned and the faces therein.

GPU use It is possible to use the GPU with InsightFace, and drastically improve per-
formances. This was tested with an nvidia gpu and intel. To do this we need to follow this
procedure [31]:

pip uninstall onnxruntime-gpu onnxruntime
pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/

PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/

To setup the right version of onnxruntime to use with CUDA-12, which is the nvidia
tool we use for gpu usage. This tool has to be installed on their website, as well as cuDNN
for the script to work.

We will detail the results later, but note this was only tested on Linux and using the
GPU is not a requirement for running the script.

We ran tests using the GPU (but not the CPU at the same time, which could be
improved later). The local dataset tests went from 24 to 7.5 seconds, and increase of about
300%! The depth 0 search went from 250 to 150 seconds, which is an increase of 72%! and
the depth 1 search only took a total of XX - although due to the significant time required
to run this command, this was not done on the same day, meaning we should not draw too
many conclusions from this at this stage. The difference may be due to the full scanning
not always scanning pictures, but this should be investigated further.

We added a count of how many images and faces were scanned to make it easier to
analyze and compare performances in the future. This was only done at this stage because
of the complications that come with multi-processing.

51

6.3.11 Final Tests

Significant improvements were made to the codebase, particularly in optimizing URL search
procedures and addressing bugs that previously prevented comprehensive image scanning.
As a result, the system now completes the scanning process in 14 seconds and the recog-
nition stage in 312 seconds (at depth 0), solely by scraping images directly from the main
webpage of each site. The script was executed using two concurrent threads, with CPU us-
age ranging between 65% and 100%, often remaining close to the upper bound. To improve
resource management, the script was refactored to reduce the number of simultaneously
instantiated detectors and recognizers. Instead of creating one instance per website, the
new implementation distributes websites across a fixed number of processes in batches. For
example, with four websites and two processes, each process handles two sites. By default,
each process is configured to manage ten websites.

Depth 1 Search Executing the script at a search depth of 1 resulted in a substantial
increase in runtime due to the exponential growth of links encountered in recursive web
crawling. The process took 13,034 seconds (approximately 3 hours and 37 minutes), with
the scanning phase alone accounting for 1,090 seconds (about 18 minutes). Initially, both
threads were heavily utilized, but one process completed its queue earlier, leaving a single
thread to handle the remaining workload. This imbalance suggests that increasing the
number of threads may improve performance by distributing tasks more evenly. Notably,
this approach remains more resource-efficient than instantiating a facial recognition model
per thread.

Images are not stored locally, primarily due to ethical and storage considerations. Re-
taining images indefinitely may conflict with privacy objectives, especially if the original
source removes them. Despite this, network usage remained modest, with a peak band-
width of approximately 1 MB/s. As this tool is still in its prototypical stage, images are not
automatically deleted. However, for ethical compliance, they should be manually removed
once their content has been verified and the relevant data has been extracted for research
purposes.

Depth 1 Search Results The initial execution of the depth 1 search yielded 64 images,
of which 26 were duplicates. Some duplicates were found across different domains or
distinct URLs within the same domain, while 13 duplicates appeared to be queried multiple
times from the same source. No consistent duplication pattern was identified, suggesting
incidental redundancy in image retrieval. Further investigation may be warranted if the
tool is deployed in production environments. Manual auditing confirmed that none of the
retrieved images matched the protected identities, with similarity scores ranging from 60%
to 64%. These results align with visual inspection and indicate that the system’s threshold
should be adjusted to reduce false positives. Raising the similarity threshold to 65% would
have excluded all of these non-matching results.

Depth 1 Final Version Search The second depth 1 execution used the latest version of
the tool, which included image resizing for both database entries and online images. This
run took 10,490 seconds, with 1,101 seconds spent on scanning. A total of 78 images were
retrieved, including 26 duplicates. Most duplicates were found across different websites,
and only two images were common between this run and the previous one, each appearing
on four different domains. This suggests increased robustness in retrieval and filtering

52

across iterations. We should note however that this intense scraping caused some websites,
like twitter, to give an "exceeded number of tries" block (simply for asking the robot.txt,
we have to assume, from the pages that had twitter links in them). Thankfully, this is only
temporary.

6.4 Final Script

This section briefly presents the final version of the script, outlining its modular architec-
ture, available options, current limitations, and directions for future improvements.

6.4.1 Recovery

Given the extensive execution time required for a depth-1 search, the system was designed
with built-in recovery functionality. This allows the script to be interrupted and resumed
without loss of progress. During execution, metadata such as visited URLs and runtime
state are recorded in intermediary text files. Each thread maintains its own file indepen-
dently, ensuring separation of tasks. Upon restarting the script, the system checks for any
previously stored data and resumes from the last known state. These files are then either
merged at the conclusion of a full execution or reloaded at the beginning of a resumed
session.

6.4.2 Usage Overview

Typical usage of the tool begins with reviewing the README.md file, which outlines essential
considerations for proper execution. Users are encouraged to familiarize themselves with
the basics of facial recognition and web scraping to understand the broader context in
which the tool operates.

The script’s standard workflow involves first executing main.py, which acquires facial
data for all designated subjects. If this is the user’s initial run and the face database has
not yet been populated, the script will invoke face.py automatically. During execution,
the system performs an online search using the default parameters, while real-time visual
output is provided through an OpenCV window. Upon completion, and if relevant matches
are found, the script will prompt the user to perform an audit.

In enterprise or governmental contexts, the usage differs slightly. Organizations may
first run face.py independently to establish a comprehensive database of protected in-
dividuals. Auditing tasks can then be assigned to designated personnel or automated
according to predefined thresholds. Upon detection, employees may initiate appropriate
procedures to request takedowns or modifications of their online images. Each image is
saved with a filename corresponding to its exact online location, simplifying the process of
identifying and contacting the hosting website.

53

6.4.3 Code Execution Graph

We have provided the main code to DiagramGPT which uses AI to generate a clear overview
of a typical code execution, present on the bottom of this page and thereafter.

54

55

6.4.4 Configuration

The script supports a wide variety of configurations to adapt to different testing, auditing,
and deployment scenarios. Through the use of command-line arguments, users can fine-
tune behavior such as threshold sensitivity, detection model, face database paths, and
enable or disable modules like auditing, logging, and offline tests. This design enhances
both modularity and extensibility, and can easily be expanded further in future iterations.

For a detailed list of available parameters and flags, see Table ??, which summarizes the
script’s main options, including recognition models, logging settings, and display controls.
The same information can be found from the script itself by running main.py –help.

6.4.5 Security Flaws and Limitations

As a prototype, the current version lacks several important security and robustness features,
from a cybersecurity perspective:

• Insufficient fault tolerance: There has not been sufficient testing of edge cases,
and error handling could be improved since some warnings can appear during the
scanning.

• No encryption: Sensitive data, images and results are stored in plain text. A central
database with appropriate encryption and access control should be implemented in
a production setting.

• Logging gaps: While the script includes basic logging and auditing, a more robust
and tamper-proof logging system is needed to support transparency and traceability.

56

• No memory protection: There are currently no defenses against unauthorized
memory readings or data leakage. However due to this happening on a local computer
instead of the wide web, the annotated pictures cannot be intercepted.

6.4.6 Areas for Improvement

A number of enhancements are planned or suggested for future versions:

• Model experimentation: Support additional recognition algorithms to further
evaluate speed and accuracy trade-offs, and run more tests.

• Batch notifications: Add functionality to notify identified individuals (optionally
in batches) when their presence is detected, instead of just putting information in
their log file with an image.

• Multi-user support: Expand the codebase to include proper login and link to the
logs.

• RAM limitations: Manage file reading in such a way that computers with limited
RAM space can safely use the script.

• KeyboardInterrupt: On windows the process is not stopped when using the key-
board interrupt keys (ctrl+c), forcing the user to close the terminal window. This is
not an issue on linux, due to how thread handling is different for both.

• Commenting and code clarity: Comments, whilst not lacking, could be improved
both in number and clarity.

• Experimentation with threads: We should try to combine GPU use with the
CPU and multiple processes. The map_async function should also be explored.

For reference, this is a typical resources use of the script during the picture analysis

phase:

57

Terminal display improvements and related issues Currently there is some infor-
mation displayed on the terminal that is of little use to the average user, and warnings
that signal potential issues with the code, which, although not significant, should be inves-
tigated. Notably, during the web scanning phase of the script we get the, Some characters
could not be decoded, and were replaced with REPLACEMENT CHARACTER., as well as
another issue with using html reading to read some xml pages, that we choose to ignore
for now. The image scanning phase also displays libpng warning: iCCP: too many
profiles which causes the progress bar to be on different lines. It would also be good to
investigate a way to display the results better, as currently it only shows it by website for
each different threads.

Finally, when InsightFace runs it displays information which is useful for us to under-
stand if it is using CUDA or a normal CPU provider and more, but is likely to be confusing
to the average user.

6.5 Experimentation Conclusions

First of all, we will note that the script was done with legality and ethical use in mind,
instead of prioritizing results. It is also robust and modular to allow for further testing
and development, and comes with sufficient instructions to make the installation and usage
clear for the average user, even if they are not particularly experienced with computers.
With this in mind, we will be looking at the results.

In this project, we explored facial recognition techniques using a modular, progres-
sive and script-based approach. We evaluated multiple models, such as InsightFace and
OpenCV, under varied conditions including images, videos, and scraped web data.

Each model presents trade-offs:

• OpenCV: Offers faster execution times and lower computational cost, but suffers
from reduced precision and higher false positive rates. This results in more time
needed for human review.

• InsightFace: Provides better recognition accuracy and fewer false positives, even
under challenging conditions such as occlusions, masks, and extreme lighting angles.
However, it is significantly slower. Thankfully, we were able to accelerate it with
GPU usage.

Adequate combination We deem that the combination of openCV and InsightFace
remains the optimal one due to the sufficiently accurate detection and the importance of
precise recognition to avoid false positives.

The final script now took an average of 250 seconds to scan the above-mentionned list
of website with a depth of 0 (only the main page) and 2 threads, of which only 12 seconds
was required for the scanning itself, and the rest was dedicated to recognition. The same
task with one thread running with the GPU only took 150 seconds.

The use of multiprocessing made the code more efficient by spreading the requests to the
different urls and running in paralel. The same logic applies to the recognition phase, for
which results were better than during testing due to not all online images containing faces.
However for this phase we found GPU usage to be better than using multiple processors
running on the CPU.

58

Further testing This script can easily be tested more extensively by using the varied
arguments available upon execution, such as changing the resizing, the model provided
and the tresholds, as well as offline files used for testing and various urls scanned without
having to change the code.

Web scraping Web scraping functionality was successfully implemented, though limited
by ethical and legal constraints. It highlights the real-world viability of automated facial
recognition for online identity monitoring, but also demonstrates the need for proper API
access and policy compliance.

This model has the potential to be more accurate than online web search alternatives
given we can make a more accuracte facial model using the multiple pictures we captured.

In short, the project shows the feasibility and versatility of a modular recognition
framework to be iterated on, while also emphasizing the need for careful consideration of
ethical, technical, and security-related challenges in real-world deployments.

59

Chapter 7

Conclusions
This thesis has explored the mechanisms of facial recognition systems, their increasing
deployment in contemporary society, and the legal and ethical challenges they present.
Particular attention was given to the European Union’s evolving regulatory landscape,
including the forthcoming AI Act, which will be applicable on the 2nd of August 2026.

Facial search tool In this context, the research presented here introduces a practical
tool designed to enhance privacy protections for individuals, particularly employees within
organizations. By maintaining a protected database of facial identities, the system can
continuously scans publicly accessible images online to detect unauthorized appearances.
While it cannot retroactively remove data from existing machine learning datasets, the tool
enables affected individuals to take proactive steps, such as initiating takedown requests or
adjusting future online behavior. This anticipates a legal environment in which individuals
may have greater control over their biometric data.

The final version we propose is equipped with logs of usage, an audit for unsure results,
as well as a suite of execution parameters. The code is modular, optimised, minimal and
sufficiently commented. We have also successfully managed to increase both the accuracy
and speed of the tool, by resizing images and making use of the GPU, after doing tests
with multiple processes the former proved to be the better option. However, the fact
this is a new project that required proper research and that much was done in terms of
implementation means that there is now more room for extensive and more well defined
testing, as well as investigating warnings and logs to find any potential issues.

Due to the terms of use of social media websites which prevent scraping, and limits in
their API, we were not able to implement the full solution desired. Instead we choose to
work with a curated list of urls to scan. Further research can request access to the twitter
API due to the DSA, and companies can request access to basic public image scraping with
meta, both on facebook and instagram, which could then be integrated into the existing
code base.

Other adversarial methods Existing approaches to mitigating facial recognition risks -
such as image obfuscation, adversarial modifications, or disguises - remain limited in scope
and often impractical at scale. The solution proposed here complements these by emphasiz-
ing awareness, transparency, and early detection. Ultimately, addressing the broader risks
of facial recognition requires a cultural shift toward digital literacy and data autonomy.

The system is distributed with comprehensive usage documentation and follows princi-
ples of modular software design to support ongoing development and ethical deployment.
Future improvements may include the integration of adversarial image generation, stronger
detection algorithms, and adaptation to evolving recognition techniques.

As society increasingly integrates facial recognition technologies into both commercial
and governmental infrastructures, tools such as the one proposed in this thesis serve as
important first steps in empowering individuals and institutions to safeguard their digital
identities.

60

CHAPTER 7. CONCLUSIONS 61

7.1 Privacy Concerns

The potential misuse of this technology is a significant concern. While the intent behind
this tool is to enable personal security and automated identity verification, similar methods
could be exploited by malicious actors. Unfortunately, such actors already have access to
more developped commercial facial recognition platforms through paid subscriptions. Our
solution does not add much additional risk, since there are better alternatives that do
scrape social media, such as facesearch.

