Advances in Knowledge-Based Systems, Data Science, and Cybersecurity Received18-09-2025; Accepted 19-11-2025; Published27-11-2025

Uncovering Malicious Persistence: Machine Learning-Based Detection
of Windows Scheduled Tasks

Khaled Rahal k.rahal@cylab.be
Cyber Defence Lab, Royal Military Academy
Royal Military Academy
Université Libre de Bruxelles
Rue Hobbema 8, 1000 Bruxelles

Arbia Riahi a.riahi@cylab.be
Cyber Defence Lab, Royal Military Academy
Rue Hobbema 8, 1000 Bruxelles

Georgi Nikolov g.nikolov@cylab.be
Cyber Defence Lab, Royal Military Academy
Rue Hobbema 8, 1000 Bruxelles

Thibault Debatty t.debatty@cylab.be
Cyber Defence Lab, Royal Military Academy
Rue Hobbema 8, 1000 Bruxelles

Jean-Michel Dricot jean-michel.dricot@ulb.be
Ecole Polytechnique — Embedded Systems Design Security

Université Libre de Bruxelles

Avenue F.D. Roosevelt, 50 — 1050 Bruxelles

Corresponding Author: Khaled Rahal

Copyright © 2025 Khaled Rahal. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract

Advanced Persistent Threats (APT) represent a serious security concern because they carry
out long-term and carefully planned attacks. While a lot of research has gone into finding
ways to detect these threats; one crucial area often gets less attention, namely the persistence
mechanisms that allow attackers to stay hidden and maintain access to systems over time. In
this work, we investigate scheduled tasks, a widely used persistence technique in Windows
environments, and analyze their role in APT operations. We conducted an in-depth study
of how attackers leverage scheduled tasks to maintain stealthy access and execute malicious
actions over time. We introduce Detecting APT Through Malicious Scheduled Tasks (DAP-
TASK), an approach that leverages Sysmon log data, Word2 Vec-based feature representation,
and Machine Learning (ML) classifiers to identify malicious scheduled tasks commonly used
in APT persistence techniques. Our approach achieves a high detection performance, with an
F1-score 0£95.19%. Furthermore, we provide a labeled dataset, which can serve as a valuable
resource for researchers developing APT detection methods, the dataset and the code used

310

Citation: Khaled Rahal et al. Uncovering Malicious Persistence: Machine Learning-Based Detection of Windows Scheduled Tasks.
Advances in Knowledge-Based Systems, Data Science, and Cybersecurity.Research 2025;2(3):16.

Page No. 310-336



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

are publicly available at https://gitlab.cylab.be/cylab/daptask. Our approach enhances APT
detection by addressing persistence techniques, a critical yet often neglected attack vector.

Keywords: APT, Windows Scheduled Task, Persistence, ML, Text Embeddings

1. INTRODUCTION

Nowadays, information systems are growing rapidly and becoming increasingly complicated in
terms of both users and applications, which provides a favorable environment for a quick cyberat-
tacks development. APT are an example of attacks, with a significant impact on the cybersecurity
market, responsible for a heavy focus and investing into cyber security solutions. Therefore, the
protection market is projected to surpass 23 billion U.S. dollars by 2028, up from the 10 billion
U.S. dollars projected in 2024 [1]. The SolarWinds APT attack, attributed to APT29, is estimated
to have caused losses of up to 90 million U.S. dollars [2]. Given the substantial risk associated with
APT, most existing research emphasizes their detection at a holistic level, addressing the full attack
lifecycle, which contradicts the nature of APT [3]. Recent studies have started to shift towards
the detection of individual attack stages, such as lateral movement or command and control [4-9].
However, the cornerstone of a successful APT attack is persistence [10], which allows threat actors
to persist unnoticed and advance through additional phases of their operation.

In this context, we focus on hunting Windows Scheduled Tasks (WST), a common and effective
method used in APT attacks [11], know for their effectiveness, stealthy nature, and widespread use in
maintaining long-term access to compromised systems. As a built-in feature of the operating system,
they often go unnoticed by security tools widely used for automation and legitimate administrative
operations, making them an ideal target for attackers seeking persistent footholds like APT41,
APT29, Lokibot, DEADEYE [11, 12].

To address the challenge of detecting stealthy persistence mechanisms in APT attacks, we propose
DAPTASK, a novel detection approach specifically designed to identify malicious WST. By com-
bining Word2 Vec-based embeddings with machine learning classifiers, DAPTASK captures subtle
semantic patterns in Sysmon logs, enabling effective detection of suspicious behavior at the moment
of task creation and execution which is often a key indicator of long-term system compromise.

Previously [13], we created a dataset of APT persistence techniques on Windows platforms, mapped
to the MITRE ATT&CK Framework. In this work, we enhance our dataset for DAPTASK, to be
more effective in detecting malicious WST, ensuring that it aligns with the unique patterns and
behaviors indicative of APT activity.

This paper addresses the gap in detecting scheduled task-based persistence by the following three-
fold contributing:

1. Conducting an in-depth study by analyzing how WST are used as a persistence technique in
APT.

2. Providing a dedicated pre-processing and labeled dataset of WST events, specifically crafted
to support research in anomaly detection and facilitate malicious scheduled task identification.

311



https://cybersecurityjournal.info/| 2025 Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

3. Utilizing text embedding techniques, such as Word2Vec, along with ML classifiers to detect
and classify malicious WST based on subtle patterns in their metadata.

The structure of this paper is as follows. Section 2 reviews related work on detecting persistence
techniques, with a particular focus on WST. Section 3 explores the creation of WST-based per-
sistence techniques and their role in APT operations. Section 4 presents the overall approach
proposed in this work. Section 5 describes the data preparation process (enhancement, labeling, and
feature engineering). Section 6 details the experimental setup and presents the results obtained from
evaluating the proposed DAPTask approach. Finally, Section 7 concludes the paper and discusses
directions for future research.

2. RELATED WORK

When conducting our research, we first explored the APT lifecycle from a general perspective,
gradually narrowing our focus to the persistence stage, TABLE 1 summarizes various APT detection
approaches, including ML, rule-based detection, provenance graph frameworks.

Several studies have proposed approaches to detect APT activities across various stages of the
attack lifecycle. In [14] the authors leverage rule-based and provenance graph to identify known
attack behaviors in real time by matching observed system events to predefined tactics, techniques,
and procedures (TTP). The authors in [15] apply ML combined with provenance based graphs to
reconstruct and visually explain attacker behavior. Provenance graph techniques have also been
used to detect unusual execution patterns during initial compromise and data exfiltration phases by
tracing anomalous sequences of actions [16]. More broadly, ML approaches span several stages, ap-
plying learning models to detect APT campaigns holistically [17]. Additionally, behavior mapping
techniques align individual observed techniques with their corresponding APT tactics, providing
structured insight into the attacker’s overall strategy [18]

[4, 19] focus specifically on detecting lateral movement, tackling the challenge of identifying how
attackers move laterally across networks to escalate privileges or access different systems. Simi-
larly, [5, 6, 20] concentrate on detecting command and control (C2) activity, to uncover the com-
munication channels connecting compromised machines with external attackers.

Meanwhile, Some research efforts have specifically addressed the persistence phase by leveraging
the MITRE ATT&CK framework. The study in [21] links Windows malware samples to persistence
tactics by identifying the mechanisms used to maintain access. Similarly, [7, 8] analyze various
persistence methods found in Windows malware and map them to specific ATT&CK techniques.
In addition, [9] proposes a taxonomy of persistence techniques aimed at facilitating the detection of
previously unseen methods and guiding the appropriate defensive strategies.

Cyber Persistence Detector (CPD) [10] is a system designed to detect cyber persistence through
provenance analytics, by introducing pseudo edges for connections between the persistence setup
and the execution phases, this approach is rule-based and relies on pseudo-dependency edges and
necessitates analyzing both the setup and execution stages to enable detection. As aresult, it requires
frequent updates and its effectiveness in early detection is limited.

