
ML-based detection of APT via

Windows registry as a persistence

technique

Master’s Thesis

Submitted by

Ghita BENNOUNA

In fulfillment of the requirements for the degree of

Master of Science in Industrial Engineering,
specialization in Computer Science

Academic Year 2025–2026

Acknowledgments

The author would like to express sincere gratitude to the supervisor, Ing.
Khaled Rahal for his guidance, expertise, and constructive feedback throughout
the course of this research. His insights and continuous support were instru-
mental in shaping both the technical direction and the scientific rigor of this
work. The author also wishes to thank Ing. Quentin Lurkin and Pr. Ing.
Thibaut Debatty for their close supervision of the project and for providing
valuable feedback that contributed to improving the quality of the study.

The author further extends sincere thanks to Dr. Ing. Arbia Riahi and
Dr. Ing. Charles Beumier for accepting to review this report prior to submis-
sion and for providing valuable suggestions that helped improve its clarity and
overall quality.

The author also acknowledges the contributions of the research community,
as well as the developers of open-source tools and publicly available datasets
that made this research possible. Finally, appreciation is extended to colleagues
and peers for their discussions, encouragement, and support during the com-
pletion of this work.

Abstract

The rapid growth in both the volume and sophistication of cyberat-
tacks over the last few decades has significantly increased the risks faced
by governments, financial institutions, and large enterprises. Among
these threats, Advanced Persistent Threats (APTs) pose a particularly
critical challenge due to their emphasis on long-term persistence, covert
espionage, and data exfiltration rather than immediate system disrup-
tion. While initial intrusion attempts are often detected, the persis-
tence mechanisms that enable attackers to maintain continuous access
frequently remain hidden for extended periods, substantially amplifying
both financial and reputational damage.

Existing persistence detection approaches primarily rely on rule-based
mechanisms and manual analysis performed by Security Operations Cen-
ter (SOC) teams. However, the high volume of logs and alerts generated
in large-scale environments can overwhelm analysts, leading to alert fa-
tigue and reduced detection effectiveness. Consequently, these methods
often suffer from high false-positive and false-negative rates, limiting their
effectiveness against stealthy and evolving adversaries.

This work [7] focuses on the detection of persistence techniques within
the Windows Registry, a frequently exploited component of the Windows
operating system. We analyze registry-based persistence mechanisms
used to maintain long-term access and investigate the application of ma-
chine learning (ML) techniques to improve detection accuracy. To this
end, we construct a dataset derived from Windows Registry keys modi-
fications and use it to train and evaluate multiple ML models, including
Logistic Regression, Random Forest, LightGBM, XGBoost, and neural
network–based approaches such as Multilayer Perceptrons (MLP). The
objective of this study is to assess the effectiveness of ML-based detec-
tion methods and contribute to more robust defensive capabilities against
stealthy, long-term system compromises.

Experimental results demonstrate strong detection performance, achiev-
ing an F1-score of 0.88 for the XGBoost model, as well as an F1-score of
0.87 for the Random Forest model.

3

Requirements specification (Cahier des charges)

This work is structured around the simulation of APT attacks targeting the
Windows registry under Microsoft Windows environments. These simulations
are conducted within a controlled laboratory setting using virtual machines
running Windows 10 and Windows 11. Several persistence techniques are im-
plemented, including T1112, T1547, and T1546, in order to generate realistic
malicious activity. System activity is monitored and collected through Sysmon,
forming the basis for subsequent data analysis.

The collected event logs are exported from the original EVTX format to
Parquet and CSV formats to facilitate processing. A dedicated dataset is then
constructed and labeled to distinguish between benign and malicious behav-
iors. Data preprocessing steps are applied, followed by feature engineering
to extract relevant characteristics for ML analysis. The resulting dataset is
used to design and train artificial intelligence (AI) models for binary classifica-
tion tasks, with Random Forest and XGBoost among the selected algorithms.
Model performance is evaluated using standard metrics.

Finally, the trained models are validated and compared using external
datasets to assess their generalization capabilities. The evaluation is conducted
using the same set of performance metrics to ensure consistency. Statistical
tests are then performed to determine whether observed differences in model
performance are statistically significant.

Contents

1 Introduction 8

2 Literature review and motivation 10

3 Registry keys as a persistence technique 12
3.1 Definition . 12
3.2 Techniques to access and modify Windows registry 13
3.3 Most Abused Registry Keys . 14

4 Methodology of the proposed approach 15
4.1 Logs collection . 18

4.1.1 Experimental environment and benign activity generation 18
4.1.2 Adversary emulation and persistence simulation 18
4.1.3 Host-based telemetry collection with Sysmon 18
4.1.4 Log validation and retention strategy 19
4.1.5 Decentralized log extraction and data handling 19
4.1.6 Methodological implications and scalability 20

4.2 Dataset labeling . 20
4.3 Dataset cleaning . 21

4.3.1 Empty columns removal 21
4.3.2 Path normalization . 21
4.3.3 Duplicated rows removal 22

4.4 Feature engineering . 22
4.4.1 Features extraction . 23
4.4.2 Dataset partitioning . 23
4.4.3 Encoding pipeline . 24
4.4.4 Term Frequency–Inverse Document Frequency (TF–IDF) 24

4.5 ML training and testing . 25
4.5.1 Logistic regression . 26
4.5.2 Random Forest . 26
4.5.3 Extreme Gradient Boosting (XGBoost) 27
4.5.4 Light Gradient Boosting Machine (LightGBM) 28
4.5.5 Multilayer Perceptron(MLP) 28

5 Results interpretation 29
5.1 Evaluation metrics . 29
5.2 ROC curves comparison . 32
5.3 Feature importance comparison 33

6 Validation and Discussion 34
6.1 Evaluation metrics . 34
6.2 ROC curves comparison . 35
6.3 Discussion . 36
6.4 Impact of threshold on model performance 37

7 Conclusion 37

5

List of Figures

1 Example of Windows registry structure [20] 13
2 Some Windows registry access techniques [26] 13
3 Overview of the project pipeline 17
4 Sysmon path displayed in the Windows Event Viewer on a Win-

dows 10 VM . 19
5 ROC curves comparing the performance of the evaluated ML

models . 32
6 Feature importance comparison across the evaluated ML models

for registry-based persistence detection 33
7 ROC curves comparing the performance of the evaluated ML

models for validation . 35

6

List of Tables

1 GroupedWindows Registry persistence locations (Autorun/Auto-
Start Execution Points – ASEPs) mapped to MITRE ATT&CK
techniques and Sysmon detection events [29] 16

2 Mapping of Sysmon events to Windows Registry–based persis-
tence techniques [22] . 20

3 Evaluation metrics of ML models for registry-based persistence
detection . 30

4 Evaluation metrics of ML models for registry-based persistence
detection for validation . 34

5 Performance metrics as a function of classification threshold T 37

7

1 Introduction
The growing sophistication of APTs presents substantial challenges for cy-
bersecurity teams, particularly within large, high-value environments such as
governmental institutions and major enterprises. Unlike opportunistic or com-
modity attacks, APT campaigns are characterized by their strategic objectives,
long-term operational timelines, and focus on high-impact targets. A defining
property of APTs is their ability to maintain persistence within a compro-
mised system, remaining active for extended periods while evading detection
and continuously supporting the attacker’s mission.

Within the context of the Cyber Kill Chain, a framework introduced by
Lockheed Martin [5] to describe the sequential phases of targeted intrusions,
persistence is typically associated with the Installation stage. Persistence refers
to the set of techniques that allow the adversary to re-establish or maintain con-
trol after system reboots, user logoffs, privilege changes, or software updates.
These mechanisms frequently exploit legitimate operating system components
and services, making them difficult to distinguish from benign activity. As a
result, well-crafted persistence techniques often bypass conventional security
tools, enabling the attacker to operate stealthily over prolonged periods. This
prolonged foothold significantly amplifies the operational, strategic, and eco-
nomic impact of APT intrusions.

Numerous APT groups now conduct highly targeted operations aimed at
system disruption, espionage, data exfiltration, or financial gain, and the grow-
ing frequency and sophistication of cyberattacks targeting governments, criti-
cal infrastructures, financial institutions, and private organizations represents
a significant challenge for defenders.

Historical incidents illustrate the severity of persistence-enabled attacks.
The Stuxnet worm, uncovered in 2010 by a Belarus antivirus company, infil-
trated supervisory control and data acquisition (SCADA) systems and caused
substantial damage to the Iranian nuclear program by manipulating programmable
logic controllers (PLC). These PLCs were responsible for centrifugation of Ura-
nium at a certain specific speed. However, the malware made them run at a
much higher speed. At its peak, the Stuxnet worm infected approximately 200
000 systems worldwide, with an estimated 60 percent of infections occurring
within Iran [15]. More recently, the Lazarus Group has been linked to sev-
eral large-scale cryptocurrency thefts, including the WazirX Exchange breach
in July 2024, when the group stole 235 million dollars, and the DMM Bitcoin
attack in Japan, which resulted in a 308 million dollars theft [4]. These cases
highlight how persistent access enables prolonged exploitation and high-impact
operations.

Despite the deployment of security policies, endpoint protection tools, mon-
itoring systems, and continuous training efforts, maintaining full visibility over
user activities and potential intrusion attempts remains difficult. Recent years
have been marked by a surge in large-scale cyberattacks targeting governments,
critical infrastructures, banks, corporations, and political organizations.

Current detection approaches, including rule-based systems, Security Op-
erations Center (SOC) monitoring, Endpoint Detection and Response (EDR)
tools, intrusion detection/prevention systems, and SIEM-based analytics, pro-
vide valuable defenses but remain susceptible to false positives and false neg-
atives. As attackers become more adept at hiding malicious activity within
legitimate processes, conventional detection techniques face increasing limita-

8

tions.
This challenge is reflected in recent malware statistics. A study conducted

by AV-TEST reported that in 2023, more than 90 percent of all malware detec-
tions targeted Windows systems [3], with over one billion instances recorded
worldwide. Windows-based persistence locations are especially attractive to
attackers because they enable automatic execution at user logon or system
startup, allowing malicious components to survive system reboots and user
logoffs. The Windows Registry, in particular, stores configuration data and
system-critical executables that are implicitly trusted by the operating system,
while startup folders contain programs designated to run during system ini-
tialization. Although access to these locations is generally restricted, attackers
who obtain elevated privileges can insert, modify, or replace entries to establish
long-term persistence while appearing as legitimate system components.

These observations motivate our focus on ML–based detection of persis-
tence mechanisms through Windows Registry–related artifacts. In this work,
we propose a supervised learning approach to identify persistence techniques
employed by APTs. Leveraging recent advances in AI, the objective is to
develop a detection model capable of identifying persistence indicators with
improved accuracy while reducing both false-positive and false-negative rates.

To this end, a large-scale dataset comprising several hundred thousand event
logs was constructed using data collected from Sysmon on Microsoft Windows
systems. The dataset includes a combination of benign daily user activity and
malicious behavior specifically targeting Windows Registry keys. A carefully
designed preprocessing pipeline was applied to the dataset, beginning with la-
beling based on a manually constructed ground truth, followed by data cleaning
and feature engineering to extract meaningful characteristics for model train-
ing.