Concerns to be addressed before deployment While the current implementation
demonstrates the technical feasibility of the proposed tool, several critical areas must be
addressed to ensure privacy, security, and long-term reliability. First, the system lacks
robust fault tolerance; edge cases have not been extensively tested, and error-handling
mechanisms are limited. Enhancing exception management and incorporating validation
at key stages would improve the script’s reliability in real-world use. Additionally, all
data—including facial images, search results, and temporary files—is stored in plaintext. In
a production environment, this presents a considerable risk. A secure, centralized database
with end-to-end encryption and fine-grained access control should be adopted to safeguard
sensitive information.

Another concern lies in the logging and audit trail. Although the script maintains
basic logs and allows for manual auditing, a more comprehensive, tamper-resistant logging
infrastructure is essential to ensure transparency, reproducibility, and compliance with
potential regulatory frameworks. Furthermore, the system currently does not implement
any form of memory protection. As such, there are theoretical risks of data leakage via
memory scraping techniques. Although the application is designed for local use and does
not transmit images over the internet, mitigating in-memory data persistence through
secure memory management practices should be considered, especially if deployed on shared
or cloud-based systems.

Finally, usability and maintainability could benefit from the introduction of a formal
installation process, and from packaging the system with configuration templates and en-
vironment isolation (e.g., via Docker). These additions would support easier deployment,
ensure reproducibility, and help prevent unintentional misconfigurations. Addressing these
limitations is crucial for transitioning this prototype into a secure, scalable solution appro-
priate for use by companies, governmental agencies, or privacy-conscious individuals.

At this stage, these concerns are theoretical, as the prototype has not yet been de-
ployed. Nonetheless, any move toward a production-ready version must be accompanied
by comprehensive privacy policies, access restrictions, and encryption standards to ensure
ethical and secure usage.

7.2 Future Work

Several directions could enhance this project and expand its potential applications. First
and foremost, the usability of the tool should be improved. Ideally, the system would
support automated workflows where users can submit their facial images directly and then
triggering recurring recognition processes without manual intervention.

As facial recognition algorithms continue to evolve, becoming both more efficient and
more accurate, it will be important to periodically update the implementation to incorpo-

62 7.2. FUTURE WORK

rate these advancements.
Further testing and benchmarking of alternative facial recognition models could help

identify more robust or efficient algorithms for specific contexts. A comparative evaluation
would clarify which models offer the best trade-offs in terms of accuracy, speed, and resource
requirements.

Another important area for development involves the ethical and legal aspects of data
collection. Many online platforms that are of interest to us currently prohibit automated
scraping, so it would be good to request permission to use their data under a research-
oriented framework. This step would also help establish partnerships and improve the
tool’s legitimacy and reliability.

Future iterations might also explore integrating Deepfake detection countermeasures.
Lastly, when the tool is ready for deployment, special attention must be paid to access

control and protection mechanisms to prevent misuse or unauthorized access to its features.

Appendix A

main.py
1 """
2 Author: Alexandre De Groodt
3 Script for facial recognition using the database provided by

face.py using web scraping or local files.
4 The settings are in settings.py, and this uses the code of

scraping.py to scrape the web , as well as ui.py to display
the analysis/audit afterwards.

5 The code has many options , by default it will show a window that
lets the user keep track of the process as it is happening.

6

7 This main file contains all the logic as well as the code
required for facial detection and recognition.

8 """
9

10 import numpy as np
11 import cv2 , os
12 import sys , contextlib
13 from insightface.app import FaceAnalysis
14 from datetime import datetime
15 import tqdm
16 from multiprocessing import Pool
17 import dlib
18 import imutils
19 import tempfile
20 import base64
21 import math
22

23 from urllib.parse import urljoin , urlparse
24

25 from scripts.ui import *
26 from face import *
27 from scripts.settings import *
28 from scripts.scraping import *
29

30 # Constants.
31 DISPLAY_WINDOW = "Scanning Process"
32 RED , GREEN , BLUE = (0, 0, 255), (0, 255, 0), (255, 0, 0)
33

34 # The temporary files are named in a specific way to easily
identify them.

35 LOG_TEMP = "plog.txt"
36 SCAN_TEMP = "zcan.txt"
37 AUDIT_TEMP = "audi.txt"
38

39 # ---------------- SETUP ---------------
40

63

64

41 # Setup foldering.
42 def MakeFolders(path , args , make_log = False):
43 global log , audit
44 args.results_folder = path
45 i = 0
46 if(args.incrementFolder):
47 while os.path.exists(path + str(i) + "/"):
48 i += 1
49 results_folder = path + str(i) + "/"
50

51 os.makedirs(args.results_folder + args.detectedFaces ,
exist_ok=True)

52 os.makedirs(args.results_folder + args.foundDir ,
exist_ok=True)

53 if(args.storeFailed):
54 os.makedirs(args.results_folder + args.missDir ,

exist_ok=True)
55 args.scanned_urls = []
56

57 if(make_log or not os.path.exists(args.results_folder +
args.logFile)):

58 log = open(args.results_folder + args.logFile , "a+")
59 audit = open(args.results_folder + args.auditFile , "a+")
60 # Keep trace of scanned urls in the main folder , so that

it stays relevant beyond this execution.
61 # First we read the list of scanned urls , and then the

code will append to it as it scans imgs.
62 if(os.path.exists(args.scannedUrls) and not args.reScan):
63 args.scanned_urls = [line.strip() for line in

open(args.scannedUrls , "r").readlines ()]
64

65 # Setup the openCV displaying window.
66 def MakeWindow(args):
67 if not args.noDisplay:
68 print("Scanning will start soon. Press q to hide the

display.")
69 cv2.namedWindow(DISPLAY_WINDOW , cv2.WINDOW_NORMAL)
70 cv2.resizeWindow(DISPLAY_WINDOW , args.displaySize ,

args.displaySize)
71

72 # Save a log and print the result if requested.
73 def Logs(log , text , terminal_results):
74 log.write(text + "\n")
75 if(terminal_results):
76 print(text)
77

78

79 # ---------------- SAVING ---------------
80

81 # Save the face crop and then annotate it.
82 def SaveCrop(face_crop , name , img , best_similarity , img_file , x,

y, w, h, log , audit , args):

APPENDIX A. MAIN.PY 65

83 # Remove the extension.
84 img_name = os.path.splitext(img_file)[0]
85 # Draw red rectangle and name in red if unknown and green if

known.
86 if(name is None or best_similarity < args.auditThreshold):
87 color = RED
88 elif(best_similarity < args.notifiedThreshold):
89 color = GREEN
90 else:
91 # Face detected with enough surety , write it to the

person ’s folder.
92 args.personList[name] += 1
93 color = BLUE
94 face_filename =

os.path.join(f"{args.faceDatabase }/{ name}/",
f"{img_name}_face.jpg")

95 cv2.imwrite(face_filename , face_crop)
96 if(args.saveFaces):
97 face_filename = os.path.join(args.results_folder +

args.detectedFaces , f"{name}_{img_name }.jpg")
98 cv2.imwrite(face_filename , face_crop)
99

100 if(best_similarity < args.notifiedThreshold and
best_similarity > args.auditThreshold):

101 audit.write(f"{img_file }:{ name }:{ best_similarity :.2f}:"+
102 "{x}:{y}:{w}:{h}:0\n")
103 DrawRectangle(img , f"{name} {best_similarity :.2f}", color ,

x, y, w, h)
104

105 text = f"Face detected in {img_file }. Best Match: {name},
Similarity: {best_similarity :.2f}"

106 Logs(log , text , args.terminalResults)
107

108 # Save the img with annotated information.
109 def SaveImage(matches , img , img_path , img_file , result_found ,

log , args):
110 if(result_found):
111 save_path = os.path.join(args.results_folder +

args.foundDir , img_file)
112 elif(args.storeFailed):
113 save_path = os.path.join(args.results_folder +

args.missDir , img_file)
114

115 # If we keep this picture for the audit it means a result
was found.

116 if(not args.noDisplay and (args.showAll or result_found)):
117 key = cv2.waitKey (1)
118 # Needed for it to have time to display and offer the

possibility to stop the window.
119 if(key == ord(’q’) or not

cv2.getWindowProperty(DISPLAY_WINDOW ,
cv2.WND_PROP_VISIBLE)):

66

120 args.noDisplay = True
121 cv2.destroyAllWindows ()
122 elif(key == ord(’t’)):
123 pass
124 else:
125 cv2.imshow(DISPLAY_WINDOW , img)
126

127 if(result_found):
128 cv2.imwrite(save_path , img)
129 # Read it from scratch and add only the anotated information

for the concerned person.
130 for name in matches:
131 if(args.offlineTests):
132 personal_img = cv2.imread(img_path)
133 if personal_img is None:
134 return
135 x, y, w, h, similarity = matches[name][0],

matches[name][1], matches[name][2], matches[name][3],
matches[name][4]

136 DrawRectangle(img , f"{name} {similarity :.2f}", (0, 255,
0), x, y, w, h)

137 save_path = os.path.join(f"{args.faceDatabase }/{ name}/",
img_file)

138 cv2.imwrite(save_path , personal_img)
139 args.personal_logs[name] = args.personal_logs[name] +

f"\t Face detected in {img_file} with a
{similarity :.2f} accuracy .\n"

140

141

142

143 # ---------------- PREP ---------------
144

145 # Used for reading videos and extracting face information.
146 def VideoRecPrep(vid_name , vid_path , log , args , detector ,

recognizer):
147 video = cv2.VideoCapture(vid_path)
148 if not video.isOpened ():
149 print("Error: Could not open video.")
150 return
151 vid_name = os.path.splitext(vid_name)[0]
152 # Save the video results in a sub folder.
153 #MakeFolders(base_folder + "/" + vid_name + "/")
154 ret , frame = video.read()
155 if not ret:
156 print("Error: Could not read initial frame from video.")
157 video.release ()
158 return
159 # img_number * IGNORE_FRAMES = current frame in the video.
160 img_number = 0
161 while video.isOpened () and ret:
162 frame = Resize(frame , args.displaySize)
163 frame = cv2.rotate(frame , cv2.ROTATE_90_COUNTERCLOCKWISE)

APPENDIX A. MAIN.PY 67

164 # No need to read all frames , process one and then skip
ahead.

165 FaceRecognition(vid_name + str(img_number) + ".jpg",
vid_path , frame , log , audit , args , detector ,
recognizer)

166 video.set(cv2.CAP_PROP_POS_FRAMES , img_number *
args.ignoreFrames)

167 ret , frame = video.read()
168 img_number += 1
169 video.release ()
170

171 # Calls the main function after some transformations , used when
the image has not been read already.

172 def ImgRecPrep(img_name , img_path , log , audit , args , detector ,
recognizer):

173 img = cv2.imread(img_path)
174 if img is None:
175 Logs(log , f"Error loading {img_path}, skipping.",

args.terminalResults)
176 return 0
177

178 return FaceRecognition(img_name , img_path , Resize(img ,
args.displaySize), log , audit , args , detector , recognizer)

179

180 def Detect(img , detector):
181 # Ensure it’s a 3-channel BGR img
182 if img.ndim == 2 or img.shape [2] == 1:
183 raise ValueError("Input img must be a 3-channel BGR img")
184 faces = []
185

186 h, w = img.shape [:2]
187 detector.setInputSize ((w, h))
188 _, faces = detector.detect(img)
189 return faces
190

191

192 # ---------------- RECOGNITION ----------------
193

194 # Main face detection and recognition function.
195 def FaceRecognition(img_file , img_path , img , log , audit , args ,

detector , recognizer):
196 faces = Detect(img , detector)
197 matches = {}
198 face_count = 0
199 keep_audit = False
200 if(faces is None):
201 Logs(log , f"No faces detected in {img_file }.",

args.terminalResults)
202 else:
203 for i, face in enumerate(faces):
204 face_count += 1
205 x, y, w, h = face [:4]. astype(int)

68

206 face_crop = img[y:y+h, x:x+h]
207 if(face_crop.size == 0 or w < args.minFaceSize or h

< args.minFaceSize):
208 continue
209

210 if(args.openCVRec):
211 alignedFace = recognizer.alignCrop(img , face)
212 embedding = recognizer.feature(alignedFace)
213 else:
214 face_data = recognizer.get(face_crop)
215 if len(face_data) == 0:
216 continue
217 embedding = face_data [0]. embedding
218 best_match = None
219 best_similarity = -1
220 similarity = 0
221 for name , ref_embedding in args.stored_faces.items ():
222 if(args.openCVRec):
223 # Cosine similarity normalized from 0 to 100.
224 similarity = (args.recognizer.match(
225 embedding.astype(np.float32),

ref_embedding.astype(np.float32),
cv2.FaceRecognizerSF_FR_COSINE) + 1) * 50

226 #l2_score = recognizer.match(embedding ,
ref_embedding ,
cv2.FaceRecognizerSF_FR_NORM_L2)

227 #l2_percent = max(0, 100 * (1 - l2_score /
2.0)) > 60

228 else:
229 similarity = ((np.dot(embedding ,

ref_embedding) /
(np.linalg.norm(embedding) *
np.linalg.norm(ref_embedding))) + 1) * 50

230

231 if similarity > best_similarity:
232 best_similarity = similarity
233 best_match = name
234 # If there are multiple people in the

picture they each need to be notified and
sent a copy.

235 if similarity > args.auditThreshold:
236 keep_audit = True
237 matches[best_match] = (x, y, w, h,

similarity)
238 if similarity < args.auditThreshold:
239 args.unknown_count += 1
240 SaveCrop(face_crop , best_match , img ,

best_similarity , img_file , x, y, w, h, log ,
audit , args)

241 audit.flush()
242 args.picture_scanned += 1
243 SaveImage(matches , img , img_path , img_file , keep_audit , log ,

APPENDIX A. MAIN.PY 69

args)
244 return face_count
245

246

247 # ---------------- SCAN ---------------
248

249 # Scan all images and videos provided with the given url with
the detectors and recognizers for the main function.