312



https://cybersecurityjournal.info/ | 2025

Khaled Rahal et al.

The authors in [22] introduce novel methodologies for proactive threat hunting, leveraging Elas-
ticSearch as a SIEM solution for real-time threat analysis. To improve cybersecurity resilience by
utilizing advanced query languages, and focusing on uncovering hidden adversaries, it relies on
rule-based methods and does not specifically focus on WTS.

None of these listed approaches addresses the detection of WST. While some works focus on per-
sistence techniques, they primarily rely on rule-based methods rather than ML. This gap highlights

the need for targeted research and detection strategies for WST using ML.

Authors APT Life Cycle Methods Goal Approach
[14] APT Kill Chain Rule-based  Real-time detection of APT Detects APT by matching ob-
campaigns served behaviors to TTP
[15] C2, LM, Privilege ML Reconstruct and explain APT  Provenance-based graphs
Escalation behaviors via visual attack (attacker paths maping and
stories interpretable alerts generation)
[16] Initial Provenance =~ Anomalous execution behav-  Graph sketches (unusual
Compromise, LM, graphs iors capture sequences of actions tracing)
Data Exfiltration
[17] Reconnaissance, ML APT detection using learning ML over several attack stages
Initial models
Compromise, LM,
Data Exfiltration
[18] APT Kill Chain Behavior Techniques matching to a Technique-to-tactic mapping
Map- ping specific APT tactic
[19] LM Rule-based Forensic analysis of lateral Predefined rules (analysis of
movement Sysmon logs)
[4] LM ML Identify suspicious internal Supervised models training on
movements Sysmon data
[20] C2 Behavior- Provide real-time detection Multi-Agent System for APT
based of C2 Detection (MASFAD)
[5] C2 Rule-based  Recognize covert communi- Patterns and metadata analysis
cation (potential C2 behavior identifi-
cation)
[6] C2 ML Detect botnet traffic Behavioral patterns recognition
[21] Persistence Malware Identify persistence capabili- Link malware behaviors to
Analysis ties MITRE techniques
[7, 8] Persistence Behavior Understand persistence Map persistence behaviors to
Mapping mechanisms in malware ATT&CK techniques
samples
[9] Persistence Analytical A taxonomy of persistence Detailed classification construc-
framework techniques tion
[10] Persistence Rule-based  Link persistent threats to Persistence setup correlation
their operational footprints with later execution activities
[22] Persistence Rule-based  Proactive threat hunting in ElasticSearch SIEM (registry

Windows environments

modifications and user account
creation tracking)

Table 1: APT Detection Approaches

313



https://cybersecurityjournal.info/| 2025 Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

3. SCHEDULED TASKS AS A PERSISTENCE TECHNIQUE

In this section, we focus specifically on WST a commonly exploited technique due to their nature
as a built-in feature of the Windows operating system, widely used for legitimate automation. This
functionality is often abused by APT actors to achieve stealthy and resilient persistence. Their deep
integration into system operations allows malicious tasks to evade traditional security mechanisms,
enabling adversaries to maintain long-term access and execute payloads with minimal visibility. By
targeting WST, we address a high-impact and frequently overlooked technique, aiming to improve
early stage detection of APT activity.

3.1 Scheduled Tasks Operation

The strategic use of this method can be particularly advantageous for attackers because it allows
them to craft their malicious tasks to appear benign, using naming conventions and execution times
that mimic legitimate operations. For example, an attacker might schedule a task to run during peak
usage hours, blending it with normal system activity to avoid detection. This stealthy approach
underscores the need for organizations to implement robust monitoring and alert mechanisms that
can differentiate between legitimate and potentially malicious task executions. To better understand
the critical role of WST within the APT lifecycle, the Kimsuky APT group uses scheduled tasks
not only to maintain persistence but also to regularly trigger malware execution every 41 minutes
[23]. This mechanism enables the malware to connect to its C2 servers for receiving commands
and exfiltrating data, highlighting how WST acts as a reliable and stealthy scheduler that supports
continuous adversary control over compromised systems.

MITRE ATT&CK profiles around 181 different threat actor groups, highlighting the various tech-
niques they use to maintain persistence in compromised systems. Among these techniques, WST
(T1053.005) stands out, with 52 groups relying on it roughly 29% of the total [11]. This usage
makes it a prime candidate for deeper exploration, as understanding how adversaries use this tech-
nique can improve detection and response capabilities. The following section outlines the various
methods available within Windows systems to create scheduled tasks, providing insight into how
these mechanisms are leveraged as part of persistence strategies.

3.1.1 Methods for creating scheduled tasks

As illustrated in FIGURE 1, WST can be created using various methods, each offering different
levels of automation and flexibility [24]:

* GUI: the graphical interface allows users to manually configure tasks by specifying triggers
(e.g., system startup, user login or a timed schedule), actions (e.g., running a script or appli-
cation), and conditions (e.g., only when on AC power).

» Command: administrators can use powershell commands to automate task creation (FIGURE
2). Example:

$action = New-ScheduledTaskAction -Execute "notepad.exe"

314



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

-

Registry
Keys

Job
File

Command

Task Scheduler Service

Figure 1: Task Creation

$trigger = New-ScheduledTaskTrigger -AtStartup
Register-ScheduledTask -TaskName "MyTask" -Action $action -Trigger $trigger -User "SYSTEM"

* API: creation of programmatic tasks in languages such as C++,C#, etc. This method is often
exploited by malware to establish persistence while bypassing standard security monitoring.

Task

Command Line

v [ 1]

taskschd.msc

Powershell.exe Schtask.exe

Task Scheduler 2.0 |

Task Scheduler 1.0 |

|
v v v v v

| Create | Change | Run | End | | Delete

v v v v v v

Register-ScheduledTask Set-ScheduledTask

ScheduledTaskTrigger

| New-ScheduledTaskAction

| Stop-ScheduledTask

| Unregister-ScheduledTask

Figure 2: Example of Task Scheduler Creation methods

3.1.2 Storage and structure of scheduled tasks

Windows registry entries: maintain critical metadata for WST, allowing efficient tracking and
execution. Specifically, task-related information are stored in the following registry paths: These
registry keys contain task metadata (execution history, configuration parameters and Security De-
scriptors (SD)).

e HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache

e HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Schedule\Tasks

315



https://cybersecurityjournal.info/| 2025 Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

Task configuration files: in addition to the registry, WST are also represented as XML files stored
in:

C:\Windows\System32\Tasks ; and C:\Windows\Tasks

Each task has a corresponding XML file that defines its configuration settings, triggers, execution
conditions, and associated actions. To ensures easy parsing, modification, and forensic analysis.

3.1.3 Evasion techniques

Registry keys: involve directly modification the Windows Registry to create or alter WST. At-
tackers become able to avoid detection by bypassing the standard event logs related to task creation,
which would typically trigger alerts for security teams.

Delete SD: a Windows data structure that defines the access control and security settings of an
object, including its owner, permissions. When a SD is deleted, the associated object (file, directory,
or registry entry) may have its security settings compromised or removed, resulting in the application
of default permissions [25]. This can lead to many issues related to:

* Loss of access control,
* Security vulnerabilities,

* Auditing and compliance issues

Command obfuscation: Using Base64 encoding or PowerShell obfuscation techniques, making
it challenging for security systems to identify the payload.

Manipulating task parameters: WST run at very specific times or only under particular condi-
tions that are difficult for traditional monitoring to identify.

Backdoor tasks: exploit existing legitimate WST by injecting additional malicious actions, such
as executing scripts or launching malware, once the legitimate task is completed. This technique
allows adversaries to maintain persistence while evading detection by blending into normal system
operations.

4. PROPOSED APPROACH

Our approach, illustrated in FIGURE 3, for detecting malicious WST.

The proposed pipeline begins with the collection and preprocessing of events logs, where .evtx
files are converted into .csv format to enable downstream analysis. These logs are then labeled as
benign or malicious using ground truth data sources, such as expert annotations or controlled attack
simulations.