Multiple ML algorithms were trained on the resulting dataset, including
Logistic Regression as a baseline model, ensemble tree-based methods such as
Random Forest, XGBoost, and LightGBM, as well as a neural network model
based on a Multilayer Perceptron (MLP). These models were evaluated to assess
the accuracy and relevance of their predictions and probability estimates with
respect to the labeled training data. Performance was measured using a set of
commonly adopted evaluation metrics.

Based on these metrics, the best-performing models were selected and fur-
ther validated using a publicly available dataset containing a mixture of APT
techniques, including persistence through Windows Registry manipulation, for
which a dedicated ground truth was constructed. This validation step ensures
that the pretrained models are capable of generalizing to unseen data and
detecting real-world persistence mechanisms, even when certain techniques,
registry keys, or locations were not encountered during either the training or
testing phases. Ultimately, this research aims to evaluate the effectiveness of
learning-based approaches in enhancing the detection of stealthy, long-term
intrusions in modern Windows environments.

The remainder of this paper is organized as follows. Section 2 reviews the
related work and outlines the motivation for this study. Section 3 introduces the
Windows Registry and explains its role as a persistence mechanism. Section
4 describes the proposed methodology in a detailed and technical manner.
Section 5 presents and discusses the experimental results. Section 6 reports
and analyzes the validation of the proposed models using external datasets.
Finally, Section 7 concludes the paper with a discussion of the implications of

9

the findings and directions for future work.
Artificial intelligence–based tools were employed as support during the re-

vision of the manuscript to improve language clarity, grammar, and stylistic
consistency, and to assist in code review for troubleshooting. The scientific
content and conclusions remain the responsibility of the authors.

2 Literature review and motivation
Recent research has made some progress in understanding and detecting differ-
ent mechanisms employed by APTs, particularly on Windows-based systems.

One of the earliest works addressing persistence at the operating-system
level is [2], which demonstrated that monitoring anomalous Windows Registry
accesses could effectively identify malicious software and persistent threats.
This work established the feasibility of registry-level anomaly detection and
highlighted the registry as a critical attack surface long before the formalization
of modern APT models.

Building on this early insight, later research introduced structured tax-
onomies of persistence techniques. The study [43] systematically categorizes
persistence mechanisms used by threat actors, providing a conceptual foun-
dation for subsequent detection approaches and reinforcing the central role of
registry-based techniques among others.

With the increasing availability of system telemetry, several works have ex-
plored dynamic malware detection by leveraging detailed Sysmon event logs
that capture runtime behaviors such as process creation, registry edits, file
modifications, network connections, and DNS queries. The study in [42] an-
alyzes thousands of malware samples to quantify how frequently persistence
mechanisms are adopted and evaluates ML models for their detection. While
comprehensive, this work focuses on malware behavior in general rather than
isolating specific persistence vectors.

Similarly, An Insight into [17] applies memory forensics and ML-based clas-
sification to detect fileless attacks. Although relevant to stealthy persistence,
this approach targets memory-level artifacts rather than registry-based persis-
tence mechanisms.

Another study [1] collects Sysmon telemetry to classify benign and mali-
cious programs using supervised and unsupervised learning. However, persis-
tence is treated as one behavioral signal among many (e.g., networking or DNS
activity), and detection is driven by program behavior rather than explicit
technique-level modeling aligned with MITRE ATT&CK.

Beyond individual detection approaches, the lack of realistic and repro-
ducible datasets has motivated the creation of simulated APT scenarios. The
dataset presented in [32] simulates 36 full-chain APT attack scenarios modeled
after Chinese threat actors and mapped to MITRE ATT&CK tactics. While
this dataset is publicly available and valuable for evaluating end-to-end APT
detection systems, its broad scope makes it unsuitable for training specialized
ML models focused on a single persistence technique, such as registry-based
persistence. Nevertheless, it remains useful for external validation.

Addressing this limitation, a significant advancement is introduced in work
[35], which presents a publicly available dataset specifically designed to char-
acterize APT persistence techniques on Windows systems and aligned with
MITRE ATT&CK. This dataset fills an important gap by shifting focus from
early attack stages (e.g., initial access or lateral movement) toward long-term

10

persistence. It includes a wide range of persistence categories, such as registry
autorun keys, startup folders, scheduled tasks, WMI event subscriptions, and
shortcut modification. However, its deliberately broad scope means that it
does not focus exclusively on registry-based persistence, despite the prevalence
of such techniques in real-world campaigns.

Following this work, [36] presents a more specialized approach. The authors
propose a ML system for detecting malicious scheduled tasks using Sysmon
telemetry and Word2Vec-based feature representations. Their models achieve
high detection performance with low false-positive rates, demonstrating the
effectiveness of learning-based detection for a specific persistence vector. How-
ever, this study focuses solely on scheduled tasks and does not address registry-
based persistence.

In parallel with dataset-driven and ML-based approaches, more recent re-
search explores provenance-based and graph-based detection frameworks. The
CPD system in [18] separates persistence into “setup” and “execution” phases
and links events through dependency graphs to reduce false positives. Similarly,
frameworks such as TREC and TBDetector [19] apply few-shot learning and
transformer-based models to provenance graphs to recognize ATT&CK tech-
niques and long-term APT behavior. These approaches demonstrate strong
detection capabilities but require extensive system-wide logging and graph con-
struction, leading to high computational overhead.

At the operational level, defenses such as SIEM platforms [8], SOC work-
flows, Sigma/YARA rules, and EDR solutions remain widely deployed. While
effective for known patterns, these rule-based systems struggle to adapt to
evolving persistence techniques and often suffer from false positives and lim-
ited generalization.

Despite these advances, several limitations remain.
First, AI-based detection of persistence mechanisms (particularly those im-

plemented via Windows Registry keys) remains extremely limited. Although
persistence is frequently acknowledged, registry-based techniques are often men-
tioned only briefly rather than studied in depth. This limitation is partly ex-
plained by the lack of datasets explicitly targeting registry persistence.

Second, existing datasets are narrow or overly broad. Available resources
typically focus on general APT behavior, scheduled tasks, or fileless malware.
To the best of our knowledge, no public dataset is dedicated specifically to
registry-based persistence techniques, which significantly restricts the training
and evaluation of specialized detection models.

Finally, provenance-based and graph-based approaches, while powerful, in-
cur substantial computational costs due to fine-grained logging and graph con-
struction. This limits their practicality in large-scale or resource-constrained
environments.

CyLab, the cybersecurity research laboratory of the Royal Military Academy
(RMA), conducts active research in the areas of network monitoring, intrusion
detection, cryptographic protocol development, and advanced cyber threats,
including APTs. The laboratory is recognized for its contributions to the anal-
ysis and detection of sophisticated attack techniques, particularly persistence
mechanisms, and has established strong credibility through sustained research
efforts supporting both academic inquiry and operational defense. Notably,
CyLab is among the few research groups that explicitly investigate APT per-
sistence strategies in depth, addressing a critical yet often underexplored aspect
of modern cyber threats. [9]

11

As cited earlier, the work presented in [36] represents a significant advance-
ment in this field by deepening the understanding of a sophisticated persistence
technique employed by APTs. While this contribution constitutes an important
step forward, it also underscores the broader challenge posed by the diversity
and continuous evolution of strategies used by APTs to maintain long-term
access to compromised systems. In the same line of research, the author in-
troduced a dedicated dataset focusing on Windows Registry–based persistence
techniques, as described in [35]. Building on this continuity, CyLab aims to
systematically document persistence techniques across the APT landscape and
to develop multiple specialized detection agents, each targeting a specific per-
sistence mechanism. Within this broader research vision, the present work
contributes as one such specialized agent, addressing Windows Registry–based
persistence as part of a larger, modular defense strategy.

3 Registry keys as a persistence technique
Given these gaps, particularly the lack of datasets and detection methods tar-
geting registry-based persistence, it becomes essential to examine how registry
keys are used as a persistence mechanism and why they represent a high-value
target for threat actors. The following section provides an overview of the
registry structure and explains why protecting these components is critical for
system security.

3.1 Definition

To understand the importance of securing the Windows Registry, it is necessary
to outline what it is, how it functions, and why it is frequently exploited by
APT groups.

The Windows Registry is a critical hierarchical database used by the Mi-
crosoft Windows operating system. It stores configuration information for the
OS itself, installed applications, hardware drivers, and user-specific settings. Its
structure is organized into five main hives, each containing multiple keys and
subkeys as illustrated in [Figure 1]. Each subkey holds values, which consist of
a value name, a data type, and associated data, often pointing to executables
or processes that run automatically during system events such as startup or
user logon.

12

Figure 1: Example of Windows registry structure [20]

This database governs essential system behavior and underpins numer-
ous configuration, persistence, and autostart mechanisms. To support sys-
tem administration and software operation, Microsoft exposes several inter-
faces(ranging from graphical tools to low-level programmatic APIs) that allow
registry interaction. While indispensable in legitimate environments, these in-
terfaces are inherently dual-use and are frequently abused by threat actors
when insufficiently secured or monitored. [41]

3.2 Techniques to access and modify Windows registry

There exist numerous methods and techniques for accessing and modifying
the Windows Registry, which may be used for either legitimate or malicious
purposes. To effectively detect registry manipulation, it is first necessary to
understand these mechanisms as illustrated in [Figure 2].

Figure 2: Some Windows registry access techniques [26]

Windows allows direct graphical interaction with the registry through the
Registry Editor, commonly known as regedit.exe. This utility can be launched
via Windows Search, the Run dialog, File Explorer, or the command line, and
enables users to browse registry hives as well as create, modify, or delete keys
and values. While regedit is widely employed for troubleshooting and manual
configuration tasks, it offers little in the way of built-in safeguards. As a result,
it is particularly susceptible to accidental misconfiguration by administrators
and deliberate misuse by malicious actors [21].

13

Beyond manual interaction, Windows also supports automated and large-
scale registry operations through scriptable and command-line interfaces. Pow-
erShell, for instance, exposes the registry as a hierarchical drive structure such
as HKLM and HKCU, and provides native cmdlets that allow reading, cre-
ating, updating, and deleting registry keys and values. This design makes
PowerShell a cornerstone of modern configuration management, reporting, and
system administration. However, its flexibility, deep system integration, and
default availability have also made it a favored tool for fileless malware and
stealthy persistence techniques. [13, 28]

Similarly, Windows includes lightweight command-line utilities that provide
direct registry access. The built-in reg.exe tool supports querying, exporting,
importing, and modifying registry data through simple commands. Because
it is present by default on most Windows systems and can be easily scripted,
reg.exe is extensively used in legitimate deployment and maintenance work-
flows, while also being leveraged in adversarial activity for stealthy configura-
tion changes.