250 def ScanUrl(to_scan , detector , recognizer):
251 _to_scan , args , folder = to_scan
252 img_to_scan , vid_to_scan = _to_scan
253 log = open(folder + LOG_TEMP , "a+")
254 scanned = open(folder + SCAN_TEMP , "a+")
255 audit = open(folder + AUDIT_TEMP , "a+")
256 img_face_count = [0, 0]
257

258 i = 0
259 for img_info in img_to_scan:
260 url , page = img_info [0], img_info [1]
261 try:
262 # Handle base64 -encoded images (data URIs) separately
263 if url.startswith("data:image"):
264 header , encoded = url.split(",", 1)
265 image_data = base64.b64decode(encoded)
266 else:
267 # Only use requests for regular URLs
268 r = requests.get(url , stream=True)
269 if r.status_code != 200:
270 Logs(log , f"Failed to download picture:

{url} (status code {r.status_code })",
args.terminalResults)

271 continue
272 image_data = r.content
273

274 img_array = np.asarray(bytearray(image_data),
dtype=np.uint8)

275 img = cv2.imdecode(img_array , cv2.IMREAD_COLOR)
276 if img is not None:
277 scanned.write(url + "\n")
278 filename = f"{page}_{i}.jpg"
279 img_face_count [1] += FaceRecognition(filename ,

args.results_folder , Resize(img ,
args.displaySize), log , audit , args ,
detector , recognizer)

280 img_face_count [0] += 1
281 i += 1
282 except Exception as exception:
283 Logs(log , f"Exception during image handling:

{exception}", args.terminalResults)
284

285 i = 0
286 for vid_info in vid_to_scan:

70

287 url , page = vid_info [0], vid_info [1]
288 r = requests.get(url , stream=True)
289 if r.status_code == 200:
290 # Save a temp of the video.
291 with tempfile.NamedTemporaryFile(delete=False ,

suffix=".mp4") as tmp:
292 tmp.write(r.content)
293 tmp_path = tmp.name
294 VideoRecPrep(f"{page [1]}_{i}.mp4", tmp_path , log ,

args , detector , recognizer)
295 os.remove(tmp_path) # Clean up temporary file
296 else:
297 Logs(log , f"Failed to download video: {url} from

{page} (status code {r.status_code })",
args.terminalResults)

298 return img_face_count
299

300 def MakeModels(args):
301 detector = cv2.FaceDetectorYN.create(args.yunetDetector , "",

args.detSize , score_threshold=args.scoreTreshold ,
nms_threshold=args.nmsTreshold , top_k=args.topK)

302

303 if(args.openCVRec):
304 recognizer =

cv2.FaceRecognizerSF.create(args.opencvRecognizer , "")
305 else:
306 recognizer = FaceAnalysis(name=args.insightFaceModel ,

providers =[args.insightFaceProvider])
307 recognizer.prepare(ctx_id=0, det_size=args.detSize)
308 # To go after the stuff it prints.
309 print("\n")
310

311 return detector , recognizer
312

313 # Wrapper function to call ScanUrl on each item in the sublist
314 def ScanUrlBatch(scan_info):
315 batch , args = scan_info
316 detector , recognizer = MakeModels(args)
317 return_var = [0, 0]
318 for item in tqdm.tqdm(batch):
319 return_var += ScanUrl(item , detector , recognizer)
320 return return_var
321

322 # Split a list into N nearly equal parts
323 def Chunkify(lst , n):
324 avg = math.ceil(len(lst) / n)
325 return [lst[i:i + avg] for i in range(0, len(lst), avg)]
326

327 # Take all the logs that fit the pattern and unify them into one.
328 def UnifyLogs(source_folder , pattern , result , audit_log=False):
329 # The size check is not very rigurous , but it works.
330 filenames = [source_folder + text_file for text_file in

APPENDIX A. MAIN.PY 71

os.listdir(source_folder) if len(text_file) > 8 and
text_file [-8:] == pattern]

331 full_log = open(result , "a+")
332 for fname in filenames:
333 with open(fname) as infile:
334 full_log.write(infile.read())
335 os.remove(fname)
336 if(not audit_log):
337 full_log.write(f"Scanning finished at: {datetime.now()}")
338 full_log.write("End of log ----------------------------")
339 full_log.close()
340

341 # Joins the varying files into one and returns the log file for
further use.

342 def Cleanup(args):
343 UnifyLogs(args.results_folder , LOG_TEMP , args.results_folder

+ args.logFile)
344 log = open(args.results_folder + args.logFile , "a+")
345 UnifyLogs(args.results_folder , SCAN_TEMP , args.scannedUrls)
346 UnifyLogs(args.results_folder , AUDIT_TEMP ,

args.results_folder + args.auditFile , True)
347 return log
348

349 if __name__ == ’__main__ ’:
350 # See in the settings.py file for more.
351 args = ParseArguments ()
352

353 # Name the folder with the current date.
354 base_folder = f"results_{datetime.date(datetime.now())}/"
355 # Useful in case the last execution was stopped mid -process.
356 if(os.path.exists(base_folder)):
357 args.results_folder = base_folder
358 log = Cleanup(args)
359 # Make folder will open it again.
360 log.close ()
361 MakeFolders(base_folder , args , True)
362

363 # Variables used for storage.
364 args.stored_faces = {}
365 args.personList = {}
366 # Captain Jean Luc Picard.
367 args.personal_logs = {}
368 # The amount of unknown faces detected , only relevant for

offline picture testing.
369 args.unknown_count = 0
370 args.picture_scanned = 0
371 # Used to count pictures scanned and faces detected.
372 img_face_count = [0, 0]
373

374 # Verify the folders do exist. If one was created , we can
assume so was the rest.

375 if(os.path.exists(args.results_folder) is None):

72

376 print("Folders not created. Exiting script.")
377 else:
378 log.write("Start time: " + str(datetime.now()) + "\n")
379 # Store all the important current settings in the log

file.
380 log.write(PrintArguments(args))
381

382 startminute =
(datetime.now()-datetime (1970 ,1 ,1)).total_seconds ()

383

384 detector , recognizer = MakeModels(args)
385

386 LoadFaces(log , args , detector , recognizer)
387 # If we have no pictures , try capturing some with the

webcam using the other script.
388 if(not len(args.stored_faces)):
389 WebcamCaptures ()
390 CallConvert ()
391 LoadFaces(log , args , detector , recognizer)
392

393 if(args.offlineTests):
394 # Make a list containing all input imgs and videos.
395 scan_files = [f for f in

os.listdir(args.offlineFiles) if
f.lower().endswith ((".jpg", ".png", ".jpeg",
".mp4"))]

396

397 # Keep a copy for video saving.
398 temp_results_folder = args.results_folder
399 if(args.offlineTests):
400 MakeWindow(args)
401 if(len(scan_files)):
402 for scan_file in tqdm.tqdm(scan_files):
403 if scan_file.lower().endswith(".mp4") and

not args.skipVideos:
404 VideoRecPrep(scan_file ,

os.path.join(args.offlineFiles ,
scan_file), log , args , detector ,
recognizer)

405 # Currently disabled: store vids in a
separate folder and reset it back to
the main one here

406 #MakeFolders(base_folder)
407 elif not args.skipPictures:
408 ImgRecPrep(scan_file ,

os.path.join(args.offlineFiles ,
scan_file), log , audit , args ,
detector , recognizer)

409 # Online web scraping.
410 else:
411 if(args.reScan):
412 args.scanned_urls = []

APPENDIX A. MAIN.PY 73

413 to_scan = []
414 if(not args.skipPictures or not args.skipVideos):
415 # The list of arguments provided to the script.
416 info = [
417 [url , args.results_folder +

urlparse(url).netloc.replace(".", "_") +
"_" + "wlog.txt", args.scanDepth ,
args.scanned_urls , args.skipPictures ,
args.skipVideos , args.terminalResults ,
not args.noThreading]

418 for url in args.urlList
419]
420 if(not args.noThreading):
421 with Pool(cv2.getNumberOfCPUs () - 1) as pool:
422 i = 0
423 for result in pool.map(RecursiveScrape ,

info):
424 if(result):
425 # The results to analyze , the

arguments and the third
element is for file names.

426 text_files_path = info[i][1][: -8]
427 to_scan.append ((result , args ,

text_files_path))
428 i += 1
429 else:
430 i = 0
431 for line in info:
432 result = RecursiveScrape(line)
433 if(result):
434 # The results to be used by the

ScanUrl function.
435 text_files_path = info[i][1][: -8]
436 to_scan.append ((result , args ,

text_files_path))
437 i += 1
438

439 a = f"Scanning time:
{((datetime.now()-datetime (1970 ,1 ,1))

440 .total_seconds () - startminute):.2f}\n"
441 print(a)
442 log.write(a)
443 UnifyLogs(args.results_folder , "wlog.txt",

args.results_folder + "scan.txt")
444

445 # Recognition phase.
446 if(len(to_scan)):
447 MakeWindow(args)
448 if(args.noThreading or args.threadNbr == 1 or

len(to_scan) == 1):
449 detector , recognizer = MakeModels(args)
450 for site in tqdm.tqdm(to_scan):

74

451 ScanUrl(site , detector , recognizer)
452 else:
453 # Spread the list into sub_batches so we

don’t have more detectors and recognizer
running at the same time than we have to.

454 chunks = [(chunk , args) for chunk in
Chunkify(to_scan , args.threadNbr)]

455 with Pool(args.threadNbr) as pool:
456 for result in pool.map(ScanUrlBatch ,

chunks):
457 img_face_count [0] += result [0]
458 img_face_count [1] += result [1]
459 # Logs , assemble!
460 log.close ()
461 audit.close()
462 log = Cleanup(args)
463

464 # Report results , if any.
465 if(len(args.personList) or args.unknown_count or

img_face_count [0] or img_face_count [1]):
466 text = ""
467 for name in args.personList:
468 if(args.personList[name]):
469 text += f" {name}: {args.personList[name]}

times"
470 person_log =

open(f"{args.faceDatabase }{name}{args.logFile}",
"a+")

471 person_log.write(f"Face detected
{args.personList[name]} times at:
{datetime.now()}\n")

472 person_log.write(args.personal_logs[name] +
"\n")

473 person_log.close ()
474 if(len(text)):
475 to_write = f"{args.personList} matches found in

the pictures , {text} detected , and
{args.unknown_count} unknowns in
{args.picture_scanned} pictures."

476 Logs(log , to_write , args.terminalResults)
477 overview = f"{img_face_count [0]} pictures scanned

with {img_face_count [1]} facial matches found."
478 print(overview)
479 Logs(log , overview , False)
480 Logs(log , f"End time: {datetime.now()}\n",

args.terminalResults)
481 a = f"Execution time:

{((datetime.now()-datetime (1970 ,1 ,1)).total_seconds ()
- startminute):.2f}\n"

482 # Always write the execution time and summary
results to the screen.

483 #print(f"Numbers of, unknown faces:

APPENDIX A. MAIN.PY 75

{args.unknown_count}, scanned pictures:
{args.picture_scanned }\n")

484 print(a)
485 log.write(a)
486

487 log.close ()
488

489 audit = open(args.results_folder + args.auditFile , "r+")
490 if(not args.noAudit and audit.read (1)):
491 cv2.destroyAllWindows ()
492 print(f"The image navigator will open to display the

images with similarity between
{args.auditThreshold} and
{args.notifiedThreshold }.\n"

493 "Use the left and right arrows to move , and
click on a person ’s face to confirm their
identity by pressing the ’confirm ’ button
below.\n"

494 "Note that you cannot do this for faces that
have too low or too high similarities .\n"

495 "Feel free to do this audit in multiple parts ,
each picture will only be shown once in
that case.\n")

496 operator = "alex"
497

498 # Create the tkinter window
499 window = tk.Tk()
500 app = ImageNavigator(window , args.results_folder ,

args.faceDatabase , operator , args.displaySize)
501 window.mainloop ()
502 elif(not args.noAudit):
503 print("No pictures to audit. You can change the

tresholds for auditing in the code using
--auditThreshold =50 - or with another number.")

Appendix B

scripts/settings.py
1 """
2 Author: Alexandre De Groodt
3 Sets the settings for main.py , displays them and provides an

explanation to users upon running main.py --help.
4 """
5

6 import argparse
7 import json
8

9 def PrintArguments(args):
10 # ====== PRINT SUMMARY ======
11 to_print = "\n[INFO] Running with the following

configuration :\n"
12

13 to_print += "- Numeric thresholds :\n" + json.dumps ({
14 "auditThreshold": args.auditThreshold ,
15 "notifiedThreshold": args.notifiedThreshold ,
16 "minFaceSize": args.minFaceSize ,
17 "ignoreFrames": args.ignoreFrames ,
18 "scanDepth": args.scanDepth ,
19 "threadNbr": args.threadNbr
20 }, indent =4) + "\n"
21

22 to_print += "- Booleans :\n" + json.dumps({
23 "noDisplay": args.noDisplay ,
24 "storeFailed": args.storeFailed ,
25 "showAll": args.showAll ,
26 "skipPictures": args.skipPictures ,
27 "skipVideos": args.skipVideos ,
28 "incrementFolder": args.incrementFolder ,
29 "noAudit": args.noAudit ,
30 "offlineTests": args.offlineTests ,
31 "terminalResults": args.terminalResults ,
32 "reScan": args.reScan ,
33 "saveFaces": args.saveFaces
34 }, indent =4) + "\n"
35

36 to_print += "- Directories :\n" + json.dumps({
37 "faceDatabase": args.faceDatabase ,
38 "offlineFiles": args.offlineFiles ,
39 "foundDir": args.foundDir ,
40 "missDir": args.missDir ,
41 "detectedFaces": args.detectedFaces
42 }, indent =4) + "\n"
43

44 to_print += "- Files :\n" + json.dumps ({

76

APPENDIX B. SCRIPTS/SETTINGS.PY 77

45 "logFile": args.logFile ,
46 "auditFile": args.auditFile ,
47 "scannedUrls": args.scannedUrls
48 }, indent =4) + "\n"
49

50 to_print += "- Detector settings :\n" + json.dumps ({
51 "yunetDetector": args.yunetDetector ,
52 "detSize": args.detSize ,
53 "scoreTreshold": args.scoreTreshold ,
54 "nmsTreshold": args.nmsTreshold ,
55 "topK": args.topK
56 }, indent =4) + "\n"
57

58 recognizer = "InsightFace"
59 if args.openCVRec:
60 recognizer = "OpenCV"
61

62 to_print += f"- Recognizer: {recognizer }\n"
63

64 if(recognizer == "InsightFace"):
65 to_print += "- Recognizer settings :\n" + json.dumps ({
66 "insightFaceModel": args.insightFaceModel ,
67 "insightFaceProvider": args.insightFaceProvider
68 }, indent =4) + "\n"
69

70 to_print += "- URL list:\n" + json.dumps(args.urlList ,
indent =4) + "\n"

71

72 to_print += "Type main.py --help for more info.\n"
73

74 return to_print
75

76

77 def ParseArguments ():
78 parser = argparse.ArgumentParser(description="Facial

recognition and audit CLI")
79

80 # Integer thresholds.
81 parser.add_argument(’-at’, ’--auditThreshold ’, type=int ,

default =60, help="Minimum audit match score (default:
60)")

82 parser.add_argument(’-nt’, ’--notifiedThreshold ’, type=int ,
default =70, help="Notification threshold (default: 70)")

83 parser.add_argument(’-mfs’, ’--minFaceSize ’, type=int ,
default =32, help="Minimum face size (default: 32)")

84 parser.add_argument(’-igf’, ’--ignoreFrames ’, type=int ,
default =30, help="Frames to skip in video (default: 30)")

85 parser.add_argument(’-w’, ’--displaySize ’, type=int ,
default =800, help="Size of the squared display.")