316



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Test log collection

Preprocessing

log collection

| Textual feature Domain-Based
K extraction Feature
Labeling Selection
'
i l Text
preprocessing
Textual feature Domain-Based ¥
extraction Feature
Selection
A4 N A
re r‘:;e::ssm Load W2vec Load classifier
prep 9 saved Model Saved Model
A
\
A 4 \ l
Classifier
- Text
Training M- L
(Benign, Malicious) Vectorization Prediction
4 \ 4 y
Text .
Vectorization < »| Save Models Evaluation
(a) Training Architecture (b) Evaluation/Prediction Architecture

Figure 3: Proposed architecture: (a) training phase and (b) evaluation phase using test logs.

Next, the pipeline performs feature extraction. Textual attributes like OriginalFileName, Image,
and CommandLine are extracted and preprocessed. A Word2Vec model is trained on the training
set to vectorize these textual features, capturing semantic relationships between terms. In parallel,
structured features are selected based on domain knowledge to reflect behaviors indicative of WST
persistence techniques.

These textual and domain-based features are combined into a unified feature set. A classifier is then
trained to distinguish between benign and malicious activity.

For evaluation and prediction, a new dataset composed of logs not seen during training is processed
through the same feature extraction and vectorization steps. The trained Word2Vec and classifier
model are loaded to perform inference. This ensures that the classifier is evaluated on unseen data,
simulating real-world deployment scenarios. The system outputs predictions and evaluation metrics
that reflect its generalization performance.

317



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

4.1 Technical Choices

We use Word2Vec, a natural language processing (NLP) technique, to convert the text found in
events logs into numerical vectors. Since these logs contain a lot of unstructured text, Word2Vec
transforms words into vectors such that words with similar meanings have similar vector represen-
tations. This allows us to preserve the context and relationships between words. Once the text is
vectorized, we feed with crafted feature into a classifier, which can then learn patterns and make
accurate predictions based on the combination of contextual meaning and domain based feature
selection. Both the classifier and the Word2Vec model are saved for use in future predictions. This
pipeline ensures that the system can reliably distinguish between benign and malicious activity in
Windows environments.

4.1.1 Log collection

While Windows Event Logs capture fundamental WST activity, they often lack the visibility needed
to uncover stealthier techniques employed by advanced attackers. In contrast, Sysmon [26] offers
enhanced insights by monitoring and recording detailed events related to WST. TABLE?2 shows how
specific Sysmon Event IDs aid in detecting malicious WST by offering an overview of their role in
monitoring process execution, file activities, registry modifications, and inter-process interactions,
which help uncover persistence mechanisms and stealthy behaviors, enabling security teams to
detect and analyze malicious behaviors more effectively. Unlike standard logs, Sysmon can:

 Capture process execution in real time (Event ID 1).

* Capture commandline arguments and their parent processes ( Event ID 1).
* Detect registry modifications related to scheduled tasks (Event ID 13,12).
Monitor dll loading (Event ID 7).

4.1.2 Text embeddings

Word2Vec [27] is an unsupervised learning algorithm that transforms words (or short sequences)
into numerical vectors while preserving their semantic relationships, captures contextual meaning
and similarities between different terms (e.g., commands, process names). We employed Word2 Vec,
a neural network-based method for learning continuous vector representations of words based on
their context. There are two main architectures in Word2Vec [27]:

* CBOW (Continuous Bag of Words): predicts a target word from its surrounding context
words.

» Skip-gram: predicts surrounding context words given a target word.

In our scenario, the extracted textual fields often contain rare or domain-specific terms (e.g., ex-
ecutable, task names, script commands). Based on studies [27, 28], Skip-gram performs better

318



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Event ID Name Goal

1 Process Creation detect anomalous task executions via process
creation and command-line arguments

2 A process changed a file creation time Identify timestomping through changes in file
creation timestamps

7 Image loaded DLL loading

10 ProcessAccess Identify suspicious inter-process interactions and
privilege escalation attempts

11 FileCreate dropped payloads or scripts executed via sched-
uled tasks

12 RegistryEvent (Object create and delete)  identify registry value created

13 RegistryEvent (Value Set) identify registry value modifications

15 FileCreateStreamHash reveal hidden cleanup behavior

17 PipeEvent (Pipe Created) uncover covert C2 channels

Table 2: Sysmon Event IDs with Names and Goals for Detecting Malicious WST

than CBOW in capturing meaningful representations for infrequent terms, making it well-suited for
cybersecurity logs where critical indicators may not appear frequently. Moreover, it can learn richer
semantic relationships even with limited data.

The Skip-gram model works by learning to guess the words that appear around a specific target
word, with the goal of increasing the chances of correctly identifying those nearby words [29]:

Nl =

T
D, 2, log Pl |w) (1)
t=1 -

c<j<c
Jj#0

where:

T is the total number of words,
* ¢ is the size of the context window,
* w; is the target word,

* w;4; are the surrounding context words.

4.1.3 ML classifier

Selecting an appropriate machine learning classifier is a crucial step that depends on the nature of the
data being analyzed. In our case, the dataset is derived from Sysmon logs, which capture detailed
and often intricate system activity. These logs exhibit complex interdependencies among features,
making it essential to use models that can effectively capture such rich and nuanced patterns.

319



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

To address this, we focus on classifiers that excel in modeling complex feature interactions, such as
decision trees, random forests, and gradient-boosting machines [30]. These models are well-suited
for detecting subtle, high-dimensional behavioral patterns. Using these advanced classifiers, we aim
to improve the system’s ability to identify sophisticated threats with greater accuracy and greater
resilience, especially in realistic environments where data patterns are rarely straightforward.

4.2 Persistence Dataset Overview

Since publicly available datasets focused on persistence techniques are limited, we build upon our
previous work [13], where we developed a dataset centered around persistence techniques. This
dataset includes realistic user profiles, simulated attack scenarios, and raw Windows log data. To
ensure comprehensive coverage, we employed a diverse array of persistence techniques during data
generation. Many of these simulations draw inspiration from known threat groups, such as APT29,
and incorporate a wide range of techniques commonly used to achieve persistence. These techniques
are mapped to the MITRE ATT&CK framework and captured through dedicated logging tools.

While the dataset covers how APT maintain long-term access, our focus shifts to a specific WST
technique. To better align the dataset with our research goals, we introduce an enhancement phase
aimed at integrating more WST samples, including evasion techniques used by threat actors. In the
next section, we detail how we enhanced the dataset, labeled key behaviors, and engineered features
to ensure the model could effectively learn to detect WST-based persistence.

5. DATA ENHANCEMENT AND FEATURE ENGINEERING

Detecting malicious WST is particularly challenging due to their dual-use nature. While adminis-
trators and legitimate applications rely on them for automation and system maintenance, adversaries
exploit the same functionality to evade detection, execute payloads at scheduled intervals, and
maintain persistence on compromised systems. This overlap between benign and malicious use
cases complicates the differentiation between normal system activity and threat actor behavior. As
discussed in Section 4.2, we expand the dataset’s coverage of scheduled task-based persistence by
using advanced simulation tools, including GhostTask [31], Cobalt Strike [32], SharpPersist [33],
and ScheduleRunner [34], each chosen for their ability to replicate realistic and evasive techniques
used by threat actors.

5.1 Dataset Labeling

As illustrated in FIGURE4, we labeled the datasets through several steps, by matching command-
line inputs to known malicious activity. However, due to the complexity of command-line argu-
ments, often containing special characters, varying structures, and escape sequences, we employed
fuzzy similarity matching [35]. This technique allows us to compare command-line entries even
when they are not exact matches, accounting for minor variations, typos, or encoded values. Specif-
ically, we applied fuzzy string-matching algorithms to measure the similarity between command
lines found in the dataset and those in the ground truth.