Closely related to command-line tools are registry script files with the .reg
extension, which function as portable instruction sets containing predefined
registry modifications. When imported, either through the graphical editor or
via command-line utilities, these files immediately apply the specified changes.
Their simplicity and effectiveness make them common in administrative au-
tomation, but the same characteristics also render them attractive for malicious
payload delivery. [33]

In enterprise environments, registry interaction is often abstracted through
centralized management frameworks. Windows Management Instrumentation
(WMI), for example, provides powerful local and remote access to registry
data through scripting languages such as PowerShell and VBScript, as well
as through command-line tools. By leveraging specific WMI classes, admin-
istrators can read and modify registry settings across multiple systems from
a central location. While this capability supports efficient enterprise manage-
ment, it has also been repeatedly observed in malware campaigns, particularly
for lateral movement and remote execution. [27, 11]

At an even higher level, Group Policy plays a fundamental role in corpo-
rate Windows infrastructures. Many system, security, and application settings
enforced through Group Policy are ultimately implemented as registry config-
urations. Consequently, registry changes can be deployed centrally and au-
tomatically across entire domains, often without any direct user interaction,
amplifying both their administrative power and their potential impact if mis-
used.

Finally, at the lowest level, both legitimate software and malicious code
may rely on the Win32 API for direct registry manipulation. Native functions
such as RegOpenKeyEx allow applications to open and enumerate existing
keys, while RegSetValueEx and RegDeleteKeyEx enable writing to or removing
registry data[25]. This low-level and fine-grained access is essential for system
software and installers but is equally attractive to custom malware operating
with sufficient privileges. [23]

3.3 Most Abused Registry Keys

The MITRE ATT&CK framework [31] provides a comprehensive and struc-
tured knowledge base of adversarial techniques observed across real-world cy-

14

berattacks, covering the different phases of the Cyber Kill Chain. This frame-
work is grounded in empirical evidence collected from documented campaigns
conducted by APT groups, and it maps specific techniques to known threat
actors, tools, and attack scenarios.

Within the persistence tactic, several techniques explicitly rely on the abuse
of Windows Registry keys to maintain long-term access to compromised sys-
tems [12]. These techniques exploit legitimate system mechanisms originally
designed to support configuration management, application startup, and user
preferences. By modifying specific registry locations, adversaries can ensure
that malicious code is executed automatically at system boot, user logon, or
application launch, often without requiring further user interaction.

Based on the techniques listed in the MITRE ATT&CK framework, this
work focuses on the registry-based persistence mechanisms most frequently
observed in APT campaigns. For each identified technique, we introduce a
summary in [Table 1] that presents its corresponding ATT&CK identifier, a
concise explanation of the attacker’s objective or typical exploitation scenario,
the specific registry paths involved, and the level of privileges required to per-
form the modification. This structured representation aims to facilitate both
defensive analysis and detection efforts by highlighting common abuse patterns
and their operational constraints. [29]

4 Methodology of the proposed approach
In this section, we present the methodology of the proposed approach and
highlight the main contributions of this work. One of the primary challenges
in studying persistence mechanisms lies in the limited availability of publicly
accessible datasets, particularly those specifically addressing persistence tech-
niques implemented through the Windows Registry. Existing datasets often
focus on general malware activity and rarely provide sufficient coverage of
registry-based persistence behaviors, which remain a critical component of APT
campaigns.

To address this gap, we constructed from scratch a comprehensive dataset
specifically dedicated to Windows Registry–based persistence mechanisms. The
dataset is built around an exhaustive set of persistence techniques mapped to
the MITRE ATT&CK framework and reflects methods commonly employed
by APT groups. It captures a broad spectrum of registry-related activities,
encompassing both benign system operations and malicious persistence behav-
iors.

This contribution fills a notable gap in the current landscape of security
datasets by enabling the training and evaluation of ML models specifically tai-
lored to the detection of registry-based persistence techniques. By providing
realistic and labeled registry event data, the dataset supports the development
of effective and scalable detection systems capable of identifying stealthy per-
sistence behaviors in Windows systems. In addition, it lays the groundwork for
future research directions, including advanced AI-driven detection methods and
automated threat-hunting approaches. By making this dataset publicly avail-
able, we aim to support reproducible research and foster continued progress in
persistence detection and defensive security analytics.

Before training the ML models, it is necessary to construct an appropriate
dataset and apply a series of preprocessing steps. The dataset is organized
in a tabular form, where each row represents a system event and each col-

15

Registry Location / Key(s) Purpose / Abuse Scenario Privilege &
Scope

MITRE
ATT&CK
Technique

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

Run

Autostart entries executed at user lo-
gon. Common persistence mechanism
used at both user and system levels.

User-level
(HKCU) /
Admin-level
(HKLM)

T1547.001 (Reg-
istry Run Keys)

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

RunOnce

One-time execution at next logon. Of-
ten used for staged or transient persis-
tence.

User-level /
Admin-level

T1547.001

HKLM\Software\Microsoft\Wi

ndows\CurrentVersion\RunOn

ceEx

Extended RunOnce mechanism en-
abling controlled or conditional execu-
tion.

Admin-level T1547.001

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

RunServices

Legacy service-style autostart executed
at/after logon; can background compo-
nents.

User-level /
Admin-level

T1547.001

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

RunServicesOnce

One-time legacy service-style autostart
executed at/after login.

User-level /
Admin-level

T1547.001

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

Policies\Explorer\Run

Policy-based autostart locations that
blend with legitimate administrative
configurations.

User-level /
Admin-level

T1547.001

HKLM\System\CurrentControl

Set\Control\SessionManager

\BootExecute

Executes programs very early during
system boot, before user logon.

Admin-level only T1547.001

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

Explorer\ShellFolders

Defines shell folder paths (Desktop,
Start Menu). Can be abused to redi-
rect startup-related execution paths.

User-level /
Admin-level

T1547.001

HKCU/HKLM\Software\Microso

ft\Windows\CurrentVersion\

Explorer\UserShellFolders

Expandable shell folder paths, com-
monly abused to redirect startup exe-
cution.

User-level /
Admin-level

T1547.001

HKCU\Software\Microsoft\Wi

ndowsNT\CurrentVersion\Win

logon\Shell

Per-user override of Winlogon shell be-
havior; can hijack shell execution at lo-
gon.

User-level T1547.004 (Winl-
ogon Helper DLL)

HKCU/HKLM\Software\Microso

ft\WindowsNT\CurrentVersio

n\Winlogon

Per-user or system-wide Winlogon set-
tings controlling logon execution (e.g.,
Shell, Userinit).

User-level /
Admin-level

T1547.004

HKLM\System\CurrentControl

Set\Control\ServiceControl

ManagerExtension

Boot/service control manager extension
settings; can be abused to influence ser-
vice behavior early in boot.

Admin-level only T1547.008 (Boot
or Logon Au-
tostart)

HKLM\System\CurrentControl

Set\Control\SessionManager

\Execute

Session Manager execution list; abused
for early execution during boot/session
initialization.

Admin-level only T1547.008

HKLM\System\CurrentControl

Set\Control\SessionManager

\SubSystems\Command

Command execution during early ses-
sion initialization (SSO); can enable
stealthy pre-logon execution.

Admin-level only T1547.008

HKLM\System\CurrentControl

Set\Control\SessionManager

\SetupExecute

Programs executed during setup/boot
processing; may be abused for persis-
tence or pre-logon execution.

Admin-level only T1547.008

HKCU\Environment\UserInitM

prLogonScript

Add logon scripts that execute auto-
matically at logon initialization.

User-level T1037.001

Table 1: Grouped Windows Registry persistence locations (Autorun/Auto-
Start Execution Points – ASEPs) mapped to MITRE ATT&CK techniques
and Sysmon detection events [29]

16

umn(referred to as a feature) captures a specific characteristic of that event.
These features describe various aspects of system behavior, including user con-
text, process execution, timestamps, tools involved, file paths, and file types.
As a result, the dataset contains both relevant and irrelevant information, re-
quiring careful preprocessing to ensure effective learning.

The extracted features are heterogeneous in nature. Some features are
categorical, meaning they take values from a finite and relatively small set of
possible categories. Examples include EventID, EventType, IntegrityLevel, Lo-
gonType, and User, which remain stable across events and do not exhibit high
variability. Other features contain textual or high-cardinality data, character-
ized by a large number of distinct values. These include fields such as Image,
ParentImage, ImagePath, TargetObject, CommandLine, and Hashes, which of-
ten encode detailed file paths, registry keys, or command-line arguments. Due
to their high variability, these features require specialized encoding techniques
to be used effectively by MLmodels. In addition, the dataset includes numerical
features derived during feature extraction, such as counts, lengths, frequencies,
and entropy-based measurements, which provide quantitative descriptions of
system activity.

In [Figure 3], we present a global overview of the proposed processing and
detection pipeline, illustrating the successive steps from data collection and
preprocessing to feature engineering, model training, and evaluation.

Figure 3: Overview of the project pipeline

17

4.1 Logs collection

4.1.1 Experimental environment and benign activity generation

The first step in constructing the dataset consisted of simulating a realistic
operational environment. To this end, we deployed multiple virtual machines
(VMs) running Windows 10 and Windows 11, configured to emulate typical
enterprise endpoints. Within this environment, benign user activity was gener-
ated using the GHOSTS framework [40], which reproduces common day-to-day
user behaviors such as document editing in Microsoft Word, Excel, and Power-
Point, web browsing, note-taking via Notepad, and email communication. The
GHOSTS framework was configured on each VM according to the pipeline de-
scribed in [6], which involves installing the GHOSTS framework itself alongside
Microsoft 365 tools and the Firefox browser. Web browsing automation was
enabled through the integration of the GeckoDriver component.

4.1.2 Adversary emulation and persistence simulation

To simulate malicious activity, we incorporated multiple adversary emulation
frameworks that collectively cover a wide range of persistence techniques aligned
with the MITRE ATT&CK framework. This combination enabled the con-
trolled generation of realistic attack traces while maintaining reproducibility
and precise ground truth.

First, we employed Atomic Red Team [37], a framework that provides fine-
grained, technique-level tests mapped directly to individual MITRE ATT&CK
techniques. Atomic Red Team allows the execution of isolated adversarial
actions, such as specific registry modifications or startup mechanism abuses,
without requiring a full attack chain. This approach is particularly well suited
for validating individual persistence behaviors in a controlled manner.

In addition, we utilized the CALDERA adversary emulation platform [30],
which enables the execution of multi-step attack campaigns through autonomous
agents deployed on target systems. CALDERA operates using a command-and-
control (C2) architecture, where lightweight agents installed on the victim ma-
chines receive instructions from a central server. Through predefined adversary
profiles and abilities, CALDERA orchestrates realistic attack workflows, includ-
ing privilege escalation, lateral movement, and persistence establishment. In
this study, CALDERA was primarily configured to execute persistence-related
techniques, allowing us to observe how registry-based persistence integrates
within broader attack chains.

To further extend adversarial realism, we incorporated Empire [34], a post-
exploitation framework designed to maintain and expand an attacker’s foothold
after initial compromise. Empire provides a rich set of modules for persistence,
credential access, and system manipulation, and supports both PowerShell-
based and Python-based agents. Its emphasis on stealthy, fileless, and registry-
backed persistence mechanisms makes it particularly relevant for studying long-
term compromise scenarios.