86 parser.add_argument(’-sd’, ’--scanDepth ’, type=int ,
default=0, help="Depth of the website scans (0 for base
pages only) (default: 1)")

78

87 parser.add_argument(’-tn’, ’--threadNbr ’, type=int ,
default=2, help="WARNING: number of threads used to run
the facial recognition algorithm. (default: 2)")

88

89 # Booleans.
90 parser.add_argument(’-stf’, ’--storeFailed ’,

action=’store_true ’, default=False , help="Store images
that do not pass the treshold (default: False)")

91 parser.add_argument(’-sa’, ’--showAll ’, action=’store_true ’,
default=False , help="Show pictures without results
(default: False)")

92 parser.add_argument(’-sp’, ’--skipPictures ’,
action=’store_true ’, default=False , help="Skip pictures
(default: False)")

93 parser.add_argument(’-sv’, ’--skipVideos ’,
action=’store_true ’, default=False , help="Skip video
(default: False)")

94 parser.add_argument(’-if’, ’--incrementFolder ’,
action=’store_true ’, default=False , help="Increment
output folder (default: False)")

95 parser.add_argument(’-na’, ’--noAudit ’, action=’store_true ’,
default=False , help="Perform audit (default: False)")

96 parser.add_argument(’-ot’, ’--offlineTests ’,
action=’store_true ’, default=False , help="Use offline
files (default: False)")

97 parser.add_argument(’-sr’, ’--terminalResults ’,
action=’store_true ’, default=False , help="Show detailed
terminal results (default: False)")

98 parser.add_argument(’-so’, ’--reScan ’, action=’store_true ’,
default=False , help="Scan images again (default: False)")

99 parser.add_argument(’-sf’, ’--saveFaces ’,
action=’store_true ’, default=False , help="Save detected
faces (default: False)")

100

101 parser.add_argument(’--openCVRec ’, action=’store_true ’,
default=False)

102 # Displaying and threading (mutually exclusive)
103 group2 = parser.add_mutually_exclusive_group ()
104 group2.add_argument(’-td’, ’--noThreading ’,

action=’store_true ’, default=False , help="Avoid
multi -threading for web scraping , necessary to show the
window (default: False)")

105 group2.add_argument(’-nd’, ’--noDisplay ’,
action=’store_true ’, default=True , help="Hides the video
window (default: True)")

106

107 # Paths and filenames (strings).
108 parser.add_argument(’--faceDatabase ’, type=str ,

default="protectees/")
109 parser.add_argument(’--offlineFiles ’, type=str ,

default="offline_files/")
110 parser.add_argument(’--foundDir ’, type=str , default="found/")

APPENDIX B. SCRIPTS/SETTINGS.PY 79

111 parser.add_argument(’--missDir ’, type=str , default="miss/")
112 parser.add_argument(’--detectedFaces ’, type=str ,

default="detected_faces/")
113 parser.add_argument(’--logFile ’, type=str , default="log.txt")
114 parser.add_argument(’--auditFile ’, type=str ,

default="audit.txt")
115 parser.add_argument(’--scannedUrls ’, type=str ,

default="scanned_urls.txt")
116

117 # Detection model settings.
118 parser.add_argument(’--yunetDetector ’, type=str ,

default="models/yunet.onnx")
119 parser.add_argument(’--detSize ’, type=tuple , default =(320 ,

320))
120 parser.add_argument(’--scoreTreshold ’, type=float ,

default =0.7)
121 parser.add_argument(’--nmsTreshold ’, type=float , default =0.3)
122 parser.add_argument(’--topK’, type=int , default =5000)
123 parser.add_argument(’--opencvRecognizer ’, type=str ,

default="models/face_recognition_sface_2021dec.onnx")
124 parser.add_argument(’--insightFaceModel ’, type=str ,

default="buffalo_l")
125 parser.add_argument(’--insightFaceProvider ’, type=str ,

default="CPUExecutionProvider")
126

127 # URL list
128 parser.add_argument(’--urlList ’, type=lambda s: [url.strip()

for url in s.split(’,’)], default =[
129 "https :// www.bcg.com",
130 #"https :// www.instagram.com",

"https :// www.facebook.com", "https :// twitter.com",
"https :// www.tiktok.com", "https :// www.youtube.com",
"https :// www.reddit.com", "https :// www.linkedin.com"

131 "https :// www.cnn.com",
132 "https :// www.bbc.com",
133 "https :// www.nytimes.com",
134 "https :// www.tumblr.com",
135 "https ://500 px.com",
136 #"https :// www.ebay.com", takes forever
137 "https :// www.wikipedia.org",
138 "https :// commons.wikimedia.org",
139 "https :// www.ieee.org",
140 # Belgian urls:
141 "https :// www.hln.be",
142 "https :// www.rtbf.be",
143 "https :// www.vrt.be",
144 "https :// www.bruzz.be",
145 "https :// www.vtm.be",
146 "https :// www.7sur7.be",
147 "https :// www.student.be",
148 "https :// www.ugent.be",
149 "https :// www.uclouvain.be",

80

150 "https :// www.ulb.be",
151 "https :// www.vub.be",
152 # Cultural centers:
153 "https :// www.muntpunt.be", # Cultural hub &

library in Brussels
154 "https :// www.kvs.be", # Royal Flemish

Theatre
155 "https :// www.kaaitheater.be", # Contemporary

theatre
156 "https :// www.debijloke.be", # Muziekcentrum

De Bijloke Gent
157 "https :// www.culture.be", # Portal for

cultural activities (government)
158 "https :// www.flandersartsinstitute.be",# Research &

support for Flemish arts
159 "https :// www.passaporta.be", # International

house of literature
160 "https :// www.visitflanders.com", # Official

tourism platform (lots of public event imagery)
161 "https :// www.ccdeadelberg.be", # Local cultural

center in Halle
162 "https :// www.decentrale.be", # Cultural

diversity center in Ghent
163 "https :// www.arenberg.be", # Culture house

in Antwerp
164 "https :// www.cultuurcentrummechelen.be",# Culture center

Mechelen
165 "https :// www.fomu.be", # Museum of

photography , Antwerp
166 "https :// www.kmska.be", # Royal Museum of

Fine Arts Antwerp
167 "https :// www.mac -s.be", # Museum of

Contemporary Art , Grand -Hornu
168 "https :// www.wiels.org", # Contemporary

art center in Brussels
169], help="Comma -separated URLs to scrape")
170

171 args = parser.parse_args ()
172 # Have the display on for offline testing since it doesn ’t

use threads.
173 if(args.offlineTests):
174 args.noDisplay = False
175 args.noThreading = True
176

177 PrintArguments(args)
178

179 return args

Appendix C

face.py
1 """
2 Author: Alexandre De Groodt
3 Face detection , capture and extraction into an InsightFace

compatible format from the webcam.
4 This consists in two parts: first the taking of the pictures and

then conversion into npy format.
5 """
6

7 import cv2
8 import numpy as np
9 # To handle directories and files.

10 import os
11 # To convert the pictures of the face to the right format.
12 from insightface.app import FaceAnalysis
13 import tqdm
14

15 capture = True
16 convert = True
17 resize = True
18 # Size for the stored face images.
19 SIZE = 150
20 # Interval between captures of the face.
21 CAPTURE_INTERVAL = 10
22 PICTURES_TO_CAPTURE = 50
23

24 # Resize whilst preserving aspect ratio.
25 def Resize(image , target_size):
26 # Get the original dimensions
27 h, w = image.shape [:2]
28

29 # Calculate the ratio of the new size to the old size
30 ratio = target_size / float(max(h, w))
31

32 # Calculate the new dimensions
33 new_dimensions = (int(w * ratio), int(h * ratio))
34

35 # Resize the image
36 resized_img = cv2.resize(image , new_dimensions ,

interpolation=cv2.INTER_AREA)
37

38 # Create a new blank white (or black) image
39 blank_img = 255 * np.ones(shape =[target_size , target_size ,

3], dtype=np.uint8)
40

41 # Calculate padding
42 y_offset = (target_size - new_dimensions [1]) // 2

81

82

43 x_offset = (target_size - new_dimensions [0]) // 2
44

45 # Place the resized image onto the blank image
46 blank_img[y_offset:y_offset + new_dimensions [1],

x_offset:x_offset + new_dimensions [0]] = resized_img
47

48 return blank_img
49

50

51 def CaptureFace(faces_data):
52 i = 0
53 while len(faces_data) < PICTURES_TO_CAPTURE:
54 # Capture the video and ensure it works.
55 ret , frame = video.read()
56 if not ret:
57 print("Capture issues.")
58 break
59

60 # Used to detect the faces.
61 _, faces = face_detector.detect(frame)
62

63 # Crop the faces.
64 if faces is not None:
65 for face in faces:
66 x, y, w, h = face [:4]. astype(int)
67

68 # Process the image (crop , resize , rgb form)
69 face = frame[y:y+h, x:x+w]
70 if(resize):
71 face = Resize(face , SIZE)
72

73 if i % CAPTURE_INTERVAL == 0:
74 faces_data.append(face)
75 filename = os.path.join(img_dir ,

f"face_{len(faces_data)}.jpg")
76 cv2.imwrite(filename , face) # Save image as

a file
77

78 cv2.rectangle(frame , (x, y), (x + w, y + h), (0,
0, 255), 2)

79 i += 1
80 # Draw the amount of faces captured and a

rectangle around the face.
81 cv2.putText(frame , str(len(faces_data)), (50,

50), cv2.FONT_HERSHEY_COMPLEX , 1, (50, 50,
255), 1)

82 cv2.rectangle(frame , (x, y), (x+w, y+h), (50,
50, 255), 1)

83

84 # Display the video.
85 cv2.imshow("Frame", frame)
86 # Leave by pressing q.

APPENDIX C. FACE.PY 83

87 if cv2.waitKey (1) == ord(’q’):
88 break
89 video.release ()
90 cv2.destroyAllWindows ()
91

92 def WebcamCaptures ():
93 global video , face_detector , img_dir , npy_dir
94 # Initialize video capture.
95 video = cv2.VideoCapture (0)
96 if(video.isOpened ()):
97 # Use a pre -made classifier to detect the faces ,

assuming normal frontal faces for this.
98 face_detector =

cv2.FaceDetectorYN.create("models/yunet.onnx", "",
(640, 480), score_threshold =0.8, nms_threshold =0.3,
top_k =5000)

99 faces_data = []
100 save_dir = "protectees/"
101 print("Enter your name: ")
102 name = str(input())
103 # Create directories if they don’t exist.
104 input_folder = save_dir + name + "/"
105 img_dir = input_folder + "img/"
106 npy_dir = input_folder + "npy/"
107 os.makedirs(img_dir , exist_ok=True)
108 os.makedirs(npy_dir , exist_ok=True)
109 open(input_folder + "log.txt", "w")
110

111 CaptureFace(faces_data)
112 else:
113 print("Issue with opening the video.")
114

115

116 def Convert ():
117 for image_file in tqdm.tqdm(image_files):
118 if not image_file.lower ().endswith ((".jpg", ".png",

".jpeg")):
119 continue # Skip non -image files
120

121 img_path = os.path.join(img_dir , image_file)
122 image = cv2.imread(img_path)
123

124 if image is None:
125 print(f"Error loading {image_file}, skipping.")
126 continue
127

128 # Detect faces
129 face_data = app.get(image)
130 if len(face_data) > 0:
131

132 # Save the embedding as an .npy file
133 person_name = os.path.splitext(image_file)[0] # Use

84

filename as the identifier
134 npy_path = os.path.join(npy_dir ,

f"{person_name }.npy")
135 # Save the first detected face.
136 np.save(npy_path , face_data [0]. embedding)
137 else:
138 not_found.append(image_file)
139

140 if(len(not_found)):
141 print(f"No faces detected in {not_found}, skipped.")
142

143 def CallConvert ():
144 global app , not_found , image_files
145 app = FaceAnalysis(name="buffalo_l",

providers =["CPUExecutionProvider"])
146 app.prepare(ctx_id=0, det_size =(320 , 320)) # Keep this at

320 for consistency
147 not_found = []
148 image_files = [f for f in os.listdir(img_dir) if

f.lower().endswith ((".jpg", ".png", ".jpeg"))]
149 Convert ()
150

151 # Load reference embeddings of the known faces. Used by the main
code.

