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Abstract

Advanced Persistent Threats (APTs) are targeted
cyber attacks committed over a long period of time
by highly skilled attackers. The ever increasing num-
ber of successful attacks indicates that classical net-
work protection solutions (firewalls, Intrusion Detec-
tions Systems, proxies etc.) are no longer sufficient.
Therefore, in this paper we propose a new system
that combines multiples approaches using advanced
aggregation techniques to achieve a better detection
performance. We also test the system on real data
from a small corporate network, and show that our
system is able to attain a high probability of detection
to probability of false alarm ratio.

1. Introduction

Advanced Persistent Threats are targeted cyber
attacks committed over a long period of time by highly
skilled attackers.

An example of an APT is the Miniduke attack that
targeted the governments of at least 20 countries in
2013. The malware targeted government computers in
the Czech Republic, Ireland, Portugal and Romania
along with think tanks, research institutes and health-
care providers in the United States. The malware used
Twitter and Google to get instructions and updates. It
allegedly infected PCs when victims opened a cleverly
disguised Adobe PDF attachment to an email, which
was specifically tailored to the target. The attachment
referred to highly relevant subjects like foreign policy,
a human rights seminar, or NATO membership plans.

Such attacks are becoming evermore sophisticated
and manage to bypass the state of the art commercial-
off-the-shelf solutions that are currently in place. The

attackers regularly succeed in remotely controlling
hosts in our networks long enough to locate the in-
formation they are after, gain access to it and finally
exfiltrate sensitive data. APT attacks have therefore
become a major concern for network security profes-
sionals around the world.

Therefore, in this paper we propose a new system
that combines multiples approaches using advanced
aggregation techniques to achieve a better detection
performance.

The rest of the paper is organized as follows. In
Section 2 we present current APT detection techniques
along with aggregation operators. In Section 3 we
present the detection agents we implemented, and in
Section 4 we explain how the evidences produced
by these agents are aggregated to produce a single
suspiciousness score. In Section 5 we test the system
on real data from a small corporate network. Finally,
in Section 6 we present our conclusion and directions
for future work.

2. Related work

2.1.APT Detection

APTs usually use zero-day vulnerabilities that can-
not be detected by antivirus or other security softwares.
Furthermore they all use different and novel attack
patterns, which makes them very difficult to detect.

Nevertheless most APTs have in common the fact
that they establish a command and control (CnC)
channel with the outside world to receive new instruc-
tions and to exfiltrate data. This channel is necessarily
tunneled through one of the protocols that is allowed
at the level of the choke points that interconnect the
corporate network with the outside world.



Protection against APTs currently mainly relies on
classical tools like firewalls, Intrusion Detections Sys-
tems (IDS), proxies etc. The ever increasing number of
successful APT attacks indicates that these commonly
used solutions are no longer sufficient.

Some companies started proposing dedicated tools,
like Verint CYBERVISION Advanced Detection Sys-
tem, FireEye Threat Prevention Platform and ISC8 Cy-
ber adAPT system. But these tools are largely derived
from the classical above mentioned tools. Moreover,
their closed-source structure makes it very hard to
objectively assess and compare their effectiveness.

Therefore, in this paper we propose a new system
that combines multiple approaches to achieve a better
detection performance. Our system has the additional
advantages that it is open and extensible, which make
it possible to integrate future detection tools and ap-
proaches. This also make it possible to easily adapt
the system to specific needs and infrastructure, and
to objectively measure its effectiveness. Our approach
also takes the human analyst into account, which will
remain an important part of the APT detection system.

To achieve this goal, the system uses multiple anal-
ysis agents and aggregates the suspiciousness scores
attributed by the agents using advanced aggregation
operators.

2.2.Aggregation Techniques

We will here consider aggregation techniques on
the real interval I = [0, 1], representing the degrees
of suspiciousness as they are produced by the APT
detection agents.

In general, an n-ary aggregation function can be
any non-decreasing function A(n) : In → I that
fulfils the boundary conditions infx∈In A(n)(x) = inf I
and supx∈In A(n)(x) = sup I . Moreover, when dealing
with a variable number of inputs, for instance when
the number of agents that produce evidence can vary
from one client host to another, an extended aggre-
gation function is required. This can be any function
A :

⋃
n∈N In → I such that ∀n > 1 : A(n) = A|In is

an n-ary aggregation function and for n = 1 : A(1) is
the identity on I .