4.1.3 Host-based telemetry collection with Sysmon

To construct the dataset used in this study, Sysmon—part of the Microsoft
Sysinternals [24] suite—was deployed on all Windows VMs. Sysmon is a host-
based monitoring tool that provides fine-grained telemetry on system activity,
including process creation, file system operations, network connections, and

18

registry modifications, depending on its configuration. For the purpose of this
work, Sysmon was explicitly configured to focus on Windows Registry–related
events. By tailoring the configuration to registry activity, the collected logs
emphasize high-value events directly relevant to the detection objectives of
this study.

4.1.4 Log validation and retention strategy

Following the execution of both benign system behavior and controlled persis-
tence scenarios, the generated events were manually inspected to verify that
the expected registry-related activity was correctly captured. All events were
recorded under the Sysmon Operational log and accessed through the Windows
Event Viewer [Figure 4], ensuring that raw, unfiltered telemetry was retained.
To prevent event loss during prolonged or high-frequency activity, the maxi-
mum log size was increased to the highest allowable value and automatic log
archiving was enabled. This configuration ensures continuous logging and pre-
serves historical data across multiple execution phases, which is essential for
accurately modeling persistence behaviors that may occur intermittently or
across reboots.

Figure 4: Sysmon path displayed in the Windows Event Viewer on a Windows
10 VM

4.1.5 Decentralized log extraction and data handling

Rather than relying on centralized log collection mechanisms such as Security
Information and Event Management (SIEM) platforms or Windows-native for-
warding and authentication components (e.g., Winlogon-based mechanisms),
logs were collected directly from each VM. This design choice was motivated
by the need to preserve complete event fidelity and avoid preprocessing, nor-
malization, or filtering commonly applied by SIEM infrastructures, which may
obscure low-level registry operations critical for persistence analysis. Addition-
ally, centralized solutions typically require complex infrastructure, continuous
network connectivity, and elevated administrative privileges, making them less
suitable for controlled experimental environments.

In contrast, archived Sysmon logs were exported in their native .evtx for-
mat and extracted from each VM by temporarily hosting a lightweight HTTP

19

server on the guest systems. The archived logs were then downloaded to a host
environment running Ubuntu for further processing and analysis. This ap-
proach minimizes system interference, remains OS-independent on the analysis
side, and provides a reproducible and modular data collection pipeline.

4.1.6 Methodological implications and scalability

By adopting direct host-level log collection through Sysmon, accessible via
the Windows Event Viewer as illustrated in [Figure 4], the proposed method-
ology remains independent of external logging infrastructures and is capable
of operating as a standalone solution in isolated environments. At the same
time, the approach is designed to be sufficiently modular to allow future in-
tegration as a complementary component within existing SIEM deployments,
enabling fine-grained persistence detection without disrupting established secu-
rity architectures. This flexibility allows the dataset construction methodology
to scale from controlled research settings to real-world deployment scenarios,
while maintaining full control over data quality and completeness.

Sysmon provides several event identifiers that are particularly relevant for
detecting persistence techniques involving the Windows Registry as illustrated
in [Table 2].

Event ID Event name Event description

1 Process Creation Logs the creation of a new process, includ-
ing command-line arguments and parent
process information. Useful for detecting
suspicious executables launched via persis-
tence mechanisms

12 Registry Object Created or Deleted Captures the creation or deletion of reg-
istry keys, including common persistence
locations such as Run, Services, or Shell
keys

13 Registry Value Set Logs modifications to existing registry val-
ues, which may indicate the insertion of
startup entries, disabling of security con-
trols, or alteration of system configuration

14 Registry Object Renamed May indicate attempts to conceal persis-
tence by renaming registry keys or values

15 Registry Object Deleted Can reflect cleanup actions by attackers
or removal of obsolete persistence mecha-
nisms

21 WMI Event Binding Detects persistence via WMI event sub-
scriptions, a stealthy and often fileless
technique

Table 2: Mapping of Sysmon events to Windows Registry–based persistence
techniques [22]

4.2 Dataset labeling

Before training ML models, the raw log data must undergo preprocessing to
ensure consistency, reduce noise, and improve model performance. We can
export the logs from Sysmon in the .evtx format, which is not directly usable

20

for ML workflows. Therefore, each log file was converted into a CSV format,
which facilitates feature extraction and subsequent processing.

Each CSV file was then labeled according to a predefined ground truth,
assigning a label of 0 for benign activity and 1 for malicious persistence activity.

Labeling plays a critical role in supervised ML, as it provides the model with
explicit examples of normal and malicious behavior from which discriminative
patterns can be learned. Accurate labels are essential for guiding the learn-
ing process during training and for enabling reliable performance evaluation
during testing. Incorrect or inconsistent labeling can introduce bias, degrade
model generalization, and lead to misleading evaluation metrics, particularly
in security contexts where false positives and false negatives carry significant
operational consequences.

After labeling, the CSV files from all machines were merged into a single
dataset for unified preprocessing and model training.

4.3 Dataset cleaning

4.3.1 Empty columns removal

As part of the preprocessing pipeline, all features in the merged dataset were
systematically examined to identify columns containing exclusively empty or
null values. Such features do not convey any discriminative information and
would otherwise introduce unnecessary noise during model training, poten-
tially degrading learning efficiency and performance. Removing these columns
ensures that subsequent learning algorithms operate solely on informative fea-
tures that contribute to distinguishing benign activity from persistence-related
behavior.

In total, 19 columns were removed during this step. These included: Call-
Trace, CommandLine, Company, CurrentDirectory, Description, FileVersion,
GrantedAccess, ID, IntegrityLevel, OriginalFileName, ParentCommandLine,
ParentImage, ParentProcessGuid, ParentProcessId, ParentUser, Product, Sour-
ceProcessGUID, SourceThreadId, and TargetProcessGUID. The elimination of
these uniformly empty features resulted in a more compact and semantically
meaningful feature set.

4.3.2 Path normalization

We implemented a systematic text normalization procedure for the paths fea-
tures in the dataset, with the aim of preparing the data for ML. Specifically, it
reads structured log data from a CSV file and applies a series of transformations
to normalize variable elements in textual fields.

The normalization of path-related features is a key design choice for persis-
tence detection, as file system and registry paths often contain environment-
specific elements such as user names, temporary directories, or randomly gen-
erated identifiers. These components introduce high variability without con-
veying meaningful information about persistence behavior. Without normal-
ization, models may overfit to absolute path values instead of learning gen-
eralizable structural patterns, such as directory hierarchy or the use of sen-
sitive locations (e.g., autorun paths). By canonicalizing paths and removing
volatile components, the normalization process preserves relevant semantic and
structural information while reducing feature sparsity, enabling models to learn
patterns that generalize across systems and deployment environments.

21

The normalization process addresses several types of system-specific and
user-specific information, including:

• Identifiers and cryptographic hashes: Globally unique identifiers (GUIDs),
MD5, SHA-1, and SHA-256 hashes are replaced with generic placehold-
ers.

• System paths and user data: File system paths, user directories, and
drive letters are canonicalized, removing personal or environment-specific
details.

• Network and hardware addresses: IP addresses and MAC addresses are
replaced with normalized tokens.

• Software versions and numeric sequences: Version numbers and other
numeric sequences are generalized to reduce variability.

• Registry hives: Windows registry keys are mapped to a canonical form
to ensure consistency across different representations.

All transformations aim to reduce irrelevant variability in the text, allowing
for more robust statistical analysis, pattern recognition, or feature extraction.
The normalized data is appended as new columns to the original dataset and
exported to a separate CSV file, facilitating downstream processing without
altering the original content.

4.3.3 Duplicated rows removal

As part of the preprocessing pipeline, a deduplication step was initially applied
with the objective of removing duplicate rows, as multiple entries were observed
to share identical feature values except for their timestamps. However, further
analysis revealed that this approach was not necessarily appropriate in our
context. Although such records appear redundant at first glance, the temporal
dimension carries meaningful information about event frequency, recurrence,
and persistence behavior. In particular, repeated events occurring at different
timestamps may reflect sustained activity patterns or periodic execution mech-
anisms, which are essential for accurately modeling and detecting persistence
techniques. Consequently, removing these entries risked discarding valuable
temporal signals and biasing the dataset. For this reason, the deduplication
step was reconsidered and ultimately excluded from the final preprocessing
pipeline.

4.4 Feature engineering

Once a labeled and cleaned dataset has been obtained, the feature engineering
phase can be conducted. Feature engineering aims to transform raw data into
a set of informative, discriminative, and ML-ready features that enhance the
model’s ability to capture relevant patterns. This phase encompasses several
key steps, including feature extraction, dataset partitioning, and the applica-
tion of appropriate data encoding techniques.

22

4.4.1 Features extraction

To enrich the dataset with structural and statistical characteristics of system
events, a set of additional features was computed. These features include Shan-
non entropy, which quantifies the level of randomness or disorder in string-based
attributes such as file names, registry values, command lines, and pipe names,
which is useful for identifying obfuscation or encoded payloads. Structural fea-
tures such as path depth, string length, token counts, and argument counts
are also extracted to characterize the complexity and structure of system arti-
facts. In addition, we introduce domain-informed binary indicators, including
flags for executable file types, system directory usage, autorun-related registry
keys, suspicious command-line arguments (e.g., PowerShell execution, encoded
commands), base64-like content, and named pipe usage.

By combining these statistical, structural, and contextual features, the re-
sulting dataset provides higher-level abstractions of system behavior that en-
hance the learning model’s ability to detect persistence mechanisms.

4.4.2 Dataset partitioning

To ensure a rigorous evaluation of the proposed ML models and to assess their
ability to generalize to unseen data, it is essential to clearly separate the data
used for training from that used for testing. Using the same collection of
logs for both phases would introduce data leakage, leading to overly optimistic
performance estimates by allowing models to memorize host-specific patterns
rather than learning generalizable characteristics of persistence behavior.

To mitigate this risk, the dataset was partitioned into two disjoint subsets
based on the originating VM, rather than through random event-level sampling.
Logs collected from three VMs(two running Windows 11 and one running Win-
dows 10) were used exclusively for model training, while logs from two differ-
ent VMs(running Windows 10 and Windows 11 respectively), were reserved for
testing. This machine-level partitioning ensures that evaluation is performed
on systems entirely unseen during training and prevents bias toward a specific
operating system version, thereby enabling a more realistic assessment of cross-
environment generalization. In total, the dataset contains 490,323 events, of
which 358,078 were assigned to the training set and 132,245 to the test set.