152 def LoadFaces(log , args , detector , recognizer):
153 for person_name in os.listdir(args.faceDatabase):
154 if(person_name [-4:] == ".txt"):
155 continue
156 args.personList[person_name] = 0
157 args.personal_logs[person_name] = ""
158 embeddings_list = []
159 if(args.openCVRec):
160 person_path = os.path.join(args.faceDatabase ,

person_name + "/img")
161 for picture in os.listdir(person_path):
162 img_path = os.path.join(person_path , picture)
163 img = cv2.imread(img_path)
164 if img is None:
165 Logs(log , f"Error loading img: {img_path}",

args.terminalResults)
166 continue
167

168 # Get embedding from recognizer
169 embedding = recognizer.feature(img)
170 embeddings_list.append(np.array(embedding)
171 .astype(np.float32))
172

173 # Store the average embedding for this person
174 if(embeddings_list):
175 args.stored_faces[person_name] =

np.mean(embeddings_list , axis =0)
176 else:

APPENDIX C. FACE.PY 85

177 Logs(log , f"No valid embeddings for
{person_name}", args.terminalResults)

178 else:
179 person_path = os.path.join(args.faceDatabase ,

person_name + "/npy/")
180 if(os.path.isdir(person_path)):
181 embeddings = [
182 np.load(os.path.join(person_path , file))
183 for file in os.listdir(person_path)
184 if file.endswith(".npy")
185]
186 if(embeddings):
187 args.stored_faces[person_name] =

np.mean(embeddings , axis =0)
188

189 if __name__ == ’__main__ ’:
190 if(capture):
191 WebcamCaptures ()
192 if(convert):
193 CallConvert ()

Appendix D

README.md
1 NOT INTENDED FOR COMMERCIAL USE
2 The pictures kept should be manually deleted after proper

verification , and are only kept for research and debugging
purposes.

3

4 ### Recommendations
5

6 We recommend reading the master thesis and the web scraping for
researchers guide http :// arxiv.org/abs /2410.23432 to get an
understanding of web scraping and facial recognition , as well
as the purpose of the script and things to look out for. The
guide will include a shortened version of this as a copy of
the web \hyperref[scraping]** scraping ** section of the state
of the art.

7

8 ### Build Instructions:
9

10 This project requires python , tkinter (installed by default on
window), cmake and pip.

11

12 **Linux **:
13 Setup the python environment first:
14

15 - ‘sudo apt install python3 -venv python -is-python3 ‘
16 - ‘python -m venv venv ‘
17 - ‘source venv/bin/activate ‘
18

19 The last command needs to be used whenever we wish to run the
script.

20

21 Use the ** requirements.txt** file to install the requirements as
follows: ‘pip install -r requirements.txt ‘

22 You may have to install tkinter , for instance on ubuntu run:
23 ‘sudo apt install python3 -tk‘
24

25 ** Windows **:
26 Install python (3.10 for example) from the app manager.
27 Install cmake , following this guide or another (I had to restart

my computer for it to work):
28 https :// www.youtube.com/watch?v=8 _X5Iq9niDE
29 Visual studio c++ must be installed , or the tools version.
30 https :// stackoverflow.com/questions /63648184/ error -installing -
31 packages -using -pip -you -must -use -visual -studio -to-build -a-pyth
32 In case you run into this error you will have to go into the

regedit (window+r then type regedit) to change the option for
long file names , which requires administrator access.

86

APPENDIX D. README.MD 87

33 https :// stackoverflow.com/questions /72352528/ how -to -fix -winerror -
34 206-the -filename -or -extension -is-too -long -error
35 In case it is required to reinstall the packages to fix an

issue , for instance with opencv -python: ‘pip uninstall
opencv -python && pip install opencv -python ‘.

36

37 Then you can install the requirements ,
38

39 ### Usage guide
40

41 The script will be scanning the web and detecting the presence
of the persons within our database.

42 If you just wish to verify your presence online , you can simply
launch the main script , by running:

43 ‘python main.py ‘ - followed by the arguments you want.
44 We recommend starting with --depthScan =0 to only scan the main

page of websites , and then iterating , the system will only
scan each picture once.

45 It is possible to give a list of urls to scan by adding the
argument --urlList=url1 ,url2 by providing real urls
naturally. These will only be scanned if the robots.txt files
allow scraping.

46 Further options can be found by running ‘python main.py --help ‘
for more information.

47 In case of doubt , consider first running the script by providing
an offline file directory to scan (named offline_files by
default) using ‘python main.py --offlineTests --noThread
--showAll --terminalResults ‘ to show the display as the
process happens and display the logs live in the terminal.

48

49 By default only the basic search of the website ’s main page will
be done , use ‘python main.py --scanDepth =1‘ to go further (we
advise against numbers higher than 1, this is worse than
exponantial)

50

51

52 For other uses , such as a company protecting its employees ,
consent of the persons present within the database is
required in order to respect the GDPR and avoid many security
risks , it should also be appropriately protected and
encrypted , - rather than being a simple folder as shown in
this prototype. Otherwise this may have the an opposite
effect than intended with leaked faces being used to
faciliate facial searches for these individuals , or produce
deepfakes of the protected persons. This product is not ready
for safe deployment at this stage , unless it is running in a
protected environment with an operator we can trust not to
abuse it.

53 First , gather the face data with your webcam , using the ‘python
face.py‘ command. (This would be run automatically the first
time you launch the main script without face data.)

54 Once it has collected enough facial data , by default 50, the

88

program will close.
55 Then execute the main script , ‘python main.py ‘ with the desired

arguments. The web scraping will leave a log in the results
folder named scan.txt that contains traces of authorized
access to the different web pages , we recommend to avoid
deleting it as well as the log.txt file.

56 Once the scanning is completed , an audit window will be
displayed for the images that are uncertain. The treshold for
this , as well as the model used for recognition , can be
changed with parameters , we encourage running ‘python main.py
--help ‘ to understand the options in more details. During
operation , the script will generate log.txt files , both in
the results folder and in the protectees folder , when a given
individual is identified either manually or through a high
recognition level (70% by default).

57 When new faces are added to the database we can use ‘python
main.py --reScan ‘ to scan already accessed images again - or
simply delete the scanned_urls.txt file. If you wish to run
tests and handle them separately use the --incrementFolder
option. You can also change the audit treshold with
--auditTreshold =50 for instance with 50% - the default is
60%, and save failed recognitions or just their faces in
another folder using --storeFailed and --saveFaces.

58

59 ### GPU usage
60 It is possible to use GPU acceleration , although this is for

advanced users. Follow the instructions from this comment
61 ‘pip uninstall onnxruntime -gpu onnxruntime ‘
62 ‘pip install onnxruntime -gpu --extra -index -url

https :// aiinfra.pkgs.visualstudio.com/PublicPackages/
63 _packaging/onnxruntime -cuda -12/ pypi/simple/‘
64 https :// github.com/deepinsight/insightface/issues
65 /2394# issuecomment -1929310317
66 Then go to the relevant NVIDIA pages and see the install

instructions (for linux use the command lines suggested).
67 https :// developer.nvidia.com/cuda -downloads
68 For proper functionning installing this is heavily recommended.
69 https :// developer.nvidia.com/cudnn -downloads
70

71 You should be able to use the script with the GPU , note that
this only works without threads , so follow this command:

72 ‘python main.py --threadNbr =1
--insightFaceProvider=CUDAExecutionProvider ‘

73

74 Note that you should always use ‘--reScan ‘ for consistent test
results.

75

76 ### Best Practices for Ethical Scraping
77

78 These are practises we should consider , to avoid legal and
ethical problems when doing web scraping in this research
context:

APPENDIX D. README.MD 89

79

80 - ** Respect Website Policies :** Always review and adhere to a
website ’s terms of service and robots.txt file to determine
permissible scraping activities.

81 - ** Safeguard Data :** Protect the collected data against
unauthorized access or breaches. Indeed our prototype will
produce a file that will contain the results of the search ,
and should be safely guarded once it is deployed.

82 - **GDPR :** For web scraping researchers are left with more
freedom than most , so long as no personal information has
been collected , they do not have to send privacy notice under
GDPR. They should be able and willing to demonstrate the
proportionality. Researchers are also able to request large
content provider platforms to provide them with access under
certain conditions , with the DSA in Europe.

83 - ** Privacy :** For now we do not keep the images , still we
should never identify persons not from our database or not
having given consent for us to do so. However , we should also
add that the data collected should be of justifiable size and
purpose. Under these considerations , the GDPR states that we
do not have to inform and ask for consent when looking for
information , due to the enormous effort that would be
required. Indeed , this is not considered human subject
research.

84 - ** Picture context :** We should consider the context in which
users will be placing pictures online , and not try to access
any private pictures or "hot" websites. With all of these
concerns , we should keep in mind we may miss some pictures ,
but there is so much data to find that we should have enough
information already.

85 - ** Website scale :** We should also be mindful not to place too
much on a drain on websites themselves , and instead place
most of the load on big websites if possible (for instance
avoid scraping a small video platform). This is also a
concern for us , which will be explored in the next section.

86 - ** Variability :** Even though we are not doing machine learning
we still have to concern ourselves with taking data from
varied website sources in order to have a representative web
presence.

87

88 ### Considerations for deploying this tool
89

90 As discussed in the preceding sections , the software
accompanying this thesis will include a usage guide. This
guide will be integrated into the README.md file and will
provide essential instructions and ethical considerations for
operating the script.

91

92 It is strongly recommended that users first read the associated
master ’s thesis and the "Web Scraping for Researchers" guide
by Brown (2024) to gain a foundational understanding of both
web scraping and facial recognition technologies , as well as

90

the context , objectives , and limitations of the tool. The
important points of the state -of-the -art web scraping
discussion (see Section \ref{scraping }) will also be
reproduced in the guide for quick reference.

93

94 The purpose of the script is to scan publicly available websites
to detect the presence of individuals listed in a predefined
facial database. However , it is important to consider how to
manage the outcomes of such detection. While it is
technically feasible to compile all results into a single
comprehensive report , doing so over a wide scope (e.g.,
crawling the open web) may yield an excessive number of
findings , leading to information overload. Furthermore , if
the review process is handled by a single individual or
centralized body , this may introduce bias or conflicts of
interest.

95

96 To mitigate these risks , we recommend that the script be
executed in smaller , controlled batches , and that the
resulting reports be distributed directly to the relevant
individuals. This decentralized approach empowers the data
subjects to assess the findings and determine appropriate
actions for themselves. The individuals should also be
trained in how to use the tool , but also be made more aware
of the privacy risks that come with our online lives , and be
able to ask questions on these critical subjects to really
grasp the consequences. It may seem like a stretch at first
to imagine someone tracking our location from pictures , but
when considering the amount of photos uploaded per year it
sounds more plausible.

97

98 Crucially , explicit consent from all individuals included in the
facial recognition database is required prior to deployment.
To remain compliant with the General Data Protection
Regulation (GDPR) and to uphold fundamental principles of
cybersecurity , the database must be secured and encrypted.
The use of an unprotected directory structure , as presented
in this proof -of -concept implementation , is insufficient and
poses a significant privacy risk. Without adequate
safeguards , the tool could be misused to facilitate facial
recognition surveillance against the very individuals it is
meant to protect , or even contribute to the generation of
deepfakes and other forms of synthetic identity abuse.

99

100 In summary , ethical deployment of this system requires informed
consent , robust data protection , and responsible operational
practices.

Appendix E

scraping.py
1 """
2 Author: Alexandre De Groodt
3 Used for scraping the web for pictures and videos whilst making

sure to respect the robot.txt rules.
4 """
5

6 from bs4 import BeautifulSoup
7 from bs4 import XMLParsedAsHTMLWarning
8 import requests , shutil
9 from urllib.robotparser import RobotFileParser

10 from urllib.parse import urljoin , urlparse
11 from urllib.error import URLError , HTTPError
12 import time
13 import re
14 import warnings
15 # We choose to ignore this warning.
16 warnings.filterwarnings("ignore",

category=XMLParsedAsHTMLWarning)
17

18

19 # Save a log and print the result if requested.
20 def Logs(log , text , terminal_results):
21 log.write(text + "\n")
22 if(terminal_results):
23 print(text)
24

25 # Check if a page is probably private to avoid scraping it.
26 def LikelyPrivate(url , user_agent=’*’):
27 session = requests.Session ()
28 response = session.get(url , allow_redirects=True , timeout =10)
29

30 # --- 1. Check for redirect to login/auth pages ---
31 for r in response.history:
32 if any(part in r.url.lower () for part in [’login’,

’signin ’, ’auth’, ’account ’]):
33 return True # redirected to auth page
34

35 final_url = response.url.lower()
36 if any(part in final_url for part in [’login’, ’signin ’,

’auth’, ’account ’]):
37 return True
38

39 # --- 2. Check HTTP status codes ---
40 if response.status_code in [401, 403]:
41 return True
42

91

92

43 # --- 3. Check for private -looking URL patterns ---
44 private_patterns = [
45 r’/me/’, r’/my/’, r’/account ’, r’/settings ’,

r’/dashboard ’,
46 r’/profile/settings ’, r’/private ’, r’/admin’,

r’/user /.{20 ,}’ # long token
47]
48 for pattern in private_patterns:
49 if re.search(pattern , final_url):
50 return True
51

52 # --- 4. Parse HTML content for robots meta tag & login
forms ---

53 soup = BeautifulSoup(response.content , ’html.parser ’)
54

55 # Check meta robots
56 meta = soup.find("meta", {"name": "robots"})
57 if meta and "noindex" in meta.get("content", "").lower():
58 return True
59

60 # Check for login form (password input)
61 if soup.find("input", {"type": "password"}):
62 return True
63

64 return False # passed all checks -> likely public
65

66 def ScrapingAllowed(url , log , terminal_results , user_agent=’*’):
67 try:
68 if(LikelyPrivate(url)):
69 Logs(log , f"[STOPPED] This is likely a private page:

{url}", terminal_results)
70 return False
71 parsed = urlparse(url)
72 base_url = f"{parsed.scheme }://{ parsed.netloc}"
73 path = parsed.path or "/" # Only the path , not the full

URL
74

75 robots_url = f"{base_url }/ robots.txt"
76 rp = RobotFileParser ()
77 rp.set_url(robots_url)
78 rp.read()
79

80 allowed = rp.can_fetch(user_agent , path)
81 if not allowed:
82 Logs(log , f"[BLOCKED] robots.txt disallows: {path}

for {url}.", terminal_results)
83 else:
84 Logs(log , f"[ALLOWED] robots.txt allows: {path} for

{url}.", terminal_results)
85 return allowed
86 except Exception as e:
87 Logs(log , f"[WARNING] robots.txt could not be checked

APPENDIX E. SCRAPING.PY 93

for {url} (reason: {e}) - defaulting to allowed",
terminal_results)

88 return True
89

90

91 def UrlToName(url):
92 parse = urlparse(url)
93 name = parse.netloc + parse.path
94 return name.replace(".", "_").replace("/", "_")
95

96 # Readies all images and videos of the given url for processing ,
if allowed.