320



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Evtx Files

A 4

Command matching >

A 4

Path, Task name selection  [—3p|

gzco®mo

\ 4

Sysmon Labled

Registry key
finding >

IHc®mH

Process Hunting >

Figure 4: Dataset labeling

Beyond command-line analysis, we investigated paths, task name and registry keys associated with
WST. We also tracked the execution of specific processes linked to adversarial techniques as mention

n section 5.

No Feature Value
1 Name Microsoft-Windows-Sysmon
3 Opcode 0
4 Keywords 0x8000000000000000
5 Correlation 0
6  Channel Microsoft-Windows-Sysmon/Operational
7  State Started or 0
8  Version 15,15
9  SchemaVersion 490r0
10 Configuration sysmon.xml
11 ConfigurationFileHash SHA256(sysmon.xml)

Table 3: Example of Excluded Features and Values

Datasets Total Samples Benign Malicious

TAPD 77,294 73,689 3605
TAPD-V 11,148 10,440 708

Table 4: Overview of the Datasets

Since automated detection alone can introduce false positives or overlook subtle variations, we man-
ually reviewed the labeled entries [36] to make sure they accurately reflected malicious behavior. By
combining automated tools with expert human judgment, we were able to boost both the accuracy
and trustworthiness of our dataset labels. To further refine our method, we carried out a structured
feature selection process to pinpoint the most important attributes for telling apart malicious and
benign WST activity.

321



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

5.2 Data Preprocessing

Sysmon telemetry contains many textual features such as Image, CommandLine, and ParentCom-
mandLine which provide rich semantic context but also introduce high variance. To address this, we
use our enhanced datasets named Task-based APT Persistence Dataset (TAPD) and we implement
two parallel feature selection pipelines as show in FIGURE 3a, grounded in domain knowledge and
a detailed understanding of how WST operate within the Windows environment and we include
the aforementioned textual fields to capture semantic and contextual information. To evaluate
model performance and generalizability, we introduce a second dataset, Task-based APT Persistence
Dataset Validation (TAPD-V) , constructed using a distinct set of machines, configurations, and
temporal conditions. TAPD-V contains unseen data, including novel scheduled tasks used by APT
such as RedCurl, APT29, Kimsuky, and APT32, none of which appear in the TAPD dataset. This
setup enables us to rigorously assess how well models trained can generalize to new and previously
unobserved malicious behaviors. The feature construction process is consistent across both datasets,
facilitating meaningful comparison. The TABLE 4, presents an overview of the two datasets used in
our study, including the total number of samples in each dataset and the distribution between benign
and malicious instances. Irrelevant and redundant features were removed to reduce dimensionality
and improve computational efficiency. The list of excluded features is presented in TABLE 3.

5.3 Feature Engineering

Feature engineering refers to the process of transforming raw data into meaningful features that can
improve the performance of ML models.

5.3.1 Domain knowledge-based feature selection

We incorporated domain expertise to identify key indicators of persistence, such as Sysmon Event
IDs, rare command-line parameters, and process execution frequency linked to known attack tech-
niques. The TABLES (Feature Expertise-Based Approach) present the features utilized in the TAPD
dataset along with their use cases.

Feature construction: we crafted several composite features like:

* dll_loading: this binary feature captures the presence of DLL loading events based on Sysmon
EventID 7, which indicates that a process has loaded a DLL. Malicious tasks often use DLL
injection or reflective loading techniques.

* cmd_length: the total number of characters in the command line string. Extremely short or
excessively.

* cmd_token_count: the number of arguments (tokens) parsed from the command line. This
reflects the complexity or intent of the command (e.g., multi-flag PowerShell commands).

322



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Feature Name Description

Expert Knowledge-Based Approach

dll_loading Indicates dynamic-link library (DLL) loading activity based on Sysmon Event
ID 7.

cmd_length Length (in characters) of the command line string.

cmd_token_count Number of tokens or arguments parsed from the command line.

cmd_entropy Shannon entropy of the command line, measuring randomness or obfuscation.

TotalProcessExecutionCount Total number of times the process has executed system-wide.
HourlyProcessExecutionCount  Number of times the process executes within a one-hour window.

HourlyExecutionCountDelta Change in execution frequency between consecutive hourly intervals.
AvgTFIDF CommandRarity Average TF-IDF score reflecting the rarity of command-line terms.
CommandExecutionCount Number of times the exact command line has been executed.
NormalizedCommandRarity Frequency of the command normalized across all observed executions.
ProcessTreeDepth Depth of the process in the parent-child execution tree.

Text-Based Approach

CommandLine Raw command used to launch the process, often containing parameters and
flags.

ParentCommandLine Command line used by the parent process, providing contextual linkage.

Image Full path to the executable that was launched.

ParentImage Full path of the parent process’s executable.

OriginalFileName Name embedded in the binary at compile-time, often used for identification.

Table 5: Features Utilized in the Expert Knowledge-Based and Text-Based Approaches

* cmd_entropy: measures the randomness of the command line using Shannon entropy [37]:

H(X) = = > p(xi) logg p(x) @)

i=1

where p(x;) is the empirical probability of character x; in the string. Higher entropy values
may indicate encoded, obfuscated, or malicious command lines.

» TotalProcessExecutionCount (TPEC): cumulative count of how many times a given exe-
cutable has run across all data. High values could indicate persistence mechanisms or au-
tomation.

* HourlyProcessExecutionCount (HPEC): measures how frequently a process runs per hour.

* HourlyExecutionCountDelta (HECD): the change in hourly execution frequency between
consecutive hours:

Ah = fi = fi 3)
where f; is the execution frequency at hour ¢. Sudden increases may indicate anomaly or task
injection.

* AvgTFIDFCommandRarity (ATFIDF): this feature estimates how semantically rare or un-
usual a command-line string. Each command line is treated as a sequence of overlapping
character 3-grams, and rarity is quantified using TF-IDF [38].

* CommandExecutionCount (CEC): counts how many times a specific command line string
has been executed across all observations. Rare commands are often of greater interest.

323



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

* NormalizedCommandRarity (NCR): while ATFIDF captures how rare a command-line string
appears, TF-IDF inherently assigns higher scores to uncommon sequences. However, this
becomes problematic in the context of scheduled tasks, where some malicious commands
although syntactically rare may be executed frequently (e.g., every hour), artificially inflat-
ing their TF-IDF scores. To mitigate this, we normalize the rarity score by the command’s
execution frequency:

ATFIDF(c)
log(1 + CEC(c))

NCR(c) = (4)

* ProcessTreeDepth: represents how deep the process is in the process execution tree. A depth
of 1 indicates a child of the root process, while deeper levels may suggest indirect or stealthy
process creation chains.

To effectively use Sysmon logs for ML-based detection, it’s essential to identify key text-based
features and apply appropriate methods for converting them into numerical representations

5.3.2 Text-Based feature extraction

Given the importance of textual data in detecting malicious WST behavior, the TAPD dataset incor-
porates both domain-driven feature selection and textual feature extraction as shown in TABLE 5.
Specifically, we leverage text embedding techniques to derive semantic features from key Sysmon
log attributes, such as :

* Image: full path of the executed process.
* Command Line: The complete command used to execute a process.
» Parent Command Line: complete parent command used to execute a process.

* OriginalFileName: executable file that retains its original name from compilation, unaffected
by renaming, ensuring its true identity.

5.4 Evaluation Metrics

For better evaluatingng the performance of ousolution,on, we use the following evaluation metrics:

Accuracy: Measures the proportion of correctly classified instances among all instances.

TP +TN
Accuracy = 5
WY = TP Y TN+ FP+ FN 5)

Precision: The percentage of true positives among all predicted positives.