The partitioning process was implemented programmatically by filtering the
feature-enriched dataset according to a machine identifier associated with each
event. The partitioning script described in [gitlabrepo] verifies the presence of
both a machine identifier and a class label, assigns predefined machine groups
to the training and test sets, and performs explicit sanity checks to ensure
that no machine appears in both subsets. The script also reports the size and
label distribution of each split to validate dataset characteristics prior to model
training. The resulting label distribution reveals a notable class imbalance in
both partitions, with benign activity (label 0) dominating the dataset. In the
training set, approximately 89.1% of events are labeled as benign and 10.9%
correspond to malicious persistence activity. In contrast, the test set contains
a higher proportion of malicious events, with 27.0% labeled as malicious and
73.0% benign. Finally, the resulting datasets are exported as separate files
for downstream training and evaluation, ensuring a controlled, reproducible
experimental setup that closely reflects real-world deployment conditions.

23

4.4.3 Encoding pipeline

To ensure a consistent numerical representation of heterogeneous Sysmon data
while preserving semantic relevance, multiple encoding strategies are applied in
parallel within a unified preprocessing pipeline. Encoding methods are selected
according to the structural and statistical properties of each feature category,
enabling diverse event attributes to be integrated into a common feature space
suitable for ML.

Several Sysmon fields, including Image, TargetFilename, TargetObject, and
Details, exhibit extremely high cardinality, often containing tens or hundreds of
thousands of distinct values. Encoding such attributes using one-hot encoding
would be computationally impractical and memory-intensive. To address this
limitation, a hashing-based encoding strategy is employed. This approach maps
textual values into a fixed-dimensional numerical space that is independent of
the number of unique entries, enabling scalable and efficient processing of large
and evolving datasets. In this pipeline, the normalized textual attributes are
first concatenated into a single text representation per event and subsequently
transformed using a HashingVectorizer. This method avoids explicit vocabu-
lary construction while preserving relevant distributional characteristics.

In parallel, low- to medium-cardinality categorical features are encoded us-
ing one-hot encoding, producing sparse binary representations while safely han-
dling categories that may appear only in the test data. Numerical features,
including length-based metrics, entropy-based measures, and other quantita-
tive indicators derived during feature extraction, are passed through without
modification in order to preserve their original semantic meaning. All transfor-
mations are coordinated through a column-wise preprocessing framework that
combines the encoded textual, categorical, and numerical features into a unified
sparse feature matrix. To prevent information leakage and ensure a realistic
evaluation, the encoding pipeline is fitted exclusively on the training data and
subsequently applied to the test data. The resulting encoded feature matrices,
corresponding labels, and the trained preprocessing pipeline are serialized and
stored to support reproducible and modular downstream model training and
evaluation.

After encoding, the training set yields a feature matrix of size (358,078
× 262,181), while the test set yields a matrix of size (132,245 × 262,181).
The identical dimensionality across both subsets confirms that preprocessing is
applied consistently, which is essential for valid model training and evaluation.
The final feature space is dominated by the hashing-based representation of
the textual fields, with the remaining dimensions contributed by the one-hot
encoded categorical variables and the passthrough numerical features.

4.4.4 Term Frequency–Inverse Document Frequency (TF–IDF)

As part of our preprocessing experiments, we investigated the use of TF–IDF
[45] to transform textual fields extracted from Sysmon logs into numerical rep-
resentations suitable for ML models. TF–IDF is a statistical technique that
assigns weights to terms based on their frequency within individual records
(term frequency) and their rarity across the entire corpus (inverse document
frequency). This weighting scheme emphasizes distinctive terms while down-
weighting ubiquitous ones, making it particularly attractive for identifying
persistence-related artifacts, such as registry paths or autorun keys, that appear
infrequently compared to benign system activity.

24

In this experiment, TF–IDF was applied to text-bearing fields relevant
to persistence detection, namely Image, Details, TargetObject, and Target-
Filename. These fields often contain complex file paths, registry keys, and
command-line arguments, which can be treated as structured textual data. Af-
ter loading the preprocessed dataset, missing values were replaced with empty
strings, and the selected textual fields were concatenated into a single represen-
tation per event to capture the full execution and registry context. The TF–IDF
vectorizer was configured to retain the most informative terms by limiting the
vocabulary size, incorporating both unigrams and bigrams, ignoring extremely
rare terms, and removing a custom list of high-frequency Windows-related stop
words. The resulting representation yielded a sparse feature matrix with 5,000
lexical features, and an inspection of the highest-weighted terms confirmed that
several persistence-related patterns were effectively captured.

To address the high dimensionality of the TF–IDF representation, we fur-
ther experimented with dimensionality reduction using Truncated Singular
Value Decomposition (TruncatedSVD) [39], a technique well suited for sparse
matrices. By projecting the data onto a lower-dimensional latent space, this
step aimed to preserve the dominant semantic structures while reducing compu-
tational complexity and overfitting risk. Although this approach demonstrated
strong performance during initial evaluations on the constructed dataset, it
was ultimately not adopted in the final methodology. The primary limitation
observed was the lack of interpretability and generalization: TF–IDF-based
models rely heavily on the presence of specific lexical tokens learned during
training. When evaluated on external datasets containing different path struc-
tures or previously unseen terms, the models consistently failed to detect per-
sistence events, often yielding zero detections. This behavior indicates that the
approach captures word-level correlations rather than underlying behavioral
patterns. As a result, despite promising in-dataset performance, the TF–IDF-
based representation was deemed unsuitable for robust persistence detection
across diverse environments and was therefore excluded from the final pipeline.

4.5 ML training and testing

After completing the data cleaning, preprocessing, and feature engineering
steps, the next phase consists in training the selected models, generating predic-
tions, and evaluating their performance using appropriate evaluation metrics.
The implementation of the models and the corresponding training and evalua-
tion pipelines are available in the project’s GitLab repository [gitlabrepo].

The scripts implement the training, prediction and evaluation of various
ML models using previously encoded Sysmon event data.

The input feature matrices for training and testing, along with their cor-
responding labels, are loaded from disk after being generated by an earlier
preprocessing and encoding pipeline.

Following training, the model is evaluated on a held-out test set that was
not used during fitting. Predictions are generated and assessed using standard
classification metrics, including accuracy, precision, recall, and F1-score, which
collectively capture both overall performance and class-specific detection capa-
bility. In addition, a confusion matrix is computed to derive false positive and
false negative rates, metrics of particular importance in intrusion and persis-
tence detection scenarios where both missed detections and false alarms carry
operational costs. A detailed classification report is also produced to summa-

25

rize per-class performance. Finally, the trained Logistic Regression model is
serialized and saved to disk, enabling reproducible experiments and facilitating
later deployment or comparative analysis with other ML models.

4.5.1 Logistic regression

Logistic Regression is a widely used supervised learning algorithm for binary
classification problems [10]. It models the probability that an input sample
belongs to a given class by applying a Sigmoid (logistic) function to a linear
combination of the input features. Despite its simplicity, Logistic Regression is
particularly well suited for high-dimensional and sparse feature spaces, which
are common in security telemetry and log-based datasets. In addition, its lin-
ear nature makes it highly interpretable, allowing insight into which features
contribute most strongly to the classification decision. For these reasons, Lo-
gistic Regression is employed in this work as a baseline model for detecting
persistence-related behavior in Sysmon event data.

Formally, Logistic Regression estimates the probability that a sample x
belongs to the positive class (persistence) as

P (y = 1 | x) = σ(w⊤x+ b) =
1

1 + e−(w⊤x+b)

Here, x is the feature vector representing an input sample, and w is the
learned weight vector that determines the importance of each feature. The
term w⊤x computes a weighted linear combination of the features, while b is
the bias term that shifts the decision boundary. The σ(·) maps this linear score
to a value in [0, 1], allowing the output to be interpreted as the probability that
the sample belongs to the positive class (y = 1).

Model training consists of optimizing these parameters by minimizing the
logistic loss, also referred to as the negative log-likelihood:

min
w,b

n∑
i=1

log
(
1 + e−yi(w

⊤xi+b)
)

To account for class imbalance commonly observed in security datasets, the
model is configured with balanced class weights, ensuring that minority-class
samples contribute proportionally to the optimization process. The model is
trained using an iterative solver with an increased iteration limit to guarantee
convergence on the large feature set.

4.5.2 Random Forest

Random Forest is an ensemble learning algorithm that combines the predic-
tions of multiple decision trees in order to achieve robust and well-generalized
classification performance. By aggregating the outputs of diverse learners, typ-
ically through majority voting, the model effectively mitigates the variance and
instability commonly associated with individual decision trees. This property
makes Random Forest particularly well suited for high-dimensional and noisy
data sources, such as system and security logs [14].

At a conceptual level, the algorithm operates by constructing a collection of
decision trees, each trained on a different bootstrapped subset of the training
data. In addition, at every split within a tree, only a random subset of fea-
tures is considered when determining the optimal splitting criterion. This dual

26

randomness(applied both to data sampling and feature selection)decorrelates
the trees and prevents them from converging toward identical structures. As
a result, the ensemble captures a broader range of decision boundaries and
improves generalization to unseen data.

From a technical perspective, each decision tree recursively partitions the
feature space by selecting thresholds that maximize a purity measure, such as
Gini impurity or information gain. Once the ensemble is trained, predictions
for new samples are obtained by aggregating the individual tree outputs via
majority voting. This collective decision-making process reduces overfitting
and increases resilience to noise and outliers.

Random Forest models are capable of handling imbalanced and complex
feature distributions while maintaining strong discriminative performance.

In our implementation, the Random Forest classifier is configured with a
fixed random seed to ensure reproducibility and trained using parallel compu-
tation across multiple CPU cores to improve efficiency. The model consists of
300 decision trees, each trained exclusively on the training dataset to avoid
information leakage. After training, the ensemble is used to predict labels for
previously unseen samples.

4.5.3 Extreme Gradient Boosting (XGBoost)

XGBoost is an ensemble learning algorithm based on gradient-boosted deci-
sion trees, designed for efficiency, scalability, and high predictive performance
on structured data. It constructs a strong classifier by iteratively combining
multiple weak learners, where each learner is a decision tree that captures non-
linear relationships and feature interactions [46]. XGBoost is particularly effec-
tive in handling heterogeneous feature sets, sparse input representations, and
complex decision boundaries, which are common characteristics of system-level
telemetry and security event data.

The model is configured for binary classification using a logistic objective
function, which enables it to estimate the probability that an event corresponds
to persistence-related behavior. During training, XGBoost builds decision trees
sequentially, with each new tree trained to minimize the residual errors of the
previous ensemble by following the gradient of the loss function. Key hyperpa-
rameters, including the learning rate, maximum tree depth, number of estima-
tors, and subsampling ratios for both rows and features, control the trade-off
between model complexity and generalization. These mechanisms reduce over-
fitting while allowing the model to learn expressive, non-linear patterns from
the data. Training is parallelized across multiple CPU cores, significantly im-
proving computational efficiency on large datasets.

XGBoost is well suited to the objectives of this work because persistence
detection often relies on subtle interactions between multiple event attributes
rather than on single features in isolation. By combining many shallow trees,
the model can capture complex behavioral patterns across registry activity,
process execution, and command-line characteristics, while remaining robust
to noise and class imbalance.