97 def ScrapeImgVid(url , log , scanned_urls , skip_img , skip_vid ,
terminal_results):

98 img_to_scrape , vid_to_scrape , images , videos = [], [], [], []
99 file_name = UrlToName(url)

100 try:
101 response = requests.get(url)
102 if response.status_code != 200:
103 Logs(log , f"[ERROR] Failed to retrieve {url}, status

code: {response.status_code}", terminal_results)
104 return
105 except Exception as exception:
106 Logs(log , f"Exception during html querying:

{exception}", terminal_results)
107 return
108 soup = BeautifulSoup(response.content , ’html.parser ’)
109 if(not skip_img):
110 images = soup.find_all(’img’)
111 if not images:
112 Logs(log , f"[INFO] No images found at {url}",

terminal_results)
113 if(not skip_vid):
114 videos = soup.find_all(’vid’)
115 if not videos:
116 pass#Logs(log , f"[INFO] No videos found at {url}",

terminal_results) - this is quite common
117

118 for image in images:
119 skip = False
120 img_url = image.get(’src’) or image.get(’data -src’) or

image.get(’data -lazy -src’)
121

122 if not img_url:
123 continue
124

125 full_url = urljoin(url + "/", img_url)
126 if(scanned_urls is not None):
127 for url_scanned in scanned_urls:
128 if(url_scanned == full_url):
129 skip = True
130 break

94

131 if(not skip):
132 img_to_scrape.append ((full_url , file_name))
133

134 for video in videos:
135 vid_url = video_tag.find("a")[’href’]
136 if not vid_url:
137 continue
138

139 full_url = urljoin(url + "/", vid_url)
140 if(scanned_urls is not None):
141 for url_scanned in scanned_urls:
142 if(url_scanned == full_url):
143 continue
144 vid_to_scrape.append ((full_url , file_name))
145

146 return (img_to_scrape , vid_to_scrape)
147

148

149 def NormalizeUrl(url):
150 return url.split(’#’)[0]. rstrip(’/’)
151

152 def IsInternalLink(link , base_domain):
153 parsed = urlparse(link)
154 return parsed.netloc == ’’ or parsed.netloc == base_domain
155

156 def RecursiveScrape(info):
157 seed_url , LOG , max_depth , scanned_urls , skip_img , skip_vid ,

terminal_results , polite = info
158 log = open(LOG , "a+")
159 visited = set()
160 to_visit = [(seed_url , 0)]
161 if(seed_url [:4] != "http"):
162 print(f"[ERROR] Invalid website link without http ,

{seed_url}", terminal_results)
163 to_visit = []
164 elif(not ScrapingAllowed(seed_url , log , terminal_results)):
165 print(f"[BLOCKED] Scraping not allowed for website

{seed_url}, advising to remove it from the list.")
166 to_visit = []
167 all_img_data , all_vid_data = [], []
168 while to_visit:
169 current_url , depth = to_visit.pop(0)
170 normalized = NormalizeUrl(current_url)
171

172 # Check that it is indeed an url.
173 if normalized in visited:
174 continue
175 visited.add(normalized)
176

177 Logs(log , f"[VISIT] {current_url} (depth {depth })",
terminal_results)

178

APPENDIX E. SCRAPING.PY 95

179 try:
180 result = ScrapeImgVid(current_url , log ,

scanned_urls , skip_img , skip_vid ,
terminal_results)

181 if result:
182 img_data , vid_data = result
183 all_img_data.extend(img_data)
184 all_vid_data.extend(vid_data)
185

186 # Fetch links to recurse into
187 response = requests.get(current_url)
188 soup = BeautifulSoup(response.content , ’html.parser ’)
189 base_domain = urlparse(seed_url).netloc
190

191 for link_tag in soup.find_all(’a’, href=True):
192 href = link_tag.get(’href’)
193 joined = urljoin(current_url , href)
194 joined = joined.strip(’\t ’)
195 if(depth + 1 > max_depth or joined [:4] !=

"http"):
196 continue
197 if(not ScrapingAllowed(joined , log ,

terminal_results)):
198 Logs(log , f"[BLOCKED] Scraping not allowed

for {joined}", terminal_results)
199 continue
200 normalized_link = NormalizeUrl(joined)
201 if(IsInternalLink(joined , base_domain) and

normalized_link not in visited):
202 to_visit.append ((joined , depth + 1))
203

204 except Exception as e:
205 Logs(log , f"[ERROR] While processing {current_url }:

{e}", terminal_results)
206

207 if(polite):
208 time.sleep (1)
209 log.flush ()
210 log.close ()
211 return all_img_data , all_vid_data

Appendix F

ui.py
1 """
2 Author: Alexandre De Groodt
3 Code for the UI part of the project , handles the display of

images.
4 By default it only shows those with a likelihood between 50 and

70%, for which we need to confirm the identiy.
5 """
6

7 import cv2
8 import numpy as np
9 import os

10 import tkinter as tk
11 from PIL import Image , ImageTk
12 from tkinter import filedialog
13 from datetime import datetime
14 import re, io
15

16 # Used to draw a rectangle of the given color around a face.
17 # Add a black rectangle behind the text when in the editor to

make it more visible.
18 def DrawRectangle(image , name , color , x, y, w, h, edit = 0):
19 if(edit):
20 cv2.rectangle(image , (x, y - 55), (x + 150, y - 30), (0,

0, 0), cv2.FILLED)
21 cv2.rectangle(image , (x, y), (x + w, y + h), color , 2)
22 cv2.putText(image , name , (x, y - 10 - edit * 20),

cv2.FONT_HERSHEY_SIMPLEX , 0.8, color , 2)
23

24 # Strip the extension and number of the video to find the common
name they all have.

25 # For instance , frame0.jpg , frame1.jpg would give frame.
26 def VideoStrip(video_name):
27 folder_name = os.path.splitext(video_name)[0]
28 folder_name = re.sub(r’\d+$’, ’’, folder_name)
29 return folder_name
30

31 # Main window.
32 class ImageNavigator:
33 def __init__(self , master , folder , reference_folder ,

operator , size):
34 self.master = master
35 self.folder = folder
36 self.reference_folder = reference_folder
37 # The audit logs are stored within the foler holding

personal pictures as well.
38 self.audit_logs = open(self.reference_folder +

96

APPENDIX F. UI.PY 97

"audit_logs.txt", "a+")
39 self.audit = open(self.folder + "audit.txt", "r")
40 self.operator = operator
41 self.audit_logs.write(f"Log by {self.operator} start

time: {datetime.now()}\n")
42 self.master.title("Image Navigator")
43 self.size = size
44 self.master.geometry(f"{size}x{size}")
45

46 self.images = [line.strip ().split(’:’) for line in
self.audit.readlines () if not
int(line.strip ().split(’:’)[-1])]

47 self.current_image_index = 0
48

49 self.canvas = tk.Canvas(self.master , bg=’white ’)
50 self.canvas.pack(fill=tk.BOTH , expand=True)
51

52 # Navigation , and confirmation button.
53 self.prev_button = tk.Button(self.master ,

text="Previous", command=self.ShowPreviousImage)
54 self.prev_button.pack(side=tk.LEFT , padx =10)
55 self.next_button = tk.Button(self.master , text="Next",

command=self.ShowNextImage)
56 self.next_button.pack(side=tk.RIGHT , padx =10)
57 self.confirm_button = tk.Button(self.master ,

text="Confirm", command=self.ConfirmationDialog)
58 self.confirm_button.pack(side=tk.BOTTOM , padx =10)
59

60 # Bind left mouse key and keyboard left and right arrows.
61 self.master.bind("<Button -1>", self.OnClick)
62 self.master.bind(’<Left >’, self.ShowPreviousImage)
63 self.master.bind(’<Right >’, self.ShowNextImage)
64 if(len(self.images)):
65 self.ShowImage ()
66 else:
67 print("No images to scan.")
68 self.master.destroy ()
69 self.__del__ ()
70

71 def ShowImage(self):
72 self.face_selected = False
73 self.video = False
74 self.current_image_index = self.current_image_index %

len(self.images)
75 self.image_name =

self.images[self.current_image_index][0]
76 image_path = os.path.join(self.folder + "found/",

self.image_name)
77

78 # If we cannot find here , it is either a video or in the
miss folder.

79 if(not os.path.exists(image_path)):

98

80 image_path = os.path.join(self.folder + "miss/",
self.image_name)

81 if(not os.path.exists(image_path)):
82 self.video = True
83 folder_name = VideoStrip(self.image_name)
84 image_path = os.path.join(self.folder +

folder_name + "/found/", self.image_name)
85 load = Image.open(image_path)
86

87 render = ImageTk.PhotoImage(load)
88

89 self.canvas.delete("all")
90 self.x_coord = (self.size - load.width) // 2
91 self.y_coord = (self.size - load.height) // 2
92 self.canvas.create_image(self.x_coord , self.y_coord ,

anchor=tk.NW , image=render)
93 self.canvas.image = render
94

95 # Keep it to redraw it quickly in onClick ().
96 self.last_loaded_image = load
97

98 self.array = np.array(load)
99 self.array = cv2.cvtColor(self.array , cv2.COLOR_BGR2RGB)

100

101 self.selected_face = False
102

103 self.master.title(f"Image Navigator: {self.image_name}")
104 self.images[self.current_image_index][-1] = 1
105

106 # We need the event for the keyboard input , but not for the
clicks.

107 def ShowPreviousImage(self , event=None):
108 while self.images[self.current_image_index][0] ==

self.image_name:
109 self.current_image_index = (self.current_image_index

- 1) % len(self.images)
110 # Make sure we’re always on the first audit log line for

this image.
111 new_name = self.images[self.current_image_index][0]
112 while self.images[self.current_image_index][0] ==

new_name:
113 self.current_image_index = (self.current_image_index

- 1) % len(self.images)
114 else:
115 self.current_image_index += 1
116 self.ShowImage ()
117

118 def ShowNextImage(self , event=None):
119 while self.images[self.current_image_index][0] ==

self.image_name:
120 self.current_image_index = (self.current_image_index

+ 1) % len(self.images)

APPENDIX F. UI.PY 99

121 # If this is a video skip all frames by going to the
right.

122 if(self.video):
123 stripped_name = VideoStrip(self.image_name)
124 while

VideoStrip(self.images[self.current_image_index][0])
== stripped_name:

125 self.current_image_index =
(self.current_image_index + 1) %
len(self.images)

126 self.ShowImage ()
127

128 def ConfirmationDialog(self):
129 if(self.face_selected == True):
130 image_info = self.images[self.current_image_index +

self.selected_face]
131 name = image_info [1]
132 if(tk.messagebox.askyesno("Confirmation", f"Send a

mail to {name} to warn them of their presence in
this picture?")):

133 cv2.imwrite(os.path.join(f"{self.reference_folder }{name}/",
f"{self.image_name}_confirmed_face.jpg"),
self.array)

134 mail =
open(f"{self.reference_folder }{name}/mail.txt",
"a+")

135 message = f"The presence of {name} was confirmed
in {self.image_name} by {self.operator }."