TP
Precision = ——— (6)
TP+ FP

324



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Recall: measures how many actual threats were correctly identified as threats (i.e., the ability to
correctly identify malicious tasks).
TP

Recall = —— (7)
TP+ FN

F1 score: The harmonic mean of precision and recall, useful for balancing both.
Precision x Recall

Fi=2x 8
! Precision + Recall ()

The False Positive Rate (FPR) refers to how often something that’s actually harmless gets wrongly
flagged as a threat. It is defined as:
FP

FPR = ———
FP+TN

©)

The Matthews Correlation Coefficient (MCC) is a balanced measure of classification quality, es-
pecially useful for imbalanced datasets. Consider true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN).

~ TPxTN - FP X FN
V(TP + FP)(TP + FN)(IN + FP)(TN + FN)

Due to the imbalance in our dataset, we prioritize F1-score and Matthews Correlation Coefficient
(MCC) as our primary evaluation metrics [39], ensuring a robust assessment of model performance

MCC

(10)

6. EXPERIMENTS AND RESULTS

In this section, we present the application of various ML classifiers to detect malicious WST using
Sysmon logs.

6.1 Experiments

We evaluate the performance of two distinct approaches:

The baseline approach relies solely on structured features (e.g., cmd_entropy , dll_loading, TPEC,
HPEC) and excludes any form of textual data processing or embeddings. It acts as a baseline for
evaluating detection performance when there’s no extra context from text-based attributes.

Our proposed approach is an enhanced method that incorporates both structured and textual features
(e.g., Image, CommandLine), with the textual components transformed into vector representations
using Word2Vec embeddings. For both experiments, We used 70% of the datasets for training and
the remaining 30% for testing to evaluate the model’s performance. Additionally, we applied feature
scaling using a StandardScaler to normalize the numerical attributes and ensure consistent input for
the classifier.

After testing our approach, we selected the best classifier based on the F1 score and MCC metrics.
We saved the model using Joblib, along with the scaler and the trained Word2Vec model. These

325



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

saved components are then used during the validation step with the TAPD-V dataset to mimic real-
world deployment and evaluate the model’s performance.

6.1.1 Experiment 1

In this experiment, we evaluated the performance of several ML classifiers using the TAPD dataset.
The classifiers, discussed in section 4.1.3 include:

* Decision Tree (DT): a simple, interpretable model that divides the data into subsets based on
the characteristics of the model, making decisions based on these splits [40].

* Random Forest (RF): a straightforward, easy to understand model that splits the data into
groups based on certain features, and makes decisions at each step using those splits [41].

* XGBoost: a gradient boost algorithm that excels in handling structured data and can model
complex relationships between features [42].

 CatBoost (CB): a gradient boosting algorithm optimized for categorical data, offering high
accuracy and minimal parameter tuning [43].

» ExtraTrees (ET): an ensemble method using randomized decision trees to improve variance
reduction and model robustness [44].

» K-Nearest Neighbors (KNN): a non-parametric method that classifies new data points based
on the most common class among their nearest neighbors [45].

* LightGBM (LGB): a gradient boosting framework optimized for handling large-scale datasets,
offering high performance, stability, and a leaf-wise tree growth approach for enhanced effi-
ciency [46].

* Support Vector Machine (SVM): a supervised learning model that constructs hyperplanes in
high-dimensional space to separate data points of different classes [47].

TABLE 6 summarizes the optimized hyperparameters employed for the various machine learn-
ing models. The scale_pos_weight parameter, where applicable, is dynamically determined
from the training data using the ratio of negative to positive instances to address class imbal-

ance.
Model Hyperparameters
XGBoost n_estimators=200, max_depth=6, learning_rate=0.1, subsample=0.8, colsample_bytree=0.8, scale_pos_weight=scale_pos_weight, random_state=42
RandomForest n_estimators=200, max_depth=20, min_samples_split=5, min_samples_leaf=2, class weight="balanced’, random_state=42
LightGBM n_estimators=200, max_depth=20, learning_rate=0.05, num_leaves=31, subsample=0.8, colsample_bytree=0.8, is_unbalance=True, random_state=42
ExtraTrees n_estimators=200, max_depth=20, min_samples_split=5, min_samples_leaf=2, class_weight="balanced’, random_state=42
DecisionTree ~ max_depth=15, min_samples_split=10, min_samples_leaf=5, class_weight="balanced’, random_state=42
CatBoost iterations=500, learning_rate=0.05, depth=6, 12_leaf reg=3, scale_pos_weight=5, verbose=0, random_state=42,scale_pos_weight=scale pos_weight
KNN n_neighbors=7, weights="distance’
SVM kernel="rbf’, C=10, gamma="scale’, class_weight="balanced’, probability=True, random_state=42

Table 6: Optimized Hyperparameters for ML Models

326



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

6.1.2 Experiment 2

We apply Word2Vec to transform textual features extracted from Sysmon logs into dense vector
representations, effectively capturing contextual relationships. These semantic embeddings are
then combined with handcrafted behavioral features to create a comprehensive representation of
each event. TABLE 7 summarizes the hyperparameters used to train the Word2Vec model. The
embedding dimension (vector_size) was set to 100 to balance semantic richness and computa-
tional efficiency. A context window size of 5 was chosen to capture nearby contextual relationships.
Words occurring fewer than three times (min_count = 3) were ignored to reduce noise from rare
terms. The model was trained using the skipgram architecture (sg = 1), which is more effective for
capturing representations of rare words. Training was parallelized across four worker threads, and
the model was trained for ten epochs to ensure convergence without overfitting.

Parameter Value

vector_size 100

window 5

min_count 3

sg 1 (skip-gram)
workers 4

epochs 10

Table 7: Word2Vec Hyperparameters

6.1.3 Experiment 3

In this experiment, we evaluate the robustness and portability of our approach by validating it on a
new dataset. After training on Dataset WST , we saved both the Word2 Vec embedding model (used
for representing textual fields such as CommandLine and Image) and the trained classifier and the
scaler. These pre-trained models were then loaded and directly applied to the new dataset TAPD-V
without any retraining or fine-tuning.

This setup reflects a realistic deployment scenario, where models are trained once and reused in
different environments. By keeping the preprocessing and inference pipeline consistent, we assess
how well the learned representations and decision boundaries generalize to unseen scheduled task
activity.

6.2 RESULTS
6.2.1 Experiment 1

As shown in TABLE 8, Random Forest achieves the best overall performance, with the highest
F1-Score (0.9246), indicating a strong balance between precision (0.9122) and recall (0.9373).

327



https://cybersecurityjournal.info/| 2025 Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

It also maintains a low false positive rate (FPR: 0.0043) and false negative rate (FNR: 0.0627),
demonstrating both high accuracy and robustness.

XGBoost exhibits the highest recall (0.9687) among all models and a strong F1-Score (0.8987),
though its precision (0.8381) is notably lower than that of Random Forest. This implies that XG-
Boost is more sensitive in identifying positive cases but at the cost of generating more false positives
(FPR: 0.0089) as shown in FIGURE 6.

Extra Trees and LightGBM both show solid performance, with F1-Scores of 0.8791 and 0.8705,
respectively. Extra Trees provides a slightly better balance of precision (0.8291) and recall (0.9354)
compared to LightGBM, which prioritizes recall (0.9801) over precision (0.7830). LightGBM’s
extremely low FNR (0.0199) highlights its sensitivity, though it tends to produce more false positives
(FPR: 0.0129).

CatBoost also favors recall (0.9744) over precision (0.7726), yielding an F1-Score of 0.8618. While
slightly lower than Extra Trees and LightGBM in F1, CatBoost still performs well in minimizing
false negatives (FNR: 0.0256).

KNN demonstrates high precision (0.9080) but suffers from lower recall (0.8063), which impacts its
F1-Score (0.8541). This suggests KNN is more conservative in classifying positives, likely leading
to more false negatives (FNR: 0.1937).

Decision Tree emphasizes recall (0.9516) but has the lowest precision among the tree-based methods
(0.7203), resulting in a modest F1-Score (0.8200) and the highest FPR (0.0176) among them.

Finally, SVM underperforms across all metrics, with the lowest F1-Score (0.6192) and precision
(0.4673), along with the highest FPR (0.0497). Although its recall is relatively high (0.9174), the
imbalance between precision and recall, as well as the overall low accuracy, make it the least suitable
model in this comparison.