Since the task is formulated as a binary classification problem, XGBoost
optimizes the binary cross-entropy loss (logistic loss), defined as:

L = −
n∑

i=1

[yi log(pi) + (1− yi) log(1− pi)]

27

Where y i denotes the ground-truth label of sample i, and p i represents
the probability predicted by the model that the sample belongs to the positive
class.

During training, XGBoost builds decision trees sequentially, with each new
tree learning the negative gradient of the loss function, which corresponds to
the direction of the current prediction error. As a result, the first trees cap-
ture coarse decision patterns, while subsequent trees progressively focus on
correcting the residual errors of the ensemble. After a sufficient number of
boosting iterations, the combined model achieves high predictive accuracy by
aggregating these incremental improvements.

The model is configured using a set of hyperparameters that control the
trade-off between learning capacity and generalization. The learning rate=0.1
scales the contribution of each individual tree, reducing the risk of overfitting.
The maximum tree depth max depth=6 limits the complexity of each tree,
while the number of estimators n estimators=300 determines the total num-
ber of boosting rounds. Subsampling parameters subsample=0.8 and colsam-
ple bytree=0.8 introduce randomness by using only a fraction of the training
samples and features per tree, which helps reduce variance and decorrelate
trees. Finally, the objective=”binary:logistic” setting enables probabilistic bi-
nary classification, and eval metric=”logloss” is used as the optimization metric
during training

4.5.4 Light Gradient Boosting Machine (LightGBM)

LightGBM is a gradient boosting framework based on decision tree learners,
designed to achieve high predictive performance while maintaining computa-
tional efficiency and low memory consumption. Unlike other boosting methods
that grow trees level-wise, LightGBM adopts a leaf-wise growth strategy, al-
lowing it to focus on splits that yield the largest reduction in loss [16]. This
makes the model particularly effective for large-scale, high-dimensional, and
sparse datasets.

In this implementation, LightGBM is configured for binary classification,
with the objective of distinguishing benign activity from persistence-related be-
havior. To address the pronounced class imbalance, the ratio between benign
and malicious samples is explicitly computed and used to scale the contribution
of positive-class instances during training. The model is trained using a rela-
tively small learning rate combined with a large number of boosting iterations,
enabling gradual refinement of the decision function and reducing the risk of
overfitting. Model complexity is further controlled through parameters such
as the number of leaves, while parallel execution across multiple CPU cores
ensures efficient training.

4.5.5 Multilayer Perceptron(MLP)

The MLP is a feed-forward neural network composed of fully connected layers
with nonlinear activation functions. It learns hierarchical representations of
the input space through backpropagation. While simpler than Transformer-
based architectures, MLPs can capture nonlinear relationships across features
extracted from Sysmon logs [44]. Their flexibility and moderate complexity
make them suitable for supervised classification of persistence-related events.

The code follows the standard ML workflow used in for the previous models:
data loading, preprocessing, train/test splitting, model training, evaluation,

28

and model serialization.
Here, 25% of the samples are allocated to testing
The MLP requires normalized inputs to ensure stable gradient descent. The

script standardizes features using:

x′ =
x− µ

σ

where: µ = feature mean (training set), σ = standard deviation.
Scaling is fitted only on the training set and applied to both sets to avoid

data leakage
As an input layer, we use the engineered features. And we use 2 hidden

layers, where the layer 1 has 256 neurons and the layer 2 has 128 neurons.
The activation function ReLU enables efficient training and helps avoid

vanishing gradients.
For the training of the algorithm, MLP uses the Adam optimizer, which per-

forms adaptive gradient estimation by combining Momentum and RMSProp,
adjusting learning rates dynamically and converging faster on large datasets

The model monitors validation performance and stops training when no
improvement is observed for 10 consecutive epochs, which prevents overfitting
and reduces unnecessary computation.

To handle class imbalance, in the script we compute sample weights by
assigning higher weights to minority class samples (so malicious events).

Effectively, the loss function becomes:

L =
∑
i

wi · ℓ(yi, ŷi)

which penalizes misclassification of rare samples more heavily
The MLP is trained using weighted samples. Followed by a second train-

ing loop that refines the model further, ensuring additional epochs are spent
improving convergence.

During training, each neuron performs:

z = Wx+ b

a = ReLU(z) = max(0, z)

The network adjusts weights using back propagation:

W ←W − η · ∂L
∂W

This minimizes the classification loss, improving the decision boundary sep-
arating benign from persistence-related events.

Both the trained classifier and the scaler are saved using joblib.

5 Results interpretation

5.1 Evaluation metrics

To assess the performance of the ML models during both the training and test-
ing phases, we rely on several standard classification metrics. These metrics [38]
provide a comprehensive understanding of how well each model distinguishes
between benign and malicious instances.

29

• Precision quantifies the proportion of samples classified as positive that
are truly positive. It reflects the model’s ability to avoid false alarms
(false positives), which is particularly important in cybersecurity settings
where excessive alerts can overwhelm analysts.

Precision = TP
TP+FP

• Recall, also known as sensitivity or true positive rate, measures the pro-
portion of actual positive samples that the model successfully identifies.
High recall indicates the model’s ability to detect attacks and minimize
false negatives.

Recall = TP
TP+FN

• Because precision and recall often exhibit a trade-off, we employ the F1-
score, the harmonic mean of precision and recall, to provide a balanced
evaluation. It is especially useful in imbalanced datasets, such as those
common in intrusion detection.

F1-score = 2× Precision×Recall
Precision+Recall

• Support represents the number of true samples in each class (dataset
distribution).

• In addition to these scalar metrics, we use the confusion matrix, which
provides a detailed breakdown of:

True Positives (TP) False Positives (FP) True Negatives (TN) False Neg-
atives (FN)

From the confusion matrix, we derive the false positive rate (FPR) and
false negative rate (FNR), which are critical indicators in security-oriented
models:

FPR = FP
FP+TN FNR = FN

FN+TP

In cybersecurity detection systems, low FNR is essential to avoid missed
attacks, while low FPR reduces alert fatigue.

• While the accurancy represents the overall correctness of predictions.

Accuracy = TP+TN
Total

These combined metrics allow us to evaluate and compare different model
families, such as tree-based methods, neural networks, and ensemble approaches,
by highlighting their strengths and weaknesses. Tree-based models, for exam-
ple, may offer better interpretability and robustness to noise, while neural net-
works may achieve higher recall but risk overfitting if poorly regularized. The
metrics presented in [Table 3] enable a detailed and systematic interpretation
of these behaviors.

ML model Precision Recall F1 score FPR FNR Accuracy
Logistic Regression 0.57 1.00 0.73 0.2796 0.0000 0.7960
Random Forest 0.98 0.78 0.87 0.0051 0.2188 0.9371
XGBoost 0.78 1.00 0.88 0.1025 0.0035 0.9243
LightGBM 0.76 0.98 0.86 0.1134 0.0156 0.9131
MLP 0.78 0.92 0.85 0.0958 0.0789 0.9087

Table 3: Evaluation metrics of ML models for registry-based persistence detec-
tion

30

The evaluation results demonstrate clear trade-offs between detection ac-
curacy and error behavior across the tested ML models. Logistic Regression
achieves perfect recall, indicating that all malicious instances are detected;
however, this comes at the cost of a very high false positive rate, resulting in
reduced precision and overall accuracy. While such behavior may be acceptable
in highly conservative security settings, it is likely to generate excessive false
alerts in operational environments.

In contrast, ensemble-based models exhibit a more balanced performance.
Random Forest achieves the highest accuracy and the lowest false positive rate,
making it well suited for environments where minimizing false alarms is critical,
although its higher false negative rate indicates some missed attacks. XGBoost
and LightGBM provide strong overall performance, combining high recall with
moderate false positive rates, which suggests an effective compromise between
detection coverage and alert precision. The MLP model also demonstrates high
recall and competitive accuracy, but with a higher false positive rate than tree-
based ensembles. Overall, these results indicate that ensemble models offer the
most favorable balance between detection effectiveness and error control for
registry-based persistence detection.

31

5.2 ROC curves comparison

(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) LightGBM

Figure 5: ROC curves comparing the performance of the evaluated ML models

Overall, as illustrated in [Figure 5], all evaluated models demonstrate strong
classification performance, with AUC values exceeding 0.98, indicating that
the engineered feature set provides highly discriminative information for de-
tecting registry-based persistence mechanisms. Among the models, XGBoost
and Random Forest achieve the highest AUC scores, suggesting superior capa-
bility in capturing complex, non-linear patterns inherent to persistence activ-
ity. LightGBM follows closely, offering comparable performance with potential
advantages in training efficiency. Logistic Regression, while slightly less per-
formant, still achieves robust results and serves as a valuable baseline due to
its simplicity and lower computational overhead.

From a practical perspective, the ensemble-based models are better suited
for high-accuracy detection scenarios, whereas Logistic Regression may be pre-
ferred in environments where model interpretability and simplicity are priori-
tized.

32

5.3 Feature importance comparison

(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) LightGBM

Figure 6: Feature importance comparison across the evaluated ML models for
registry-based persistence detection

Feature importance is a commonly used concept in ML to understand how
input variables influence a model’s predictions. It quantifies the relative con-
tribution of features to the decision-making process and is particularly valuable
for interpreting trained models, validating that predictions rely on meaningful
inputs, and guiding feature engineering. In tree-based models such as Random
Forest, LightGBM, and XGBoost, feature importance is typically derived from
criteria such as information gain, impurity reduction, or the frequency with
which features are used in decision splits.

In this work, direct feature-level importance analysis was not feasible due
to the encoding strategies applied during preprocessing. Textual features were
transformed using hashing-based vectorization, which maps inputs to a fixed-
dimensional space without preserving a deterministic relationship between en-
coded dimensions and original attributes. In addition, categorical features were
expanded through one-hot encoding into high-dimensional binary representa-
tions. As a result, individual encoded features lack clear semantic meaning,
making fine-grained feature importance interpretation unreliable.

To address this limitation, we instead performed a feature group importance
analysis by aggregating importance scores across three predefined feature cat-
egories as presented in [Figure 6]: hashed textual features, one-hot–encoded
categorical features, and numerical features passed through unchanged, includ-
ing engineered attributes such as depth, length, and entropy. Although this
approach provides a coarser level of analysis, it remains informative, as it re-
veals how different models prioritize broad types of information rather than

33

individual encoded dimensions.
The results show that models differ in how they exploit these feature groups

for registry-based persistence detection.LightGBM relies predominantly on cat-
egorical features, highlighting the importance of structured event attributes,
while textual features play a secondary role. In contrast, XGBoost and Ran-
dom Forest place greater emphasis on hashed textual features, with additional
contributions from numerical and categorical features, reflecting their ability to
integrate semantic and behavioral information. Logistic Regression is largely
driven by textual features, consistent with its linear nature and sensitivity to
high-dimensional representations.

6 Validation and Discussion
Evaluating the model on heterogeneous datasets, containing diverse environ-
ments, malware families, and persistence techniques, allows us to assess its
degree of generalization. This step is essential to determining whether the
model can robustly identify Registry-based persistence mechanisms even when
confronted with previously unseen attack scenarios or mixed APT behaviors.
A strong performance on external data would therefore provide evidence that
the proposed approach is not only effective in controlled experimental setups
but also applicable to real-world, multi-variant threat landscapes.