Dubois and Prade [1] distinguish four categories
of extended aggregation functions: those generalizing
the notion of conjunction, those generalizing the no-
tion of disjunction, averaging aggregation functions,

and finally mixed aggregation functions which do not
belong to any of the other three categories.

For our application, conjunctive aggregation func-
tions are too pessimistic. Indeed, if several agents
report a high degree of suspiciousness, but one agent
is doubtful and reports a low degree of suspiciousness,
the aggregated result would be determined by this last
agent. The convincing evidence of the other agents
would thus be ignored, which is not the behaviour we
want. Moreover, if the undecided agent would have
hesitated even more and had not produced an output
at all, the aggregated suspiciousness level would have
been a lot higher, which is counter-intuitive.

In the same way, when a single agent reports a
high score, the fact whether or not a large number of
other agents confirm this observation is largely ignored
by the maximum-type operators that are used for a
disjunctive aggregation. This is again not what we
are looking for. A client host that is reported by a
number of agents with a high suspiciousness degree,
should be assigned a significantly higher aggregated
suspiciousness level than one that is strongly supported
by just one agent and received a low score from the
others.

Therefore we will base the multi-agent evidence
aggregation on an averaging aggregation function.
Some well-know options are the arithmetic mean
M = 1

n

∑n
i=1 xi and the quasi-arithmetic mean Mf =

f−1(M(f(x1), . . . , f(xn)) with f : I → [−∞,∞] a
continuous strictly monotonic function. The choice of
the aggregation function and of the function f is a way
of bringing domain knowledge into the aggregation
process.

If we want to bring in even more domain knowl-
edge, we can do so in the form of a normal weighting
vector w = (w1, . . . , wn) with ∀i : wi ≥ 0 and∑n

i=1 wi = 1. Some typical examples of weighted ag-
gregation functions are the weighted arithmetic mean
Mw =

∑n
i=1 wixi and the weighted quasi-arithmetic

mean Mfw = f−1 (
∑n

i=1 wif(xi)).

A major problem with the operators we have
discussed until now, however, is that the addition
of supporting evidence can result in a reduction of
the aggregated suspiciousness level. Indeed, consider
a situation where three agents report evidence for a
client host, for instance x1 = 0.8, x2 = 0.7, and x3 =
0.3. The basic arithmetic mean function M(x1, x2, x3)
will produce an aggregated evidence level of 0.6.
Consider now that a fourth agent joins in and reports a
suspiciousness level x4. The resulting arithmetic mean



value M(x1, x2, x3, x4) for values of x4 ranging from
0 to 1 is shown in figure 1.

A solution to ensure that additional agents don’t
lower the aggregated output, is the use of ordered
operators [4], such as the ordered weighted aver-
age operator (OWA) M ′w =

∑n
i=1 wix

′
i and the

ordered weighted quasi-arithmetic operator M ′fw =
f−1 (

∑n
i=1 wif(x

′
i)) with x′i the i-th order statistics

from the sample (x1, . . . , xn).
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Figure 1: arithmetic mean versus OWA

Indeed, when we use for instance an OWA operator
with weights w = (1/3, 1/3, 1/3, 0), the resulting
M ′w(x1, x2, x3, x4) in figure 1 clearly shows that the
additional evidence x4 does not influence the final re-
sult as long as its level remains below min(x1, x2, x3),
yet pushes the aggregated result higher when it sur-
passes this level.

3. Multi-Agent System

The challenge when trying to detect the CnC chan-
nel of a previously unseen APT, is to distinguish it
from the background noise of user initiated connec-
tions, for instance while surfing the web, as well as
from other software initiated connections, for instance
originating from operating system and client software
automated updates, VoIP clients or cloud services that
tunnel through HTTP, etc.

Since we want to detect previously unseen mal-
wares, we cannot simply look for activity that matches
hand-crafted signatures or precise behavioural descrip-
tions, resulting from the reverse engineering of known
malware samples. We will rather have to implement a
number of detection algorithms that look for generic
behavioral patterns that we have observed over a wide
variety of malware instances and aggregate evidence
produced by a wide range of agents in order to reduce
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Figure 2: detection system architecture

the inevitably high false alarm rate of each individual
pattern.

Modern corporate network environments typically
contain a wide variety of platforms. They may even
host legacy systems that are operating on old operating
system and application software versions, for which
security updates are no longer available. Deploying
the APT detection algorithms as an endpoint security
solution would require supporting a wide range of
operating systems and configurations. Therefore we
chose to perform the detection at the level of the choke
point with the Internet, as is shown in figure 2.