’ Algorithm ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-Score MCC ‘ FPR ‘ FNR ‘
RandomForest | 0.993057 | 0.912200 | 0.937322 | 0.924590 | 0.921045 | 0.004292 | 0.062678
XGBoost 0.990082 | 0.838127 | 0.968661 | 0.898678 | 0.896080 | 0.008900 | 0.031339
ExtraTrees 0.988313 | 0.829125 | 0.935423 | 0.879072 | 0.874709 | 0.009171 | 0.064577
LightGBM 0.986761 | 0.783005 | 0.980057 | 0.870519 | 0.869680 | 0.012920 | 0.019943
CatBoost 0.985812 | 0.772590 | 0.974359 | 0.861823 | 0.860845 | 0.013643 | 0.025641
KNN 0.987494 | 0.908021 | 0.806268 | 0.854125 | 0.849250 | 0.003885 | 0.193732
DecisionTree | 0.981025 | 0.720345 | 0.951567 | 0.819967 | 0.818909 | 0.017573 | 0.048433
SVM 0.948769 | 0.467344 | 0.917379 | 0.619231 | 0.633966 | 0.049738 | 0.082621

Table 8: Performance of ML algorithms on TAPD dataset without Text features

328



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

6.2.2 Experiment 2

As shown in TABLE 9, the integration of text-based features—such as CommandLine, ParentCom-
mandLine, Image, Parentimage, and OriginalFileName—encoded using Word2Vec significantly
enhances the performance of all evaluated machine learning models.

XGBoost achieves the best overall performance with the highest F1-Score (0.9886), driven by strong
precision (0.9849) and recall (0.9924). This demonstrates its excellent ability to correctly identify
both positive and negative cases, while maintaining a very low false positive rate (FPR: 0.0007) and
false negative rate (FNR: 0.0076) as shown in FIGURES.

LightGBM closely follows with an F1-Score of 0.9863. It maintains high precision (0.9812) and
recall (0.9915), along with one of the lowest FPRs (0.0009), making it a highly reliable option as
well.

Random Forest and CatBoost also exhibit strong performance with F1-Scores of 0.9788 and 0.9762,
respectively. Notably, CatBoost achieves the highest recall (0.9943), which is particularly advan-
tageous for minimizing false negatives, though this comes with a slightly higher FPR (0.0020).

KNN achieves a balanced F1-Score of 0.9630, with solid precision (0.9621) and recall (0.9639).
However, it has the highest FNR (0.0361) among the top-performing models, suggesting a slightly
reduced sensitivity to true positives.

SVM and Extra Trees show respectable F1-Scores of 0.9564 and 0.9392, respectively. However,
SVM suffers from a higher FPR (0.0038), which may lead to an increased number of false alerts in
high-precision applications.

Decision Tree ranks lowest among all models in terms of F1-Score (0.8671) and exhibits the highest
FPR (0.0135). Despite its high recall (0.9820), its lower precision (0.7763) suggests a tendency to
over-predict positives, making it less suitable for applications where precision is critical.

These improvements clearly demonstrate the value of incorporating semantic-rich text embeddings.
Word2Vec successfully transforms raw textual fields into dense vector representations that capture
contextual meaning, enhancing model discrimination capability.

Based on this evaluation, we built our final model DAPTASK using the XGBoost classifier in
conjunction with Word2Vec embeddings. Both the trained model and the embedding vectors were
saved using Joblib for efficient deployment and reuse.

6.2.3 Experiment 3

As shown in TABLE 10, the DAPTASK model based on the XGBoost classifier and enriched
with both crafted and textual features embedded via Word2Vec demonstrates strong generalization
capabilities on the unseen TAPD-V dataset.

The model achieves a high F1-Score of 0.9519, indicating an excellent balance between precision
and recall. Its precision (0.9819) suggests that the vast majority of the alerts it flagged as malicious

329



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

Algorithm Accuracy | Precision | Recall | F1-Score | MCC FPR FNR

XGBoost 0.998965 | 0.984920 | 0.992403 | 0.988647 | 0.988113 | 0.000723 | 0.007597
LightGBM 0.998749 | 0.981203 | 0.991453 | 0.986301 | 0.985661 | 0.000904 | 0.008547
RandomForest | 0.998059 | 0.971910 | 0.985755 | 0.978784 | 0.977794 | 0.001355 | 0.014245

CatBoost 0.997801 | 0.958791 | 0.994302 | 0.976224 | 0.975248 | 0.002033 | 0.005698
KNN 0.996636 | 0.962085 | 0.963913 | 0.962998 | 0.961237 | 0.001807 | 0.036087
SVM 0.995903 | 0.925400 | 0.989554 | 0.956402 | 0.954845 | 0.003795 | 0.010446
ExtraTrees 0.994178 | 0.893654 | 0.989554 | 0.939162 | 0.937454 | 0.005602 | 0.010446

DecisionTree | 0.986330 | 0.776276 | 0.981956 | 0.867086 | 0.866589 | 0.013462 | 0.018044

Table 9: Performance of ML algorithms on TAPD dataset with crafted and text features

were indeed correct, while its recall (0.9237) shows its effectiveness in identifying a large proportion
of true threats. The MCC of 0.9493 further confirms the robustness of the classifier, reflecting a
strong correlation between predicted and actual labels, even in the presence of class imbalance.

Furthermore, the model exhibits very low error rates, with a false positive rate (FPR) of 0.0011 and
a false negative rate (FNR) of 0.0762, indicating minimal misclassifications of benign or malicious
events, respectively as shown in FIGUREG6. These results confirm that DAPTASK not only excels
in predictive performance but also maintains reliability in operational scenarios, making it suitable
for real-world deployment in detecting persistent threats.

’Our Approach ‘ Accuracy ‘ Precision‘ Recall ‘Fl-Score‘ MCC ‘ FPR ‘ FNR ‘
] DAPTASK \ 0.994079 \ 0.981981 \ 0.923728 \ 0.951965 \ 0.949317 \ 0.001149 \ 0.076271 \

Table 10: Performance of DAPTASK on TAPD-V dataset

F1-Score Comparison Across Experiments Matthews Correlation Coefficient (MCC) Comparison Across Experiments

Experiment t Experiment t

m— Exp3 —Exp3
w08 08
S O
7 H
Loy 07
0.6 I 0.6 I
05 05
5 & o > = s o N s & o > = s o &
& g < S o & & & & g < & o & & &
<& S & 7 5 & & S & ©
S + & J & Qé;: S + & J & Qé;:

= =

Algorithm Algorithm

(a) F1-scores (b) Matthews Correlation Coefficient (MCC)

Figure 5: Comparison of Classification Quality: F1-score and MCC Across Algorithms

Figure 5 presents the performance comparison across different models, including our proposed
model DAPTASK. The results highlight a significant improvement in Experiment 2, where the
integration of text embeddings into the pipeline contributed to better generalization. This demon-
strates the effectiveness of incorporating semantic information from textual features in enhancing
detection capabilities.

330



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Confusion Matrix (RandomForest) Confusion Matrix (XGBoost)

95

Actual Negative
Actual Negative

66 987 1045

Actual Positive
Actual Positive
®

| ' \ '
Predicted Negative Predicted Positive Predicted Negative Predicted Positive

(a) RandomForest EXP-1 (b) XGBOOST EXP-2

Confusion Matrix (DAPTASK)

Actual Negative

654

Actual Positive
o«
£

Predicted Negative Predicted Positive

(c) DAPTASK EXP-3

Figure 6: Confusion Matrices for Experiments 1, 2 and 3

6.3 Results Explainability and Validation

The combination of Word2 Vec and XGboost present higher performance results, but it is not always
evident to interpret the decisions taken by the model. The application of Explainable Artificial In-
telligence (XAI) [48] provides insight into the key features that influence the detection of anomalies
in WST, allowing us to identify the most relevant factors that contribute to the model’s predictions.
One major problem often encountered when using ML algorithms, is the trade-off between Ac-
curacy and Interpretability. The more accurate a model, the higher the complexity and lower the
interpretability [48]. Through the use of model explainability, there is a higher understanding of
how the model functions and if needed, what changes need to be made to enhance accuracy and
stability. Both Word2Vec and XGBoost generate intermidiate results and visualizations, offering
the means to evaluate the decisions taken.