6.1 Evaluation metrics

ML model Precision Recall F1 score FPR FNR
Random Forest 0.9632 0.3183 0.4784 0.0002 0.6817
XGBoost 0.0752 0.3026 0.1205 0.0484 0.6974

Table 4: Evaluation metrics of ML models for registry-based persistence detec-
tion for validation

The evaluation metrics presented in [Table 4] highlight markedly different be-
haviors between the Random Forest and XGBoost models in the context of
registry-based persistence detection. The Random Forest model exhibits a
very high precision (0.9632), indicating that when the model predicts persis-
tence, it is almost always correct. However, this strong precision comes at the
cost of a low recall (0.3183), meaning that a large proportion of actual persis-
tence instances are not detected. This imbalance is further reflected in the high
false negative rate (FNR = 0.6817), suggesting that the model adopts a highly
conservative decision strategy, prioritizing the minimization of false positives
over comprehensive detection. Consequently, the moderate F1 score (0.4784)
reflects this trade-off between precision and recall.

In contrast, the XGBoost model demonstrates substantially lower precision
(0.0752), indicating a high proportion of false positive predictions. While its
recall (0.3026) is comparable to that of the Random Forest model, the ele-
vated false positive rate (FPR = 0.0484) suggests that XGBoost struggles to
effectively discriminate between benign and persistent registry behaviors. The
combination of low precision and moderate recall results in a low F1 score
(0.1205), highlighting weaker overall classification performance. These results

34

indicate that, in its current configuration, XGBoost tends to over-predict per-
sistence, reducing its reliability in scenarios where false alerts are costly.

6.2 ROC curves comparison

(a) Random Forest

(b) XGBoost

Figure 7: ROC curves comparing the performance of the evaluated ML models
for validation

The ROC curves presented in [Figure 7] provide further insight into the discrim-
inative capabilities of the two models across varying classification thresholds.
The Random Forest ROC curve demonstrates a stronger deviation from the
diagonal baseline, indicating a better balance between true positive and false
positive rates over a range of thresholds. This behavior suggests that Random
Forest captures relevant patterns in the feature space that enable it to dis-
tinguish persistent from non-persistent registry activity more effectively, even
though its default operating point favors precision.

Conversely, the ROC curve of the XGBoost model lies closer to the diagonal,
reflecting limited discriminative power. This indicates that changes in the
decision threshold do not significantly improve the trade-off between sensitivity

35

and specificity. As a result, even though XGBoost achieves recall values similar
to Random Forest at the chosen threshold, its overall ability to separate classes
remains weaker, which is consistent with its poor precision and higher false
positive rate observed in the evaluation metrics.

6.3 Discussion

The observed discrepancy between model performance on the training dataset
and the external validation dataset motivates several hypotheses that may ex-
plain why two highly performant ML models exhibit reduced effectiveness when
evaluated on external data. One plausible explanation relates to differences in
the pipeline of data collection, attack execution, and system behavior across
datasets.

The external dataset obtained from the Mendeley Data repository [32] is
derived from logs collected by Wazuh and includes events generated by mul-
tiple processes and attack scenarios associated with different APT techniques.
According to the dataset documentation, the attacks were conducted using
the CALDERA adversary emulation framework. CALDERA operates by de-
ploying agents on victim machines, which communicate with a command-and-
control server through periodic beaconing [30]. However, the dataset does not
provide explicit guarantees regarding the lifecycle of these agents after deliv-
ery. The agents may have been terminated or disconnected due to network
interruptions, defensive countermeasures, or configuration constraints, thereby
preventing sustained beaconing activity.

In particular, there is no assurance that system reboots or user logoff
events occurred following agent deployment, which are often required for cer-
tain persistence mechanisms to be activated. Moreover, it is unclear whether
persistence was successfully established, specifically through Windows Reg-
istry–based techniques, or whether such mechanisms were detected and neu-
tralized by endpoint protection or monitoring tools present on the system.

These uncertainties introduce variability in the presence and visibility of
persistence-related artifacts within the external dataset. This highlights the
challenges associated with finding publically available datasets that are suitable
for training or even validating specific ml models.

Another explanation is that while a ground truth was constructed for the
public dataset before the validation (since it wasnt provided with the dataset)
, its reliability may inherently differ from that of the internally curated dataset
due to fundamental differences in data generation and labeling processes. In the
controlled experimental setting used for internal data collection, attack execu-
tion, timing, and persistence mechanisms were fully supervised, allowing labels
to be assigned with high confidence based on direct observation of malicious
actions. In contrast, labeling external datasets typically relies on secondary
sources such as attack descriptions, tool documentation, alert correlations, or
inferred behaviors derived from log analysis. This indirect approach introduces
uncertainty, as not all malicious actions may be observable, fully executed, or
consistently logged, particularly when attacks are partially mitigated or inter-
rupted by defensive mechanisms.

As a result, the external dataset may contain samples that are mislabeled,
incompletely labeled, or inherently ambiguous with respect to persistence be-
havior. For example, registry modifications associated with persistence may be
absent, short-lived, or indistinguishable from benign system activity, despite

36

an attack being nominally present.

6.4 Impact of threshold on model performance

Threshold T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9
F1-score RF 0.052 0.546 0.504 0.478 0.478 0.478 0.176 0.050 0.024
Recall RF 1.00 0.791 0.343 0.32 0.318 0.318 0.097 0.026 0.012

F1 XGBoost 0.026 0.029 0.022 0.068 0.121 0.116 0.114 0.118 0.389
Recall XGBoost 0.998 0.998 0.449 0.353 0.303 0.283 0.276 0.256 0.243

Table 5: Performance metrics as a function of classification threshold T

As shown in [Table 5], we investigated the impact of adjusting the classifica-
tion decision threshold, which is set to 0.5 by default in most ML classifiers.
Lowering this threshold increases the sensitivity of the model, leading to higher
recall values, whereas increasing the threshold results in a more conservative
decision rule and consequently reduces recall.

This behavior can be explained by the trade-off inherent to probabilistic
classifiers. When the threshold is decreased, a larger number of samples are
classified as positive, allowing the model to capture a greater proportion of
true persistence events, at the cost of potentially increasing false positives.
Conversely, higher threshold values require stronger confidence before assign-
ing the positive class, which reduces false positives but increases the likelihood
of false negatives. These observations are consistent with the expected pre-
cision–recall trade-off and highlight the importance of threshold tuning when
recall is a critical objective, particularly in persistence detection scenarios where
missed detections can have significant security implications.

7 Conclusion
The increasing frequency and sophistication of APT attacks underscore the
urgent need to investigate system vulnerabilities, understand adversarial tech-
niques, and develop effective countermeasures to prevent, detect, and mitigate
malware, intrusions, and, in particular, stealthy persistence mechanisms. Ex-
isting endpoint and security monitoring solutions often suffer from alert fatigue
or fail to detect advanced malware due to their reliance on known attack pat-
terns and rule-based signatures. At the same time, recent advances in AI have
lowered the barrier to developing and orchestrating large-scale automated at-
tacks through the use of scripts and autonomous agents, further exacerbating
the threat landscape. In this context, the approach presented in this work aims
to address persistence detection through ML–based techniques.

A major challenge encountered during this research was the limited avail-
ability of publicly accessible datasets suitable for training and evaluating per-
sistence detection models. To address this gap, a large-scale dataset was con-
structed, focusing on a variety of persistence techniques targeting the Windows
Registry. This dataset was derived from Sysmon telemetry collected in con-
trolled Windows 10 and Windows 11 environments and includes both benign
user activity and malicious persistence behavior. After applying a carefully
designed preprocessing pipeline, feature engineering, and strict train–test sep-
aration at the virtual machine level, multiple machine learning models were
trained using heterogeneous feature representations combining hashed textual

37

fields, one-hot–encoded categorical attributes, and engineered numerical indi-
cators. During internal evaluation, ensemble-based methods demonstrated the
strongest performance, with Random Forest and XGBoost achieving F1-scores
of 0.87 and 0.88, respectively, and emerging as the most effective classifiers for
distinguishing benign activity from registry-based persistence behavior.

External validation on an independent dataset further emphasized the im-
portance of model generalization under distributional shifts and labeling un-
certainty. For the Random Forest model, recall reached its maximum value of
1.00 at a low decision threshold (T=0.1) but decreased sharply as the thresh-
old increased, indicating high sensitivity to threshold selection and a significant
loss in detection capability under more conservative decision rules. In contrast,
XGBoost exhibited a more gradual decline in recall as the threshold increased,
maintaining higher sensitivity across a wider range of thresholds. However,
this stability came at the cost of a weaker balance between detection accu-
racy and prediction reliability. Overall, these findings highlight the critical
role of threshold tuning and cross-dataset validation in the deployment of ma-
chine learning–based persistence detection systems and demonstrate both the
potential and limitations of learning-based approaches in addressing stealthy,
long-term intrusions in modern Windows environments.

Due to time constraints, it was not possible to conduct additional experi-
ments or perform further validation on a wider range of external datasets, nor
to construct a new dataset specifically tailored to the models’ requirements.
These limitations naturally define several directions for future work. In par-
ticular, extending the evaluation to additional datasets and designing custom
datasets targeting specific persistence behaviors would allow for a more com-
prehensive assessment of model generalization. Furthermore, systematic hy-
perparameter tuning could be explored to further optimize model performance
and better understand the trade-offs between detection sensitivity, precision,
and robustness across different operating conditions.

References

[1] Riki Mi’roj Achmad et al. Sysmon Event Logs for Machine Learning-
Based Malware Detection. 2025. url: https://www.sciencedirect.co
m/science/article/pii/S277291842500027X.

[2] Frank Apap et al. Detecting malicious software by monitoring anomalous
Windows registry accesses. 2002. url: https://www.cs.columbia.edu
/~sh553/papers/drafts/rad-dist02.pdf.

[3] AV-ATLAS. Total amount of malware and PUA under Windows. 2025.
url: https://portal.av-atlas.org/malware/statistics.

[4] Osato Avan-Nomayo. North Korean hackers $308m DMM Bitcoin heist
ranked 2024 biggest. AI will make attacks even worse. 2024. url: https
://www.dlnews.com/articles/web3/ai-make-crypto-hacks-worse-

as-investors-lost-23bn-in-2024/.

[5] Lenaerts-Bergmans Bart. What is the Cyber Kill Chain? Process Model.
2022. url: https://www.crowdstrike.com/en-us/cybersecurity-10
1/cyberattacks/cyber-kill-chain/.

38

[6] Ghita Bennouna. GHOSTS v8.0 Implementation: Orchestrating Realistic
Traffic for PoC Attack Simulation and Log Monitoring. 2025. url: http
s://cylab.be/blog/395/ghosts-v80-implementation-orchestrati

ng-realistic-traffic-for-poc-attack-simulation-and-log-moni

toring.