136 mail.write(message)
137 mail.close ()
138 self.audit_logs.write(message + f" At

{datetime.now()}.")
139 print(message)
140 self.ShowNextImage ()
141

142 def OnClick(self , event):
143 click_x = event.x - self.x_coord
144 click_y = event.y - self.y_coord
145

146 if click_x < 0 or click_y < 0 or click_x >=
self.last_loaded_image.width or click_y >=
self.last_loaded_image.height or self.face_selected:

147 return # Click outside image boundsa
148

149 self.selected_face = 0
150 while (self.current_image_index + self.selected_face <

len(self.images)) and
self.images[self.current_image_index +
self.selected_face][0] == self.image_name:

151 index = self.current_image_index + self.selected_face
152 x, y, w, h = int(self.images[index][-5]),

int(self.images[index][-4]),

100

int(self.images[index][-3]),
int(self.images[index][-2])

153 if x <= click_x <= x + w and y <= click_y <= y + h:
154 # Draw a new rectangle on a copy of the image
155 img = np.array(self.last_loaded_image.copy())
156

157 DrawRectangle(img , "confirm", (0, 0, 255), x, y,
w, h, True)

158

159 # Convert back to display
160 updated_image =

ImageTk.PhotoImage(Image.fromarray(img))
161 self.canvas.delete("all")
162 self.canvas.create_image(self.x_coord ,

self.y_coord , anchor=tk.NW,
image=updated_image)

163 self.canvas.image = updated_image
164 self.face_selected = True
165 break
166 self.selected_face += 1
167

168 def __del__(self):
169 if(self.images):
170 # Update the audit file by only re -adding the files

we did not look at yet.
171 with io.open(self.folder + "audit.txt", "w") as

audit:
172 for image in self.images:
173 if int(image [-1]) == 0:
174 to_write = ""
175 for i in image:
176 to_write += str(i) + ":"
177 to_write = to_write [:-1] + "\n"
178 audit.write(to_write)
179 audit.close()
180

181 # Example usage.
182 if __name__ == "__main__":
183 root = tk.Tk()
184 img_folder = "path_to_your_images_folder"
185 app = ImageNavigator(root , img_folder)
186 root.mainloop ()

Appendix G

scripts/app.py
1 """
2 Author: Alexandre De Groodt
3

4 This script scans for pictures on one’s facebook profile for the
faces of the protected person list.

5 """
6

7 import requests
8 import cv2
9 import numpy as np

10 import os
11

12 ACCESS_TOKEN = ""
13 GRAPH_API_URL =

"https :// graph.facebook.com/v22 .0/me/posts?fields="+
14 "full_picture ,name ,place&access_token=" + ACCESS_TOKEN
15

16 # Load OpenCV ’s pre -trained face detector
17 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades +

’haarcascade_frontalface_default.xml’)
18

19 # Load known faces
20 KNOWN_FACES_DIR = "../ protectees"
21 known_face_descriptors = []
22 known_face_names = []
23 orb = cv2.ORB_create(nfeatures =1000)
24 sift = cv2.SIFT_create ()
25

26 for file_name in os.listdir(KNOWN_FACES_DIR):
27 if file_name.endswith ((".jpg", ".png")):
28 image_path = os.path.join(KNOWN_FACES_DIR , file_name)
29 known_image = cv2.imread(image_path ,

cv2.IMREAD_GRAYSCALE)
30 if known_image is None:
31 print(f"Error loading image: {image_path}")
32 continue
33 known_image = cv2.equalizeHist(known_image)
34 keypoints , descriptor =

orb.detectAndCompute(known_image , None)
35

36 # If ORB fails , use SIFT
37 if descriptor is None or len(keypoints) == 0:
38 keypoints , descriptor =

sift.detectAndCompute(known_image , None)
39

40 if descriptor is not None:

101

102

41 # Convert all descriptors to float32 for
compatibility

42 descriptor = descriptor.astype(np.float32)
43 known_face_descriptors.append(descriptor)
44 known_face_names.append(os.path.splitext(file_name)[0])
45

46 # Function to check if a photo was taken in Belgium
47 def is_photo_in_belgium(photo):
48 if "place" in photo and "location" in photo["place"]:
49 location = photo["place"]["location"]
50 return location.get("country") == "Belgium"
51 return False
52

53 # Fetch photos from Facebook API
54 response = requests.get(GRAPH_API_URL)
55 data = response.json()
56 print(data)
57

58 for photo in data.get("data", []):
59 image_url = photo.get("images", [{}]) [0]. get("source") or

photo.get("full_picture")
60 if not image_url:
61 continue
62

63 img_response = requests.get(image_url)
64 img_array = np.asarray(bytearray(img_response.content),

dtype=np.uint8)
65 image = cv2.imdecode(img_array , cv2.IMREAD_COLOR)
66 gray_image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)
67

68 # Detect faces
69 faces = face_cascade.detectMultiScale(gray_image ,

scaleFactor =1.1, minNeighbors =5, minSize =(30, 30))
70

71 for (x, y, w, h) in faces:
72 face_roi = gray_image[y:y + h, x:x + w] # Extract face

region
73

74 keypoints , descriptor = orb.detectAndCompute(face_roi ,
None)

75 if descriptor is None or len(keypoints) == 0:
76 keypoints , descriptor =

sift.detectAndCompute(face_roi , None)
77

78 if descriptor is not None:
79 # Convert to float32
80 descriptor = descriptor.astype(np.float32)
81

82 bf = cv2.BFMatcher(cv2.NORM_L2 , crossCheck=True) #
NORM_L2 for SIFT

83 best_match_count = 0
84 name = "Unknown"

APPENDIX G. SCRIPTS/APP.PY 103

85

86 for i, known_descriptor in
enumerate(known_face_descriptors):

87 # Ensure known descriptor is also float32
88 known_descriptor =

known_descriptor.astype(np.float32)
89

90 # ** Ensure same number of columns **
91 if descriptor.shape [1] !=

known_descriptor.shape [1]:
92 continue # Skip if dimensions don’t match
93

94 matches = bf.match(descriptor , known_descriptor)
95 if len(matches) > best_match_count:
96 best_match_count = len(matches)
97 name = known_face_names[i]
98

99 # Draw rectangle and label
100 cv2.rectangle(image , (x, y), (x + w, y + h), (0, 255,

0), 2)
101 cv2.putText(image , name , (x, y - 10),

cv2.FONT_HERSHEY_SIMPLEX , 0.9, (0, 255, 0), 2)
102

103 cv2.imshow(’Face Detection - Belgium Only’, image)
104 cv2.waitKey (0)
105 cv2.destroyAllWindows ()

Appendix H

requirements.txt
1 albucore ==0.0.24
2 albumentations ==2.0.7
3 annotated -types ==0.7.0
4 beautifulsoup4 ==4.13.4
5 bs4 ==0.0.2
6 certifi ==2025.4.26
7 charset -normalizer ==3.4.2
8 cmake ==4.0.2
9 colorama ==0.4.6

10 coloredlogs ==15.0.1
11 contourpy ==1.3.2
12 cycler ==0.12.1
13 Cython ==3.1.1
14 dlib ==19.24.9
15 easydict ==1.13
16 flatbuffers ==25.2.10
17 fonttools ==4.58.0
18 humanfriendly ==10.0
19 idna ==3.10
20 imageio ==2.37.0
21 imutils ==0.5.4
22 insightface ==0.7.3
23 joblib ==1.5.1
24 kiwisolver ==1.4.8
25 lazy_loader ==0.4
26 matplotlib ==3.10.3
27 mpmath ==1.3.0
28 networkx ==3.4.2
29 numpy ==2.2.6
30 onnx ==1.18.0
31 onnxruntime ==1.22.0
32 opencv -python ==4.11.0.86
33 opencv -python -headless ==4.11.0.86
34 packaging ==25.0
35 pillow ==11.2.1
36 prettytable ==3.16.0
37 protobuf ==6.31.0
38 pydantic ==2.11.5
39 pydantic_core ==2.33.2
40 pyparsing ==3.2.3
41 pyreadline3 ==3.5.4
42 python -dateutil ==2.9.0. post0
43 PyYAML ==6.0.2
44 requests ==2.32.3
45 scikit -image ==0.25.2
46 scikit -learn ==1.6.1

104

APPENDIX H. REQUIREMENTS.TXT 105

47 scipy ==1.15.3
48 simsimd ==6.2.1
49 six ==1.17.0
50 soupsieve ==2.7
51 stringzilla ==3.12.5
52 sympy ==1.14.0
53 threadpoolctl ==3.6.0
54 tifffile ==2025.5.10
55 tqdm ==4.67.1
56 typing -inspection ==0.4.1
57 typing_extensions ==4.13.2
58 urllib3 ==2.4.0
59 wcwidth ==0.2.13

Appendix I

.gitignore
1 venv/*
2 results */
3 protectees /*
4 offline_files /*
5 __pycache__/
6 scanned_urls.txt
7 .utils.py.*
8 log.txt

106

Bibliography
[1] A. CREFF, G.C.: Publication date: 2025-05-24. , Last ac-

cessed: 2025-05-28. , https://www.tf1.fr/fr-be/tf1/jt-20h/videos/
reconnaissance-faciale-jusquou-peut-on-aller-73127861.html, section:
Journal de 20 heures [Cited on pages 3 and 20.]

[2] Abdelbar, A., et al.: Publication date: 2024-10-22. Last accessed: 2025-03-26. [Cited on

pages 6, 14, 16, and 21.]

[3] Anton: , Last accessed: 2025-05-30. , https://www.hackster.io/gr1m/
raspberry-pi-facial-recognition-16e34e [Cited on pages VI and 8.]

[4] Big Brother Watch: Publication date: 2023-05-23. , Last accessed: 2025-05-13. ,
https://www.youtube.com/watch?v=bX-Yxy1ESAQ [Cited on page 3.]

[5] bigvisionai: , Last accessed: 2025-05-26. , https://colab.research.google.
com/github/bigvisionai/upgrad_alumni_workshop_day2/blob/master/face_
recognition/OpenCV_DNN_Face_Detection_Recognition.ipynb [Cited on page 36.]

[6] Bivona, A.: Publication date: 2020-11-21. , Last ac-
cessed: 2025-05-26. , https://towardsdatascience.com/
a-tutorial-on-scraping-images-from-the-web-using-beautifulsoup-206a7633e948/
[Cited on page 47.]

[7] Bolhasani, H., Marandinejad, M.: Deep neural networks accelerators with focus on
tensor processors Publication date: 2024-03-01. , Last accessed: 2025-05-30. [Cited on

pages VI and 7.]

[8] Bonifacic, I.: Publication date: 2020-02-05. , Last accessed: 2025-04-27. , https://
www.proquest.com/docview/2351699400, place: New York, United States. Publisher:
Apollo Global Management [Cited on page 4.]

[9] Brown, M.A., Gruen, A., Maldoff, G., Messing, S., Sanderson, Z., Zimmer, M.: Publi-
cation date: 2024-12-19. , Last accessed: 2025-05-13. , http://arxiv.org/abs/2410.
23432 [Cited on pages 18, 19, and 33.]

[10] Brownlee, J.: Publication date: 2022-07-10. , Last accessed: 2025-06-01. , https:
//superfastpython.com/multiprocessing-pool-map_async/ [Cited on page 50.]

[11] Byler, D.: Producing ’enemy intelligence’: Information infrastructure and the smart
city in northwest china Publication date: 2022. , place: Austin Publisher: University
of Texas Press [Cited on pages 3 and 20.]

[12] Carattino, A.: , Last accessed: 2025-06-01. , https://pythonforthelab.com/blog/
differences-between-multiprocessing-windows-and-linux [Cited on page 44.]

[13] Castro, Daniel, M.M.: Publication date: 2020-01-27. , Last ac-
cessed: 2025-05-11. , https://itif.org/publications/2020/01/27/
critics-were-wrong-nist-data-shows-best-facial-recognition-algorithms/
[Cited on pages 16 and 17.]

107

https://www.tf1.fr/fr-be/tf1/jt-20h/videos/reconnaissance-faciale-jusquou-peut-on-aller-73127861.html
https://www.tf1.fr/fr-be/tf1/jt-20h/videos/reconnaissance-faciale-jusquou-peut-on-aller-73127861.html
https://www.hackster.io/gr1m/raspberry-pi-facial-recognition-16e34e
https://www.hackster.io/gr1m/raspberry-pi-facial-recognition-16e34e
https://www.youtube.com/watch?v=bX-Yxy1ESAQ
https://colab.research.google.com/github/bigvisionai/upgrad_alumni_workshop_day2/blob/master/face_recognition/OpenCV_DNN_Face_Detection_Recognition.ipynb
https://colab.research.google.com/github/bigvisionai/upgrad_alumni_workshop_day2/blob/master/face_recognition/OpenCV_DNN_Face_Detection_Recognition.ipynb
https://colab.research.google.com/github/bigvisionai/upgrad_alumni_workshop_day2/blob/master/face_recognition/OpenCV_DNN_Face_Detection_Recognition.ipynb
https://towardsdatascience.com/a-tutorial-on-scraping-images-from-the-web-using-beautifulsoup-206a7633e948/
https://towardsdatascience.com/a-tutorial-on-scraping-images-from-the-web-using-beautifulsoup-206a7633e948/
https://www.proquest.com/docview/2351699400
https://www.proquest.com/docview/2351699400
http://arxiv.org/abs/2410.23432
http://arxiv.org/abs/2410.23432
https://superfastpython.com/multiprocessing-pool-map_async/
https://superfastpython.com/multiprocessing-pool-map_async/
https://pythonforthelab.com/blog/differences-between-multiprocessing-windows-and-linux
https://pythonforthelab.com/blog/differences-between-multiprocessing-windows-and-linux
https://itif.org/publications/2020/01/27/critics-were-wrong-nist-data-shows-best-facial-recognition-algorithms/
https://itif.org/publications/2020/01/27/critics-were-wrong-nist-data-shows-best-facial-recognition-algorithms/

108 BIBLIOGRAPHY

[14] Clayton, T.: Publication date: 2025-02-11. , Last accessed: 2025-05-12. , https:
//rigorousthemes.com/blog/best-pimeyes-alternatives/ [Cited on page 8.]

[15] Clothier, E., Michalski, D., Malec, C., Nowina-Krowicki, M.: Are contemporary facial
recognition algorithms making human facial comparison performance worse? Publi-
cation date: 2024. , place: Ireland Publisher: Elsevier B.V [Cited on page 22.]

[16] CNN Business: Publication date: 2020-02-10. , Last accessed: 2025-04-28. , https:
//www.youtube.com/watch?v=pGJNXG2vmZw [Cited on pages 8, 17, and 20.]

[17] Commission, E.: Publication date: 2025-05-23. , Last accessed: 2025-05-28. , https:
//digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai [Cited

on pages 3, 9, and 18.]

[18] Daniels, T.: Publication date: 2023-07-13. , Last accessed: 2025-06-02. , https:
//www.lapseoftheshutter.com/photography-statistics/, section: Articles [Cited

on page 1.]

[19] Edmond, G., White, D., Towler, A., Roque, M.S., Kemp, R.: Facial recognition and
image comparison evidence: Identification by investigators, familiars, experts, super-
recognisers and algorithms Publication date: 2021. , Last accessed: 2025-05-12. , num
Pages: 99-160 Place: Melbourne, Australia Publisher: Melbourne University Law
Review Association Inc. [Cited on page 22.]

[20] of Europe, C.: , Last accessed: 2025-05-28. , https://www.coe.int/en/web/
artificial-intelligence [Cited on page 3.]

[21] Evtimov, I., Sturmfels, P., Kohno, T.: FoggySight: A scheme for facial lookup privacy
Publication date: 2021-07-01. , Last accessed: 2025-04-27. [Cited on page 25.]