The detectors are implemented as agents, that each
independently verify a different characteristic of mal-
ware behavior. Since the aggregation is performed over
all available sources of evidence, one can over time
easily retire agents when they are no longer relevant
or add new agents that verify new patterns as they are
discovered.

Some examples of detectors that have already been
implemented for outgoing HTTP requests include:

• Frequency analysis: Malwares will often wait
for a fixed period of time between outgoing
connections to poll their CnC server. The
detector looks for this periodicity based on the
timestamps of the requests.

• Time-domain impulse detector: Human-
initiated connections are characterized by
periods of bursty activity, with a number
of outgoing connections spread out over a
certain period of time. CnC connections on
the other hand are often isolated in time,



especially at times when the human user is
not active.

• Flow direction evaluator: When a compro-
mised PC is exfiltrating information, it will
use different HTTP methods than when it is
retrieving information from the outside. The
detector looks at the amount of information
that is going out versus the amount of infor-
mation that is coming in and tries to detect any
imbalance, compared with the typical behavior
of other hosts in the network.

• Geographic outlier detector: Users tend to
visit websites that are regionally grouped. This
detector will therefore report hosts that are
visiting one specific website that is geograph-
ically located far away from all the other sites
that are normally visited by the same host.

• High fan-in, fan-out detector: Malwares some-
times use pseudo-randomly generated domain
names for locating their CnC server or use a
battery of infected hosts as alternating contact
points hidden behind a common hostname.
The detector therefore looks for abnormal do-
mainnames.

The indicators of suspiciousness, produced by
the individual agents, will inevitably contain a large
amount of false alarms. Therefore the outputs are
aggregated into a global suspiciousness rating. The
system will however not automatically classify hosts as
clean or infected. Indeed, because of the characteristics
of an APT, an approach based on the automatic thresh-
olding of the aggregated suspiciousness score at a pre-
defined level that ensures an acceptable probability of
detection, would inevitably result in a high probability
of false alert. Therefore the system is conceived as a
semi-automatic data exploration system, with a human
expert in the loop. The system just draws the attention
of the human expert to the most important potentially
suspicious events and provides him with the necessary
analysis tools to explore these further.

In order to detect previously unseen malwares, the
detectors must inevitably be targeted at generic rather
than very specific behavioral descriptions. Therefore
the inclusion of domain knowledge, on the one hand
in the form of algorithms and parameters and on
the other hand as a human expert in the loop, are
needed to separate the very weak CnC signal from the
background noise of regular Internet traffic.

4. Evidence Aggregation

Every connection that passes through the choke
point is made available to all the agents for inspection.
Some of the agents may judge that the traffic associated
with a given connection resembles typical CnC traffic,
at least for those characteristics of such traffic that a
specific agent is looking for, while other agents may
not find anything suspicious and therefore not react.

Figure 3: geographic outlier detection for two clients

The output of an agent is not a binary result but
rather the degree to which the agent estimates that
the connection belongs to the set of connections that
show a CnC-like behavior with regard to the specific
characteristic this agent is looking at.

Consider for instance the “geo-outlier” agent that
searches for connections from a client towards a server
in an area where the same client does not visit any
other server. In figure 3 these isolated servers are
indicated by a red dot. In the case of client 1, a
large cluster of servers is found in the US and another
large cluster in western Europe but there is one single
server that is visited in central America. The agent will
therefore produce a suspiciousness degree value for
this client-server combination. In the case of client 2,
again three clusters have been identified, one of which
contains a single server and therefore this server can
be considered a geographic outlier as well.

However, a human analyst will be more convinced
by the first example than by the second since it is based
on a much larger number of samples. This domain
knowledge of the human expert, used for evaluating



the result of the clustering operation, is captured in
the form of fuzzy rules in the following way [2]:

if cluster contains single server
and dataset covers large number of connections
and dataset covers sufficiently long timespan
then

connections to server suspicious
else

connections to server not suspicious
end if

The natural language expressions “large number
of connections” and “sufficiently long timespan” are
defined by fuzzy set membership functions that allow
the human expert to integrate part of his domain
knowledge into the system.

The geo-outlier agent will thus first geographically
cluster the servers visited by each client, and subse-
quently evaluate the degree of suspiciousness for all
one-element clusters that it finds. For this purpose, it
first computes the crisp input values representing the
total number of connections in the dataset initiated by
the given client and the period of time covered by
these connections. Then the antecedent fuzzy sets are
evaluated, and finally the firing degree of the rule is
computed.