[7] Ghita Bennouna. ML-detection-of-peristence-via-persistence. 2025. url:
https://gitlab.cylab.be/G.Bennouna/ML-detection-of-peristen

ce-via-registry/.

[8] CardinalOps. Enterprise SIEMs Miss 79% of MITRE ATT&CK Tech-
niques Used by Adversaries, According to CardinalOps’ 5th Annual Re-
port. 2025. url: https://www.prnewswire.com/news-releases/enter
prise-siems-miss-79-of-mitre-attck-techniques-used-by-adver

saries-according-to-cardinalops-5th-annual-report-302473779

.html.

[9] CyLab, Royal Military Academy. About CyLab. 2025. url: https://cy
lab.be/about.

[10] EntropyObserver. Logistic Regression. 2025. url: https://techenglis
h.top/article/1c7d698f-3512-80f8-8fa0-c949bde042fc?utm_sour

ce=chatgpt.com.

[11] ESET. WMI in the Hands of Malware. 2015. url: https://www.welive
security.com/2015/08/20/wmi-malware/.

[12] Maurice Fielenbach.Detecting the Most Popular MITRE Persistence Method
– Registry Run Keys / Startup Folder. 2025. url: https://www.nextro
n-systems.com/2025/07/29/detecting-the-most-popular-mitre-p

ersistence-method-registry-run-keys-startup-folder/.

[13] FireEye. Fileless Malware. 2017. url: https://www.fireeye.com/curr
ent-threats/what-is-fileless-malware.html.

[14] GeeksforGeeks. Random Forest Algorithm in Machine Learning. 2025.
url: https://www.geeksforgeeks.org/machine-learning/random-f
orest-algorithm-in-machine-learning/.

[15] HandWiki. Stuxnet. 2022. url: https://encyclopedia.pub/entry/37
304.

[16] Mohtasim Hossain.Mastering LightGBM: An In-Depth Guide to Efficient
Gradient Boosting. 2022. url: https://medium.com/@mohtasim.hossa
in2000/mastering-lightgbm-an-in-depth-guide-to-efficient-gr

adient-boosting-8bfeff15ee17.

[17] Osama Khalid et al. An Insight into the Machine-Learning-Based Fileless
Malware Detection. 2023. url: https://pmc.ncbi.nlm.nih.gov/artic
les/PMC9861630/.

[18] Qi Liu et al. Accurate and Scalable Detection and Investigation of Cyber
Persistence Threats. 2024. url: https://arxiv.org/abs/2407.18832.

[19] Mingqi Lv et al. TREC: APT Tactic / Technique Recognition via Few-
Shot Provenance Sub-graph Learning. 2024. url: https://arxiv.org/a
bs/2402.15147.

[20] Ömer MEMES. What is Windows Registry and Why? 2024. url: https
://medium.com/@omermemes83/what-is-windows-registry-and-why

-1a0f3bb82507.

39

[21] Microsoft. Registry Editor (regedit.exe). 2024. url: https://learn.mic
rosoft.com/en-us/windows-server/administration/windows-comm

ands/regedit.

[22] Microsoft. Sysmon Events. 2025. url: https://learn.microsoft.com
/en-us/sysinternals/downloads/sysmon#events.

[23] Microsoft. Win32 API Documentation: Registry Functions. 2024. url:
https://learn.microsoft.com/en-us/windows/win32/sysinfo/regi

stry.

[24] Microsoft Corporation. Sysmon (System Monitor) – Sysinternals. 2024.
url: https://learn.microsoft.com/en-us/sysinternals/download
s/sysmon.

[25] Microsoft Corporation. winreg.h header - Win32 API Registry Functions.
2025. url: https://learn.microsoft.com/en-us/windows/win32/ap
i/winreg/.

[26] Microsoft Learn.Windows Registry Information for Advanced Users. 2025.
url: https://learn.microsoft.com/en-us/troubleshoot/windows-
server/performance/windows-registry-advanced-users.

[27] MITRE. ATT&CK Technique T1047: Windows Management Instrumen-
tation. 2024. url: https://attack.mitre.org/techniques/T1047/.

[28] MITRE. ATT&CK Technique T1059.001: PowerShell. 2024. url: https
://attack.mitre.org/techniques/T1059/001/.

[29] MITRE ATT&CK. Persistence (TA0003). 2024. url: https://attack
.mitre.org/tactics/TA0003/.

[30] MITRE Corporation. CALDERA – A Scalable, Automated Adversary
Emulation Platform. 2025. url: https://caldera.mitre.org/.

[31] MITRE Corporation. MITRE ATT&CK®. 2025. url: https://attac
k.mitre.org/.

[32] Maryam Mozaffari, Abbas Yazdinejad, and Ali Dehghantanha. Windows-
APT 2025: A Dataset for APT-Inspired Attack Scenarios on Windows
Systems. 2025. url: https://data.mendeley.com/datasets/b8fmtzvp
y8/2.

[33] Bryan Muehlberger. Console Registry tool for Windows. 2003. url: htt
ps://www.computerworld.com/article/1377867/console-registry

-tool-for-windows.html.

[34] PowerShell Empire Project. PowerShell Empire – Building an Empire
with PowerShell. 2025. url: https://www.powershellempire.com/.

[35] Khaled Rahal, Arbia Riahi, and Thibault Debatty. Dataset of APT Per-
sistence Techniques on Windows Platforms Mapped to the MITRE ATT&CK
Framework. 2025. url: https://ieeexplore.ieee.org/document/109
43025.

[36] Khaled Rahal et al.Uncovering Malicious Persistence: Machine Learning-
Based Detection of Windows Scheduled Tasks. 2025. url: https://cybe
rsecurityjournal.info/uploads/archivepdf/3962Uncovering_Mali

cious_Persistence__Machine_Learning_Based_Detection_of_Windo

ws_Scheduled_Tasks__Latest%20(2)%20(1).pdf.

40

[37] Red Canary / Atomic Red Team Community. Atomic Red Team – Ad-
versary Emulation Tests. 2025. url: https://www.atomicredteam.io
/atomic-red-team.

[38] scikit-learn developers. Metrics and scoring: Classification metrics. 2026.
url: https://scikit-learn.org/stable/modules/model_evaluatio
n.html#classification-metrics.

[39] scikit-learn developers. sklearn.decomposition.TruncatedSVD — scikit-learn
1.4.2 documentation. 2025. url: https://scikit-learn.org/stable
/modules/generated/sklearn.decomposition.TruncatedSVD.html.

[40] Software Engineering Institute, Carnegie Mellon University. GHOSTS:
Realistic User Simulation Framework for Cyber Experimentation, Simu-
lation, Training, and Exercise. 2025. url: https://github.com/cmu-s
ei/GHOSTS.

[41] Splunk. From Registry With Love: Malware Registry Abuses. 2023. url:
https://www.splunk.com/en_us/blog/security/from-registry-wi

th-love-malware-registry-abuses.html.

[42] J. A. L. Starink, Andrea Continella, and Marieke Huisman. Dynamic
Detection and Classification of Persistence Techniques in Windows Mal-
ware. 2023. url: https://www.utwente.nl/en/eemcs/scs/education
/assignments/finished-assignments/master/20230526-dynamic-d

etection-and-classification-of-persistence-techniques-in-ma

lware/.

[43] Antonio Villalon-Huerta, Hector Marco-Gisbert, and Ismael Ripoll-Ripoll.
A Taxonomy for Threat Actors’ Persistence Techniques. 2022. url: htt
ps://www.sciencedirect.com/science/article/pii/S016740482200

2498.

[44] Wikipedia contributors. Multilayer perceptron. 2026. url: https://en.w
ikipedia.org/wiki/Multilayer_perceptron.

[45] Wikipedia contributors. Tf–idf — Wikipedia, The Free Encyclopedia. 2025.
url: https://en.wikipedia.org/wiki/Tf-idf.

[46] Wikipedia contributors. XGBoost (eXtreme Gradient Boosting). 2026.
url: https://en.wikipedia.org/wiki/XGBoost.

41

Declaration of honour concerning compliance with referencing rules
and the use of generative AI as part of the Master’s thesis

I, the undersigned, Ghita BENNOUNA, student in Master of Science in Industrial Engineering, specialization in
Computer Science, declare on my honour that all the sources used in the context of my Master's thesis comply
with the rules of referencing as set out in the study regulations of the Haute École ICHEC-ECAM-ISFSC and
explained in the Master’s thesis writing guide.

Generative artificial intelligence tools have been used ethically and responsibly for the following purposes :

Type of use of
generative AI

Check
box

No use of AI
Searching for
information

Use as a research tool to explore a theme and locate relevant sources
and content

X

Assistance with text
revision

Use of an AI tool to correct the spelling, grammar and/or syntax of the
text

X

Reformulating a personal text using AI X
Text generation
assistance

AI-generated content, reworked in a personal way at a later time X
Complete generation of a section of text using AI, without any
personal input

Text translation
assistance

Using AI to translate a text not included in the work
Using AI to translate text integrated into the work X

Assistance with the
production of visuals

Using AI to create visuals, graphics or images

Other uses
(to be completed) Assistance with code generation and revision

X

The AI tools used in this work are as follows (to be completed) :

- Chatgpt
- Perplexity

I undertake to respect these declarations and to provide any additional information required concerning the
use of AI in this work :

- I have appended the standard questions asked of the AI.
- I put together a file containing all the questions and answers I got from the AI and I insert the link to

share them in my TFE.
- I can explain what type of assistance I have used and for what purpose.

Done at Brussels , on 05/01/2026

Signature : Ghita Bennouna

CAHIER DES CHARGES RELATIF

au TRAVAIL DE FIN D’ETUDES de

Ghita Bennouna inscrite en MA2 IN

Année académique : 2025/2026

Titre provisoire : AI Detection of APTs’ Persistence via Windows Registry

Objectifs à atteindre :

 Simulation d’attaques APT (clés de registre sous Microsoft Windows)
 Création d’une dataset
 Pretraitement de la dataset
 Conception et entrainement d’un modele IA
 Validation et évaluation du modele

Principales étapes :

1. Simulation (lab)

 Créer des machines virtuelles (Windows 10 & 11)

 Implémenter les techniques T1112, T1547,T1546...

 Collecter les event logs : Sysmon + Windows Event logs

2. Dataset

 Exporter les logs (evtx → Parquet/CSV)

 Labling de la dataset

 Pretraitement

 Effectuer le feature enginneering

3. Modèle IA

 Tâche : classification binaire

 Modeles : Random Forest / XGBoost ..

 Évaluer : Recall/F1 , matrice de confusion, FPR, FNR, Feature importance..

4. Validation & comparaison

 Sélectionner des datasets externes

 Évaluer les modèles selon les mêmes métriques

 Réaliser des tests statistiques pour confirmer les différences significatives

Fait à Bruxelles, le 13/10/2025

L’Etudiant Le Promoteur

Nom-prénom : Nom-prénom :

Entreprise : ERM

Signature Signature

DEBATTY ThibaultBennouna Ghita