[22] Financieras, C.N.: Publication date: 2022-06-13. Last accessed: 2025-04-27. , pub-
lisher: ContentEngine LLC, a Florida limited liability company [Cited on pages 1 and 8.]

[23] Firc, A., Malinka, K., Hanáček, P.: Deepfakes as a threat to a speaker and facial
recognition: An overview of tools and attack vectors Publication date: 2023-04. , Last
accessed: 2025-03-23. [Cited on page 22.]

[24] Fussey, P., Davies, B., Innes, M.: ‘assisted’ facial recognition and the reinvention
of suspicion and discretion in digital policing Publication date: 2021-02-26. , Last
accessed: 2025-03-23. [Cited on page 22.]

[25] Fábián, I., Gulyás, G.G.: A comparative study on the privacy risks of face recognition
libraries Publication date: 2021. , place: Szeged Publisher: Laszlo Nyul [Cited on pages

15, 17, and 47.]

[26] gracelm: Publication date: 2021-11-02. , Last accessed: 2025-05-28. , https://about.
fb.com/news/2021/11/update-on-use-of-face-recognition/ [Cited on page 24.]

[27] Grother, P., Ngan, M., Hanaoka, K.: Publication date: 2019-12. , Last accessed: 2025-
05-30. , https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf [Cited on

page 17.]

[28] Hak5: Publication date: 2020-06-15. , Last accessed: 2025-05-13. , https://www.
youtube.com/watch?v=tbdcL5Ux-9Y [Cited on page 24.]

https://rigorousthemes.com/blog/best-pimeyes-alternatives/
https://rigorousthemes.com/blog/best-pimeyes-alternatives/
https://www.youtube.com/watch?v=pGJNXG2vmZw
https://www.youtube.com/watch?v=pGJNXG2vmZw
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://www.lapseoftheshutter.com/photography-statistics/
https://www.lapseoftheshutter.com/photography-statistics/
https://www.coe.int/en/web/artificial-intelligence
https://www.coe.int/en/web/artificial-intelligence
https://about.fb.com/news/2021/11/update-on-use-of-face-recognition/
https://about.fb.com/news/2021/11/update-on-use-of-face-recognition/
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf
https://www.youtube.com/watch?v=tbdcL5Ux-9Y
https://www.youtube.com/watch?v=tbdcL5Ux-9Y

BIBLIOGRAPHY 109

[29] Helper, D.: , Last accessed: 2025-05-13. , https://www.dmca.com/FAQ/
What-is-a-DMCA-Takedown [Cited on page 9.]

[30] Hill, K.: Publication date: 2021-11-23. Last accessed: 2025-06-01. [Cited on page 7.]

[31] JIA, P.: , Last accessed: 2025-06-01. , https://github.com/deepinsight/
insightface/issues/2394 [Cited on page 51.]

[32] Kumar, H.: , Last accessed: 2025-05-30. , https://kharshit.github.io/blog/2018/
09/28/generative-models-and-generative-adversarial-networks [Cited on pages VI

and 15.]

[33] Learning, G.: , Last accessed: 2025-05-26. , https://www.mygreatlearning.com/
academy/learn-for-free/courses/face-detection-with-opencv-in-python
[Cited on page 34.]

[34] Li, M.: Research and analysis of facial recognition based on FaceNet, DeepFace, and
OpenFace Publication date: 2025. , Last accessed: 2025-04-01. , publisher: EDP
Sciences [Cited on pages 6, 14, and 15.]

[35] Logan, B.E.: Publication date: 2025-04-10. , Last accessed: 2025-05-13.
, https://en.wikipedia.org/w/index.php?title=HiQ_Labs_v._LinkedIn&oldid=
1284918689, page Version ID: 1284918689 [Cited on page 18.]

[36] MalcomVetter, T.: Publication date: 2024-02-20. , Last accessed: 2025-05-30. , https:
//malcomvetter.medium.com/deep-deep-fakes-d4507c735f44 [Cited on pages VI and 21.]

[37] McSorley, T.: The case for a ban on facial recognition surveillance in canada Publi-
cation date: 2021. , place: Kingston Publisher: Surveillance Studies Network [Cited on

pages 1, 3, 4, and 23.]

[38] Media, O.: , Last accessed: 2025-05-30. , https://embeddedcomputing.com/
technology/ai-machine-learning/ai-logic-devices-worload-acceleration/
iwave-i-mx8m-mini-board-with-nxp-eiq-ml-software-enables-low-cost-facial-recognition-system
[Cited on pages VI and 6.]

[39] Mitchum, R.: Publication date: 2020-08-03. , Last ac-
cessed: 2025-05-13. , https://news.uchicago.edu/story/
new-tool-protect-yourself-against-facial-recognition-software [Cited on

page 10.]

[40] N, A., Anusudha, K.: Real time face recognition system based on YOLO and Insight-
Face Publication date: 2024. , place: New York Publisher: Springer US [Cited on pages 7

and 16.]

[41] Nachmani, O., Saun, T., Huynh, M., Forrest, C.R., McRae, M.: “facekit”—toward
an automated facial analysis app using a machine learning–derived facial recognition
algorithm Publication date: 2023-11. , Last accessed: 2025-03-23. [Cited on pages 16 and 21.]

[42] Nagella, V.S.: Publication date: 2019-12-26. , Last accessed: 2025-05-25. , https://
medium.com/@sasi24/cosine-similarity-vs-euclidean-distance-e5d9a9375fc8
[Cited on page 38.]

https://www.dmca.com/FAQ/What-is-a-DMCA-Takedown
https://www.dmca.com/FAQ/What-is-a-DMCA-Takedown
https://github.com/deepinsight/insightface/issues/2394
https://github.com/deepinsight/insightface/issues/2394
https://kharshit.github.io/blog/2018/09/28/generative-models-and-generative-adversarial-networks
https://kharshit.github.io/blog/2018/09/28/generative-models-and-generative-adversarial-networks
https://www.mygreatlearning.com/academy/learn-for-free/courses/face-detection-with-opencv-in-python
https://www.mygreatlearning.com/academy/learn-for-free/courses/face-detection-with-opencv-in-python
https://en.wikipedia.org/w/index.php?title=HiQ_Labs_v._LinkedIn&oldid=1284918689
https://en.wikipedia.org/w/index.php?title=HiQ_Labs_v._LinkedIn&oldid=1284918689
https://malcomvetter.medium.com/deep-deep-fakes-d4507c735f44
https://malcomvetter.medium.com/deep-deep-fakes-d4507c735f44
https://embeddedcomputing.com/technology/ai-machine-learning/ai-logic-devices-worload-acceleration/iwave-i-mx8m-mini-board-with-nxp-eiq-ml-software-enables-low-cost-facial-recognition-system
https://embeddedcomputing.com/technology/ai-machine-learning/ai-logic-devices-worload-acceleration/iwave-i-mx8m-mini-board-with-nxp-eiq-ml-software-enables-low-cost-facial-recognition-system
https://embeddedcomputing.com/technology/ai-machine-learning/ai-logic-devices-worload-acceleration/iwave-i-mx8m-mini-board-with-nxp-eiq-ml-software-enables-low-cost-facial-recognition-system
https://news.uchicago.edu/story/new-tool-protect-yourself-against-facial-recognition-software
https://news.uchicago.edu/story/new-tool-protect-yourself-against-facial-recognition-software
https://medium.com/@sasi24/cosine-similarity-vs-euclidean-distance-e5d9a9375fc8
https://medium.com/@sasi24/cosine-similarity-vs-euclidean-distance-e5d9a9375fc8

110 BIBLIOGRAPHY

[43] Nonis, F., Dagnes, N., Marcolin, F., Vezzetti, E.: 3d approaches and challenges in
facial expression recognition algorithms—a literature review Publication date: 2019-
09-18. , Last accessed: 2025-03-23. [Cited on pages 16 and 21.]

[44] Rezende, I.N.: Facial recognition in police hands: Assessing the ‘clearview case’ from
a european perspective Publication date: 2020-09-01. , Last accessed: 2025-04-29. ,
publisher: SAGE Publications Ltd STM [Cited on pages 1, 9, 18, and 23.]

[45] Rosebrock, A.: Publication date: 2021-04-19. , Last accessed: 2025-05-26. , https://
pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/ [Cited

on page 47.]

[46] Roussi, A.: Resisting the rise of facial recognition Publication date: 2020-11-19. , Last
accessed: 2025-03-23. [Cited on page 3.]

[47] Saleem, A.: , Last accessed: 2025-05-30. , https://datasciencedojo.com/blog/
eu-ai-act/ [Cited on pages VI and 2.]

[48] Schuetz, P.N.: Publication date: 2021. Last accessed: 2025-03-23. [Cited on pages 16 and 17.]

[49] Shan, S., Wenger, E., Zhang, J., Li, H., Zheng, H., Zhao, B.Y.: Publication date:
2020-06-23. Last accessed: 2025-05-13. , place: Ithaca, United States Publisher: Cor-
nell University Library, arXiv.org Section: Computer Science; Statistics University:
Cornell University Library arXiv.org [Cited on pages 1, 24, and 25.]

[50] Smyth, J.C.: Publication date: 2021-05-05. , Last ac-
cessed: 2025-05-13. , https://apnews.com/article/
race-and-ethnicity-health-coronavirus-pandemic-business-technology-e4266250f7e2d691d4d664735c2c6bc0
[Cited on page 3.]

[51] Swan, B.: Publication date: 2020-02-26. , Last accessed: 2025-04-27. , https://www.
proquest.com/docview/2364730449/citation/41CE0967427149ABPQ/1, place: New
York, United States Publisher: The Newsweek/Daily Beast Company LLC [Cited on

page 23.]

[52] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deep-
fakes and beyond: A survey of face manipulation and fake detection Publication date:
2020-12. , Last accessed: 2025-03-23. [Cited on page 21.]

[53] Vadlapati, J., Senthil Velan, S., Varghese, E.: Facial recognition using the OpenCV
libraries of python for the pictures of human faces wearing face masks during the
COVID-19 pandemic. In: 2021 12th International Conference on Computing Commu-
nication and Networking Technologies (ICCCNT). Publication date: 2021-07. . Last
accessed: 2025-05-13. [Cited on pages 10 and 26.]

[54] Wankhede, C.: Publication date: 2022-08-16. , Last accessed: 2025-04-28. , https:
//www.androidauthority.com/face-unlock-smartphones-3043993 [Cited on page 6.]

[55] WIRED: Publication date: 2022-07-06. , Last accessed: 2025-05-13. , https://www.
youtube.com/watch?v=9Xg-7FfLIVw [Cited on page 3.]

[56] Wu, W., Peng, H., Yu, S.: YuNet: A tiny millisecond-level face detector Publication
date: 2023-10-01. , Last accessed: 2025-04-01. [Cited on page 15.]

https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/
https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/
https://datasciencedojo.com/blog/eu-ai-act/
https://datasciencedojo.com/blog/eu-ai-act/
https://apnews.com/article/race-and-ethnicity-health-coronavirus-pandemic-business-technology-e4266250f7e2d691d4d664735c2c6bc0
https://apnews.com/article/race-and-ethnicity-health-coronavirus-pandemic-business-technology-e4266250f7e2d691d4d664735c2c6bc0
https://www.proquest.com/docview/2364730449/citation/41CE0967427149ABPQ/1
https://www.proquest.com/docview/2364730449/citation/41CE0967427149ABPQ/1
https://www.androidauthority.com/face-unlock-smartphones-3043993
https://www.androidauthority.com/face-unlock-smartphones-3043993
https://www.youtube.com/watch?v=9Xg-7FfLIVw
https://www.youtube.com/watch?v=9Xg-7FfLIVw

	Abstracts
	Abstract

	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivations
	Context

	Project Statement & Contributions
	Problem Statement
	Contributions

	Organization of this Document

	Background
	Facial Recognition
	Web Scraping
	Online Recognition Platforms
	Legal Considerations
	Defensive Techniques and Limitations

	Literature Review, State of the Art, Definitions, and Notations
	Introduction
	From Research Problem to Sub-Questions
	Definitions
	Principles and Operation of Facial Recognition
	Overview of Deep Learning Approaches
	Facial Recognition
	Models Limitations

	Mitigations
	Algorithmic Bias in Facial Recognition
	Mitigation Strategies
	Web Scraping for Facial Recognition: Practical and Ethical Considerations

	Real-World Applications and Effects
	Deployment Contexts
	Deepfakes and Their Interplay with Facial Recognition
	Impact on Human Performance
	Clearview AI and the European Perspective
	Potential Solutions and the Path Forward
	Techniques for Avoidance
	Effectiveness and Limitations

	Review Methodology
	Literature Review Methodology

	Summary of the State of the Art

	Project Mission, Objectives, and Requirements
	Overview and Objectives
	Anticipated Risks and Limitations
	Requirements
	List of Requirements and Dependencies
	Requirements Covered by the State of the Art
	Requirements Not Fully Covered by the State of the Art

	Project Scoping
	Mission Statement
	Explicit Out-of-Scope Elements

	Testing

	Good Practice Guide
	Implementation & Testing
	Methodology
	Planning
	Setup, Requirements, Environment, Tools & Materials
	System Requirements
	Virtual Environment Setup (Recommended)
	Package Installation

	Implementation Overview
	Script and Folder Structure
	OpenCV Integration
	Initial Face Capture
	Basic Facial Recognition
	Picture Annotation
	Dataset
	Logging System
	Audit System
	Threading and Performance Considerations
	Web Scraping
	Final Tests

	Final Script
	Recovery
	Usage Overview
	Code Execution Graph
	Configuration
	Security Flaws and Limitations
	Areas for Improvement

	Experimentation Conclusions

	Conclusions
	Privacy Concerns
	Future Work

	main.py
	scripts/settings.py
	face.py
	README.md
	scraping.py
	ui.py
	scripts/app.py
	requirements.txt
	.gitignore
	Bibliography