In a similar way, each of the other agents will look
for certain characteristics and produce fuzzy evidence
against a number of client-server combinations. In
order to fuse for a given client-server combination the
outputs of a variable number of agents, an extended
aggregation function is needed [3]. For the reasons
explained in section 2.2, our multi-agent system uses
an OWA aggregation operator.

The weights for the OWA operator allow the human
expert to select any aggregation behavior between
a maximum (w = 1, 0, 0, . . . , 0), and a minimum
(w = 0, 0, 0, . . . , 1) operation. In our experience the
human experts tend to prefer a weight combination
that suppresses single agent alarms and encourages
mutual reinforcement, by choosing a low first weight
and assigning the main part of the weight mass over
the second and third position of the weight vector.

There are actually two aggregation levels involved.
The first level consists in combining the opinions
produced by the different agents for a given server or
connection. The second level is the aggregation over
different connections or contacted servers for a given
client. This last aggregation results in a single score per
client. Here we also use an OWA operator but with
weights that are chosen in such a way that already

a single suspicious repetitive connection or contacted
server can lead to a relatively high aggregated suspi-
ciousness degree for the client.

5. Experimental Results

The multi-agent system has first been validated
using simulated data, in order to develop and tune
the detectors as well as the aggregation operator.
Subsequently real traffic traces from a small subnet
with about 100 client PCs were used as background
traffic and simulated APT activity was added.
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Figure 4: ROC for the individual agents

Figure 4 shows the individual ROC curves for
four agents, applied to a simulated network of about
100 clients. The clients perform a random number of
website visits each day in a simulated working day
cycle, where each visit consists of a variable number
of pages obtained from a range of different servers.
The distributions used for generating the characteristic
parameters for these visits were based on logfiles from
a real network.

The APT network activity simulation is based on
a state space with transition probabilities, that can
depend on the activity of the underlying infected host.
In total 8 different APT models were used for this test,
all of them based on existing malwares.

Some agents only detect very specific types of CnC
communications and therefore are unable to detect all
the APTs that were simulated; they generate few false
alarms however. Others detect a wide range of malware
traces yet produce higher numbers of false alarms.

The goal of the aggregation is to reduce the
false alarm rate while preserving successful detections.
Figure 5 shows the results for different aggregation
operators, applied to the detection agents for which the
performance was depicted in figure 4. The maximum
operator is fooled by high valued false alarms from
single agents, and as a result suffers from a higher
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Figure 5: ROC for different aggregation operators

false alarm rate itself as well. The averaging operator
on the other hand takes into account the outputs
from all agents and as a result performs better than
the maximum operator in this simulation. However,
the tests clearly show that the OWA operator, even
with a basic set of weights (in this test the weights
[0.2, 0.5, 0.3, 0.0] were arbitrarily chosen by the oper-
ator), performs better than both other operators on this
dataset.
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Figure 6: ROC for OWA aggregation on real data,
without and with whitelisting

Figure 6 shows the OWA aggregated ROC curve
for a test on real data. The network consists of about
100 client hosts with a wide range of user profiles and
with the same 8 APT models attached to randomly
selected client hosts. This results in a large number of
false alarms, corresponding with updating background
agents of all sorts, cloud storage services, etc.

However, when whitelisting is applied based on
previously seen false alarms, the resulting detection
performance becomes usable in the sense that it would

be possible for a human analyst to systematically
analyze the newly reported alerts and whitelist the
limited number of new false alarms that are produced.
This whitelisting is applied in a client-specific, agent-
specific and where possible even a value range-specific
way in order to reduce the risk of malware evidence
being inadvertently erased by the whitelisting process.

6. Conclusion and Future Work

In this paper we proposed a new system that com-
bines multiples approaches using advanced aggregation
techniques to detect APT attacks. We tested the system
on simulated data and on real data from a small
corporate network. We showed that our system is able
to attain a high probability of detection to probability
of false alarm ratio.

In the future, we plan to implement additional
agents, that will look for other hints of an APT
attack going on, for example using other sources of
information (firewall logs, IDS logs . . . ). We also plan
to test the system more extensively, on data from other
real networks, and to compare our aggregation tech-
niques with state-of-the-art classifiers. We will also use
machine learning algorithms to automatically optimize
agent and aggregation parameters, and compare them
with parameters suggested by human experts. Finally,
we plan to study the temporal behavior of the system,
to determine how many events, and how much work
from a human expert, are required to achieve a good
performance of detection.
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