One important aspect of model explainability is determining feature importance score [49] and how
those features influenced the decision. In the case of DAPTASK, this is accomplished through the
combination of Word2Vec and XGBoost. Word2Vec performs hierarchical clustering to determine
similarity between various textual terms encountered in log files, command lines, etc., further
creating similarity vectors, as shown in FIGURE 7. This serves to link together events, that at
first glance, are not connected as they may have happened in different parts of the logs. These

331



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

Cosine Similarity of Word2Vec Embeddings

powershell.exe 032 033 040 052 052 037 039 057 048 032 .
cmd.exe = 032 043 H 041 049 051 036 042 050 051 042
create = 033 043 0.51 044 057 043 042 047 057 042 -08
rundll32.exe 051 051 035 033 032 037 028 040 042
StartClean = 040 041 0.51 052 | 075 053 056 063 0.54
-0.6
ATOMIC-T1053.005 052 049 044 035 052 0.76 0.75 0.75 0.75
StartupUpdateoffice 052 051 057 033 | 075 076 066 072 ML) ﬂ 0.70
-
compmgmtmsc = 037 036 043 032 053 075 0.66 ERLEEVEZE 065 069 0.70
EventviewerBypass =039 042 042 037 056 072 067 076 073
SystemUpdate 057 050 047 028 063 | 075 0.65 0.67 0.70 0.2
>

KeepMeOnline 048 051 057 040 (L3 069 0.76
schtasks.exe = 032 042 042 042 054 075 070 070 073 070
0.0

N & X 5 S
T A U A P P
& & & (:0 o‘?b & & o 8 f
$ AR

Figure 7: Cosine Similarity generated by Word2 Vec, representing similarity vector between terms

vectors are then used to enrich the features used by XGBoost, as shown previously in FIGURE3.
The cosine similarity heat map serves to quickly identify features of interest and then determine
how they are used through the use of the XGBoost feature importance bar chart shown in FIGURE
8. These visualizations add a degree of explainability, quite useful when debugging and evaluating
the fusion features of DAPTASK. This approach correctly follows the principle of applying Visual
Analytics to increase explainability and interpretability, without a detriment to accuracy [50].

6.4 Comparison With State-Of-The-Art

In comparison to existing state-of-the-art approaches, our work focuses specifically on WST as a
persistence mechanism, while frameworks such as CPD [10] are rule-based and designed to detect
a broad range of persistence techniques. CPD reports a reduction in the average false positive rate
(FPR) by 93%, but it does not compute or explicitly provide the FPR value. In contrast, our proposed
method achieves an FPR of 0.001, demonstrating a significantly lower rate of false alarms.

Moreover, [22] ElasticSearch-oriented frameworks do not explicitly address WST persistence de-
tection and generally lack quantitative performance metrics for comparison. This highlights a sparse
research landscape concerning the detection of persistence mechanisms based specifically on WST,
underlining the novelty and contribution of our approach.

7. CONCLUSION AND FUTURE WORK

In this work, we explored the application of machine learning models by combining Word2 Vec-
based text embeddings with crafted features to enhance the detection of WST used as a persistence

332



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

Feature Importances (RandomForest) Feature Importances (XGBoost)
TotalProcessExecutionCount cmd_length
cmd_length TotalProcessExecutionCount
cmd_token_count dil_loading
AvgTFIDFCommandRarity cmd_token_count
NormalizedCommandRarity NormalizedCommandRarity
cmd_entropy ProcessTreeDepth
HourlyProcessExecutionCount AvgTFIDFCommandRarity
ProcessTreeDepth HourlyProcessExecutionCount
CommandExecutionCount cmd_entropy
dil_loading CommandExecutionCount
HourlyExecutionCountDelta HourlyExecutionCountDelta
0000 0025 0050 0075 0100 0125 0150  0.175 000 002 004 006 008 010 012 014 016
Importance Importance
(a) Random Forest (b) XGBoost
Feature Importances (ExtraTrees) Feature Importances (LightGBM)
cmd_token_count TotalProcessExecutionCount
TotalProcessExecutionCount cmd_length
AvgTFIDFCommandRarity cmd_entropy
NormalizedCommandRarity cmd_token_count
cmd_length HourlyProcessExecutionCount
cmd_entropy AvgTFIDFCommandRarity
HourlyProcessExecutionCount NormalizedCommandRarity
ProcessTreeDepth HourlyExecutionCountDelta
CommandExecutionCount ProcessTreeDepth
dil_loading CommandExecutionCount
HourlyExecutionCountDelta dll_loading
0.00 0.02 0.04 0.06 0.08 0.10 012 014 [ 200 400 600 800 1000
Importance Importance
(c) Extra Trees (d) LightGBM

Figure 8: Top 4 feature importance visualizations using expert knowledge-based selection on the
TAPD dataset.

mechanism. Our approach captures both the semantic context of command-line inputs and domain-
specific behavioral patterns, leading to improved detection of malicious scheduled tasks. The results
demonstrate gains in identifying adversary tactics, showing that the integration of text embeddings
and handcrafted features can reveal subtle indicators of compromise within system logs. Further-
more, the effectiveness of our method was validated on newly collected datasets, confirming its
robustness, adaptability, and generalization to unseen environments and attack scenarios.

Rather than replacing current tools, our approach enhances them by filling in the gaps, especially
the persistence phase making the overall detection system stronger across the APT lifecycle.

In the future, we aim to further explore the practicality of deploying the proposed system in real-time
enterprise environments, with particular attention to evaluating its computational cost and latency.
Additionally, we plan to develop a rule-based detection component to enable direct comparison with
our solutions, Moreover, we intend to design a deobfuscation module to enhance the detection of
command obfuscation techniques employed by adversaries, and integrate large language models
(LLMs) with other persistence mechanisms in the detection pipeline, harnessing their ability to
understand complex patterns in system logs at a deeper level. This integration is expected to enhance
the sophistication of analysis and improve the detection of subtle traces left by adversaries within
the system.

Another promising direction for future research is exploring the relationship between persistence
techniques and C2 communication. By analyzing how specific persistence mechanisms are linked
to C2 activity, we can enhance our ability to identify compromised systems and detect APTs more

333



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

effectively. Gaining deeper insight into these connections will help us better understand adversary
behavior and improve the detection system’s responsiveness to evolving threats.

References

[1] https://www.statista.com/statistics/497945/advanced-persistent-threat-market-worldwide/
[2] https://coverlink.com/case-study/solarwinds-supply-chain-cyberattack/

[3] Malik V, Khanna A, Sharma N, Nalluri S. Advanced Persistent Threats (Apts): Detection
Techniques and Mitigation Strategies. International Journal of Global Innovations Solutions.
(JGIS) 2024.

[4] Smiliotopoulos C, Kambourakis G, Barbatsalou K. On the Detection of Lateral Movement
Through Supervised Machine Learning and an Open-Source Tool to Create Turnkey Datasets
From Sysmon Logs. Int J Inf Secur. 2023;22:1893-1919.

[5] Maffeis S, London I, Alageel A. Detecting APT Malware Command and
Control Over HTTP(s) Using Contextual Summaries; 2025. Arxiv preprint:
https://arxiv.org/pdf/2502.05367.

[6] Mannikar R, Di Troia F. Enhancing Botnet Detection in Network Security Using Profile
Hidden Markov Models. Appl Sci. 2024;14:4019.

[7] Oosthoek K, Doerr C. Sok: AttTechniques and Trends in Windows Malware; 2019:406-425.

[8] Lee G, Shim S, Cho B, Kim T, Kim K. Fileless Cyberattacks: Analysis and Classification.
ETRI J. 2020;43:332-343.

[9] Villalon-Huerta A, Marco-Gisbert H, Ripoll-Ripoll I. A Taxonomy for Threat Actors’
Persistence Techniques. Comput Secur. 2022;121:102855.

[10] Liu Q, Shoaib M, Rehman MU, Bao K, Hagenmeyer V, Hassan WU. Accurate and
Scalable Detection and Investigation of Cyber Persistence Threats. arXiv preprint arXiv:
https://arxiv.org/pdf/2407.18832.

[11] https://attack.mitre.org/
[12] https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page

[13] Rahal K, Riahi A, Debatty T. Dataset of Apt Persistence Techniques on Windows Platforms
Mapped to the MITRE AttCK Framework. 2025;17-24.

[14] Milajerdi SM, Gjomemo R, Eshete B, Sekar R, Venkatakrishnan VN. Holmes: Real-Time
Apt Detection Through Correlation of Suspicious Information Flows. IEEE Symposium on
Security and Privacy (SP), USA, 2019;1137-1152.

[15] Anjum M, Igbal S, Hamelin B. Anubis: A Provenance Graph-Based Framework for Advanced
Persistent Threat Detection. 2021. Arxiv Preprint: https://arxiv.org/pdf/2112.11032

[16] Han X, Pasquier T, Bates A, Mickens J, Seltzer M. UNICORN: Run-Time Provenance-
Based Detector for Advanced Persistent Threats. In: Proceedings of the 2020 Network and
Distributed system security symposium (NDSS). Internet Society; 2020.

334



https://cybersecurityjournal.info/ | 2025 Khaled Rahal et al.

[17] Al-Saraireh J, Masarweh A. A Novel Approach for Detecting Advanced Persistent Threats.
Egypt Inform J. 2022;23:45-55.

[18] Zou Q, Sun X, Liu P, Singhal A. An Approach for Detection of Advanced Persistent Threat
Attacks. Computer. 2020;53:92-96.

[19] Smiliotopoulos C, Barmpatsalou K, Kambourakis G. Revisiting the Detection of Lateral
Movement Through Sysmon. Appl Sci. 2022;12:7746.

[20] GNikolov G, Mees W. Detection of Previously Unknown Advanced Persistent Threats
Through Visual Analytics With the MASFAD Framework. International Conference on
Military Communications and Information Systems (ICMCIS). 2023:1-10.

[21] Gittins Z, Soltys M. Malware Persistence Mechanisms. Procedia Comput Sci. 2020;176:88-97.

[22] Bhardwaj A, Bharany S, Almogren A, Ur Rehman A, Hamam H. Proactive Threat Hunting to
Detect Persistent Behaviour-Based Advanced Adversaries. Egypt Inform J. 2024;27:100510.

[23] https://securityaffairs.com/163265/apt/north-korea-kimsuky-apt-uses-messenger.html
[24] https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page.

[25] https://www.microsoft.com/en-us/security/blog/2022/04/12/tarrask-malware-uses-scheduled-
tasks-for-defense-evasion/?msockid=3ecf7f98fc2064fb19df69fcfd2665a3

[26] https://learn.microsoft.com/fr-fr/sysinternals/downloads/sysmon.

[27] Mikolov, Tomas Corrado, G.s Chen. Kai Dean. Efficient Estimation of Word Representations
in Vector Space. 2013:1-12.

[28] McCully GA, Hastings JD, Xu S, Fortier A. Bi-Directional Transformers vs. Word2vec:
Discovering Vulnerabilities in Lifted Compiled Code. In: Cyber Awareness and Research
Symposium (CARS). IEEE; 2024:1-8.

[29] Mikolov T, Sutskever I, Chen K, Corrado Gs, Dean J. Distributed Representations of Words
and Phrases and Their Compositionality. Adv Neural Inf Process Syst. 2013;26.

[30] Grinsztajn L, Oyallon E, Varoquaux G. Why Do Tree-Based Models Still Out Perform Deep
Learning on Typical Tabular Data? Adv Neural Inf Process Syst. 2022;35:507-520.

[31] https://github.com/netero1010/GhostTask.

[32] https://www.cobaltstrike.com/.

[33] https://github.com/mandiant/SharPersist.

[34] https://github.com/netero1010/ScheduleRunner.

[35] Bosker HR. Using Fuzzy String Matching for Automated Assessment of Listener Transcripts
in Speech Intelligibility Studies. Behav Res Methods. 2021;53:1945-1953.

[36] Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F, et al. Dos and Don’Ts of Machine
Learning in Computer Security. In31st USENIX Security Symposium (USENIX Security 22)
2022:3971-3988.

335



https://cybersecurityjournal.info/| 2025  Advancesin Knowledge-Based Systems, Data Science, and Cybersecurity

[37] Saraiva P. On Shannon Entropy and Its Applications. Kuwait J Sci. 2023;50:194-199.

[38] Das M, Kamalanathan S, Pja A. A Comparative Study on TFIDF Feature Weighting Method
and Its Analysis Using Unstructured. 2023.

[39] Diallo R, Edalo C, Awe O. Machine Learning Evaluation of Imbalanced Health Data: A
Comparative Analysis of Balanced Accuracy. MCC, and F1 score; 2024.

[40] Rokach L, Maimon O. Decision Trees; 2005:165-192.
[41] Cutler A, Cutler D, Stevens J. Random Forests. 2012:157-175.

[42] Chen T, Guestrin C. Xgboost: A Scalable Tree Boosting System. InProceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2016:785-794.

[43] Dorogush AV, Ershov V, Gulin A. Catboost: Gradient Boosting With Categorical Features
Support. arXiv preprint arXiv: https://arxiv.org/pdf/1810.11363.

[44] Chauhan P, Atulkar M. Selection of Tree Based Ensemble Classifier for Detecting Network
Attacks in IOT. 2021:770-775.

[45] Guo G, Wang H, Bell D, Bi Y, Greer K. Knn Model-Based Approach in Classification.
InOTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”.2003:986-996.

[46] Ke G, Meng Q, Finley T, Wang T, Chen W, et al. Lightgbm: A Highly Efficient Gradient
Boosting Decision Tree. Advances in neural information processing systems. 2017;30.

[47] Evgeniou T, Pontil M. Support Vector Machines: Theory and Applications. 2001;2049:249-
257.

[48] Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, et al. Explainable
Artificial Intelligence (XAI): What We Know and What Is Left to Attain Trustworthy Artificial
Intelligence. Inf Fusion. 2023;99:101805.

[49] Bhatt U, Xiang A, Sharma S, Weller A, Taly A, et al. Explainable Machine Learning in
Deployment. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. New York, USA: ACM; 2020:648-657.

[50] Alicioglu G, Sun B. A Survey of Visual Analytics for Explainable Artificial Intelligence
Methods. Comput Graph. 2022;102:502-520.

336



	INTRODUCTION
	RELATED WORK
	SCHEDULED TASKS AS A PERSISTENCE TECHNIQUE
	Scheduled Tasks Operation
	Methods for creating scheduled tasks
	Storage and structure of scheduled tasks
	Evasion techniques


	PROPOSED APPROACH
	Technical Choices
	Log collection
	Text embeddings
	ML classifier

	Persistence Dataset Overview

	DATA ENHANCEMENT AND FEATURE ENGINEERING
	Dataset Labeling
	Data Preprocessing
	Feature Engineering
	Domain knowledge-based feature selection
	Text-Based feature extraction

	Evaluation Metrics

	EXPERIMENTS AND RESULTS
	Experiments
	Experiment 1 
	Experiment 2
	Experiment 3

	RESULTS
	Experiment 1
	Experiment 2
	Experiment 3

	Results Explainability and Validation
	Comparison With State-Of-The-Art

	CONCLUSION AND FUTURE WORK



